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AbstractWe study the design of e�cient data structures. In particular we focus on the design of datastructures where each operation has a worst case e�cient implementations. The concrete prob-lems we consider are partial persistence, implementation of priority queues, and implementation ofdictionaries.The �rst problem we consider is how to make bounded in-degree and out-degree data structurespartially persistent, i.e., how to remember old versions of a data structure for later access. A nodecopying technique of Driscoll et al. supports update steps in amortized constant time and accesssteps in worst case constant time. The worst case time for an update step can be linear in the sizeof the structure. We show how to extend the technique of Driscoll et al. such that update stepscan be performed in worst case constant time on the pointer machine model.We present two new comparison based priority queue implementations, with the following prop-erties. The �rst implementation supports the operations FindMin, Insert and Meld in worstcase constant time and Delete and DeleteMin in worst case time O(logn). The priority queuescan be implemented on the pointer machine and require linear space. The second implementationachieves the same worst case performance, but furthermore supports DecreaseKey in worst caseconstant time. The space requirement is again linear, but the implementation requires auxiliaryarrays of size O(logn). Our bounds match the best known amortized bounds (achieved by respec-tively binomial queues and Fibonacci heaps). The data structures presented are the �rst achievingthese worst case bounds, in particular supporting Meld in worst case constant time. We show thatthese time bounds are optimal for all implementations supporting Meld in worst case time o(n).We also present a tradeo� between the update time and the query time of comparison based pri-ority queue implementations. Finally we show that any randomized implementation with expectedamortized cost t comparisons per Insert and Delete operation has expected cost at least n=2O(t)comparisons for FindMin.Next we consider how to implement priority queues on parallel (comparison based) models.We present time and work optimal priority queues for the CREW PRAM, supporting FindMin,Insert, Meld, DeleteMin, Delete and DecreaseKey in constant time with O(logn) proces-sors. Our implementation is the �rst supporting all of the listed operations in constant time. Tobe able to speed up Dijkstra's algorithm for the single-source shortest path problem we present adi�erent parallel priority data structure. With this specialized data structure we give a parallelimplementation of Dijkstra's algorithm which runs in O(n) time and performs O(m logn) work ona CREW PRAM. This represents a logarithmic factor improvement for the running time comparedwith previous approaches.We also consider priority queues on a RAM model which is stronger than the comparisonmodel. The speci�c problem is the maintenance of a set of n integers in the range 0::2w � 1 underthe operations Insert, Delete, FindMin, FindMax and Pred (predecessor query) on a unitcost RAM with word size w bits. The RAM operations used are addition, left and right bit shifts,v



and bit-wise boolean operations. For any function f(n) satisfying log logn � f(n) � plogn, wepresent a data structure supporting FindMin and FindMax in worst case constant time, Insertand Delete in worst case O(f(n)) time, and Pred in worst case O((logn)=f(n)) time. Thisrepresents the �rst priority queue implementation for a RAM which supports Insert, Deleteand FindMin in worst case time O(log log n) | previous bounds were only amortized. The datastructure is also the �rst dictionary implementation for a RAM which supports Pred in worst caseO(logn= log logn) time while having worst case O(log logn) update time. Previous sublogarithmicdictionary implementations do not provide for updates that are signi�cantly faster than queries.The best solutions known support both updates and queries in worst case time O(plogn).The last problem consider is the following dictionary problem over binary strings. Given a set ofn binary strings of length m each, we want to answer d{queries, i.e., given a binary query string oflength m to report if there exists a string in the set within Hamming distance d of the query string.We present a data structure of size O(nm) supporting 1{queries in time O(m) and the reportingof all strings within Hamming distance 1 of the query string in time O(m). The data structure canbe constructed in time O(nm). The implementation presented is the �rst achieving these optimaltime bounds for the preprocessing of the dictionary and for 1{queries. The data structure can beextended to support the insertion of new strings in amortized time O(m).

vi
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Chapter 1IntroductionIn this thesis we study the design of e�cient data structures. In particular we focus on the designof data structures allowing each of the individual operations on the data structures to have worstcase e�cient implementations. The concrete problems we consider in this thesis are general tech-niques to make data structure partially persistent, the implementation of priority queues, and theimplementation of dictionaries.The thesis consists of an introduction summarizing the results achieved and a sequence ofpapers. In Sections 1.1{1.5 we summarize our contributions and their relation to previous work.Chapter 2 summarizes the role of a very general \tool" used throughout the thesis, the applicationof invariants.Chapter 3 [16]: Partially Persistent Data Structures of Bounded Degree with Constant Update Time. InNordic Journal of Computing, pages 238{255, volume 3(3), 1996.Chapter 4 [20]: The Randomized Complexity of Maintaining the Minimum, with Shiva Chaudhuri andJaikumar Radhakrishnan. In Nordic Journal of Computing, Selected Papers of the 5th ScandinavianWorkshop on Algorithm Theory (SWAT'96), volume 3(4), pages 337-351, 1996.Chapter 5 [15]: Fast Meldable Priority Queues. In Proc. 4th Workshop on Algorithms and Data Struc-tures, LNCS volume 955, pages 282{290, 1995.Chapter 6 [18]: Worst-Case E�cient Priority Queues. In Proc. 7th ACM-SIAM Symposium on DiscreteAlgorithms, pages 52{58, 1996.Chapter 7 [17]: Priority Queues on Parallel Machines. In Proc. 5th ScandinavianWorkshop on AlgorithmTheory, LNCS volume 1097, pages 416{427, 1996.Chapter 8 [23]: A Parallel Priority Data Structure with Applications, with Jesper Larsson Tr�a� and Chris-tos D. Zaroliagis. In Proc. 11th International Parallel Processing Symposium, pages 689-693, 1997.Chapter 9 [19]: Predecessor Queries in Dynamic Integer Sets. In Proc. 14th Symposium on TheoreticalAspects of Computer Science, LNCS volume 1200, pages 21-32, 1997.Chapter 10 [21]: Approximate Dictionary Queries, with Leszek G�asieniec. In Proc. 7th CombinatorialPattern Matching, LNCS volume 1075, pages 65{74, 1996.1.1 Persistent data structuresA data structure is said to be ephemeral if updates to the data structure destroy the old version ofthe data structure, i.e., the only version of the data structure remembered is the current versionof the data structure. A data structure is said to be persistent if old versions of the data structureare remembered and can be accessed. Ordinary data structures are ephemeral. Persistent data1



structures are used in a variety of areas, such as computational geometry, text and �le editing, andhigh-level programming languages. For references see Driscoll et al. [44].We distinguish three types of persistent data structures, depending on how new versions of thedata structure are achieved:� A partially persistent data structure allows all old versions to be accessed but only the mostrecent version to be modi�ed.� A fully persistent data structure allows all old versions both to be both accessed and modi�ed.� A conuently persistent data structure allows all old versions to be accessed and modi�ed.In addition two versions can be combined to a new version. The semantics of combining twoversions of the data structures is context dependent.The di�erences between the three types of persistence are best illustrated by the correspondingversion graphs. The version graph of a persistent data structure is a directed graph where each nodecorresponds to a version of the ephemeral data structure and an edge from a node representingversion D1 of the data structure to a node representing another version D2 states that D2 isobtained from D1. The version graph of a partially persistent data structure is always a list, andthe version graph of a fully persistent data structure is a rooted tree. The version graph of aconuently persistent data structure is a directed acyclic graph where all nodes have in-degree oneor two, except for the node corresponding to the initial data structure.The �rst general approaches to making data structures partially persistent were described byOvermars [86]. The �rst (straightforward) approach considered by Overmars is to explicitly storea copy of each of the old versions of the data structure. The drawbacks of this approach areobvious: It is very space ine�cient and the time overhead to make the data structure persistent islinear in the size of the data structure for each update. The second approach is to store only thesequence of updates, and when accessing an old version of the data structure to rebuild that versionfrom scratch. The third approach considered by Overmars is a hybrid version where in additionto the sequence of operations also every kth version of the data structure is stored (for k chosenappropriately).Later Driscoll et al. [44] developed two e�cient general techniques for making a large class ofpointer based data structures both partially and fully persistent. The two techniques are denotednode copying and node spitting. The techniques require that the ephemeral data structures arepointer based, i.e., the ephemeral data structures consist of records each containing a constantnumber of �elds containing either atomic values or pointers to other records. In addition it isrequired that the ephemeral data structures satisfy the bounded in-degree assumption: There existsa constant d such that all records have in-degree bounded by d.Both persistence techniques allow each update step to be performed in amortized constant timeand amortized constant space, and support each access step in worst case constant time.Our contribution in Chapter 3 is to extend the partial persistence technique of Driscoll et al.such that both update and access steps can be supported in worst case constant time, i.e., we showhow to eliminate the amortization from the node copying technique. Our main contribution is adata structure allowing us to avoid cascades of node copyings in the original node copying technique(see Chapter 3 for the details). We present our solution as a strategy for a two player pebble gameon dynamic graphs. The reformulation of the partial persistence technique as a pebble game was�rst considered by Dietz and Raman [33, 92]; our solution solves an open problem about the pebblegame introduced by Dietz and Raman [33]. 2



By assuming the more powerful unit cost RAM model Dietz and Raman [33] have presented adi�erent solution for the partial persistence problem achieving worst case constant time for accessand update steps for any pointer based data structure with polylogarithmic bounded in-degree.Dietz and Raman also describe how to make data structures of constant bounded in-degree fullypersistent with a worst case slow down of O(log logn).Dietz [31] has shown how to make arrays fully persistent on a unit cost RAM in expectedamortized time O(log log n) and constant space per operation. Because the memory of a RAM canbe considered as an array the result of Dietz applies to all data structures on a unit cost RAM.As mentioned several general techniques have been developed to convert ephemeral data struc-ture into their partially or fully persistent counterparts, but for conuently persistence no suchtechnique has been identi�ed. The design of conuently persistent data structures is quite in-volved. An example is the development of conuently persistent catenable lists [25, 45, 67]. But bydesigning data structures such that they can be implemented in a purely functional language theyautomatically become conuently persistent [85]. Such data structures have been denoted purelyfunctional data structures. Some recently developed purely functional data structures are: queuesand deques [84], random access lists [83], catenable lists [67], priority queues [22] and catenable�nger search trees [68]. A survey on the design of functional data structures can be found in thethesis of Okasaki [85].It remains an interesting open problem if there exists a construction which can remove theamortization from the node splitting technique of Driscoll et al. [44] for making data structuresfully persistent, i.e., if there exists a data structure that can prevent cascades of node splittingsin the node splitting technique. A related open problem involving node splitting is to give apointer based data structure for avoiding cascades of node splittings when inserting elements intoan (a; b)-tree [64]. A solution to this problem would imply the �rst pointer based implementationfor constant update time �nger search trees [60] and a �rst step towards removing the amortizationfrom the node splitting technique of of Driscoll et al. [44] . On a RAM constant update time �ngersearch trees have been given by Dietz and Raman [34]. Pointer based implementations of constantupdate time search trees have been given by Levcopoulos and Overmars [73] and Fleischer [48].1.2 Comparison based priority queuesA major part of this thesis is devoted to the implementation of priority queues. In this section weconsider implementations in three di�erent types of computational models: sequential comparisonbased models, parallel comparison based models and RAM models allowing the manipulation ofwords. Two other types models are described in Sections 1.3 and 1.4.A priority queue is a data structure storing a set of elements from a totally ordered universeand supporting a subset of the operations listed below.MakeQueue creates and returns an empty priority queue.FindMin(Q) returns the minimum element contained in priority queue Q.Insert(Q; e) inserts an element e into priority queue Q.Meld(Q1; Q2) melds priority queues Q1 and Q2 to a new priority queue and returns the resultingpriority queue.DecreaseKey(Q; e; e0) replaces element e by e0 in priority queue Q provided e0 � e and it isknown where e is stored in Q.DeleteMin(Q) deletes and returns the minimum element from priority queue Q.3



