Computing Refined Buneman Trees
in Cubic Time

Gerth Stolting Brodal'»*»** | Rolf Fagerberg!*, Anna Ostlin?****,
Christian N. S. Pedersen®*, and S. Srinivasa Rao®***

1 BRICS (Basic Research in Computer Science, www.brics.dk, funded by the Danish
National Research Foundation), Department of Computer Science, University of
Aarhus, Ny Munkegade, 8000 Arhus C, Denmark. Email: {gerth,rolf}@brics.dk.
2 IT University of Copenhagen, Glentevej 67, DK-2400 Copenhagen NV. Email:
annao@it-c.dk.

3 Bioinformatics Research Center (BiRC), www.birc.dk, funded by Aarhus University
Research Foundation, Department of Computer Science, University of Aarhus,
Ny Munkegade, 8000 Arhus C, Denmark. Email: cstorm@daimi .au.dk.

4 School of Computer Science, University of Waterloo, 200, University Avenue West,
Waterloo, Ontario W2L 3G1. Email: ssrao@monod.uwaterloo.ca.

Abstract Reconstructing the evolutionary tree for a set of n species
based on pairwise distances between the species is a fundamental prob-
lem in bioinformatics. Neighbor joining is a popular distance based tree
reconstruction method. It always proposes fully resolved binary trees de-
spite missing evidence in the underlying distance data. Distance based
methods based on the theory of Buneman trees and refined Buneman
trees avoid this problem by only proposing evolutionary trees whose
edges satisfy a number of constraints. These trees might not be fully
resolved but there is strong combinatorial evidence for each proposed
edge. The currently best algorithm for computing the refined Buneman
tree from a given distance measure has a running time of O(n®) and
a space consumption of O(n4). In this paper, we present an algorithm
with running time O(n®) and space consumption O(n?). The improved
complexity of our algorithm makes the method of refined Buneman trees
computational competitive to methods based on neighbor joining.

1 Introduction

The evolutionary relationship for a set of species is commonly described by an
evolutionary tree, also called a phylogeny, where leaves correspond to species
and internal nodes correspond to points in time where the evolution has di-
verged in different directions. Reconstructing an unknown evolutionary tree for
a set of species from obtainable information about the species is a fundamental

* Partially supported by the Future and Emerging Technologies programme of the EU
under contract number IST-1999-14186 (ALCOM-FT).
** Supported by the Carlsberg Foundation (contract number ANS-0257/20).
*** Work done while at BRICS.

problem in bioinformatics. A multitude of models and methods for reconstruct-
ing evolutionary trees have been proposed in the literature, see e.g. [13] for an
overview. A large class of methods use the evolutionary distance between each
pair of species as their primary source of information for reconstructing the
unknown evolutionary relationships. Distance data can e.g. be obtained from
sequence data from the species by estimating the evolutionary distance between
homologous sequences in a model of sequence evolution.

A widely used distance based method is the neighbor joining method by
Saitou and Nei [14], which can be implemented with running time O(n?) and
space consumption O(n?), where n is the number of species. A common cri-
tique of neighbor joining based methods is that they always reconstruct fully
resolved evolutionary trees, i.e. unrooted trees where all internal nodes have de-
gree three. A fully resolved tree can be misleading because many of its internal
edges can be artifacts of the reconstructing method insisting on a fully resolved
tree even though the underlying distance data contains little phylogenetic evi-
dence hereof. To avoid this problem, a number of distance based methods have
been studied which only propose evolutionary trees whose edges are well sup-
ported by constraints expressed in terms of quartets. A quartet is the topological
subtree induced by four species. Every edge in an evolutionary tree induces a
set of quartets consisting of the quartets with two species in each of the two
subtrees induced by removing the edge.

