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Abstract

We study the problem of sparse-matrix dense-vector multiplication
(SpMV) in external memory. The task of SpMV is to compute y := Ax,
where A is a sparse N ×N matrix and x is a vector. We express sparsity
by a parameter k, and for each choice of k consider the class of matrices
where the number of nonzero entries is kN , i.e., where the average number
of nonzero entries per column is k.

We investigate what is the external worst-case complexity, i.e., the best
possible upper bound on the number of I/Os, as a function of k and N .
We determine this complexity up to a constant factor for all meaningful
choices of these parameters. Our model of computation for the lower
bound is a combination of the I/O-models of Aggarwal and Vitter, and of
Hong and Kung.

We study variants of the problem, differing in the memory layout of A.
If A is stored in column major layout, we prove that SpMV has I/O com-

plexity Θ
(

min
{

kN
B

max
{

1, logM/B
N

max{k,M}

}

, kN
})

for k ≤ N1−ε and

any constant 0 < ε < 1. If the algorithm can choose the memory layout,

the I/O complexity reduces to Θ
(

min
{

kN
B

max
{

1, logM/B
N
kM

}

, kN
})

for k ≤ 3
√
N . In contrast, if the algorithm must be able to

handle an arbitrary layout of the matrix, the I/O complexity is

Θ
(

min
{

kN
B

max
{

1, logM/B
N
M

}

, kN
})

for k ≤ N/2.

In the cache oblivious setting we prove that with tall cache assumption

M ≥ B1+ε, the I/O complexity is O
(

kN
B

max
{

1, logM/B
N

max{k,M}

})

for

A in column major layout.

Categories and Subject Descriptors: F.2 [Theory of Computation]: Anal-
ysis of Algorithms and Problem Complexity

General Terms: Algorithms, Theory

Keywords: I/O-Model, External Memory Algorithms, Lower Bound, Sparse
Matrix Dense Vector Multiplication
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1 Introduction

Sparse-matrix dense-vector multiplication (SpMV) is one of the core operations
in the computational sciences. The task of SpMV is to compute y := Ax, where
A is a sparse matrix (most of its entries are zero) and x is a vector. Applications
abound in scientific computing, computer science, and engineering, including it-
erative linear-system solvers, least-squares problems, eigenvalue problems, data
mining, and web search (e.g., computing page rank). In these and other appli-
cations, the same sparse matrix is used repeatedly; only the vector x changes.

From a traditional algorithmic point of view (e.g., the RAM model), the
problem is easily solved with a number of operations proportional to the num-
ber of nonzero entries in the matrix, which is optimal. In contrast, empirical
studies show that this näıve algorithm does not use the hardware efficiently;
for example [18] reports that CPU-utilization is typically as low as 10% for this
algorithm. The explanation lies in the memory system of modern computers,
where access to a data item takes a few CPU cycles when the item is currently
stored in cache memory, but significantly more if the item needs to be fetched
from main memory, and much more if the item resides on disk. Hence, opti-
mizing for the memory hierarchy is important for achieving efficiency in many
computational tasks, including the SpMV problem.

Previous theoretical considerations The memory hierarchy of a computer
is usually modeled by the I/O-model [1] (also known as the DAM-model) and
the cache-oblivious model [8]. The I/O-model is a two-level abstraction of
a memory hierarchy, modeling either cache and main memory, or main mem-
ory and disk. The inner memory level has limited size M , the outer level is
unbounded, and transfers between the two levels take place in tracks of size B.
Computation can only take place on data residing in the inner memory level,
and the cost of an algorithm is the number of track transfers, or I/Os, performed
between the two memory levels. The cache-oblivious model is essentially the
I/O-model, except that the track size B and main memory size M are unknown
to the algorithm designer. More precisely, algorithms are expressed in the RAM
model, but analyzed in the I/O-model (assuming an optimal cache replacement
policy). The main virtue of the model is that an algorithm proven efficient
in the I/O-model for all values of B and M is automatically efficient on an
unknown, multilevel memory hierarchy [8]. Thus, the cache-oblivious model
enables one to reason about a two-level model while proving results about an
unknown multilevel memory hierarchy.

These models were successfully used to analyze the I/O complexity of sort-
ing and permuting. In the I/O-model it was shown that the optimal bound

for comparison based sorting N data items is O
(

N
B logM/B

N
M

)

I/Os and for

permuting N data items it is O
(

min{N, N
B logM/B

N
M }
)

I/Os [1].1

1Throughout the paper log stands for the binary logarithm and logb x := max{1, logb x}.
We also use notation ℓ = O (f(N, k,M,B)) with the established meaning that there exists a
constant c > 0 such that ℓ ≤ c · f(N, k,M,B) for all valid N, k,M , and B.
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In the cache-oblivious model permuting and sorting can both be performed

in O
(

N
B logM/B

N
M

)

I/Os, provided M ≥ B1+ε for some constant ε > 0 (the

so-called tall cache assumption) [8], and provably no algorithm can achieve the
I/O bounds from the I/O-model in the cache-oblivious model [3]. Permuting is
a special case of sparse matrix-vector multiplication (with sparsity parameter
k = 1), namely where the matrix is a permutation matrix. There are classes of
permutation matrices for which the complexity of the problem is known [5]. In
its classical formulation [1], the I/O-model assumes that data items are atomic
records which can only be moved, copied, or destroyed. Hence, the I/O-model
does not directly allow to consider algebraic tasks, as we do here. In particular,
for lower bounds a specification of the algebraic capabilities of the model is
needed. One specification was introduced in the red-blue pebble game of Hong
and Kung [9] (which captures the existence of two levels of memory, but does not
assume that I/O operations consist of tracks, i.e., it assumes B = 1). Another is
implicit in the lower bound proof for FFT in [1]. There are other modifications
of the I/O-model known which are geared towards computational geometry
problems [2].

Previous practical considerations In many applications where sparse ma-
trices arise, these matrices have a certain well-understood structure. Exploiting
such structure to define a good memory layout of the matrix has been done
successfully; examples of techniques applicable in several settings include “reg-
ister blocking” and “cache blocking,” which are designed to optimize register
and cache use, respectively. See, e.g., [18, 6] for excellent surveys of the dozens
of papers on this topic, and [18, 17, 10, 13, 12, 7] for sparse matrix libraries. In
this line of work, the metric is the running time on test instances and current
hardware. This is in contrast to our considerations, where the track size B
and the memory size M are the parameters and the focus is on asymptotic I/O
performance.

Problem definition and new results In this paper, we consider N×N ma-
trices A and quantify their sparsity by their number of nonzero entries. More
precisely, a sparsity parameter k bounds the total number of nonzero entries
of A by kN , i.e., the average number of nonzero entries per column is at most k.
For a given value of k, we consider algorithms that work for all matrices with
at most kN nonzero entries, and we are interested in the worst-case I/O perfor-
mance of such algorithms as a function of the dimension N of the matrix, the
sparsity parameter k, and the parameters M and B of the I/O-model. When
we need to refer to the actual positions of the nonzero entries of a given matrix,
we denote these the conformation of the matrix.

We assume that a sparse matrix is stored as a list of triples (i, j, x) describing
that at position (row i, column j) the value of the nonzero entry aij is x. The
order of this list corresponds to the layout of the matrix in memory. In this
paper, we consider the following types of layouts. Column major layout
means that the triples are sorted lexicographically according to j (primarily)
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Table 1: Summary of the I/O performance of the algorithms in Section 3
(∗cache-oblivious).

Sect. 3.1 Näıve algorithm, row and column major O (kN)
∗

Sect. 3.2 Worst case (all layouts) O
(

kN
B logM/B

N
M

)∗

Sect. 3.3 Column major O
(

kN
B logM/B

N
max{k,M}

)∗

Sect. 3.4 Best case (blocked row major) O
(

kN
B logM/B

N
kM

)

and i (to break ties). Symmetrically, row major layout means that the triples
are sorted lexicographically according to i (primarily) and j (to break ties). If
the algorithm is allowed to choose any contiguous layout of the matrix, we refer
to this situation as the best case layout. If an arbitrary contiguous layout is
part of the problem specification, it is called worst case layout. Regarding the
layout of the input and output vectors, we most of the time assume the elements
to be stored contiguous in the order x1, x2, . . . , xN , but we also consider the case
where the algorithm is allowed to choose a best case contiguous layout of these
vectors.

Our contributions in this paper are as follows and summarized in Table 1:

• We extend the I/O-model Aggarwal and Vitter [1] by specific algebraic
capabilities, giving a model of computation which can be seen as a com-
bination of the I/O-model and the model of Hong and Kung [9].

• We give an upper bound parameterized by k on the cost for SpMV when
the (nonzero) entries of the matrices are stored in column major layout.

Specifically, the I/O cost for SpMV isO
(

min
{

kN
B logM/B

N
max{k,M} , kN

})

.