Delete(Q; e) deletes element e from priority queue Q provided it is known where e is stored in Q.The minimum requirement is that the operations MakeQueue, Insert and DeleteMin aresupported. For sake of simplicity we do not distinguish between elements and their associatedkeys [76] (except for the data structure mentioned in Chapter 8).1.2.1 Lower boundsNo unique optimal priority queue implementation exists, because any non constant operation can bemade constant by increasing the cost of some of the other operations supported. The two extremeexamples illustrating this fact are the following two trivial implementations:� By storing each priority queue as a doubly linked list of the elements in an arbitrary order,the operations FindMin and DeleteMin can be implemented in worst case time O(n) andall other operations in worst case constant time.� By storing each priority queue as a sorted doubly linked list of the elements, the operationsInsert,Meld and DecreaseKey can be implemented in worst case time O(n) and all otheroperations in worst case constant time.In the following we list known lower bound relations between the worst case time of the indi-vidual operations in the comparison model.Either Insert or DeleteMin requires 
(logn)1 comparisons because n elements can be sortedby performing MakeQueue, n Insert operations and n DeleteMin operations, and comparisonbased sorting requires 
(n logn) comparisons. In Chapter 5 we present another reduction to sortingshowing that if Meld is supported in worst case time o(n), then DeleteMin requires worst casetime 
(logn).But DeleteMin consists of both a FindMin and a Delete operation, and the above state-ments do not identify which of the two operations require time 
(logn). In Chapter 4 we show thefollowing tradeo� answering this question: If Insert and Delete take worst case time O(t(n)),then FindMin requires worst case time n=2O(t(n)). We give two proofs of the tradeo�; the �rstis an explicit adversary argument, and the second is a decision tree argument. The decision treeargument implies the stronger result that if the updates take expected amortized time O(t(n)) thenthe expected time for FindMin is at least n=2O(t).The same tradeo� and proof holds if the assumption about Insert is replaced by the assumptionthat a priority queue with n elements can be built in worst case time O(n � t(n)) | the proof onlyuses the fact that a priority queue containing n elements can be build by n applications of Insertin worst case time O(n � t(n)). If Meld is supported in worst case time o(n) then from Chapter 5 apriority queue with n elements can be build in time o(n logn). If in addition FindMin is supportedin time O(n�) for a constant � < 1 then from the tradeo� of Chapter 4 it follows that Delete mustrequire time 
(logn).This gives the following characterization of an \optimal" priority queue implementation.Observation If a priority queue implementation supports Meld in worst case time o(n) andFindMin in worst case time O(n�) for a constant � < 1, then Delete and DeleteMin requireworst case time 
(logn).1f(n) 2 
(g(n)) if and only if there exists an � > 0 such that f(n) � �g(n) for in�nitely many n 2 IN .4



The priority queue implementations we give in Chapters 5 and 6 are optimal in this sense,because they supportDelete and DeleteMin in worst case time O(logn) and all other operationsin worst case constant time.1.2.2 ImplementationsThe �rst implementation of a priority queue was given by Williams in 1964 [109]. Williams' datastructure, also known as a heap, represents a priority queue as a complete binary tree where eachnode stores one element and the elements satisfy heap order, i.e., the element stored at a node islarger than or equal to the element stored at the node's parent. A heap can support all operationsexceptMeld in worst case time O(logn), and can be stored e�ciently in an array of size n withoutthe use of pointers, i.e., a heap is an example of an implicit data structure [82].The properties of heaps have been the topic of comprehensive research since the introductionby Williams. That a heap containing n elements can be built in worst case time O(n) was shownby Floyd [49]. In Section 1.3 we mention the bounds achieved by parallel heap construction al-gorithms. The worst case number of comparisons for Insert and DeleteMin has among othersbeen considered by Gonnet and Munro [58] and Carlsson [26]. The average case behavior of heapshas been considered in [13, 39, 40, 91].Many priority queue implementations have been developed which support all the listed opera-tions in worst case or amortized time O(logn). Common to all the implementations is that they allare based on heap ordered trees. The constructions we give in Chapter 5 and 6 are no exception.The most prominent implementations are binomial queues [24, 108], heap ordered (2; 3)-trees [1],self-adjusting heaps [99], pairing heaps [52], Fibonacci heaps [53] and relaxed heaps [43]. Furtherpriority queue implementations can be found in [27, 46, 47, 63, 71, 97, 107].The best amortized performance achieved by the data structures mentioned above is achievedby binomial queues and Fibonacci heaps. Binomial queues support all operations except Del-ete, DeleteMin and DecreaseKey in amortized constant time, and Delete, DeleteMin andDecreaseKey in amortized time O(logn) (DecreaseKey implemented as Delete followed byInsert). Fibonacci heaps achieve the same time bounds as binomial queues except thatDecrease-Key is supported in amortized constant time too. The best worst case bounds are achieved byrelaxed heaps. Relaxed heaps achieve worst case constant time for all operations except forDelete,DeleteMin and Meld which require worst case time O(logn).The �rst nontrivial priority queue implementation supportingMeld in worst case time o(logn)was presented by Fagerberg [46]. The cost of achieving this sublogarithmic melding is that the timerequired for DeleteMin increases to !(logn).In Chapters 5 and 6 we present the �rst priority queue implementations that simultaneouslysupport Meld in worst case constant time and DeleteMin in worst case time O(logn). Thisis similar to the amortized time achieved by binomial queues and Fibonacci heaps, but in theworst case sense. From the tradeo� characterization it follows that the time bounds are the \bestpossible" for the individual operations. Table 1.1 summarizes the best known bounds for di�erentpriority queue implementations.As mentioned both our constructions are based on heap ordered trees. To achieve constant timefor the operations Insert and Meld we adopt properties of redundant counter systems to controlthe linking of heap ordered subtrees. Previously van Leeuwen [107] and Carlsson et al. [27] haveadopted similar ideas to construct priority queue implementations supporting Insert in constanttime. In Chapter 6 we achieve constant time forDecreaseKey by combining ideas from redundantcounter systems with the concept of heap order violations, i.e., a subset of the tree nodes are not5



Amortized Worst caseVuillemin Fredman Driscoll Chapter 5 Chapter 6[108] et al. [53] et al. [43]MakeQueue O(1) O(1) O(1) O(1) O(1)FindMin O(1) O(1) O(1) O(1) O(1)Insert O(1) O(1) O(1) O(1) O(1)Meld O(1) O(1) O(logn) O(1) O(1)DecreaseKey O(logn) O(1) O(1) O(logn) O(1)Delete/DeleteMin O(logn) O(logn) O(logn) O(logn) O(logn)Table 1.1: The best amortized and worst case time bounds for priority queue implementations.required to satisfy heap order. Allowing heap order violations can be used to achieve constant timeDecreaseKey operations as shown by Driscoll et al. [43]. The data structures in Chapters 5 and 6require slightly di�erent computational models. Whereas the data structure in Chapter 5 can beimplemented on a pointer based machine model, the data structure in Chapter 6 requires arrays ofsize O(logn). It remains an open problem if the worst case bounds of Chapter 6 can be obtainedwithout the use of arrays, i.e., if a pointer based implementation exists which supports both Meldand DecreaseKey in worst case constant time and DeleteMin in worst case time O(logn).The data structure of Chapter 5 has been reconsidered in a functional setting by Brodal andOkasaki [22]. In [22] a purely functional and therefore also conuently persistent priority queueimplementation is presented supporting MakeQueue, FindMin, Insert and Meld in constanttime and DeleteMin in time O(logn).1.3 Parallel priority queuesFloyd showed in [49] how to build a heap sequentially in time O(n). How to build heaps in parallelwith optimal work O(n) has been considered in a sequence of papers [32, 35, 70, 95]. On an EREWPRAM a work optimal algorithm achieving time O(logn) was given by Rao and Zhang [95] andon a CRCW PRAM a work optimal algorithm achieving time O(log logn) was given by Dietz andRaman [35]. A work optimal randomized CRCW PRAM algorithm has been presented by Dietzand Raman [35]; it runs in time O(log log log n) with high probability. In the randomized parallelcomparison tree model Dietz has presented an algorithm that with high probability takes timeO(�(n))2 and does work O(n) [32].There exist two di�erent avenues of research adopting parallelism to priority queues. The�rst is to speed up the individual priority queue operations by using O(logn) processors suchthat the individual operations require time o(logn). The second is to support the concurrentinsertion/deletion of k elements by the following two operations, where k is assumed to be aconstant.MultiInsert(Q; e1; : : : ; ek) Inserts elements e1; : : : ; ek into priority queue Q.MultiDelete(Q) Deletes and returns the k least elements contained in priority queue Q.The �rst approach is appropriate for applications where the number of processors is smallcompared to the number of elements, say O(logn) processors. The second is appropriate when2�(n) denotes an inverse of Ackerman's function. 6