The Q* method [1,4], which relates to the tree construction method intro-
duced by Buneman in [7], imposes constraints on the proposed edges by requiring
that all induced quartets must have positive weight for some given weight func-
tion. The running time of the general @* method is O(n*), where n is the number
of species, and it has been experimentally shown to introduce very few incor-
rect edges [4]. If quartets are weighted according to their Buneman score the
resulting evolutionary tree which satisfies that all induced quartets have posi-
tive Buneman score is called a Buneman tree. Berry and Bryant [3] show how to
compute the Buneman tree for a set of n species in time O(n?) and space con-
sumption O(n?). The Buneman tree is a conservative but reliable estimate of the
evolutionary tree. However, as discussed in [3,5] and illustrated in [3, Figure 1],
the severe constraints of positive Buneman score for all induced quartets often
result in a proposed evolutionary tree with few resolved edges. This shortcoming
was addressed by Moulton and Steel [12] who proposed the refined Buneman
tree which loosens the constraints by allowing a limited number of the induced
quartets to have negative score. This tree is a refinement of the Buneman tree
in the sense that it contains at least the edges in the Buneman tree. The refined
Buneman tree thus takes up a useful middle ground between the neighbor joining
method and the classic Buneman tree.

Bryant and Moulton [6] presented the first polynomial time algorithm to
compute the refined Buneman tree. The running time is O(n%). Berry and
Bryant [3,5] gave an improved algorithm with running time O(n®) and space
consumption O(n*). In this paper we present a method for constructing the
refined Buneman tree for a set of n species in time O(n?) and space O(n?).

Our algorithm is based on an incremental approach also used in the algo-
rithms presented in [3,5,6]. The central difference is that we do not construct
a sequence of refined Buneman trees, but instead construct a sequence of over-
approximations to refined Buneman trees from which we can extract the desired
refined Buneman tree at the end.

The improved running time and the simplicity of our algorithm makes the
method of refined Buneman trees computational competitive to methods based
on neighbor joining and on plain Buneman trees. It will also make it possible to
perform comprehensive experiments on biological data to examine the virtues
of refined Buneman trees against trees produced by these other methods. An
implementation of our algorithm is currently being made, and it is planned to
be part of release 4.0 of the well-known SplitsTree package [10].

The rest of this paper is organized as follows. In Section 2 we introduce
notation and earlier results related to Buneman and refined Buneman trees. In
Section 3 we describe how to maintain a set of compatible splits. In Sections 4
and 5 we present our improved algorithm for computing refined Buneman trees.

2 Preliminaries

In the following we let the set of species be denoted X = {x1,...,2,}, and for
an integer k € {1,...,n} we let Xy = {x1,..., 21}

Evolutionary tree An evolutionary tree (or X-tree) for a set of species X is an
unrooted tree T = (V, E) together with an injective labeling of the leaves by
members of X.

Dissimilarity measure A dissimilarity (or distance) measure § on a set of species X
is a symmetric function § : X2 — R, where 6(z,z) =0 for all z € X.

Quartets To every set of four species a,b,c,d € X, there are four ways to
associate a leaf-labeled tree, as shown in Figure 1. The three possible binary
tree resolutions, quartets, are denoted by ablcd, ac|bd and ad|bc, indicating how
the central edge of the binary tree bipartitions the four species. We say that an
edge e in an X-tree induces a quartet ablcd if e bipartitions the four species in
the same way as the central edge of the quartet.

P D =
a d a d a c
abled ac|bd ad|bc

Figure 1. The possible topologies of four species.

Splits The partition of a finite set into two non-empty parts U and V is denoted
a split U|V. In this paper we represent a split U|V as a bit-vector A such that
x; € U if and only if A[i{] = 0. If |U| = 1 or |V| = 1 the split is called trivial.
Removing an edge e from an X-tree T" partitions the leaf set of the tree into two
parts. This is called the split of T" associated with the edge e. The complete set
of splits associated with each of its edges is denoted splits(T'). The lemma below
is proved in [9], but also follows from the construction in Section 3.

Lemma 1 (Gusfield [9]). Any unrooted X -tree with n leaves can be con-
structed from its set of non-trivial splits in time O(kn), where k is the number
of non-trivial splits.

The set of quartets associated with a split U|V is defined by ¢(U|V) = {wu/|vv’ :
u,u’ € U A v,v" € V}. Here u and v’ (similarly v and v’) need not be distinct.

Compatibility A set of splits S is compatible if S C splits(T) for some tree T'.

Lemma 2 (Buneman [7]). Two splits A|B and C|D are compatible if and only
if one of ANC, AND, BNC or BND is empty. A set of splits is compatible
if and only if it is pairwise compatible.