This bound generalizes the permuting bound, where the first term de-
scribes a generalization of sorting by destination, and the second term
describes moving each element directly to its final destination.

• We show that when the (nonzero) entries of the matrices are stored in an
order specified by the algorithm (best case layout), the I/O cost for SpMV

reduces to O
(

min
{

kN
B logM/B

N
kM , kN

})

.

• We give a lower bound parameterized by k on the cost for SpMV when
the nonzero entries of the matrices are stored in column major layout of

Ω
(

min
{

kN
B logM/B

N
max{k,M} , kN

})

I/Os. This result applies for k ≤
N1−ε, for all constant 0 < ε < 1. This shows that our corresponding
algorithm is optimal up to a constant factor.

• We determine the I/O-complexity parameterized by k on the cost for
SpMV when the layout of the matrix is part of the problem specifica-

5



tion (worst case layout) for k ≤ 3
√
N to be Θ

(

min
{

kN
B logM/B

N
M , kN

})

I/Os.

• We show a lower bound parameterized by k on the cost for SpMV when
the layout of the matrix and the vectors is chosen by the algorithm: for k

with 8 ≤ k ≤ 3
√
N we show that Ω

(

min
{

kN
B logM/B

N
kM , kN

})

I/Os are

required. This result shows that in this case the choice of the layout of
the vector does not allow asymptotically faster algorithms.

• Finally, we show that in the cache oblivious setting with the tall cache

assumptionM ≥ B1+ε, SpMV can be done with O
(

kN
B logM/B

N
max{k,M}

)

I/Os if the matrix is stored in column major layout.

In this, the lower bounds take most of the effort. They rely upon a counting
argument already used in [1] which we outline here: We define the notion of a
semiring I/O-program (details in Section 2.2) that captures the I/O-data flow
of an algorithm. We use this to compare the number of different programs
using ℓ I/O operations with the number of inputs that are possible for the
different tasks. From this we can conclude that some inputs (matrices) require
a certain number of I/O-operations. As a side result, our arguments show that a
uniformly chosen random sparse matrix will almost surely require half the I/Os
claimed by the worst-case lower bounds (see Section 9).

Road map of the paper In Section 2, we describe the computational models
in which our lower bounds are proved. In Section 3, we present our upper
bounds. The presentation of the lower bound results starts in Section 4 with a
lower bound for a simple data copying problem. In Section 5 we use the lower
bound for the data copying problem to derive a lower bound for SpMV for the
case of worst case layout. In Section 6 we present the lower bound for the case of
column major layout, and in Section 7 we presents the lower bound for best case
layouts. We may also consider allowing the algorithm to choose the layout of the
input and output vectors. In Section 8, we show that this essentially does not
help algorithms already allowed to choose the layout of the matrix. Section 9
discusses additional variations on the results, and possible future work.

2 Models of Computation

Our aim is to analyze the I/O cost of SpMV. As I/Os are generated by movement
of data, we effectively are studying what data flows are necessary for performing
the computations involved in SpMV, and how these data flows interact with the
memory hierarchy. The final result, i.e., the entries of the output vector, is a
set of algebraic expressions, so we need a model specifying both the memory
hierarchy and the algebraic capabilities of our machine.

In this section, we define two such models, one to formulate algorithms, and
another one to prove lower bounds. By I/O-model we mean in this paper
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the model used to formulate algorithms as explained in Section 2.1 and used
in Section 3. In contrast, we prove the lower bounds for so called semiring
I/O-programs, as explained in detail in Section 2.2. The relation between the
two models is explained in Section 2.3, where we argue that a lower bound for
semiring I/O-programs also applies to the I/O-model used to formulate algo-
rithms.

Both models combine ideas from the I/O-model of Aggarwal and Vitter [1]
previously used to analyze the problem of permuting (a special case of SpMV),
with the algebraic capabilities used by Hong and Kung [9] under the name “in-
dependent evaluation of multivariate expressions” for analyzing matrix-matrix
multiplication. They are based on the notion of a commutative semiring S.
This is a set of elements with addition (x+ y) and multiplication (x× y or xy)
operations. These operations are associative and commutative, and distributive.
There is a neutral element 0 for addition, a neutral element 1 for multiplication,
and multiplication with 0 yields 0. In contrast to a field, there are no inverse
elements guaranteed, neither for addition nor for multiplication. One well inves-
tigated example of such a semiring (actually having multiplicative inverses) is
the max-plus algebra (tropical algebra), in which matrix multiplication can be
used, for example, to compute shortest paths with negative edge length. Other
well known semirings are the natural, rational, real or complex numbers with
the usual addition and multiplication operations. In the following, we denote
the elements of the semiring as numbers.

2.1 The I/O-model

The I/O-model is the natural extension of the I/O-model of Aggarwal and
Vitter [1] to the situation of matrix-vector multiplication. It models main mem-
ory to consist of M data atoms, and disk tracks of B data atoms. We count
the number of I/O-operations that transfer such a track between main memory
and the disk. Here, data atoms are either integers (e.g., used to specify rows
or columns of the matrix and positions in a layout) or they are elements from
a semiring. In particular, elements of the semiring cannot be compared with
each other. All computation operations require that the used data items are
currently stored in main memory.

2.2 Semiring I/O-programs

In contrast to the algorithmic model, for the lower bound we consider a non-
uniform setting. This means that an algorithm is given by a family of semiring
I/O-programs, one program for each conformation (including N and k) of the
matrix, irrespective of the underlying semiring and numbers. The layout of
the matrix can be implied by the conformation (e.g., column major layout),
part of the conformation (worst-case layout), or part of the program (best-
case layout). Such a semiring I/O-program is a finite sequence of operations
executed sequentially (without branches or loops) on the following abstract ma-
chine: there is a disk D of infinite size, organized in tracks of B numbers each,
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and a main memory containing M numbers, with all numbers belonging to
a commutative semiring S. A configuration of the model is a vector of M
numbers M = (m1, . . . ,mM ) ∈ S

M , and an infinite sequence D of track vec-
tors ti ∈ S

B. Initially, all numbers not part of the input have the value 0. A
step of a computation leads to a new configuration according to the following
allowed operations:

• Computation on semiring numbers in main memory: algebraic opera-
tions mi := mj +mk, mi := mj ×mk, setting mi := 0, setting mi := 1,
and assigning mi := mj .

• Read: move an arbitrary track of the disk into the first B cells of memory,
(m1, . . . ,mB) := ti; ti := 0. The cells are required to be empty prior to
the read ((m1, . . . ,mB) = 0).

• Write: move the first B cells of memory to an arbitrary track, ti :=
(m1, . . . ,mB); (m1, . . . ,mB) := 0. The track is required to be empty
prior to the write (ti = 0).

Read and write operations are collectively called I/O-operations. We say that
an algorithm for SpMV runs in (worst-case) ℓ(k,N) I/Os if for all N , all k, and
all conformations for N×N matrices with kN nonzero coefficients, the program
chosen by the algorithm performs at most ℓ(k,N) I/Os.

Intermediate results During the execution of a program, the disk and the
main memory contain numbers, which are either part of the input (i.e., matrix
and input vector entries), are one of the two neutral elements 0 and 1 of the
semiring, or are the result of a series of semiring operations. We call the num-
bers appearing during the run of a program for intermediate results. One
intermediate result p is a predecessor of another p′ if it is an input to the
addition or multiplication leading to p′, and is said to be used for calculating
p′ if p is related to p′ through the closure of the predecessor relation. By the
commutativity of addition and multiplication, every intermediate result may be
written in the form of a polynomial, with integer coefficients, in the xj ’s of the
input vector and the nonzero aij ’s of the matrix—that is, as a sum of monomials
where each monomial is a product of xj ’s and aij ’s, each raised to some power,
and one element from {1, 1+1, 1+1+1, . . .}. We call this the canonical form
of an intermediate result.

The degree of a canonical form is the largest sum of powers that occur in one
of the monomials. If two canonical forms f and g are multiplied or added, then
the set of variables in the resulting canonical form is the union of the variables
of f and g. For multiplication, the degree is equal to the sum of the degrees.
For addition, the number of monomials and the degree cannot decrease.

Note that the canonical forms themselves form a semiring, called the free
commutative semiring over the input numbers. Because of this it is impossible
that two different canonical forms stand for the same element in all possible
semirings. Hence, the final results yi of SpMV are the unique canonical forms
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yi =
∑

j∈Ri
1× aij × xj of degree at most two. Here Ri is the set of columns in

which row i has nonzero entries, which depends only on the conformation of the
matrix. By a similar reasoning, as detailed in Lemma 2.1 below, we may assume
that each intermediate value is a “subset” of a final result, i.e., it has one of
the following forms: xj , aij , aijxj , or si =

∑

j∈S aijxj , where 1 ≤ i, j ≤ N ,
S ⊆ Ri ⊆ {1, . . . , N}. These forms are called, respectively, input variable,
coefficient, elementary product, and partial sum. We call i the row of the
partial sum. If S = Ri, we simply denote the partial sum a result. Collectively,
we call these forms canonical partial results. Every canonical partial result
belongs in a natural way to either a column (j for xj) or a row (i for the rest of
the canonical partial results).