there are a large number of processors available. An interesting application of parallel priorityqueues is to parallelize Branch-and-Bound algorithms [89, 96].We �rst summarize the speed up of the individual priority queue operations. It is parallelcomputing folklore that a systolic processor array with �(n) processors can implement a priorityqueue supporting the operations Insert and DeleteMin in constant time, see Exercise 1.119in [72]. The �rst approach using o(n) processors is due to Biswas and Browne [11] and Rao andKumar [96] who considered how to let O(logn) processors concurrently access a binary heap bypipelining Insert and DeleteMin operations. However, each operation still takes time O(logn)to �nish. In [11, 96] the algorithms assume that the processors have shared memory. Later Ranadeet al. [94] showed how to obtain the same result for the simplest network of processors namely alinear array of O(logn) processors.Pinotti and Pucci [90] presented a non-pipelined EREW PRAM priority queue implementationthat supports Insert and DeleteMin operations in time O(log logn) with O(logn= log logn)processors. Chen and Hu [28] later gave an implementation which also supports Meld in timeO(log logn). Recently Pinotti et al. [88] achieved matching bounds and in addition supported theoperations Delete and DecreaseKey in amortized time O(log logn) on a CREW PRAM.Our contribution (Chapter 7) is a new parallel priority queue implementation supporting all theoperations considered in Section 1.2. Compared to the implementation of Pinotti and Pucci [90] ourimplementation is the �rst non-pipelined EREW PRAM priority queue implementation supportingInsert and DeleteMin in time O(1) with O(logn) processors. By assuming the more powerfulCREW PRAM we can also support the operations Meld, Delete and DecreaseKey in timeO(1) with O(logn) processors. A priority queue containing n elements can be build optimallyon an EREW PRAM in time O(logn) with O(n= logn) processors. Because a straightforwardimplementation ofMultiInsert is to perform Build on the elements to be inserted followed by aMeld operation we immediately get a CREW PRAM implementation supportingMultiInsert intime O(log k) with O((logn+k)= log k) processors. We also describe how our priority queues can bemodi�ed to allow operations to be performed via pipelining. As a result we get an implementationof priority queues on a processor array with O(logn) processors, supporting the operations Make-Queue, Insert, Meld, FindMin, DeleteMin, Delete and DecreaseKey in constant time,which extends the result of [94].The second avenue of research mentioned is to support the operationsMultiInsert andMulti-Delete. In [89] Pinotti and Pucci introduced the notion of k-bandwidth parallel priority queueimplementations. The basic idea of the k-bandwidth technique is to modify a heap ordered priorityqueue implementation such that each node stores k elements instead of one and to require extendedheap order among the elements, i.e., the k elements stored at a node are required to be larger thanor equal to the k elements stored at the parent of the node. Implementations of k-bandwidth-heapsand k-bandwidth-leftist-heaps for the CREW PRAM are contained in [89].The k-bandwidth technique is central to all parallel priority queue implementations that supportMultiDelete. Ranade et al. [94] show how to apply the k-bandwidth technique to achieve aparallel priority queue implementation for a d-dimensional array of processors, and Pinotti et al. [88]and Das et al. [30] give implementations for hypercubes.Table 1.2 summarizes the performance of di�erent implementations adopting parallelism topriority queues.A classical application of priority queues is in Dijkstra's algorithm for the single-source shortestpath problem on a graph with n vertices and m positive weighted edges [37]. By using Fibonacciheaps Dijkstra's (sequential) algorithm gets a running time of O(m + n log n) [53]. The essential3The operations Delete and DecreaseKey require the CREW PRAM and require amortized time O(log log n).7



[90] [88] [89] [28] [94] Chapter 7Model EREW EREW3 CREW EREW Array CREWFindMin 1 log logn 1 1 1 1Insert log logn log logn { { 1 1DeleteMin log logn log logn { { 1 1Meld { log logn log nk + log logk log log nk + log k { 1Delete { log logn { { { 1DecreaseKey { log logn { { { 1Build logn { nk log k log nk log k { lognMultiInsert { { log nk + log k log log nk + log k { logkMultiDelete { { log nk + log logk log log nk + log k { {Table 1.2: Performance of some parallel implementations of priority queues.property of Dijkstra's algorithm is that it performs n iterations, each iteration consisting of aDeleteMin operation followed by a number of DecreaseKey operations. Driscoll et al. [43] havepresented an EREW PRAM implementation of Dijkstra's algorithm running in time O(n logn)and doing work O(m + n log n). The question addressed by Driscoll et al. is how to parallelizethe DecreaseKey operations involved in each of the iterations. In Chapter 8 we address thesame problem by giving two implementations of Dijkstra's algorithm for a CREW PRAM runningin time O(n) and doing respectively work O(n2) and O(m logn). Our contribution is a parallelpriority queue implementation which supports an arbitrary number of DecreaseKey operationsin constant time provided that the elements involved in the DecreaseKey operations have beenpresorted.1.4 RAM priority queues and dictionariesSection 1.2 and 1.3 discussed the implementation of comparison based priority queues. In thissection we consider how to implement priority queues and dictionaries on the more powerful RAMmodels. The details of our contribution are contained in Chapter 9.As model we assume a unit cost RAM with a word size of w bits, allowing addition, arbitraryleft and right bit shifts and bit-wise boolean operations on words to be performed in constanttime. In addition we assume direct and indirect addressing, jumps and conditional statements.Miltersen [78] refers to this model as a Practical RAM. We assume the elements stored are integersin the range 0::2w � 1, i.e., each element �ts within a machine word.The operations we consider on a set of elements S are:Insert(e) inserts element e into S,Delete(e) deletes element e from S,Pred(e) returns the largest element � e in S, andFindMin/FindMax returns the minimum/maximum element in S.We denote a data structure supporting the operations Insert, Delete and FindMin a RAMpriority queue. Notice that in contrast to Section 1.2 Delete does not require knowledge ofthe position of the element to be deleted. A data structure supporting Insert, Delete andPred we denote a RAM dictionary. In the following we summarize existing RAM priority queue8



and dictionary implementations { they all achieve strictly better bounds than comparison basedimplementations. For a survey on comparison based implementations we refer to Mehlhorn andTsakalidis [76], but one representative example is (a; b)-trees [64] which support all the mentionedoperations in time O(logn).The �rst data structure showing that the 
(logn) lower bound for comparison based imple-mentations does not hold for bounded universes is due to van Emde Boas et al. [104, 106]. Thedata structure of van Emde Boas et al. supports the operations Insert, Delete, Pred, FindMinand FindMax on a Practical RAM in worst case O(logw) time. For word size logO(1)n this im-plies a time O(log logn) implementation. Thorup [102] has presented a priority queue supportingInsert and DeleteMin in worst case time O(log logn) independently of the word size w. Thorupnotes that by tabulating the multiplicity of each of the inserted elements the construction supportsDelete in amortized O(log log n) time by skipping extracted integers of multiplicity zero.Andersson [5] has presented an implementation of a RAM dictionary supporting Insert, Del-ete and Pred in worst case O(plogn) time and FindMin and FindMax in worst case con-stant time. Several data structures can achieve the same time bounds as Andersson [5], but theyall require constant time multiplication [6, 54, 93]. Andersson [5] mentions that there exists a
(log1=3�o(1)n) lower bound for the dictionary problem on a practical RAM.Our contribution in Chapter 9 is a data structure for a Practical RAM supporting FindMinand FindMax in worst case constant time, Insert and Delete in worst case O(f(n)) time, andPred in worst case O((logn)=f(n)) time where f(n) is an arbitrary nondecreasing smooth functionsatisfying log logn � f(n) � plog n.If f(n) = log logn we support the operations Insert, DeleteMin and Delete in worst casetime O(log log n), i.e., we achieve the result of Thorup but in the worst case sense. Furthermorewe support Pred queries in worst case O(logn= log logn) time. If f(n) = plogn, we achieve timebounds matching those of Andersson [5].Our construction is obtained by combining the data structure of van Emde Boas et al. [104, 106]with packed search trees similar to those of Andersson [5], but where we add bu�ers of delayedinsertions and deletions to the nodes of the packed search tree. The idea of adding bu�ers to asearch tree is inspired by Arge [7] who designs e�cient external memory data structures.The data structure presented in Chapter 9 is the �rst allowing predecessor queries in timeO(logn= log logn) while having update time O(log logn), i.e., updates are exponentially fasterthan Pred queries. It remains an open problem if Insert and Delete can be supported in timeO(log logn) while supporting Pred queries in time O(plogn).1.5 Approximate Dictionary QueriesIn Chapter 10 we consider the following approximate dictionary problem on a unit cost RAM. LetW be a dictionary of n binary strings each of length m. We consider the problem of answeringd{queries, i.e., for a binary query string � of length m to decide if there is a string in W with atmost Hamming distance d of �.Minsky and Papert originally raised this problem in [80]. Recently a sequence of papers haveconsidered how to solve this problem e�ciently [41, 42, 59, 74, 112]. Manber and Wu [74] consideredthe application of approximate dictionary queries to password security and spelling correction ofbibliographic �les. Dolev et al. [41, 42] and Greene, Parnas and Yao [59] considered approximatedictionary queries for the case where d is large. The initial e�ort towards a theoretical study of thesmall d case was given by Yao and Yao in [112]. They present for the case d = 1 a data structure9