Buneman trees Buneman [7] shows how to construct a weighted unrooted tree
from a dissimilarity measure § on X by considering quartets. The Buneman score
of a quartet ¢ = ab|cd, where a,b,c¢,d € X is defined as:

B = %(min{ac +bd, ad + be} — (ab + cd)) (1)

where ab denotes §(a,b) for a,b € X. Two distinct quartets g1 and ¢o for the
same four species satisfy

By + B, < 0. (2)
The Buneman index of a split o = U|V of X is

Ho (6) =

u,u/Er[I},l'ur,lv/EV ﬁuu/ oo’ -

Buneman showed that the set of splits B(d) = {0 : ps(4) > 0} is compatible.
The Buneman tree corresponding to a given dissimilarity measure § is defined
to be the weighted unrooted tree whose edges represent the splits o € B(J) and
are weighted according to p,(0).

Anchored Buneman tree One relaxation of the condition that gy > 0 is to
only look at quartets containing a certain fixed species * € X. For each split
U|V with 2 € U define

z o .
IU’U|V(6) - ueUI:%}gevﬁzuwv’)

and let By(6) = {U|V : pgyy, > 0}. Clearly B(6) € B;(0). Bryant and Moulton
show that the set of splits B,;(d) is compatible [6, Lemma 1]. The weighted
unrooted tree representing B, (d) with the edge representing a split o € B, (9)
given the weight pZ(d), is called the Buneman tree anchored at x.

Lemma 3 (Bryant and Moulton [6, Proposition 2]). B(§) = Nyecx Bz (0).

Lemma 4 (Berry and Bryant [3, Section 3.2]). B, (d) can be computed in
time (and space) O(n?).

Refined Buneman tree Given a split o for a set size n, let m = |g(o)| and let
q1,- - -, qm be an ordering of the elements of ¢(o) in non-decreasing order of their
Buneman scores. The refined Buneman index of the split ¢ is defined as

1 n—3
Ar(0) = —= > fy. - (3)

Moulton and Steel show that the set of splits {o : fi, > 0} is compatible [12,
Corollary 5.1]. They define the refined Buneman tree as the weighted unrooted
tree representing the set RB(d) = {0 : i, > 0}, with the edge representing the
split 0 € RB(d) given the weight fi,(J).

Lemma 5. Given two incompatible splits o1 and o2, there exists an i € {1,2}
such that iy, <0, and this can be computed in O(n) time.

Proof. Let o1 = U1|Vh and o9 = Us|Vh. Since 01 and oy are incompatible, the
sets A=U1NU;, B=U;NVy, C=ViNUs and D = Vi NV, are all non-empty.
From the bitvector representations of o1 and o9 these four sets can be computed
in time O(n). Since |A| - [B| - |C| - |D| > n — 3 and Bap|ca + Bacjpa < 0 for every
a € Abe B,ce Candde D by (2), we can find at least n — 3 pairs of quartets
(q},q?), where ¢} and ¢? contain the same four species and 1 < i < n — 3, such
that ¢} € q(01),¢? € q(02) and By + Byz < 0. Thus, we have

n—3

Zﬁq7}+ﬁq? <0,

i=1

which implies
n—3 n—3
Zﬁqlﬁo or Zﬁqzﬁo-
i=1 i=1

It follows that jis, <0 or fis, < 0. By calculating the two sums Z?:_f’ Bgr and

2?2_13 B2 in time O(n) we get two upper bounds for fis, and fi,, and can discard
at least one of the two splits.

The following lemma is due to Bryant and Moulton and forms the basis of the
incremental algorithms presented in [3,5,6] as well as the algorithm we present
in this paper.

Lemma 6 (Bryant and Moulton [6, Proposition 3]).
Suppose | X| > 4, and fiz v € X. If 0 = U|V is a split in RB(6) with x € U,
and |U| > 2, then either U|V € B,(0) or U —{z}|V € RB(|x_{s}) or both.

3 Maintaining a set of compatible splits

The running time of our algorithm for computing refined Buneman trees is
dominated by the maintenance of a set of compatible splits represented by an
X-tree T. In this section, we consider how to support the operations below on
X-trees. Recall that we represent a split U|V by a bit-vector A such that x; € U
if and only if A[i] = 0.

— Incompatible(T, o) Return a split ¢’ in T that is incompatible with o. If all
splits in T' are pairwise compatible with ¢ then return nil.

— Insert(T, o) Insert a new split o into T. It is assumed that o is pairwise
compatible with all existing splits in 7'.