Lemma 2.1 If there is a program which multiplies a given matrix A with any
vector in the semiring I/O-model using ℓ I/Os, then there is also a program
performing the same computation using ℓ I/Os, but computing only canonical
partial results and never having two canonical partial sums of the same row in
memory immediately before an I/O is performed.

Proof. Assume that the canonical form f represents an intermediate result.
If f contains a monomial of degree one (i.e., single variables or coefficients), it
needs to be multiplied with a non-constant canonical form before it can become
a final result. Hence, if it contains two different monomials of degree one, there
will be products of two variables or two coefficients, or a product of a variable
with a coefficient of the wrong column. Such an f cannot be used for a final
result. The following four properties of f will be inherited by anything derived
from f and hence prevent f from being used for any final result.

1. f has degree of three or more,

2. f has a poly-coefficient of 1 + 1 or larger,

3. f contains matrix entries from different rows,

4. f contains the product of two vector variables or two matrix entries.

From this we can conclude that a useful intermediate result f must be a canon-
ical partial result (by case analysis of the degree of f).

Clearly, intermediate results that are computed but are not used for a final
result may as well not be computed. Similarly, the 0-canonical form is equivalent
to the constant 0 and any occurrence of it as intermediate result can be replaced
by the constant 0.

Finally, observe that partial sums can only be used in summations that
derive new partial sums or final results. Hence, if two partial sums pi and qi
that both are used to eventually derive yi are simultaneously in memory, they
can be replaced by p′i = pi + qi and the constant q′i = 0 (not a partial sum)
without changing the final result. ⊓⊔
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2.3 Connection between algorithmic and lower bound model

The two introduced models only make sense if the complexities in the two models
are essentially the same:

Lemma 2.2 Every algorithm A for SpMV in the I/O-model with I/O-complexity
ℓ(k,N) gives rise to a family of semiring I/O-programs using at most ℓ(k,N)
I/Os.

Proof. Fix k, N , a matrix conformation and its layout. Because the branches
and loops of the algorithm do not depend on the semiring values, we can sym-
bolically execute the algorithm A and finally ignore all computations on non-
semiring variables. This leads to a family of semiring I/O-programs that use no
more I/Os than A. Here the layout of the matrix can either be fixed, part of
the input or part of the program, precisely in the same way as for A. ⊓⊔

It follows that lower bounds for semiring I/O-programs translate into lower
bounds for algorithms in the I/O-model. For the case of worst-case layout, it
is noteworthy that the algorithms we propose in Section 3 do not need to know
the layout in advance.

3 Algorithms

In this section we describe several algorithms for solving SpMV. All algorithms
compute the necessary elementary products aijxj (in some order) and then

compute the sums yi =
∑N

j=1 aijxj (in some order). We describe different algo-
rithms for each of the possible layouts: row major, column major, worst case,
and best case. The bounds achieved are summarized in Table 1. Through-
out this section we assume that x is given in an array such that we can scan
the sequence x1, x2, . . . , xN using O (N/B) I/Os. We assume 1 ≤ k ≤ N and
M ≥ 3B.

3.1 Näıve Algorithm

We first describe how the layout of a matrix influences the I/O performance
if we simply perform a sequential scan over all triples (i, j, aij) and repeatedly
update yi := yi + aijxj to solve the SpMV problem. In internal memory this
approach yields an optimal O (kN) time algorithm, but for both row major and
column major layouts we get poor I/O performance—but for different reasons.

Row major layout In row major layout we finish computing yi before ad-
vancing to compute yi+1. The nonzero entries in a row i of A are in the worst
case sparsely distributed such that each xj accessed while computing yi is in a
new track, in the worst case causing an I/O to fetch each xj . While scanning
all triples in total costs O (kN/B) I/Os and updating y costs O (N/B) I/Os,
the bottleneck becomes accessing x, causing in the worst case a total of O (kN)
I/Os.
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Columnmajor layout The algorithm performs a single sequential scan of the
list of the kN triples for the nonzero entries of A while simultaneously perform-
ing a single scan of all entries in x, i.e. we compute all products yijxj involving
xj before advancing to xj+1. The cost of accessing A and x is O (kN/B) I/Os.
While updating yi := yi + aijxj we potentially skip many entries of y between
consecutive updates, such that each of the kN updates to y in the worst case
causes one read and one write I/O. It follows that in the worst-case the total
number of I/Os is O (kN).

Note that while for row major layout the I/O bottleneck was to access x it
for column major layout are the updates to y that become the bottleneck.

3.2 Worst Case Layout

A generic algorithm to multiply A with x, without any assumption on the layout
of the nonzero entries of A, is the following.

1. Sort all triples (i, j, aij) by j.

2. Scan the list of all triples (i, j, aij) (in increasing j order) while simulta-
neous scanning x and generating all triples (i, j, aijxj).

3. Sort all triples (i, j, aijxj) by i.

4. Scan the list of all triples (i, j, aij) (in increasing i order) while adding

consecutive triples generating the sums yi =
∑N

j=1 aijxj .

Steps 1 and 3 sort kN elements using O
(

kN
B logM/B

kN
M

)

I/Os [1], while

Steps 2 and 4 scanO (kN) elements usingO (kN/B) I/Os. In totalO
(

kN
B logM/B

kN
M

)

I/Os are used.
The logarithm in the above bound can be reduced by partitioning the kN

coefficients into k groups each of size N (using an arbitrary partitioning). By

using the above algorithm for each of the k groups we use O
(

N
B logM/B

N
M

)

I/Os per group. The results are k vectors of size N with partial results. By
adding the k vectors using O (kN/B) I/Os we compute the final output vector y.

In total we use O
(

kN
B logM/B

N
M

)

I/Os.

3.3 Column Major Layout

If A is given in column major layout the algorithm in Section 3.2 can be im-
proved. Step 1 can be omitted since the triples are already sorted by increas-
ing j. Step 2 remains unchanged. After Step 2 we have for each column j all
triples (i, j, aijxj) sorted by i. We split the columns into at most 2k groups,
each group consisting of at most N/k columns and at most N triples. For each
group we have at most N/k sequences of triples sorted by i. For each group we
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compute the merged sequence of triples using an I/O-optimal merger. Since t se-

quences with a total of s elements can be merged usingO
(

s
B logM/B min{t, s

M }
)

I/Os [4], the merging in total for all groups requires O
(

kN
B logM/B

N
max{k,M}

)

I/Os. By scanning the output of each group we can compute a vector of N par-
tial results for each group using a total of O (kN/B) I/Os, since groups are
sorted by i. Finally we add the k vectors using O (kN/B) I/Os. The total I/O

cost becomes O
(

kN
B logM/B

N
max{k,M}

)

.

3.4 Best Case Layout

By adopting a different input layout to the algorithm in Section 3.3 we can
achieve a further speedup. Assume we store the coefficients of A in slabs of
M − 2B consecutive full columns, where each such slab is stored in row major
layout. This layout allows a sequentially scan of the triples (i, j, aij) to generate
the triples (i, j, aijxj) in total O (kN/B) I/Os, by having the window of the
M−2B elements from x in memory corresponding to the columns of the current
slab. The resulting sequence of triples consists of N/(M − 2B) subsequences
sorted by i. As in Section 3.3 we split the generated triples into 2k groups, but
now each group only consists of N

k(M−2B) = O
(

N
kM

)

sorted sequences to merge.

The rest of the algorithm and analysis remains unchanged. The total I/O cost

becomes O
(

kN
B logM/B

N
kM

)

.

3.5 Cache Oblivious Algorithms

The algorithms in Section 3.2 and Section 3.3 can be implemented cache obliv-
iously (under the tall cache assumption M ≥ B1+ε, as is needed for optimal
sorting in this model [3]), by using a cache-oblivious sorting algorithm [8] for
sorting steps and using the Run-optimal cache-oblivious adaptive sorting algo-
rithm of [4, Section 5] for merging steps. Under the tall cache assumption the
asymptotic I/O complexities remain unchanged.

4 Lower Bound for a Copying Problem

Central to our lower bound arguments for the SpMV problem will be the analysis
of a copying problem which distributes N input values into H specified output
positions in memory. In this section, we consider that problem on its own, in
a way which will allow us to reuse the central part of the analysis in different
settings in later sections. Specifically, Lemma 4.2 will be referenced repeatedly
(Section 5 can reuse a bit more of the analysis, and therefore references later
lemmas of Section 4).