supporting queries in time O(m log logn) with space requirement O(nm logm). Their solution isdescribed in the cell-probe model of Yao [111] with word size one.For the general case where d > 1, d{queries can be answered in optimal space O(nm) doingPdi=0 �mi � exact dictionary queries for all the possible strings with Hamming distance at most d ofthe query string, where each exact dictionary query requires time O(m) by using the data structureof Fredman, Komlos and Szemeredi [51]. On the other hand d{queries can be answered in timeO(m) when the size of the data structure can be O(nPdi=0 �mi �) by inserting all nPdi=0 �mi � stringswith Hamming distance at most d into a compressed trie.It is unknown how the above mentioned data structure which supports 1{queries in time O(m)can be constructed in time O(nm). In Chapter 10 we present a standard unit cost RAM imple-mentation which has optimal size O(nm) and supports 1{queries in time O(m) and which can beconstructed in time O(nm). Our data structure can be made semi-dynamic by supporting insertionsof new binary strings in amortized time O(m), when starting with an initial empty dictionary.It remains an open problem if there exists a data structure having size O(nm) which can answerd{queries in time o(md) for d � 2.
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Chapter 2The role of invariantsOne of the basic ideas used intensively to obtain the results of this thesis is the fundamental conceptof invariants. We use invariants in the description of data structures, in lower bound/adversaryarguments, in the analysis of expected running times of randomized algorithms, and to argue aboutthe correctness of our algorithms. However, the most signi�cant application of invariants has beenin the design of the data structures presented. In the following we describe the role of invariants inour work, in particular the interaction between developing invariants and designing data structures.In Chapters 3 and 4 we use invariants to describe explicit adversaries for respectively the pebblegame of Dietz and Raman [33] and for algorithms maintaining the minimum of a set. In both casesthe invariants capture the basic idea of the adversary, and the adversaries' moves are \dictated" bythe invariants. In Chapter 4 we also use an invariant to reason about the expected running timeof a randomized algorithm maintaining the minimum of a set. In fact, the random choices of thealgorithm have been designed such that the invariant is satis�ed.In Chapters 5, 6 and 7 we use invariants to describe the needed extra properties of the (heapordered) trees. The invariants describe how many sons of each rank a node can have, how manytrees there are of each rank, and how many heap order violations there are. In Chapters 8 and 9 wesimilarly use invariants to bound the sizes of the involved bu�ers. In Chapter 8 the main applicationof invariants is to show that the involved bu�ers do not temporarily get empty, i.e., to argue abouta safety property used to prove the correctness of the algorithms.Common to all the examples are that we developed the data structures hand in hand with theinvariants. In most cases we actually �rst proposed a set of invariants, and then considered howto implement the required operations of the data structure under the constraints of the proposedinvariants. If this failed, we modi�ed the invariants and reconsidered the implementation of theoperations. This cyclic process continued until feasible invariants were found. We believe that themain advantage of using invariants while designing data structures is that invariants make it quiteeasy to identify bottlenecks in the proposed constructions.To illustrate this development process we briey review the process of developing the datastructure presented in Chapter 6. The goal was to develop a priority queue implementation sup-porting Meld and DecreaseKey in worst case constant time and DeleteMin in worst casetime O(logn). The only data structure supporting Meld in constant time was the data structurein Chapter 5 (which supports Insert and Meld in worst case constant time and Delete andDeleteMin in worst case time O(logn)), and the only one supporting DecreaseKey in constanttime was the data structure of Driscoll et al. [43]. It therefore seemed an appropriate approach tocombine the essential properties of both data structures, i.e., to represent a priority queue by oneheap ordered tree and to allow heap order violations. But due to the constant time requirement for11



Meld it was necessary to dispense with the O(logn) bound on the number of violations (in [43])and to allow �(n) violations! What followed were numerous iterations alternating between mod-ifying the invariants and realizing that the current invariants were too strong/weak to allow animplementation of the operations achieving the required time bounds. Several mutually dependenttechnical problems had to be solved, including: a) how to distribute the violations, such that atmost O(logn) violations should be considered during a single DeleteMin, b) how to Meld twopriority queues, in particular how to Meld two sets of �(n) violations, c) how to guarantee aO(logn) bound on the maximum rank, and d) how to make transformations reducing the numberof violations. The �nal invariants solving all these problems can be found in Chapter 6 (invariantsS1{S5, O1{O5 and R1{R3).In Chapter 4 we similarly use invariants to develop a randomized algorithm for the FindAnyproblem (see Chapter 4 for a de�nition). The main idea of the algorithm is to maintain the currentrank of an \arbitrarily" selected element from the set of elements maintained. The invariant isused to formalize the meaning of \arbitrarily", by requiring that the selected element must beuniformly picked from the set of elements maintained. The implementation of Insert and Deleteare straightforward, when the random choices satisfy the invariant. While the expected time forInsert now follows directly from the implementation of Insert, the expected time for Deletefollows from the invariant because Delete is only expensive when the picked element is also theelement to be deleted.In Chapter 8 we present parallel implementations of Dijkstra's algorithm for the single-sourceshortest path problem based on pipelined merging of adjacency lists. Crucial to the correctness ofthe algorithms is that the bu�ers in the pipelines between processors do not illegally temporarilyget empty. For the sequential pipeline presented we give an invariant which guarantees that bu�ersnever become empty. For the tree pipeline presented we give a di�erent invariant guaranteeing thatif the bu�ers temporarily get empty (which they can in the tree pipeline) it is safe to ignore them.Finally, in Chapter 3 we use invariants to describe an adversary for a pebble game on cliques(see Chapter 3 for a de�nition of the game). The goal of the adversary is to force a node fromthe clique to have a lot of pebbles. After an initialization phase the adversary maintains a subsetof the nodes as candidates for the node to store many pebbles. A lower bound for the number ofpebbles on each of the candidate nodes is described by a set of invariants (involving as a parameterthe number of steps performed after the initialization phase). The moves of the adversary followimmediately from the invariants. From the invariants it follows that after a number of rounds thereexists a candidate node having the number of pebbles claimed.Viewed in isolation, none of these applications of invariance techniques are new. However,we consider it to be quite noteworthy that the power of the invariance technique is so clearlydemonstrated in connection with the development of (highly nontrivial) combinatorial algorithms.
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Chapter 3Partially Persistent Data Structuresof Bounded Degree with ConstantUpdate Time
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Partially Persistent Data Structures of Bounded Degreewith Constant Update Time�Gerth St�lting BrodalBRICSy, Department of Computer Science, University of AarhusNy Munkegade, DK-8000 �Arhus C, Denmarkgerth@brics.dkAbstractThe problem of making bounded in-degree and out-degree data structures partially persistentis considered. The node copying method of Driscoll et al. is extended so that updates can beperformed in worst case constant time on the pointer machine model. Previously it was onlyknown to be possible in amortized constant time.The result is presented in terms of a new strategy for Dietz and Raman's dynamic two playerpebble game on graphs.It is shown how to implement the strategy and the upper bound on the required number ofpebbles is improved from 2b+2d+O(pb) to d+2b, where b is the bound of the in-degree and dthe bound of the out-degree. We also give a lower bound that shows that the number of pebblesdepends on the out-degree d.Category: E.1, F.2.2Keywords: data structures, partial persistence, pebble game, lower bounds3.1 IntroductionThis paper describes a method to make data structures partially persistent. A partially persistentdata structure is a data structure in which old versions are remembered and can always be inspected.However, only the latest version of the data structure can be modi�ed.An interesting application of a partially persistent data structure is given in [98] where theplanar point location problem is solved by an elegant application of partially persistent searchtrees. The method given in [98] can be generalised to make arbitrary bounded in-degree datastructures partially persistent [44].As in [44], the data structures we consider will be described in the pointer machine model, i.e.,they consist of records with a constant number of �elds each containing a unit of data or a pointerto another record. The data structures can be viewed as graphs with bounded out-degree. In thefollowing let d denote this bound.The main assumption is that the data structures also have bounded in-degree. Let b denote thisbound. Not all data structures satisfy this constraint | but they can be converted to do it: Replace�This work was partially supported by the ESPRIT II Basic Research Actions Program of the EC under contractno. 7141 (project ALCOM II).yBRICS (Basic Research in Computer Science), a Centre of the Danish National Research Foundation.15



nodes by balanced binary trees, so that all original pointers that point to a node now instead pointto the leafs in the tree substituted into the data structure instead of the node, and store the node'soriginal information in the root of the tree. The assumption can now be satis�ed by letting at mosta constant number of pointers point to the same leaf. The drawback of this approach is that thetime to access a node v is increased from O(1) to O(log bv) where bv is the original in-degree of v.The problem with the method presented in [44, 98] is that an update of the data structure takesamortized time O(1), in the worst case it can be O(n) where n is the size of the current version ofthe data structure.In this paper we describe how to extend the method of [44, 98] so that an update can be donein worst case constant time. The main result of this paper is:Theorem 1 It is possible to implement partially persistent data structures with bounded in-degree(and out-degree) such that each update step and access step can be performed in worst case timeO(1).The problem can be restated as a dynamic two player pebble game on dynamic directed graphs,which was done by Dietz and Raman in [33]. In fact, it is this game we consider in this paper.The central rules of the game are that player I can add a pebble to an arbitrary node and playerD can remove all pebbles from a node provided he places a pebble on all of the node's predecessors.For further details refer to Section 3.3. The goal of the game is to �nd a strategy for player Dthat can guarantee that the number of pebbles on all nodes are bounded by a constant M . Dietzand Raman gave a strategy which achieved M � 2b + 2d + O(pb) | but they were not able toimplement it e�ciently which is necessary to remove the amortization from the original persistencyresult.In this paper we improve the bound to M = d + 2b by a simple modi�cation of the originalstrategy. In the static case (where the graph does not change) we get M = d+ b.We also consider the case where the nodes have di�erent bounds on their in- and out-degree.In this case we would like to have Mv = f(bv; dv) where f : N2 ! N is a monotonically increasingfunction. Hence only nodes with a high in-degree should have many pebbles. We call strategies withthis property for locally adaptive. In fact, the strategy mentioned above satis�es thatMv = dv+2bvin the dynamic game and Mv = dv + bv in the static game.By an e�ciently implementable strategy we mean a strategy that can be implemented such thatthe move of player D can be performed in time O(1) if player D knows where player I performedhis move. In the following we call such strategies implementable.The implementable strategies we give do not obtain such good bounds. Our �rst strategyobtains M = 2bd+ 1, whereas the second is locally adaptive and obtains Mv = 2bvdv + 2bv � 1.The analysis of our strategies are all tight | we give examples which match the upper bounds.The two e�ciently implementable strategies have simple implementations with small constant fac-tors.We also give lower bounds for the value ofM which shows thatM depends both on b and d forall strategies. More precisely we show that (we de�ne log x = maxf1; log2 xg):M � maxfb+ 1; b�+q2�� 7=4� 1=2c;& log 23dlog log 23d � 1'g;where � = minfb; dg.The paper is organized as follows. In Section 3.2 we describe the method of [44, 98] and inSection 3.3 we de�ne the dynamic graph game of [33]. In Section 3.4 we give the new game strategy16



for player D which is implementable. The technical details which are necessary to implement thestrategy are described in Section 3.5 and the strategy is analysed in Section 3.6. In Section 3.7we give a locally adaptive strategy and in Section 3.8 we give a locally adaptive strategy which isimplementable. Finally, the lower bound for M is given in Section 3.9.3.2 The node copying methodIn this section we briey review the method of [44, 98]. For further details we refer to these articles.The purpose of this section is to motivate the game that is de�ned in Section 3.3, and to show thatif we can �nd a strategy for this game and implement it e�ciently, then we can also remove theamortization from the partially persistency method described below.The ephemeral data structure is the underlying data structure we want to make partially per-sistent. In the following we assume that we have access to the ephemeral data structure througha �nite number of entry pointers. For every update of the data structure we increase a versioncounter which contains the number of the current version.When we update a node v we cannot destroy the old information in v because this would notenable us to �nd the old information again. The idea is now to add the new information to vtogether with the current version number. So if we later want to look at an old version of theinformation, we just compare the version numbers to �nd out which information was in the nodeat the time we are looking for. This is in very few words the idea behind the so called fat nodemethod.An alternative to the previous approach is the node copying method. This method allows atmost a constant number (M) of additional pieces of information in each node (depending on thesize of b). When the number of di�erent copies of information in a node gets greater than M wemake a copy of the node and the old node now becomes dead because new pointers to the nodehas to point to the newly created copy. In the new node we only store the information of the deadnode which exists in the current version of the ephemeral data structure. We now have to updateall the nodes in the current version of the data structure which have pointers to the node that hasnow become dead. These pointers should be updated to point to the newly created node instead| so we recursively add information to all the predecessors of the node that we have copied. Thecopied node does not contain any additional information.3.3 The dynamic graph gameThe game Dietz and Raman de�ned in [33] is played on a directed graph G = (V;E) with boundedin-degree and out-degree. Let b be the bound of the in-degree and d the bound of the out-degree.W.l.o.g. we do not allow self-loops or multiple edges. To each node a number of pebbles is associated,denoted by Pv . The dynamic graph game is now a game where two players I and D alternate tomove. The moves they can perform are:Player I:a) add a pebble to an arbitrary node v of the graph orb) remove an existing edge (v; u) and create a new edge (v; w) without violating the in-degreeconstraint on w, and place a pebble on the node v.Player D: 17