— Delete(T, o) Remove the split o from 7.

Theorem 1. The operations Incompatible, Insert, and Delete can be supported
in time O(n), where n = | X|.

Proof. For the operation Incompatible(T, o), where o = U|V, we root T at an
arbitrary leaf, and by a depth first traversal of T" for each node v of T' compute
the number of leaves below v which are in respectively U and V in time O(n).
If the parent edge of a node v represents the split o/ = U’|V’, where U’ are
the elements below v, then the two counts represent respectively |U’ N U] and
|U'NV|. From the equalities |V'NU| = |U|—|U'NU| and |V'NV| = |V|-|U'NV],
we can now in constant time decide if ¢’ is incompatible with o, since o and
o’ by definition are incompatible if and only if |U' N U, |[U' NV|, |V' NU|, and
|V N V| are all non-zero. We return the first incompatible split found during the
traversal of T'. If no edge represents a split incompatible with o, we return nil.

To perform Delete(T, o) we in linear time find the unique edge (v, u) repre-
senting the split o, by performing a depth first traversal to locate the node v,
where the subtree rooted at v contains all elements from U and no element from
V or vice versa. Finally we remove the edge (v,u), where u is the parent of v,
by contracting v and u into a single node inheriting the incident edges of both
nodes.

Finally consider Insert(T, o), where o = U|V. We claim that, since o is as-
sumed pairwise compatible with all splits in 7', there exist a node v, such that
removing v and its incident edges leaves us with a set of subtrees where each
subtree contains only elements from either U or V. We prove the existence of v
below. To locate v we similar to the Incompatible operation root 7' at an arbi-
trary leaf and bottom-up calculate for each node the number of leaves below in
respectively U and V. We stop when we find the node v described above. We
replace v by two nodes vy and vy connected by the edge e = (vy,vy). Each
subtree incident to v containing only elements from respectively U or V is made
incident to respectively vy or vy . This ensures that e represents the split o, and
that all other edges remain representing the same set of splits.

What remains is to show that such a node v exists. If |[U| =1 or |[V| =1 the
statement is trivially true. Otherwise, assume |U| > 1 and |V| > 1, and that the
root r is a leaf in U. Let a be a leaf in V. We now argue that the lowest node v

on the path from a to the root r containing at least one element from U in its
subtree is the node required. Let u be the predecessor of v on the path from
a to the root r. By definition u only contains elements from V in its subtree.
Let u’ be a sibling of u that contains at least one leaf b from U in its subtree.
Assume now for the sake of contradiction that removing v and its incident edges
leaves us with a set of subtrees including a subtree containing elements ¢ € U
and d € V. Consider the case that ¢ and d are not contained in the subtree of v/,
but in a subtree that was connected to v with an edge representing a split U'|V”,
where ¢ € V" and d € V'. Then the splits U|V and U’|V’ are incompatible, since
aceVNU,beUNU,ceUNV’, and d € VNV’ Otherwise if ¢ and d are
contained in the subtree of ', then let U’|V’ be the split represented by the
edge (u/,v). The splits U|V and U’|V’ are then incompatible by a € V N U,
reUnNnU,ceUNV/,;anddecVnNV.

4 Computing refined Buneman trees

We compute the refined Buneman tree for X by computing a sequence of sets of
splits Cy, ..., Cy, such that each C} is a set of compatible splits that is an over-
approximation of the refined Buneman splits for Xy, i.e. Cy, 2 RB(d), where
0r = d|x,. Bach iteration makes essential use of the characterization given by
Lemma 6, that enables us to compute Cg1 from Cj together with the anchored
Buneman tree for Xj41 with anchor x1. To avoid a blow up in the number of
splits, we use the observation that given two incompatible splits, we by Lemma 5
can discard one of the splits as not being a refined Buneman split. By computing
the refined Buneman scores for the final set of splits C,, we can exclude all splits
with a non-positive refined Buneman score, and obtain the refined Buneman tree
RB(6) for X. In the following we assume that all sets of compatible splits over
X, are represented by their Xj-tree, i.e. the space usage for storing a compatible
set of splits is O(k).

Theorem 2. Given a dissimilarity measure § for n species, the refined Buneman
tree RB(J) can be computed in time O(n®) and space O(n?).