In the N-H copy problem, an instance is specified by an index ij ∈ [N ]
for each j ∈ [H ], where [N ] = {1, . . . , N}, and the task is to transform an input
vector (x1, . . . , xN ) of N variables into the vector (xi1 , xi2 , xi3 , . . . , xiH ). In this
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section, we show a lower bound on ℓ(H,N), the worst case number of I/Os
necessary to perform any such task, seen as a function of H and N . We for this
problem assume the I/O-model of Aggarwal and Vitter [1], i.e., the entries xi

of the input vector are atomic and can only be moved, copied, or deleted.
The remaining of this section is devoted to prove the following lower bound

theorem:

Theorem 4.1 For every N and H where N/B ≤ H ≤ N2, there exists an
N -H copy problem (i1, . . . , iH) ∈ [N ]H that requires at least

min

{

H

6
,
H

4B
logM

B

N

M

}

I/Os in the I/O-model of Aggarwal and Vitter [1].

In our analysis, we will during the execution of the algorithm consider the
contents of the main memory, and of each track on disk, as sets. That is, inside
each of these, we will disregard order and multiplicities of elements. This view
allows us to analyze tightly the development in combinatorial possibilities as
the number of I/Os grows.

We call the values of these sets the state at a given point in time, and the
sequence of states we call the trace of the program. For a state, the content
of the main memory is described by a subset M ⊆ [N ], |M| ≤ M (the indices
of the variables currently in memory). Similarly, the tracks of the disk are
described by a list of subsets Ti ⊆ [N ], |Ti| ≤ B (for i ≥ 1).

Note that between I/Os, the contents of main memory and of each track on
disk do not change seen as sets, if the program only copies and moves elements.
For the N -H copy problem, any element created which is not used for the output
may as well not be created. If there is an input element which does not appear
in the output, we may as well assume it is deleted immediately when it enters
main memory the first time (which gives rise to no combinatorial choices in the
analysis). Hence, we can during the analysis assume deletions do not take place.

Lemma 4.2 Consider a family of programs in the I/O-model starting from the
unique (set-based) state {1, . . . , B}, {B + 1, . . . , 2B}, . . . , {. . . , N} and using at
most ℓ I/Os, assuming ℓ ≥ (N +H)/B and M ≥ 4B. The number of different
(set-based) traces, and hence output (set-based) states, is at most

(

(

4M

B

)B

4ℓ

)ℓ

.

Proof. We assume that the program complies with the following rules: The
program executes precisely ℓ I/Os (if fewer I/Os are executed we pad the pro-
gram with repeatedly writing and reading an empty track). Tracks used for
intermediate results are numbered consecutively and hence require an address
space of at most ℓ positions, such that together with the at most (N +H)/B
I/Os to read input and write output, we get an address space of at most
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(N +H)/B + ℓ ≤ 2ℓ tracks. Any correct program can easily be transformed to
comply with the above rules without increasing the number of I/Os.

We can now bound the number of traces (equivalently, number of final states)
that can be created with ℓ I/Os, by bounding the number of choices for gener-
ating a new state when performing an I/O.

For a write operation, there is the choice of the up to B elements out of
M when creating the contents of the track. There is a difference in resulting
state if an element moved out of main memory by a write is the last copy in
main memory, or if it is not—in the former case, the content of main memory,
seen as a set value, changes, in the latter case, it does not. In the analysis, we
move this combinatorial choice to the reads (since the combinatorial choices of
writes already dominate in the argument), and we do this by never changing
the set value of the main memory when performing a write, but instead leave
the elements of the former case as dead elements of the set. To avoid the set
size growing above M , reads now must remove enough such dead elements to
make room for the up to B elements entering main memory. Because in the
actual program there is room for the elements entering main memory, there are
in the analysis always enough dead elements for such a removal to be feasible.
Thus, in our analysis reads also have a choice of up to B elements out of M
when choosing which dead elements to remove.

For writes, the number of elements written is not necessarily B, since we
are considering set-based traces. Rather, a write may write out sets of sizes
1, 2, . . . , B. Hence, the number of different sets which a write can choose is
∑B

i=1

(

M
i

)

. From the standard identity
∑n

i=0

(

r
i

)(

s
n−i

)

=
(

r+s
n

)

it follows that
∑B

i=0

(

M
i

)

≤ ∑B
i=0

(

M
i

)(

B
B−i

)

=
(

M+B
B

)

. With M ≥ 4B, implying M + B ≤
5M/4, and e5M/4 < 4M we get by

(

x
y

)

≤ (xe/y)y the bound
(

M+B
B

)

≤
(

4M
B

)B
.

For each I/O, there is also the choice of which of the at most 2ℓ tracks on
disk it pertains to, and there is a factor of 2 to choose between read and write
operations. ⊓⊔

The above finishes our analysis of algorithms for the N -H copy problem in
terms of set-based traces. To account for the actual ordering and multiplicities of
elements of the output when the algorithm stops, we must add a final step in the
analysis where for each non-empty track (main memory must be empty by the
definition of the output), a multiset is created from its set-based representation,
to give the actual output of the algorithm. Multiplying with the combinatorial
possibilities for that step gives a bound on the total number of different outputs
which can be generated by ℓ I/Os. This number can then be compared to the
number of different outputs the algorithm is required to be able to create. We
do this in the following lemma.

Lemma 4.3 Assume there is a family of programs in the I/O-model computing
all copying tasks using N variables and producing H outputs with ℓ = ℓ(H,N)
I/Os for memory size M and track size B. Then, for H ≥ N/B and M ≥ 4B
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it must hold that

NH ≤
(

(

4M

B

)B

4ℓ

)ℓ

·BH .

Proof. During execution, we consider the contents of the main memory, and
of each track on disk, as sets, and we now have to count the number of ways in
which a set-based state describing the tracks output can be interpreted as a list
of copies. Given a specific subset of [N ] residing on an output track, a variable
in the final (ordered, multiset) version of the track can be expressed by the rank
(a number in [B]) of the index of the variable within the subset of the track.
Hence, one (set-based) trace can solve at most BH different copying tasks when
adding order and multiplicity in the end. Because there are NH copying tasks,
the lemma follows from Lemma 4.2, provided ℓ ≥ (N +H)/B. Since H ≥ N/B
there exists an N -H copy problem that outputs H/B blocks all different from
an input block, and all N/B input blocks contain at least one element that is
part of the output, i.e., we have ℓ ≥ (N +H)/B. ⊓⊔

To finish the proof of Theorem 4.1, we need to solve the equation of Lemma 4.3
for ℓ. We do this in the following lemma. Note that H ≥ N/B implies
ℓ ≥ (N+H)/B, as shown in the proof of Lemma 4.3, so the assumption ℓ ≥ H/B
below is justified.

Comparing to Lemma 4.3, one notes that the assumption (1) of the lemma
is slightly weakened. This is done in order to match conditions in Section 5,
such that we there can refer directly to Lemma 4.4.

Lemma 4.4 Assume M ≥ 4B, H ≤ N2, and ℓ ≥ H/B. Then

(

N

2

)H

≤
(

(

4M

B

)B

4ℓ

)ℓ

·BH (1)

implies

ℓ ≥ min

{

H

4B
logM/B

N

M
,
H

6

}

.

Proof. For B ≤ 6 the bound ℓ ≥ H/B justifies the theorem, hence we assume
B ≥ 6. For N ≤ 210 the lemma holds trivially: Because of B ≥ 6 we have
M ≥ 24 and N/M < 26. Using M/B ≥ 4 we get logM/B

N
M < 3, and hence

again the bound ℓ ≥ H/B justifies the theorem. Therefore, we assume N ≥ 210.
If ℓ > H/6, the lemma holds trivially. Hence, in the following we assume
ℓ ≤ H/6, implying 4ℓ ≤ H .

Taking logs on the main assumption (1), we get

H log
N

2
≤ ℓ

(

logH +B log
4M

B

)

+H logB .

which rewrites as

ℓ ≥ H
log N

2B

logH +B log 4M
B

.
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Now, we distinguish by the leading term of the denominator: If logH <
B log 4M

B , we get (using log M
B ≥ 2 and 2B ≤ M)

ℓ ≥ H
log N

2B

2B
(

2 + log M
B

) ≥ H

4B
logM

B

N

M
.

If logH ≥ B log 4M
B , we use log 4M

B ≥ log 16 = 4, which leads (using H ≤
N2) to B ≤ logH

log 4M
B

≤ 2
4 logN ≤ 1

2
3
√
N for N ≥ 210. We conclude with

ℓ ≥ H
log
(

N

2· 12 ·
3√N

)

2 log(N2)
= H

2
3 logN

4 logN
=

H

6
.

⊓⊔

5 Lower Bound for Worst-Case Layout

In this section, we give a lower bound for the SpMV problem with worst case
layout of the matrix. We consider the special case where the input vector is the
all ones vector (xi = 1), i.e., we consider programs computing the row-sums of
the matrix.