c) do nothing ord) remove all pebbles from a node v and place a new pebble on all the predecessors of v.This is denoted by Zero(v).The goal of the game is to show that there exists a constant M and a strategy for player Dsuch that, whatever player I does, the maximum number of pebbles on any node after the move ofplayer D is bounded by M . In the static version of the game player I can only do moves of typea). The relationship between partially persistent data structures and the pebble game de�ned isthe following. The graph of the pebble game corresponds to the current version of an ephemeraldata structure. A pebble corresponds to additional information stored in a node. A move ofplayer I of type a) corresponds to updating a data �eld in the ephemeral data structure and amove of type b) corresponds to updating a pointer �eld in the ephemeral data structure. A Zerooperation performed by playerD corresponds to the copying of a node in the node copying method.The pebbles placed on the predecessor nodes correspond to updating the incoming pointers of thecorresponding node copied in the persistent data structure.The existence of a strategy for player D was shown in [33], but the given strategy could not beimplemented e�ciently (i.e., the node v in d) could not be located in time O(1)).Theorem 2 (Dietz and Raman [33]) A strategy for playerD exists that achievesM = O(b+d).3.4 The strategyWe now describe our new strategy for player D. We start with some de�nitions. We associate thefollowing additional information with the graph G.� Edges are either black or white. Nodes have at most one incoming white edge. There are nowhite cycles.� Nodes are either black or white. Nodes are white if and only if they have an incoming whiteedge.The de�nitions give in a natural way rise to a partition of the nodes into components: two nodesconnected by a white edge belong to the same component. It is easily seen that a component is arooted tree of white edges with a black root and all other nodes white. A single black node with noadjacent white edge is also a component. We call a component consisting of a single node a simplecomponent and a component with more than one node a non simple component. See Figure 3.1 (onthe left) for an example of a graph with two simple components and one non simple component.To each node v we associate a queue Qv containing the predecessors of v. The queue operationsused in the following are:� Add(Qu; v) adds v to the back of Qu.� Delete(Qu; v) removes v from Qu.� Rotate(Qu) moves the front element v of Qu to the back of Qu, and returns v.The central operation in our strategy is now the following Break operation. The componentcontaining v is denoted Cv. 18



1

1 1

1 0

3

1

0

1

2 1

0Figure 3.1: The e�ect of performing a Break operation. The numbers are the number of pebbleson the nodes. procedure Break(Cv)r  the root of Cvcolor all nodes and edges in Cv blackif Qr 6= ; thencolor r and (Rotate(Qr); r) whiteendifZero(r)end.The e�ect of performing Break on a component is that the component is broken up into simplecomponents and that the root of the original component is appended to the component of one of itspredecessors (if any). An example of the application of the Break operation is shown in Figure 3.1.A crucial property of Break is that all nodes in the component change color (except for theroot when it does not have any predecessors, in this case we by de�nition say that the root changesits color twice).Our strategy is now the following (for simplicity we give the moves of player I and the countermoves of player D as procedures).procedure AddPebble(v)place a pebble on vBreak(Cv)end.procedure MoveEdge((v; u); (v;w))place a pebble on vif (v; u) is white thenBreak(Cv)Delete(Qu; v)replace (v; u) with (v; w) in EAdd(Qw ; v)elseDelete(Qu; v)replace (v; u) with (v; w) in EAdd(Qw ; v)Break(Cv)endifend. 19



In MoveEdge the place where we perform the Break operation depends on the color of the edge(v; u) being deleted. This is to guarantee that we only remove black edges from the graph (in ordernot to have to split components).Observe that each time we apply AddPebble or MoveEdge to a node v we �nd the root ofCv and zero it. We also change the color of all nodes in Cv | in particular we change the colorof v. Now, every time a black node becomes white it also becomes zeroed, so after two I moveshave placed pebbles on v, v has been zeroed at least once. That the successors of a node v cannotbe zeroed more than O(1) times and therefore cannot place pebbles on v without v getting zeroedis shown in Section 3.6. The crucial property is the way in which Break colors nodes and edgeswhite. The idea is that a successor u of v cannot be zeroed more than O(1) times before the edgefrom (v; u) will become white. If (v; u) is white both v and u belong to the same component, andtherefore u cannot change color without v changing color.In Section 3.5 we show how to implement Break in worst case time O(1) and in Section 3.6we show that the approach achieves that M = O(1).3.5 The new data structureThe procedures in Section 3.4 can easily be implemented in worst case time O(1) if we are ableto perform the Break operation in constant time. The central idea is to represent the colorsindirectly so that all white nodes and edges in a component points to the same variable. All thenodes and edges can now be made black by setting this variable to black.A component record contains two �elds. A color �eld and a pointer �eld. If the color �eld iswhite the pointer �eld will point to the root of the component.To each node and edge is associated a pointer cr which points to a component record. We willnow maintain the following invariant.� The cr pointer of each black edge and each node forming a simple component will point toa component record where the color is black and the root pointer is the null pointer. Hence,there is a component record for each non simple component, but several black edges andnodes forming a simple component can share the same component record.� For each non simple component there exist exactly one component record where the color iswhite and the root pointer points to the root of the component. All nodes and white edgesin this component point to this component record.An example of component records is shown in Figure 3.2. Notice that the color of an edge e issimply e:cr:color so the test in MoveEdge is trivial to implement. The implementation of Breakis now: procedure Break(v)if v:cr:color = black thenr  velser  v:cr:rootv:cr:color blackv:cr:root ?endifif r:Q 6= ; thenu  Rotate(r:Q) 20
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1 3 1Figure 3.2: A graph with component records.if u:cr:color = black thenu:cr  new-component-record(white; u)endifr:cr  (u; r):cr u:crendifZero(r)end.From the discussion of the node copying method in Section 3.2 it should be clear that the abovedescribed data structure also applies to this method.3.6 The analysisTheorem 3 The player D strategy given in Section 3.4 achieves M = 2bd+ 1.Proof. A direct consequence of Lemmas 1 and 2. 2Lemma 1 The player D strategy given in Section 3.4 achieves M � 2bd+ 1.Proof. Let the �rst operation (either an AddPebble or MoveEdge operation) be performed attime 1, the next at time 2 and so on.Assume that when the game starts all nodes are black and there are no pebbles on any node.Fix an arbitrary node v at an arbitrary time tnow . Let tlast denote the last time before tnowwhen v was zeroed (if v has never been zeroed let tlast be 0). In the following we want to boundthe number of pebbles placed on v in the interval ]tlast; tnow[. In this interval v cannot change itscolor from black to white because this would zero v.Assume without loss of generality that v is white at the end of time tlast, that at time tbreak 2]tlast; tnow[ a Break(Cv) is performed and (therefore) at time tnow v is black (it is easy to see thatall other cases are special cases of this case).Note that the only time an AddPebble(v) or MoveEdge((v; u); (v; w)) operation can beperformed is at time tbreak because these operations force the color of v to change. Therefore, v'ssuccessors are the same in the interval ]tlast; tbreak[, and similarly for ]tbreak ; tnow[.We will handle each of the two intervals and the time tbreak separately. Let us �rst considerthe interval ]tlast; tbreak[. Let w be one of v's successors in this interval. w can be zeroed at most btimes before it will be blocked by a white edge from v (w cannot change the color without changingthe color of v), because after at most b� 1 Zero(w) operations, v will be the �rst element in Qw.21