Proof. Pseudo code for the algorithm is contained in Figure 2. The operations
Insert, Delete and Incompatible are the operations on a set of compatible splits
as described in Section 3. The operation DiscardRight? takes two incompatible
splits and returns true/false if the second/first split has been verified not to be
a refined Buneman split, c.f. Lemma 5.

In lines 1-11 we compute a sequence of sets of compatible splits Cy, ...,),
such that Cy, 2 RB(d). In line 1 we let C4 be an over-approximation of By, (d4),
which satisfies Cy O RB(d4) since each refined Buneman split for a set of size
four must also be contained in any anchored Buneman split. In lines 2-11 we
(based on Lemma 6) inductively compute C from Ci_1 by letting Ci be the
set of splits

By, (o) U |J {UU{z}IV, UV U{z}},
UlVeC)_1

1. C4 := By, (04)

2. for k=5ton

3. Ck = Bxk (5k)

4. for UV € Cr—1

5. for o € {UU{zw}|V, UV U{zxr}}

6. o’ := Incompatible(Cy, o)

7. while ¢’ # nil and DiscardRight?(c, ")
8. Delete(Cy, ')

9. o’ := Incompatible(Cy, o)

10. if o/ = nil

11. Insert(Ck, o)

12. Compute refined Buneman index for C,, and discard splits

with a non-positive score

Figure 2. The overall algorithm for computing the refined Buneman tree

except for some incompatible splits that we explicitly verify not being in RB(dy)
(lines 6-11).

Since Cy and By, (k) are sets of compatible splits, both contain at most
2k — 3 splits. It follows that in an iteration of lines 3 — 11 at most (2k — 3) +
2(2(k — 1) — 3) < 6k splits can be inserted and deleted from Cj. The number of
calls to DiscardRight? and Incompatible is bounded by the number of insertions
and deletions of splits. Since by Lemma 4 computing By, (§x) takes time O(k?)
and each operation on a set of compatible splits takes time O(k), it follows that
the total time spent in an iteration of lines 3-11 is O(k?), i.e. for lines 1-11 the
total time used is O(n3). Since we for each iteration of the for loop in line 2
only require access to C—1 and Cy, which are represented by X-trees, it follows
that the space usage for lines 1-11 is O(n) (not counting the space usage for the
dissimilarity measure), if we discard Cj_2 at the beginning of iteration k.

In Section 5 we describe how to compute the refined Buneman indexes for
Cn in time O(n®) and space O(n?), i.e. it follows that the total time and space
usage is respectively O(n?) and O(n?).

The algorithms in [3,5,6] are based on a similar approach as the algorithm
described above, but use the stronger requirement that Cy, = RB(Jx). A central
feature of our relaxed computation is that the number of computations of refined
Buneman scores for a set of compatible splits is reduced from n — 3 to a single
computation as the final step of the algorithm.

The algorithm described above in line 3 initializes C}, to be the anchored
Buneman tree B,, (6;) by applying Lemma 4. As a simplification, we note that
since the algorithm is based on over-approximation, it remains valid if we in
line 3 just require Cj to be a compatible set of splits containing at least all
splits of By, (dx). Berry and Bryant [3, Theorem 2] prove that the single linkage
clustering tree for xj has this property. Single linkage trees can be found in
time O(n?) using spanning tree based methods [2,8,11].

5 Refined Buneman indexes

Given an X-tree where the edges F represent a set of compatible splits, we in
this section describe how to compute the refined Buneman indexes for the set
of splits in time O(n?) and space O(n?). The previously best algorithm for this
subtask uses time O(n?) [5, Lemma 3.2] assuming that the scores of the quartets
are given in sorted order.

For each edge e, our algorithm finds the n — 3 quartets of smallest Buneman
score induced by e. The refined Buneman indexes for all edges can then be
computed according to (3) in time O(n?).