The idea of the proof is to trace backwards in time the computation of each
of the N output results si =

∑

j∈Ri
aij to the kN coefficients aij of the matrix

(recall that Ri is the set of column indexes of the nonzero entries of row i of
the matrix). We will show how to interpret this time-reversed execution of a
semiring I/O-program for computing row-sums as solving an instance of the
N -H copy problem. This will allow us to reuse the analysis of Section 4.

To trace the program execution backwards in time, we annotate each result
si by its row index i, and propagate these annotations backwards in time to
other values appearing during the execution of the program. By Lemma 2.1
and the discussion preceding it, we may assume that all values appearing are
either 0, 1, coefficients, or partial sums. We may also assume that additions
by 0 and multiplication by 1 do not take place, as such operations can be
omitted without changing the output. By a case analysis of possible value types
and the operations allowed in the model (and the uniqueness of the canonical
form of a value, cf. text preceding Lemma 2.1), one sees that a partial sum
mt =

∑

j∈S aijxj with |S| ≥ 2 can only arise as the result of either the addition
mt :=

∑

j∈S1
aijxj +

∑

j∈S2
aijxj , where S1, S2 is a nontrivial partitioning of S

(S1 ∪ S2 = S, S1 ∩ S2 = ∅, |S1|, |S2| ≥ 1), or the assignment mt := ms, where
ms =

∑

j∈S aij . In the former case, we propagate the annotation i backwards
in time to both operands of the addition. In the latter case, we propagate the
annotation i backwards in time to ms. Similarly, we propagate the annotation
of an elementary product aijxj back to aij at the multiplication creating this
elementary product. For read and write operations, note that these are time
reverses of each other, due to the definitions of reads and writes in our model
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(which are symmetrical, and involve moving rather than copying). For these
operations, annotations just follow the values moved.

By induction on the number of time steps backwards in time, it follows that
at all times, all entries aij are annotated exactly once (by their row index i) if the
annotation of a partial sum

∑

j∈S aijxj is seen as pertaining to all coefficients aij
appearing in the sum.

Given a vector (x1, . . . , xN ) of N variables, we may change the annotation
to use the variable xi instead of the integer i. This annotation, when viewed
backwards in time, defines a program for copying a vector (x1, . . . , xN ) of N
variables into kN positions in memory, with xi being copied to the positions
on disk where the nonzero coefficients of row i of the matrix reside in the given
layout of the matrix. In other words, it is a program solving an instance of the
N -H copy problem for H = kN , with the output vector (xi1 , xi2 , xi3 , . . . , xiH )
specified by the matrix and its layout. It works in the I/O-model of Aggarwal
and Vitter [1], and uses copying (the time reverse of addition of two partial
sums), movement (the time reverse of assignment), and reads and writes (the
time reverses of each other). The number of I/Os performed is the same as the
original program for computing row-sums.

However, not all of the NkN instances of the N -H copy problem with
H = kN can be specified by a matrix in this way, since no row has more
than N nonzero entries. More precisely, the possible instances are exactly those
where the output vector (xi1 , xi2 , xi3 , . . . , xikN

) has no input variable xi appear-
ing more than N times. We claim that for k ≤ N/2, the number of such output
vectors is at least (N/2)kN : Construct the vector by choosing xij for increas-
ing j. At some point, a given variable xi may no longer be available because it
has been used N times already. However, if this is true for more than N/2 of the
N variables, more than N2/2 entries in the vector have been chosen, which is a
contradiction to the assumption k ≤ N/2. Hence, at each of the kN positions
of the input vector, we have at least N/2 choices.

Therefore, by adjusting the last line of the proof of Lemma 4.3, we arrive at
the following variant of that lemma.

Lemma 5.1 Assume there is a family of semiring I/O-programs, one for each
kN -dense N × N matrix and each layout of it, computing the matrix vector
product. Assume all programs use ℓ = ℓ(H,N) I/Os. Then, for M ≥ 4B and
1 ≤ k ≤ N/2 it holds that

(

N

2

)kN

≤
(

(

4M

B

)B

4ℓ

)ℓ

·BkN .

Using Lemma 4.4, we get the following theorem.

Theorem 5.2 Let ℓ = ℓ(k,N) be an upper bound on the number of I/O-
operations necessary to solve the SpMV problem with worst case layout in the
semiring I/O-model. Then, for M ≥ 4B and 1 ≤ k ≤ N/2 it holds that

ℓ ≥ min

{

kN

4B
logM/B

N

M
,
kN

6

}

.
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6 Lower Bound for Column Major Layout

In this section, we consider the case of matrices stored in column major layout.
Here, it turns out to be sufficient to consider only k-regular sparse matrices,
i.e., matrices with precisely k nonzero entries per column.

The outline of the proof in this section follows closely the structure from
Sections 4 and 5. Again, we will trace the execution backwards in time to arrive
at an instance of the N -H copy problem, again we consider set-based states
during this backwards execution, adding order and multiplicity of elements in
the output as a final step, and again, we consider the special case of computing
row-sums (i.e., we consider an input vector with xi = 1 for all i). Compared
to Section 5, we now restrict ourselves to k-regular sparse matrices in column
major layout, which means that the input matrix constitutes a list of indices of
length kN , where k consecutive positions encode one column of the matrix.

When adding order and multiplicity of elements as a final step, we could
certainly again bound the choices for a given set-based state by BkN . As it
turns out, this would asymptotically weaken our result. Instead, we have to more
carefully count the number of different matrix conformations corresponding to
the same set-based state. We denote this number by τ = τ(N, k,B), and now
proceed to give bounds on it.

If k = B, then there is a one-to-one correspondence between the precisely k
entries in a column and the contents of a track. Since in column major layout,
the entries of one column are stored in order of increasing row, the set Ti of a
track in this case uniquely identifies the vector ti of a track, making τ = 1. For
B < k, some tracks belong completely to a certain column, and other tracks are
shared between two neighboring columns. Every element of the track can hence
belong either to one column, the other column, or both columns, i.e., there are
at most 3 choices for at most kN elements. Once it is clear to which column an
entry belongs to, the order within the track is prescribed. For B > k we describe
these choices per column of the resulting matrix. Such a column has to draw
its k entries from one or two tracks of the disk, giving at most

(

2B
k

)

choices per

column. Over all columns, this results in up to
(

2B
k

)N ≤ (2eB/k)kN different
matrix conformations corresponding to the same set-based state. Summarizing
we have:

τ(N, k,B) ≤











3kN if B < k ,

1 if B = k ,

(2eB/k)kN if B > k .

Because the number of distinct conformations of an N ×N k-regular matrix

is
(

N
k

)N
, we can summarize this discussion (using Lemma 4.2) in the following

statement:

Lemma 6.1 If an algorithm computes the row-sums for all k-regular N × N
matrices stored in column major layout using at most ℓ = ℓ(k,N) I/Os then it
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holds that
(

N

k

)N

≤
(

(

4M

B

)B

4ℓ

)ℓ

· τ , (2)

where τ = τ(N, k,B) is the maximal number of different matrix conformations
corresponding to any set-based state.

Algebraic manipulations of the inequality in Lemma 6.1 lead to the following
theorem. Note that for all values of N, k,M, and B the scanning bound (i.e.,
the cost of scanning the coefficients once) holds, that is, ℓ(k,N) ≥ kN/B.

Theorem 6.2 Let ℓ = ℓ(k,N) be an upper bound on the number of I/O-
operations necessary to solve the SpMV problem for matrices stored in column
major layout in the semiring I/O-model. Then, for B > 2, M ≥ 4B, and
k ≤ N1−ε, where ε is any constant with 0 < ε < 1, it holds that

ℓ(k,N) ≥ min

{

κ · kN
B

logM/B

N

max{k,M} ,
1

4
· ε

2− ε
kN

}

for κ = min
{

ε
3 ,

(1−ε)2

2 , 1
7

}

.

For example, taking ε = 1/2, Theorem 6.2 provides the following lower
bound:

ℓ(k,N) ≥ min

{

1

8

kN

B
logM/B

N

max{k,M} ,
1

12
kN

}

.

Comparing this lower bound to the algorithm of Section 3.3 which achieves a
performance of

O
(

min

{

kN

B
logM/B

N

max{k,M} , kN
})

,

we see that this algorithm for column major layout is optimal up to a constant
factor, as long as k ≤ N1−ε.