So a successor of v can be zeroed at most bd times throughout the �rst interval which impliesthat at most bd pebbles can be placed on v during the �rst interval. For ]tbreak ; tnow[ we can repeatthe same argument so at most bd pebbles will be placed on b during this interval too.We now just have to consider the operation at time tbreak . The color of v changes so aBreak(Cv) is performed. There are three possible reasons for that: a) An AddPebble(v) op-eration is performed, b) a MoveEdge ((v; u); (v;w)) is performed or c) one of the operations isperformed on a node di�erent from v. In a) and b) we �rst add a pebble to v and then per-form a Break(Cv) operation and in c) we �rst add a pebble to another node in Cv and then doBreak(Cv). The Break operation can add at most one pebble to v when we perform a Zerooperation to the root of Cv (because we do not allow multiple edges) so at most two pebbles canbe added to v at time tbreak .We have now shown that at time tnow the number of pebbles on v can be at most 2bd+2. Thisis nearly the claimed result. To decrease this bound by one we have to analyse the e�ect of theoperation performed at time tbreak more carefully.What we prove is that when two pebbles are placed on v at time tbreak then at most bd � 1pebbles can be placed on v throughout ]tbreak; tnow [. This follows if we can prove that there existsa successor of v that cannot be zeroed more than b� 1 times in the interval ]tbreak ; tnow [.In the following let r be the node that is zeroed at time tbreak . We have the following cases toconsider:i) AddPebble(v) and Break(r) places a pebble on v. Now r and one of its incoming edges arewhite. So r can be zeroed at most b � 1 times before (v; r) will become white and blockfurther Zero(r) operations.ii) MoveEdge((v; u); (v;w)) and Zero(r) places a pebble on v. Depending on the color of (v; u)we have two cases:a) (v; u) is white. Therefore u is white and r 6= u. Since we perform Break(r) before wemodify the pointers we have that r 6= w. So as in i) r can be zeroed at most b� 1 timesthroughout ]tbreak ; tnow[.b) (v; u) is black. Since Break is the last operation we do, the successors of v will be thesame until after tnow , so we can argue in the same way as i) and again get that r can bezeroed at most b� 1 times throughout ]tbreak ; tnow[.We conclude that no node will ever have more than 2bd+ 1 pebbles. 2Lemma 2 The player D strategy given in Section 3.4 achieves M � 2bd+ 1.Proof. Let G = (V;E) be the directed graph given by V = fr; v1; : : : ; vb; w1; : : : ; wdg and E =f(r; vb)g [ f(vi; wj)ji 2 f1; : : : ; bg ^ j 2 f1; : : : ; dgg. The graph is shown in Figure 3.3. Initiallyall nodes in V are black and all queues Qwi contain the nodes (v1; : : : ; vb). We will now force thenumber of pebbles on vb to become 2bd+ 1.First place one pebble on vb | so that vb becomes white. Then place 2b � 1 pebbles on eachwj . There will now be bd pebbles on vb and all the edges (vb; wj) are white. Place one new pebbleon vb and place another 2b� 1 pebbles on each wj . Now there will be 2bd+ 1 pebbles on vb. 222
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b21Figure 3.3: A graph which can force M to become 2bd+ 1.3.7 A simple locally adaptive strategyIn this section we present a simple strategy that is adaptive to the local in- and out-degree bounds ofthe nodes. It improves the bound achieved in [33]. The main drawback is that the strategy cannotbe implemented e�ciently in the sense that the node to be zeroed cannot be found in constanttime. In Section 3.8 we present an implementable strategy that is locally adaptive but does notachieve as good a bound on M .Let dv denote the bound of the out-degree of v and bv the bound of the in-degree. De�ne Mv tobe the best bound player D can guarantee on the number of pebbles on v. We would like to havethat Mv = f(bv; dv) for a monotonic function f : N2 ! N .The strategy is quite simple. To each node v we associate a queue Qv containing the predecessorsof v and a special element Zero. Each time the Zero element is rotated from the front of thequeue the node is zeroed.The simple adaptive strategyif the I-move deletes (v; u) and adds (v; w) thenDelete(Qu; v)Add(Qw; v)endifwhile (v0  Rotate(Qv))6=Zero do v  v0 odZero(v)end.Notice that the strategy does not use the values of bv and dv explicitly. This gives the strategythe nice property that we can allow bv and dv to change dynamically.The best bound Dietz and Raman could prove for their strategy was M � 2b + 2d + O(pb).The next theorem shows that the simple strategy above achieves a bound of Mv = dv + 2bv. If thegraph is static the bound improves to Mv = dv + bv.Theorem 4 For the simple adaptive strategy we have that Mv = dv + 2bv. In the static case thisimproves to Mv = dv + bv.Proof. Each time we perform AddPebble(v) or MoveEdge((v; u); (v; w)) we rotate Qv . It ispossible to rotate Qv at most bv times without zeroing v. This implies that between two Zero(v)operations at most bv MoveEdge operations can be performed on outgoing edges of v. Therefore,v can have had at most bv + dv di�erent successors between two Zero(v) operations. Between twozeroings of a successor w of v, Qv must have been rotated because Rotate(Qw) returned v in the23
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d+bd+1dFigure 3.4: A graph which can force M to become dv + 2bv.while-loop, this is because the Zero element is moved to the back of Qw when w is being zeroed.So except for the �rst zeroing of w all zeroings of w will be preceded by a rotation of Qv.For each operation performed on v we both place a pebble on v and rotate Qv. So the boundon the number of rotations of Qv gives the following bound on the number of pebbles that can beplaced on v: Mv � (dv + bv) + bv.In the static case the number of di�erent successors between two Zero (v) operations is dv soin the same way we get the bound Mv � dv + bv.It is easy to construct an example that matches this upper bound. Let G = (V;E) whereV = fv; u1; : : : ; ubv ; w1; : : : ; wdv ; wdv+1; : : : ; wdv+bvg andE = f(ui; v)ji 2 f1; : : : ; bvgg [ f(v; wi)ji 2 f1; : : : ; dvgg:The graph is shown in Figure 3.4.At the beginning all nodes are black and the Zero element is at the front of each queue.The sequence of operations which will force the number of pebbles on v to become dv + 2bv isthe following: AddPebble on v; w1; : : : ; wdv , followed byMoveEdge((v; wi�1+dv); (v; wi+dv)) andAddPebble(wi+dv ) for i = 1; : : : ; bv. The matching example for the static case is constructed in asimilar way. 23.8 A locally adaptive data structureWe will now describe a strategy that is both implementable and locally adaptive. The data structurepresented in Section 3.4 and Section 3.5 is not locally adaptive, because when redoing the analysiswith local degree constraints we get the following bound for the static version of the game:Mv = 1+ 2 Xfwj(v;w)2Eg bw:The solution to this problem is to incorporate a Zero element into each of the queues Qv asin Section 3.7 and then only zero a node when Rotate returns this element. We now have thefollowing Break operation:procedure Break(Cv)r  the root of Cvcolor all nodes and edges in Cv blackw  Rotate(Qr) 24



if w =Zero thenZero(r)w  Rotate(Qr)endifif w 6=Zero thencolor r and (w; r) whiteendifend.The implementation is similar to the implementation of Section 3.5.The next theorem shows that the number of pebbles on a node v with this strategy will bebounded by Mv = 2bvdv + 2bv � 1, so only nodes with large in-degree (or out-degree) can havemany pebbles.Theorem 5 The above strategy for player D achieves Mv = 2bvdv + 2bv � 1.Proof. The proof follows the same lines as in the proof of Theorem 3. A node v can change itscolor at most 2bv � 1 times between two zeroings. We then have that the number of AddPebbleand MoveEdge operations performed on v is at most 2bv � 1.The time interval between two Zero(v) operations is partitioned into 2bv intervals and that vchanges its color only on the boundary between two intervals. In each of the intervals each successorw of v can be zeroed at most once before it will be blocked by a white edge from v.So when we restrict ourselves to the static case we have that each successor gets zeroed at most2bv times. Hence the successors of v can place at most 2bvdv pebbles on v.Each AddPebble operation places a pebble on v, so for the static case, the total number ofpebbles on v is bounded by Mv = 2bvdv + 2bv � 1.We now only have to show that a MoveEdge((v; u); (v;w)) operation does not a�ect thisanalysis. We have two cases to consider. If u has been zeroed in the last interval then u will eitherbe blocked by a white edge from v or v appears before the Zero element in Qu and therefore noneof the Break operations in MoveEdge can result in a Zero(u). If u has not been zeroed thenit is allowed to place a pebble on v in the MoveEdge operation. If the Break operation forces aZero(w) to place a pebble on v then w cannot place a pebble on v during the next time interval.So we can conclude that the analysis still holds.The matching lower bound is given in the same way as in Theorem 4. 23.9 A lower boundIn this section we will only consider the static game.Raman states in [92] that \the dependence on d ofM appears to be an artifact of the proof (forthe strategy of [33])". Theorem 6 shows that it is not an artifact of the proof, but that the valueof M always depends on the value of b and d.It is shown in [44] thatM � b holds in the amortized sense, so in that gameM does not dependof d.Theorem 6 For b � 1 and all player D strategies we have:M � maxfb+ 1; b�+q2�� 7=4� 1=2c;& log 23dlog log 23d � 1'g;25



where � = minfb; dg.Proof. Immediate consequence of Lemma 3 and 4 and Corollary 1. 2Lemma 3 For b; d � 1 and all player D strategies we have M � b+ 1.Proof. We will play the game on a convergent tree with l levels where each node has exactly bincoming edges. The player I strategy is simple, it just places the pebbles on the root of the tree.The root has to be zeroed at least once for each group of M + 1 AddPebble operations. Soat least a fraction 1M+1 of the time will be spent on zeroing the root. At most M pebbles canbe placed on any internal node before the next Zero operation on that node, because we do notperform AddPebble on internal nodes. So a node on level 1 has to be zeroed at least once forevery M Zero operation on the root. Zeroing a node at level 1 takes at least 1M(M+1) of the time,and in general, zeroing a node at level i takes at least 1M i(M+1) of the time.Because the number of nodes in each level of the tree increases by a factor b we now have thefollowing constraint on M : lXi=0 biM i(M + 1) = 1M + 1 lXi=0 � bM �i � 1:By letting l � M we get the desired result M � b + 1. If d = 1, it follows from Theorem 4 thatthis bound is tight. 2Lemma 4 For b; d � 1 and all player D strategies we have:M � & log 23dlog log 23d � 1' :Proof. We will play the game on the following graph G = (V;E) where V = fr; v1; : : : ; vdg andE = f(r; v1); : : : ; (r; vd)g. The adversary strategy we will use for player I is to cyclically placepebbles on the subset of the vi's which have not been zeroed yet. The idea is that for each cycle atleast a certain fraction of the nodes will not be zeroed.We start by considering how many nodes cannot be zeroed in one cycle. Let the number ofnodes not zeroed at the beginning of the cycle be k. Each time one of the vi's is zeroed a pebbleis placed on r, so out of M + 1 zeroings at least one will be a Zero(r). So we have that at leastb kM+1c of the nodes are still not zeroed at the end of the cycle. So after i cycles we have that thenumber of nodes not zeroed is at least (the number of oors is i):�: : :�� dM + 1� 1M + 1� : : : 1M + 1� :By the de�nition of M , we know that all nodes will be zeroed after M + 1 cycles, so we have thefollowing equation (the number of oors is M + 1):�: : :�� dM + 1� 1M + 1� : : : 1M + 1� = 0:Lemma 3 gives us that M � 2. By induction on the number of oors is it easy to show thatomitting the oors increases the result at most 3=2. Hence, we haved(M + 1)M+1 � 3=2:26