To identify for each split the quartets with smallest Buneman score, we as-
sume an arbitrary ordering of the species and adopt the following terminology.
Let abled be a quartet, where a is the smallest named species among the four
species a, b, ¢ and d in the assumed ordering of all species. Motivated by the
definition of Buneman scores (1), we consider each quartet ablcd as two diagonal
quartets which we denote abl||cd and ab||de. The score of a diagonal quartet ab||cd
is defined as 1,4(|cq = (9(b, ¢) — d(a,b) 4 6(a,d) — (d,c))/2. From the definitions
we have Bup|ca = Min{nap||cd; Nab||de -

Instead of searching for quartets with increasing score we search for diagonal
quartets with increasing score. This has the disadvantage that each quartet can
be found up to two times (only one time if ¢ = d). We say that ab||cd is the
minimum diagonal of abled, if Nap|jca < Nab||de OF Nab|jcd = Mab||de and ¢ is the
smallest named species among ¢ and d. Otherwise ab||dc is the minimum diag-
onal. Note that the Buneman score of ab|cd equals the score of the minimum
diagonal. When identifying ab||cd we can by inspecting the quartet check if ab||cd
is the minimum diagonal of ab|cd; if so we identify ab|ed. Otherwise, abled has
already been identified by ab||de since the diagonal quartets are visited in order
of increasing score.

The main property of diagonal quartets which we exploit is that for fixed a
and ¢, we can search independently for b and d to find the diagonal quartet abl||cd
of minimum diagonal score: Find respectively b and d such that respectively
6(b,c) — (a,b) and 6(a,d) — §(d, ¢) are minimal.

For an edge e defining the split U|V and @ € U and ¢ € V, where a is
the smallest named species among a and ¢, let Ug. = b1,...,bjye | € U and
Vie = di,...,djye| € V be the sets of species named at least a, and where
b; and d; appear in sorted order with respect to increasing §(b;,c) — d(a, b;)
and d(a,d;) — d(d;, c) value. We can consider all ab;||cd; as entries of a matrix
Mg, where (Mg.)ij = Tab,||cd;- The crucial property of Mg, is that each row
and column is monotonic non-decreasing. This allows us to construct M, in a
lazy manner while exploring the diagonal quartets, starting with only computing
(M¢,)1,1 which we denote the minimal score of the pair (a,c).

For each edge e we will lazily construct a subset Q). of the diagonal quartets
induced by e. We represent each Q). by a linked list. To identify the n—3 quartets
with smallest Buneman score it is sufficient to identify the 2(n — 3) pairs (a, ¢)
with smallest minimum score. Since for a quartet there are at most two diagonal

quartets, the n — 3 quartets induced by e with smallest Buneman score will have
minimum diagonal quartets with (a, ¢) among the 2(n — 3) pairs found.

1. foreeFE

2. Qe :=10

3. for (a,c) € X*anda <c

4. for each edge e on the path from a to ¢

5. find be on the same side of e as a with §(be, c) — d(a, be) minimal and be > a
6. for each edge e on the path from c to a

7. find d. on the same side of e as ¢ with §(a,d.) — §(de, ¢) minimal and de > a
8. for each edge e on the path from a to ¢

9. Qe := Qe U {abe||cde}

10. if |Qe|l >3(n—3)

11. remove the n — 3 quartets with largest score from Q.

12. forec E

13, Se:=10

14. while |Se| <n—3

15. ab;i||cd; := DeleteMin(Q.)

16. if ab;||cd; is a minimum diagonal

17. Insert(Se, abi|cd;)

18. Insert(Qe, abi+1||cd1) provided j =1 and b;4+1 exists

19. Insert(Qe, ab;||cdj+1) provided dj41 exists

Figure 3. Algorithm for computing the n — 3 smallest Buneman scores induced by
each edge of an X-tree

The pseudo code for the algorithm to find the n — 3 quartets for each split is
given in Figure 3. In lines 1-11 we identify between 2(n — 3) and 3(n — 3) pairs
(a, ¢) with smallest minimal score.

In lines 4-5 and 6-7 we find the b; and d; species for entries (MS,)1,1. Note
that the two loops process the edges between a and c¢ in different directions.
Since the set of possible species b (species d) increases along the path from a to
¢ (from ¢ to a), we can compute the species b, (species d.) from the minimum
found so far for the predecessor edge on the path together with the new species
not considered yet. For each pair (a,c) we will then spend a total time of O(n)
in lines 4-7.