Proof of Theorem 6.2: Fix k, N , and ℓ = ℓ(k,N), and assume the
inequality (2) of Lemma 6.1 holds. If ℓ > kN/4, the theorem is trivially true.
Hence, we assume ℓ ≤ kN/4. Taking into account the different cases for τ , we
get the following inequalities:

For k < B: The inequality is
(

N
k

)N ≤
(

(

4M
B

)B
kN
)ℓ

· (2eB/k)
kN

. Using

(x/y)y ≤
(

x
y

)

and taking logs we get kN log N
k ≤ ℓ

(

log(kN) +B log 4M
B

)

+

kN log(2eB/k), leading to

ℓ ≥ kN
log N

2eB

log(kN) +B log 4M
B

. (3)
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For k ≥ B: From
(

N
k

)N ≤
(

(

4M
B

)B
kN
)ℓ

· 3kN by taking logs we get

kN log N
k ≤ ℓ

(

log(kN) +B log 4M
B

)

+ kN log 3, i.e.,

ℓ ≥ kN
log N

3k

log(kN) +B log 4M
B

. (4)

Combining (3) and (4) we get

ℓ ≥ kN
log N

max{3k,2eB}

log(kN) +B log 4M
B

. (5)

For small N ≤ max{22/(1−ε)2 , 161/ε, 91/ε, 210, 16B}, this bound is weaker
than the scanning bound ℓ ≥ kN/B for accessing all kN entries of the matrix:

If N ≤ 22/(1−ε)2 , then logM/B N ≤ 2/(1− ε)2. If N ≤ 161/ε then logM/B N ≤
2/ε. If N ≤ 16B then logM/B

N
M ≤ −1+log2 16 = 3. Similarly, N ≤ 210 implies

logM/B
N
M ≤ 7.

Otherwise, for large N , distinguish between the dominating term in the
denominator. Fix an 0 < ε < 1 and assume that k ≤ N1−ε; if log(kN) ≥
B log 4M

B we get

ℓ ≥ kN
log N

max{3k,2eB}
2 log(kN)

Now, Lemma A.3 gives B ≤ 3N1−ε/2e, and using k ≤ N1−ε, N > 32/ε we get

ℓ ≥ kN
log N

3N1−ε

2 log(kN) ≥ kN ε logN−log 3
2(2−ε) logN ≥ kN ε/2 logN

2(2−ε) logN ≥ εkN
8−4ε .

Otherwise (log(kN) < B log 4M
B )), by using log M

B ≥ 2 and e < 4 (in eB ≤
M), we get ℓ ≥ kN

log N
max{3k,2eB}

2B log 4M
B

≥ kN
2B · log N

3 max{k,M}

log M
B +2

≥ kN
2B · − 8

5+log N
max{k,M}

2 log M
B

.

Now, we use N ≥ 16B, which, together with N/k ≥ Nε ≥ 16 for N ≥ 161/ε,
implies log N

max{k,B} > 4. Hence,

ℓ ≥ kN

2B
·

3
5 log

N
max{k,M}

2 log M
B

≥ kN

7B
· logM

B

N

max{k,M} .

The log in the statement of the theorem is justified by the scanning bound. ⊓⊔

7 Lower Bound for Best Case Layout

In this section, we consider algorithms that are free to choose the layout of the
matrix on the disk; we refer to this case as the best case matrix layout. In this
setting, computing row-sums can be done by a single scan if the matrix is stored
in row major layout. Hence, the input vector needs to become part of the lower
bound argument, and we will now trace both the movements of input variables
and the movements of partial sums while the algorithm is executing.
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Intuitively, each input variable xj needs to disperse to meet and join a partial
result

∑

j∈S aijxj for all i with aij 6= 0, while the partial results created during
the run of the program need to be combined to the final output results. The first
is a copying process in the forward direction, while the latter may be seen as a
copying process in the backwards direction (similar to the analysis in Section 5
and 6). Note that once the algorithm has chosen how to copy the input variables,
and at what points in time they should join partial results, the access to the
relevant matrix coefficient aij (for creating the elementary product aijxj to be
added to a partial result, or form one itself) is basically for free: each matrix
coefficient aij is needed exactly once, and for best case layout, the algorithm
can choose to lay out the matrix in access order, making the entire access to
matrix coefficients become a single scan.

Set up To formalize the intuition above, we use an accounting scheme which
encapsulates the internal operations between each pair of consecutive I/Os and
abstracts away the specific multiplications and additions, while capturing the
creation and movement of partial results and variables. We call the semiring
I/O-model extended with this accounting scheme the separated model. We
now describe the accounting scheme.

In between two I/Os, we define the input variable memory MV ⊆ [N ],
|MV | ≤ M to be the set of indices of input variables contained in memory
right after the preceding I/O, before the internal computation between the I/Os
starts, and we define the result memory MR ⊆ [N ], |MR| ≤ M to be the set of
row indices of the matrix for which some partial sum or coefficient is in mem-
ory after the internal computation has taken place, right before the succeeding
I/O. We define the multiplication step P ⊆ MR ×MV , representing which
coefficients of the matrix A are used in this internal computation, by (i, j) ∈ P
iff the partial result (only one can be present, cf. Lemma 2.1) for row i contains
the term aijxj after the internal computation, but not before. Note that this
can only be the case if xj is in memory at the start of this sequence of internal
computations. Additionally, we can assume that every coefficient aij is only
used once (cf. Lemma 2.1), and that this use is as early as possible, i.e., at the
earliest memory configuration where a copy of variable xj and the coefficient aij
are simultaneously in memory (if not, another program fulfilling this and using
the same number of I/Os is easily constructed). We call the total sequence of
such multiplication steps the multiplication trace.

Additionally, the separated model splits the disk D into DV containing the
variables present on D, and DR containing the partial results and coefficients
present on D.

Identification of the conformation Since we may assume that all interme-
diate values are used for some output value (if not, another program fulfilling
this and using the same number of I/Os is easily constructed), the multiplication
trace of a correct program specifies the conformation of the matrix uniquely. In-
deed, the pairs (i, j) in the multiplication trace are exactly the nonzero elements
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of the matrix. In other words, we have the following lemma.

Lemma 7.1 The conformation of the input matrix is determined uniquely by
the multiplication trace.

Counting traces We now bound the number of multiplication traces as a
function of ℓ, the number of I/Os performed.

In our accounting scheme, the separated memories MV and MR are sets.
Hence, the possible numbers of different traces during execution for these can

by Lemma 4.2 each be bounded by
(

(

4M
B

)B
4ℓ
)ℓ

, if we think of MV , DV and

MR, DR as separate copying computations (the latter when seen as running
backwards in time, as follows from the arguments in Section 5).

We analyze the algorithm as choosing a trace for each of these, and for each
fixed choice specifying when the multiplications take place. Each fixed choice of
traces for MV and MR makes some set of multiplications (i, j) possible, from
which the algorithm during its execution chooses kN , thereby determining the
multiplication trace and hence the conformation of the matrix, cf. Lemma 7.1.
We now bound the number of ways the algorithm can make this choice.

Remember that we assume that every coefficient aij is used only once, and
as early as possible, i.e., when either its corresponding variable or itself has just
been loaded into memory and was not present in the predecessor configuration.
That is, a multiplication (i, j) can only be specified when both j ∈ MV and
i ∈ MR hold, and additionally at least one of them did not hold before the
last I/O. Differences in memory configurations stem from I/Os, each of which
moves at most B elements, leading to at most B new members of MV and
at most B new members of MV after each I/O. Each of these new members
potentially gives M new possible multiplications. Thus, in total over the run
of the algorithm, there arise at most 2ℓMB possibilities for multiplications.
Out of these, the algorithm by its chosen multiplications identifies a subset of
size precisely kN . Hence the number of possible multiplication traces for the
complete computation is at most

(

2ℓMB
kN

)

, given a fixed choice of traces for MV

and MR.
Combining the above with the fact that the number of distinct conformations

of an N ×N k-regular matrix is
(

N
k

)N
, we arrive at the following statement:

Lemma 7.2 If an algorithm computes the matrix-vector product for all k-regular
N ×N matrices in the semiring I/O-model with best case matrix layout with at
most ℓ = ℓ(k,N) I/Os, then for M ≥ 4B it holds:

(

N

k

)N

≤
(

(

4M

B

)B

4ℓ

)2ℓ

·
(

2ℓBM

kN

)

.

From this, we can conclude the following theorem, which shows that the
algorithm presented in Section 3 is optimal up to a constant factor.
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Theorem 7.3 Assume that an algorithm computes the matrix-vector product
for all k-regular N×N matrices in the semiring I/O-model with best case matrix
layout with at most ℓ(k,N) I/Os. Then for M ≥ 4B, and k ≤ 3

√
N there is the

lower bound

ℓ(k,N) ≥ min

{

1

14
· kN,

1

8
· kN
B

logM
B

N

kM

}

Proof. The inequality claimed in Lemma 7.2 allows the application of Lemma A.4
as follows: Fix k, N , and ℓ = ℓ(k,N). If ℓ > kN/4, the theorem is trivially
true. Hence, we assume ℓ ≤ kN/4. Assume B ≥ 12, otherwise the first term
of the statement is weaker than the scanning lower bound and the theorem is
true. This implies M ≥ 4B > 24. Assume further N ≥ 220, otherwise N

kM < 215

and hence the logarithmic term (the base M
B is at least 4) is weaker than the

scanning bound. To apply Lemma A.4 with α = N
k and β = 18/7, we have to

check the implication kN ≥ (4M/B)B ⇒ N
kM ≥ 18/7

√
N , which is the statement

of Lemma A.3 (iii), using the bounds on B and N . Hence, we conclude

ℓ ≥ min

{

3

16
· 7

18
kN,

1

8
· kN
B

logM
B

N

kM

}

which implies the statement of the theorem by observing that 7
16·6 > 1

14 . ⊓⊔

8 Lower Bound for Best Case Layout of Vector

We may consider allowing the algorithm to choose also the layout of the input
and output vectors. In this section, we show that this essentially does not help
algorithms already allowed to choose the layout of the matrix.