So the minimum solution of M for this inequality will be a lower bound for M . It is easy to seethat this minimum solution has to be at least log 23dlog log 23d � 1. 2Lemma 5 For all D strategies where b = d we have:M � bb+q2b� 7=4� 1=2c:Proof. For b = d = 0 the lemma is trivial. The case b = d = 1 is true by Lemma 3. In the followingwe assume b = d � 2.Again, the idea is to use player I as an adversary that forces the number of pebbles to becomelarge on at least one node.The graph we will play the game on is a clique of size b+ 1. For all nodes u and v both (u; v)and (v; u) will be edges of the graph and all nodes will have in- and out-degree b. Each Zerooperation of player D will remove all pebbles from a node of the graph and place one pebble on allthe other nodes.At a time given P0; P1; : : : ; Pb will denote the number of pebbles on each of the b+ 1 nodes |in increasing order, so Pb will denote the number of pebbles on the node with the largest numberof pebbles.Let c1; c2 and c3 denote constants characterising the adversary's strategy. The following invari-ants will hold from a certain moment of time to be de�ned later:I1 : i � j ) Pi � Pj ;I2 : Pi � i;I3 : ( Pc1+c2�i � c1 + c2 � 1 for 1 � i � c3;Pc1+c2�i � c1 + c2 � 2 for c3 < i � c2;I4 : 1 � c3 � c2 and c1 + c2 � b+ 1:I1 is satis�ed per de�nition. I2 is not satis�ed initially but after the �rst b Zero's will be satis�ed.This is easily seen. The nodes that have not been zeroed will have at least b pebbles and the nodesthat have been zeroed can be ordered according to the last time they were zeroed. A node followedby i nodes in this order will have at least i pebbles because each of the following (at least) i zeroingswill place a pebble on the node.We can now satisfy I3 and I4 by setting c1 = c2 = c3 = 1 so now we have that all the fourinvariants are satis�ed after the �rst b Zero operations.Figure 3.5 illustrates the relationship between c1; c2 and c3 and the number of pebbles on thenodes. The �gure only shows the pebbles which are guaranteed to be on the nodes by the invariants.The idea is to build a block of nodes which all have the same number of pebbles. These nodes areshown as a dashed box in Figure 3.5. The moves of player I and D a�ect this box. A player I movewill increase the block size whereas a player D move will push the block upwards. In the followingwe will show how large the block can be forced to be.We will �rst consider an AddPebble operation. If c3 < c2 we know that on node c1+c2�c3�1(in the current ordering) there are at least c1 + c2 � 2 pebbles so by placing a pebble on the nodec1+ c2� c3� 1 we can increase c3 by one and still satisfy the invariants I1; : : : ; I4. There are threecases to consider. If the node c1+ c2� c3� 1 already has c1+ c2� 1 pebbles we increase c3 by oneand try to place the pebble on another node. If c3 = c2 and c1 + c2 < b+ 1 we can increase c2 byone and set c3 = 1 and then try to place the pebble on another node. If we have that c2 = c3 and27
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see that the following invariants will be satis�ed (I3 and I4 will not be satis�ed any longer):I5 : Pb � b+ i;I6 : Pb�j � b+ i� 1 for j = 1; : : : ; x� i� 1:So after the next x� 1 zeroings we see that Pb � b+ (x� 1) which gives the stated result. 2Corollary 1 For all D strategies we have M � b� +p2�� 7=4� 1=2c where � = minfb; dg.3.10 ConclusionIn the preceding sections we have shown that it is possible to implement partially persistent boundedin-degree (and out-degree) data structures where each access and update step can be done in worstcase constant time. This improves the best previously known technique which used amortizedconstant time per update step.It is a further consequence of our result that we can support the operation to delete the cur-rent version and go back to the previous version in constant time. We just have to store all ourmodi�cations of the data structure on a stack so that we can backtrack all our changes of the datastructure.3.11 Open problemsThe following list states open problems concerning the dynamic two player game.� Is it possible to show a general lower bound for M which shows how M depends on b and d?� Do better (locally adaptive) strategies exist?� Do implementable strategies for player D exist where M 2 O(b+ d)?AcknowledgementsI want to thank Dany Breslauer, Thore Husfeldt and Lars A. Arge for encouraging discussions.Especially I want to thank Peter G. Binderup for the very encouraging discussions that lead to theproof of Lemma 5 and Erik M. Schmidt for comments on the presentation.
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Chapter 4The Randomized Complexity ofMaintaining the Minimum
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Table 4.1: Worst case asymptotic time bounds for di�erent set implementations.Implementation Insert Delete FindMinDoubly linked list 1 1 nHeap [109] logn logn 1Search tree [48, 73] logn 1 1Priority queue [15, 27, 43] 1 logn 1number of comparisons it makes. The input is a sequence of operations, given to the algorithm inan online manner, that is, the algorithm must process the current operation before it receives thenext operation in the sequence. The worst case time for an operation is the maximum, over allsuch operations in all sequences, of the time taken to process the operation. The amortized time ofan operation is the maximum, over all sequences, of the total number of comparisons performed,while processing this type of operation in the sequence, divided by the length of the sequence.Worst case asymptotic time bounds for some existing data structures supporting the aboveoperations are listed in Table 4.1. The table suggests a tradeo� between the worst case times ofthe two update operations Insert, Delete and the query operation FindMin. We prove thefollowing lower bound on this tradeo�: any randomized algorithm with expected amortized updatetime at most t requires expected time (n=e2t) � 1 for FindMin. Thus, if the update operationshave expected amortized constant cost, FindMin requires linear expected time. On the other handif FindMin has constant expected time, then one of the update operations requires logarithmicexpected amortized time. This shows that all the data structures in Table 4.1 are optimal in thesense of the tradeo�, and they cannot be improved even by considering amortized cost and allowingrandomization.For each n and t, the lower bound is tight. A simple data structure for the Insert-Delete-FindMin problem is the following. Assume Insert and Delete are allowed to make at mostt comparisons. We represent a set by dn=2te sorted lists. All lists except for the last containexactly 2t elements. The minimum of a set can be found among all the list minima by dn=2te � 1comparisons. New elements are added to the last list, requiring at most t comparisons by a binarysearch. To perform Delete we replace the element to be deleted by an arbitrary element from thelast list. This also requires at most t comparisons.The above lower bound shows that it is hard to maintain the minimum. Is it any easier tomaintain the rank of some element, not necessarily the minimum? We consider a weaker problemcalled Insert-Delete-FindAny, which is de�ned exactly as the previous problem, except thatFindMin is replaced by the weaker operation FindAny that returns an element in S and its rank.FindAny is not constrained to return the same element each time it is invoked or to return theelement with the same rank. The only condition is that the rank returned should be the rank of theelement returned. We give a randomized algorithm for the Insert-Delete-FindAny problem withconstant expected time per operation. Thus, this problem is strictly easier than Insert-Delete-FindMin, when randomization is allowed. However, we show that for deterministic algorithms,the two problems are essentially equally hard. We show that any deterministic algorithm withamortized update time at most t requires n=24t+3 � 1 comparisons for some FindAny operation.This lower bound is proved using an explicit adversary argument, similar to the one used byBorodin, Guibas, Lynch and Yao [14]. The adversary strategy is simple, yet surprisingly powerful.The same strategy may be used to obtain the well known 
(n logn) lower bound for sorting. An34



explicit adversary for sorting has previously been given by Atallah and Kosaraju [8].The previous results show that maintaining any kind of rank information online is hard. How-ever, if the sequence of instructions to be processed is known in advance, then one can do better.We give a deterministic algorithm for the o�ine Insert-Delete-FindMin problem which has anamortized cost per operation of at most three comparisons.Our proofs use various averaging arguments which are used to derive general combinatorialproperties of trees. These are presented in Section 4.2.2.4.2 Preliminaries4.2.1 De�nitions and notationFor a rooted tree T , let leaves(T ) be the set of leaves of T . For a vertex, v in T , de�ne deg(v) tobe the number of children of v. De�ne, for ` 2 leaves(T ), depth(`) to be the distance of ` fromthe root and path(`) to be the set of vertices on the path from the root to `, not including `.For a random variable X , let support[X ] be the set of values that X assumes with non-zeroprobability. For any non-negative real valued function f , de�ned on support[X ], we de�ne thearithmetic mean and geometric mean of f byEX [f(X)] = Xx2support[X]Pr[X = x]f(x); andGMX [f(X)] = Yx2support[X] f(x)Pr[X=x]:We will also use the notation E and GM to denote the arithmetic and geometric means of a set ofvalues as follows: for a set R, and any non-negative real valued function f , de�ned on R, de�neEr2R[f(r)] = 1jRjXr2R f(r); and GMr2R [f(r)] = Yr2Rf(r)1=jRj:It can be shown (see [62]) that the geometric mean is at most the arithmetic mean.4.2.2 Some useful lemmasLet T be the in�nite complete binary tree. Suppose each element of [n] = f1; : : : ; ng is assignedto a node of the tree (more than one element may be assigned to the same node). That is,we have a function f : [n] ! V (T ). For v 2 V (T ), de�ne wtf (v) = jfi 2 [n] : f(i) = vgj,df = Ei2[n][depth(f(i))], Df = maxfdepth(f(i)) : i 2 [n]g and mf = maxfwtf (v) : v 2 V (T )g.Lemma 6 For every assignment f : [n] ! V (T ), the maximum number of elements on a pathstarting at the root of T is at least n2�df .Proof. Let P be a random in�nite path starting from the root. Then, for i 2 [n], Pr[f(i) 2 P ] =2�depth(f(i)). Then the expected number of elements of [n] assigned to P isnXi=1 2�depth(f(i)) = n Ei2[n][2�depth(f(i))] � nGMi2[n] [2�depth(f(i))]= n2�Ei2[n][depth(f(i))] = n2�df :Since the maximum is at least the expected value, the lemma follows. 235



Lemma 7 For every assignment f : [n]! V (T ), mf � n=2df+3.Proof. Let H = fh : mh = mfg. Let h be the assignment in H with minimum average depth dh(the minimum exists). Let m = mh = mf , and D = Dh. We claim thatwth(v) = m; for each v 2 V (T ) with depth(v) < D: (4.1)For suppose there is a vertex v with depth(v) < D and wt(v) < m (i.e., wt(v) � m� 1). First,consider the case when some node w at depth D has m elements assigned to it. Consider theassignment h0 given by h0(i) def= 8><>: w if h(i) = v;v if h(i) = w;h(i) otherwise:Then h0 2 H and dh0 < dh, contradicting the choice of h. Next, suppose that every node at depthD has less than m elements assigned to it. Now, there exists i 2 [n] such that depth(h(i)) = D.Let h0 be the assignment that is identical to h everywhere except at i, and for i, h0(i) = v. Then,h0 2 H and dh0 < dh, again contradicting the choice of h. Thus (4.1) holds.The number of elements assigned to nodes at depth at most D�1 is m(2D�1), and the averagedepth of these elements is 1m(2D � 1) D�1Xi=0 mi2i = (D� 2)2D + 22D � 1 � D � 2:Since all other elements are at depth D, we have dh � D � 2. The total number of nodes in thetree with depth at most D is 2D+1 � 1. Hence, we havemf = m � n2D+1 � 1 � n2dh+3 � 1 � n2df+3 � 1 : 2For a rooted tree T , let W` = Qv2path(`) deg(v). Then, it can be shown by induction onthe height of tree that P`2leaves(T ) 1=W` = 1: The following lemma is implicit in the work ofMcDiarmid [75].Lemma 8 For a rooted tree T with m leaves, GM`2leaves(T )[W`] � m:Proof. Since the geometric mean is at most the arithmetic mean, we haveGM̀[ 1W` ] � È[ 1W` ] = 1m X̀ 1W` = 1m:Now, GM̀[W`] = 1GM̀[1=W`] � m: 236