In lines 10-11 we for an edge e remove the 1/3 of the pairs (a,c) computed
with largest minimum score if |Q| becomes 3(n — 3), leaving the 2(n — 3) pairs
with smallest minimum score in Q.. This ensures that for each of the n edges
we at most have to store 3(n — 3) pairs, in total bounding the space required
by O(n?). Line 11 can be performed in O(n) time using e.g. the selection algo-
rithm in [15], i.e. amortized O(1) time for each element deleted from Q.. In total
we spend time O(n?) in lines 1-11 and use space O(n?),

In lines 12-19 we extract for each edge e the n — 3 quartets S. with smallest
Buneman score in sorted order. In line 15 we delete the next diagonal quartet

from Q. with smallest diagonal score. If (). contains several diagonal quartets
with the same score we first delete those which are minimum diagonals.

In line 18 we ensure that if the j first entries of row ¢ of M7, have been
considered, then (Mg,); j+1 is inserted in Q.. Similarly in line 19 we ensure
that if the ¢ first entries in the first column of M¢. have been considered then
(ME,)i+1,1 s inserted into Q. To find the relevant b;11 in line 18 (d,;41 in line 19),
we make a linear scan of the subtree incident to e which contains a (respectively
¢). The species b;+1 > a should have the smallest value 0(b;11,¢) — 6(a,biy1) >
0(bi,¢) — 6(a,b;); in case the expressions are equal then the smallest b;11 > b;.
Similarly, the species d;1 > a should have the smallest §(a, dj41) —(d;q1,¢) >
0(a,d;)—0(dj,c); and in case the expressions are equal then the smallest dj11 >
d;.

The for-loop in lines 12-19 is performed n times, and the while-loop in lines
14-19 is performed at most 2(n — 3) times for each edge, since each iteration
considers one diagonal quartet. Each of the 2(n — 3) deletions from @), inserts at
most two diagonal quartets into Q., i.e. |Q.| < 5(n—3). It follows that DeleteMin
in line 15 takes time O(n). Finally, lines 18 and 19 each require time O(n). The
total time used by the algorithm becomes O(n?) and the space usage is O(n?).

Theorem 3. The refined Buneman indezes for all splits in a given X -tree can
be computed in time O(n?®) and space O(n?).

References

1. H.-J. Bandelt and A. W. Dress. Reconstructing the shape of a tree from observed
dissimilarity data. Advances in Applied Mathematics, 7:309-343, 1986.

2. J.-P. Barthélémy and A. Guénoche. Trees and Proximity Representations. John
Wiley & Sons, 1991.

3. V. Berry and D. Bryant. Faster reliable phylogenetic analysis. In Proc. 3rd In-
ternational Conference on Computational Molecular Biology (RECOMB), pages
69-69, 1999.

4. V. Berry and O. Gascuel. Inferring evolutionary trees with strong combinatorial
evidence. Theoretical Computer Science, 240:271-298, 2000.

5. D. Bryant and V. Berry. A structured family of clustering and tree construction
methods. Advances in Applied Mathematics, 27(4):705-732, 2001.

6. D. Bryant and V. Moulton. A polynomial time algorithm for constructing the
refined buneman tree. Applied Mathematics Letters, 12:51-56, 1999.

7. P. Buneman. The recovery of trees from measures of dissimilarity. In F. Hodson,
D. Kendall, and P. Tautu, editors, Mathematics in Archaeological and Historical
Sciences, pages 387-395. Edinburgh University Press, 1971.

8. J. C. Gower and J. G. S. ROSS. Minimum spanning trees and single-linkage cluster
analysis. Applied Statistics, 18:54—64, 1969.

9. D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, 21:19—
28, 1991.

10. D. Huson. Splitstree: a program for analyzing and visualizing evolutionary data.
Bioinformatics, 14(1):68-73, 1998.
(http://www-ab.informatik.uni-tuebingen.de/software/splits/welcome_en.html).

11.

12.

13.

14.

15.

B. Leclerc. Description combinatoire des altramétriquees. Math. Sci. Hum., 73:5—
37, 1981.

V. Moulton and M. Steel. Retractions of finite distance functions onto tree metrics.
Discrete Applied Mathematics, 91:215-233, 1999.

M. Nei and S. Kumar. Molecular Evolution and Phylogenetics. Oxford University
Press, 2000.

N. Saitou and M. Nei. The neighbor-joining method: A new method for recon-
structing phylogenetic trees. Molecular Biology Evolution, 4:406—425, 1987.

A. Schonhage, M. S. Paterson, and N. Pippenger. Finding the median. Journal of
Computer and System Sciences, 13:184-199, 1976.