Theorem 8.1 Assume that an algorithm computes the matrix-vector product
for all k-regular N×N matrices in the semiring I/O-model with best case matrix
and best case vector layout, using at most ℓ = ℓ(k,N) I/Os. Then for M ≥ 4B
and 8 ≤ k ≤ 3

√
N it holds that:

ℓ(k,N) ≥ min

{

1

43
kN,

1

16
· kN
B

logM
B

N

kM

}

Proof. We proceed as in the proof of Lemma 7.2 and Theorem 7.3. If there
is no layout and program that perform the task in kN/4 I/Os, the theorem is
trivially true. Hence, we assume ℓ ≤ kN/4. If B < 35, then the scanning lower
bound implies the statement of the theorem. Similarly, if N < 216 the scanning
lower bound justifies the second term. The input vector can be stored in N !
different orders. To count how many different set-based states this corresponds
to, note that one set-based state of the vector gives rise to B!

N
B different orders

(by ordering each of the N/B blocks of the vector), which implies that there are

N !/B!
N
B different set-based states possible for the input vector. This arguments

applies also for the output vector. Hence, the following inequality must hold:
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(

N

k

)N

≤
(

(

4M

B

)B

kN

)2ℓ

·
(

2ℓBM

kN

)

·
(

N !

B!
N
B

)2

.

Rearranging terms and using (x/y)y ≤
(

x
y

)

≤ (xe/y)y and (x/e)x ≤ x! ≤ xx,
this yields

(

N

k

)kN

·
(

B

eN

)2N

=

(

N1−2/kB2/k

e2/kk

)kN

≤
(

(

4M

B

)B

kN

)2ℓ

·
(

2ℓBM

kN

)

.

To apply Lemma A.4 with α = N1−2/kB2/k

e2/kk
and β = 8 we have to check the

implication kN ≥ (4M/B)B ⇒ α
M ≥ 8

√
N , which follows from Lemma A.3 (iv)

using that k ≥ 8 gives N1−2/k ≥ N3/4. Hence we get

ℓ ≥ min

{

3

16 · 8kN,
1

8
· kN
B

logM
B

N1−2/kB2/k

e2/kkM

}

,

where the first term implies the first term of the theorem. It remains to show
that under the assumptions made it holds that

logM
B

N1−2/kB2/k

e2/kkM
≥ 1

2
logM

B

N

kM

which is equivalent to

logM
B

N

kM
− 2

k
logM

B

eN

B
≥ 1

2
logM

B

N

kM

which is equivalent to

1

2
logM

B

N

kM
≥ 2

k
logM

B

eN

B

which is equivalent to

4 logM
B

eN

B
= 4

(

1 + logM
B

eN

M

)

≤ k logM
B

N

kM

which is, using logM
B
e ≤ 1, implied by

4

(

2 + logM
B

N

M

)

≤ k logM
B

N

kM

which is because of logM
B

N
M ≥ 8 (otherwise the lemma holds trivially by the

scanning bound) implied by

5 logM
B

N

M
≤ k logM

B

N

kM

24



which is equivalent to

5 ln
N

M
≤ k ln

N

kM
.

The derivative with respect to k of the r.h.s. is ln N
kM −1 ≥ 0 (otherwise we again

refer to the scanning bound), hence it is sufficient to show that the inequality
holds for the smallest claimed k = 8:

5 log
N

M
≤ 8 log

N

M
− 8 log 8 ⇔ 8 log 8 ≤ 3 log

N

M

which holds because 8 log 8 = 8 · 3 ≤ 3 · 10, assuming log N
M ≥ 10 (otherwise the

lemma holds trivially by the scanning bound). ⊓⊔

9 Extensions, Discussion, and Future Work

This section collects ideas and insights that extend the presentation of the earlier
sections, but are somehow a distraction from the main flow of thought.

9.1 High probability

Having seen the argument of the lower bounds, we observe that the number of
programs depends exponentially on the allowed running time. This immediately
suggest that allowing somewhat less running time will reduce the number of
achievable tasks dramatically, as exemplified in detail by the following theorem.

Theorem 9.1 Let ℓ = ℓ(k,N,M,B) be an upper bound on the number of I/O-
operations necessary to compute a uniformly chosen instance of the N -kN copy
problem (create kN copies of N variables) with probability at least 2−kN . Then,
for M ≥ 4B there is the lower bound

ℓ ≥ min

{

kN

4B
logM/B

N

M
,
kN

6

}

.

Proof. We get the following slightly weaker version of Lemma 4.3

2−kN ·NkN =

(

N

2

)kN

≤
(

(

4M

B

)B

4ℓ

)ℓ

· BkN .

From this the statement of the theorem follows by Lemma 4.4 with H = kN ,
where we again profit from the slightly weaker assumption of Lemma 4.4, when
compared to the conclusion of Lemma 4.3. ⊓⊔

9.2 Smaller M/B

Throughout the sections, we used the assumption M ≥ 4B without further
comment because it simplified the calculations and lead to reasonable constants
in the lower bounds. It is not surprising that we can relax this assumption and
only slightly weaken the results.
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Theorem 9.2 Assume we have for task T a lower bound on the number of
I/Os ℓ(k,N,M,B) under the assumption M ≥ 4B. Then under the weaker
assumptions M ≥ 2B′ we have the lower bound for T of ℓ′(k,N,M,B′) ≥
1
2ℓ(k,N,M, 12B

′).

Proof. A program that works for B′ can be simulated to work with track size
B = B′/2, which doubles the number of I/Os. For this program, we get the
lower bound of ℓ, and we conclude 2ℓ′ ≥ ℓ, hence the statement of the theorem.

⊓⊔

As an example, we formulate the immediate consequence of this and Theo-
rem 7.3, similar statements follow for the other considered tasks.

Theorem 9.3 Let ℓ = ℓ(k,N) be an upper bound on the number of I/O-
operations necessary to solve the SpMV problem with worst case layout. Then,
for M ≥ 2B and k ≤ N/2 there is the lower bound

ℓ(k,N) ≥ min

{

1

28
· kN,

1

16
· kN
B

logM
B

N

kM

}

Proof. Remember the bound given in Theorem 7.3 for M ≥ 4B:

ℓ(k,N) ≥ min

{

1

14
· kN,

1

8
· kN
B

logM
B

N

kM

}

Changing to B/2 increases the base of the logarithmic term, such that this term
reduces its value in the worst case to half its original value. This is counterbal-
anced by the kN

B term doubling. Hence, the overall effect on the lower bound is
that it is weakened by a factor 1/2 as claimed. ⊓⊔

9.3 Discussion of the model of Computation

Another point worth of discussion is the model of computation used in the lower
bound proofs. This model might seem somewhat arbitrary, and hence we want
to justify some of our modeling choices in this section.

Ideally, we would like to make as few algebraic assumptions as possible. In
our context, some assumptions are necessary: If we would, for example, consider
a model that has integer numbers and arbitrary operations, then it would be
possible to encode a pair of numbers into a single number, and the notion of
limited space would be meaningless, and all computational tasks would require
precisely scanning the input and scanning the output.

The model we used is natural because all efficient algorithms for matrix-
vector multiplication known to us work in it. As do many natural algorithms
for related problems, in particular matrix multiplication, but not all—the most
notable exception is the algorithm for general dense matrix multiplication by
Strassen [14] that relies upon subtraction and with this achieves a better run-
ning than is possible in the semiring model, as argued by Hong and Kung [9].
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It is unclear if ideas similar to Strassen’s can be useful for the matrix-vector
multiplication problem.

Models similar to the semiring I/O-model have been considered before,
mainly in the context of matrix-matrix multiplication, in [16], implicitly in [15],
and also in [9]. Another backing for the model is that all known efficient circuits
to compute multilinear results (as we do here) use only multilinear intermediate
results, as described in [11].

We note that the model is non-uniform, not only allowing an arbitrary de-
pendence on the size of the input, but even on the conformation of the input
matrix. In this, there is similarity to the non-uniformity of algebraic circuits,
comparison trees for sorting, and lower bounds in the standard I/O-model of [1].
In contrast, the algorithms are uniform, only relying on the comparison of in-
dices, and standard address arithmetic.

A possible apparent strengthening of the model of computation is to allow
comparisons. More precisely, we could assume that the elements of the semiring
cannot only be added and multiplied, but there is additionally a total order
on the semiring, i.e., that two elements can be compared (≤). For the real
numbers R, this comparison could coincide with the usual “not smaller than”
ordering. A program for the machine then consists of a tree Tp, with ternary
comparison nodes, and all other nodes being unary. The input is given as the
initial configuration of the disk and all memory cells empty. The root node
of the tree is labeled with this initial configuration, and the label of a child
of a unary node is given by applying the operation (read, write or compute
in internal memory) the node represents. A comparison amounts to checking
whether a non-trivial polynomial of the data present in the memory is greater
than zero, equal to zero, or smaller than zero. For branching nodes, only the
child corresponding to the outcome of the comparison is labeled. The final con-
figuration is given by the only labeled leaf node. We measure the performance
of Tp on input x by counting the number of read and write nodes encountered
when following Tp on input x.

It would perhaps be reasonable to assume that Tp is finite, but this might
exclude interesting programs that perform complicated computations in internal
memory and still use only few I/Os. Hence, we allow Tp to be infinite as long
as every allowed input leads to a finite computation, i.e., a path in Tp ending
at a leaf.

The following lemma shows that all this apparent additional computational
power is in fact not usable.

Lemma 9.4 Assume that a semiring comparison I/O-tree Tp computes a poly-
nomial p : Rd → R

e with worst-case ℓ I/Os using comparisons (≤), then there is
a semiring comparison I/O-tree T ′

p without any comparisons computing p with
at most ℓ I/Os.

Proof. Every node v of Tp is reached by a certain set Sv ⊆ R
d of inputs. It

is possible that Tp is infinite, but every x ∈ R
d must lead to a leaf of Tp (on a

finite path).
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We start by picking an arbitrary point x0 ∈ R
d, set ε0 = 1, and start the

computation at the root n0 of Tp. We define a sequence of xi’s by the following
rule: As long as the open ball Bi of radius εi around xi behaves in the same
way by the comparison at node nj (or this node is not a comparison node), we
set nj+1 to the corresponding child of nj . If it is a comparison, the < and >
outcomes are defined by open sets (defined by some polynomial in the input
variables being positive or negative), and one of them must have non-empty
intersection O with Bi. In this case, we choose xi+1 and εi+1 such that the
ball Bi+1 is contained in O, and 0 < εi+1 ≤ εi/2. This construction must
lead to a leaf w of Tp: Otherwise, the xi’s form a Cauchy-sequence and hence
converge to an input vector x, and for this x the computation path would be the
infinite sequence of the nj , contradicting the definition that every input must
lead to a leaf.

The new tree T ′
p is induced by following the path in Tp to w, and leaving out

all the comparisons. The result of T ′
p is given by a polynomial q over the input

variables, and we have to show p = q. This is true because p and q evaluate
to the same number in an open subset of Rd around x = xi. Hence for any
y ∈ R

d different from x, the single-variable polynomials p′ and q′ that map the
line through x and y to the value given by p and respectively q have infinitely
many equality points and are equal. By the fundamental theorem of algebra we
can conclude p(y) = q(y), which means that T ′

p is correct. ⊓⊔

9.4 Context and Future Work

Ideally, what we would like to have is some kind of compiler that takes the
matrix A, analyzes it, and then efficiently produces a program and a good
layout of the matrix, such that the multiplication Ax with any input vector x
is as quick as possible. To complete the wish list, this compiler should produce
the program more quickly than the program takes to run. Today, this goal
seems very ambitious, both from a practical and theoretical viewpoint. Our
investigations are a theoretical step toward this goal.
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Appendix

A Technical Lemmas

Lemma A.1 For every x > 1 and b ≥ 2, the following inequality holds: logb 2x ≥
2 logb logb x.

Proof. By exponentiating both sides of the inequality we get 2x ≥ log2b x.
Define g(x) := 2x − log2b x, then, g(1) = 2 > 0 and g′(x) = 2 − 2

ln2 b
ln x
x ≥

2 − 2
ln2 b

· 1
e ≥ 2 − 2

ln2 2
· 1
e > 0 for all x ≥ 1, since ln(x)/x ≤ 1/e. Thus g is

always positive and the claim follows. ⊓⊔

Lemma A.2 Let b ≥ 2 and s, t > 0. For all positive real numbers x, we have

x ≥ logb(s/x)
t implies x ≥ 1

2
logb(s·t)

t .

Proof. If s · t ≤ 1, the implied inequality holds trivially. Hence, in the
following we assume s · t > 1. Assume x ≥ logb(s/x)/t and, for a contradic-

tion, also x < 1/2 logb(s · t)/t. Then we get x ≥ logb(s/x)
t >

logb
2s·t

logb(s·t)

t =
logb(2s·t)−logb logb(s·t)

t ≥ logb(2s·t)− 1
2 logb(2s·t)
t = 1

2
logb(2s·t)

t , where the last inequal-
ity stems from Lemma A.1. This contradiction to the assumed upper bound
on x establishes the lemma. ⊓⊔

Lemma A.3 Assume kN ≥ (4M/B)B, k ≤ N , B ≥ 2, and M ≥ 2B. Then

(i) N ≥ 220 implies B ≤ 4
e

6
√
N .

(ii) 0 < ε < 1, N ≥ 22/(1−ε)2 implies B ≤ 3
2eN

1−ε.
(iii) N ≥ 220, B ≥ 12, and k ≤ 3

√
N implies N

keM ≥ 18/7
√
N .

(iv) N ≥ 216, B ≥ 35, and k ≤ 3
√
N implies N3/4

ekM ≥ 8
√
N.

Proof. By M ≥ 2B, we have log 4M
B ≥ log 8 = 3. Thus B ≤ log kN

log 4M
B

≤
2
3 logN

6
e

6
√
N . for N ≥ 220, which proves (i), by the additionally observation

that log 220 ≤ 6
e

6
√
220.

Similarly follows statement (ii): It is clear, that once the lemma is true for
some N > 1, it holds for all N . Hence, it remains to show the lemma for
N = 22/(1−ε)2 . The important inequality certainly holds for ε = 0, which is
sufficient if the derivative with respect to ε is positive. To see this, we check
that the derivative evaluates positively at 0 and compute the second derivative,
which can easily be seen to be positive in the considered range.

To see (iii), we rewrite the main assumption as (kN)1/B ≥ 4M/B. With B ≥
12, k ≤ 3

√
N , and (i) we get: eM ≤ e

4B(kN)1/B ≤ e
4
4
e

6
√
N(kN)1/12 ≤ N

1
6+

4
3 · 1

12 =

N
5
18 . Hence N

keM ≥ 18/7
√
N .

To see (iv), we rewrite the main assumption as (kN)1/B > 4M/B. With B ≥
35, k ≤ 3

√
N , and (i) we get: M ≤ 1

4B(kN)1/B ≤ 2
9

4
√
N(kN)1/35 ≤ 2

9N
1
4+

4
3 · 1

35 ≤
1
3N

51/140 . Hence N3/4

keM ≥ 3N3/4

4√NeN51/140
≥ N

3
4− 1

4− 51
140 ≥ N

19
140 ≥ 8

√
N .

⊓⊔
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Lemma A.4 Assume M ≥ 4B, kN/B ≤ ℓ ≤ kN , α > 0, β > 0, k ≤ 3
√
N , and

that kN ≥ (4M/B)B implies α
M ≥ β

√
N . Then

αkN ≤
(

(

4M

B

)B

kN

)2ℓ

·
(

2ℓBM

kN

)

implies

ℓ ≥ min

{

3

16β
kN,

1

8
· kN
B

logM
B

α

M

}

.

Proof. Using (x/y)y ≤
(

x
y

)

≤ (xe/y)y we arrive at

kN logα ≤ 2ℓ

(

log(kN) +B log
4M

B

)

+ kN log
2eℓBM

kN

by taking logarithms. Rearranging terms yields

2ℓ

kN
≥ log kN

2ℓ
α

eBM

log(kN) +B log 4M
B

.

We take the statement of Lemma A.2 with s := α
eBM , t := log(kN)+B log 4M

B ,
and x := 2ℓ/kN , and conclude

2ℓ

kN
≥ log(st)

2t
≥ log α

M

2t
.

Now, we distinguish according to the leading term of t. If log(kN) < B log 4M
B ,

then we get

2ℓ

kN
≥ log α

M

2B log 4M
B

=
log α

M

2B(2 + log M
B )

≥ log α
M

2B(2 · log M
B )

,

where the last inequality follows from log M
B ≥ 2. Hence, in this case, the

statement of the lemma follows.
Otherwise, if log(kN) ≥ B log 4M

B , from the assumptions α/M ≥ β
√
N fol-

lows, and hence

4ℓ

kN
≥

1
β logN

log kN
≥

1
β logN
4
3 logN

=
3

4β

from which the lemma follows. ⊓⊔
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