4.3 Deterministic o�ine algorithmWe now consider an o�ine version of the Insert-Delete-FindMin problem. The sequence ofoperations to be performed is given in advance, however, the ordering of the set elements is unknown.The ith operation is performed at time i. We assume that an element is inserted and deleted atmost once. If an element is inserted and deleted more than once, it can be treated as a distinctelement each time it is inserted.From the given operation sequence, the o�ine algorithm can compute, for each element x, thetime, t(x), at which x is deleted from the data structure (t(x) is 1 if x is never deleted).The data structure maintained by the o�ine algorithm is a sorted (in increasing order) listL = (x1; : : : ; xk) of the set elements that can become minimum elements in the data structure.The list satis�es that t(xi) < t(xj) for i < j, because otherwise xj could never become a minimumelement.FindMin returns the �rst element in L and Delete(x) deletes x from L, if L contains x, i.e.,x = x1. To process Insert(x), the algorithm computes two values, ` and r, where r = minfi :t(xi) > t(x)g and ` = maxfi : xi < xg. Notice that once x is in the data structure, none ofx`+1; : : : ; xr�1 can ever be the minimum element. Hence, all these elements are deleted and x isinserted into the list between x` and xr. No comparisons are required among the elements to �ndr, because r can be computed by a search for t(x) in (t(x1); : : : ; t(xk)). Thus, Insert(x) may beimplemented as follows: starting at xr, step backwards through the list, deleting elements until the�rst element smaller than x is encountered.The number of comparisons for an insertion is two plus the number of elements deleted fromL. By letting the potential of L be jLj the amortized cost of Insert is jL0j � jLj+# of elementsremoved during Insert+2 which is at most 3 because the number of elements removed is at mostjLj� jL0j+1. Delete only decreases the potential, and the initial potential is zero. It follows thatTheorem 7 For the o�ine Insert-Delete-FindMin problem the amortized cost of Insert isthree comparisons. No comparisons are required for Delete and FindMin.4.4 Deterministic lower bound for FindAnyIn this section we show that it is di�cult for a deterministic algorithm to maintain any rankinformation at all. We proveTheorem 8 Let A be a deterministic algorithm for the Insert-Delete-FindAny problem withamortized time at most t = t(n) per update. Then, there exists an input for which A takes at leastn=24t+3 � 1 comparisons to process one FindAny.The Adversary. We describe an adversary strategy for responding to the comparisons.The adversary maintains an in�nite binary tree and the elements currently in the data structureare distributed among the nodes of this tree. New elements inserted into the data structure areplaced at the root. For x 2 S let v(x) denote the node of the tree at which x is. The adversarymaintains two invariants. For any distribution of the elements among the nodes of the in�nite tree,de�ne the occupancy tree to be the �nite tree given by the union of the paths from every non-emptynode to the root. The invariants are(A) If neither of v(x) or v(y) is a descendant of the other then x < y is consistent with theresponses given so far if v(x) appears before v(y) in an inorder traversal of the occupancytree, and 37



(B) If v(x) = v(y) or v(x) is a descendant of v(y), the responses given so far yield no informationon the order of x and y. More precisely, in this case, x and y are incomparable in the partialorder induced on the elements by the responses so far.The comparisons made by any algorithm can be classi�ed into three types, and the adversaryresponds to each type of the comparison as described below. Let the elements compared be x and y.� v(x) = v(y): Then x is moved to the left child of v(x) and y to the right child and theadversary answers x < y.� v(x) is a descendant of v(y): Then y is moved to the unique child of v(y) that is not anancestor of v(x). If this child is a left child then the adversary answers y < x and if it is aright child then the adversary answers x < y.� v(x) 6= v(y) and neither is a descendant of the other: If v(x) is visited before v(y) in theinorder traversal of the occupancy tree, the adversary answers x < y and otherwise theadversary answers y < x.The key observation is that each comparison pushes two elements down one level each, in theworst case.Maintaining ranks. We now give a proof of Theorem 8.Consider the behavior of the algorithm when responses to its comparisons are given accordingto the adversary strategy above. De�ne the sequences S1 : : :Sn+1 as follows.S1 = Insert(a1) : : :Insert(an)FindAny:Let b1 be the element returned in response to the FindAny instruction in S1. For i = 2; 3; : : :n,de�ne Si = Insert(a1) : : :Insert(an)Delete(b1) : : :Delete(bi�1)FindAnyand let bi be the element returned in response to the FindAny instruction in Si. Finally, letSn+1 = Insert(a1) : : :Insert(an)Delete(b1) : : :Delete(bn):For 1 � i � n, bi is well de�ned and for 1 � i < j � n, bi 6= bj . The latter point follows from thefact that at the time bi is returned by a FindAny, b1; : : : ; bi�1 have already been deleted from thedata structure.Let T be the in�nite binary tree maintained by the adversary. Then the sequence Sn+1 de�nes afunction f : [n]! V (T ), given by f(i) = v if bi is in node v just before the Delete(bi) instructionduring the processing of Sn+1. Since the amortized cost of an update is at most t, the total numberof comparisons performed while processing Sn+1 is at most 2tn. A comparison pushes at most twoelements down one level each. Then, writing di for the distance of f(i) from the root, we havePni=1 di � 4tn. By Lemma 7 we know that there is a set R � [n] with at least n=24t+3 elementsand a vertex v of T such that for each i 2 R, f(bi) = v.Let j = minR. Then, while processing Sj , just before the FindAny instruction, each elementbi, i 2 R is in some node on the path from the root to f(i) = v. Since the element returned by theFindAny is bj , it must be the case that after the comparisons for the FindAny are performed, bjis the only element on the path from the root to the vertex in which bj is. This is because invariant(B) implies that any other element that is on this path is incomparable with bj . Hence, thesecomparisons move all the elements bi, i 2 Rnj, out of the path from the root to f(j). A comparisoncan move at most one element out of this path, hence, the number of comparisons performed is atleast jRj � 1, which proves the theorem. 38



4.4.1 SortingThe same adversary can be used to give a lower bound for sorting. We note that this argument isfundamentally di�erent from the usual information theoretic argument in that it gives an explicitadversary against which sorting is hard.Consider an algorithm that sorts a set S, of n elements. The same adversary strategy is usedto respond to comparisons. Then, invariant (B) implies that at the end of the algorithm, eachelement in the tree must be in a node by itself. Let the function f : S ! V (T ) indicate the nodewhere each element is at the end of the algorithm, where T is the in�nite binary tree maintainedby the adversary. Then, f assigns at most one element to each path starting at the root of T .By Lemma 6 we have 1 � n2�d, where d is the average distance of an element from the root. Itfollows that the sum of the distances from the root to the elements in this tree is at least n logn,and this is equal to the sum of the number of levels each element has been pushed down. Sinceeach comparison contributes at most two to this sum, the number of comparisons made is at least(n logn)=2.4.5 Randomized algorithm for FindAnyWe present a randomized algorithm supporting Insert, Delete and FindAny using, on an aver-age, a constant number of comparisons per operation.4.5.1 The algorithmThe algorithm maintains three variables: S, z and rank . S is the set of elements currently in thedata structure, z is an element in S, and rank is the rank of z in S. Initially, S is the empty set,and z and rank are null. The algorithm responds to instructions as follows.Insert(x): Set S  S [ fxg. With probability 1=jSj we set z to x and let rank be the rank of zin S, that is, one plus the number of elements in S smaller than z. In the other case, thatis with probability 1 � 1=jSj, we retain the old value of z; that is, we compare z and x andupdate rank if necessary. In particular, if the set was empty before the instruction, then z isassigned x and rank is set to 1.Delete(x): Set S  S � fxg. If S is empty then set z and rank to null and return.Otherwise (i.e., if S 6= ;), if x � z then get the new value of z by picking an element of Srandomly; set rank to be the rank of z in S. On the other hand, if x is di�erent from z, thendecrement rank by one if x was smaller than z.FindAny: Return z and rank .4.5.2 AnalysisClaim 9 The expected number of comparisons made by the algorithm for a �xed instruction in anysequence of instructions is constant.Proof. FindAny takes no comparisons. Consider an Insert instruction. Suppose the number ofelements in S just before the instruction was s. Then, the expected number of comparisons madeby the algorithm is s � (1=(s+ 1)) + 1 � (s=(s+ 1)) < 2.We now consider the expected number of comparisons performed for a Delete instruction. Fixa sequence of instructions. Let Si and zi be the values of S and z just before the ith instruction. Note39



that Si depends only on the sequence of instructions and not on the coin tosses of the algorithm;on the other hand, zi might vary depending on the coin tosses of the algorithm. We �rst show thatthe following invariant holds for all i:jSij 6= ; =) Pr[zi = x] = 1jSij for all x 2 Si: (4.2)We use induction on i. For i = 1, Si is empty and the claim holds trivially. Assume that the claimholds for i = `; we shall show that then it holds for i = `+ 1. If the `th instruction is a FindAny,then S and z are not disturbed and the claim continues to hold.Suppose the `th instruction is an Insert. For x 2 S`, we can have z`+1 = x only if z` = x andwe retain the old value of z after the Insert instruction. The probability that we retain the oldvalue of z is jS`j=(jS`j+ 1). Thus, using the induction hypothesis, we have for all x 2 S`Pr[z`+1 = x] = Pr[z` = x] � Pr[z`+1 = z`] = 1jS`j � jS`jjS`j+ 1 = 1jS`j+ 1 :Also, the newly inserted element is made z`+1 with probability 1jS`j+1 . Since jS`+1j = jS`j+1, (4.2)holds for i = `+ 1.Next, suppose the `th instruction is a Delete(x). If the set becomes empty after this instruc-tion, there is nothing to prove. Otherwise, for all y 2 S`+1,Pr[z`+1 = y]= Pr[z` = x & z`+1 = y] + Pr[z` 6= x & z`+1 = y]= Pr[z` = x] �Pr[z`+1 = y j z` = x] + Pr[z` 6= x] � Pr[z` = y j z` 6= x]:By the induction hypothesis we have Pr[z` = x] = 1=jS`j. Also, if z` = x then we pick z`+1randomly from S`+1; hence Pr[z`+1 = y j z` = x] = 1=jS`+1j. For the second term, by the inductionhypothesis we have Pr[z` 6= x] = 1�1=jS`j and Pr[z` = y j z` 6= x] = 1=(jS`j�1) = 1=jS`+1j (becausejS`+1j = jS`j � 1). By substituting these, we obtainPr[z`+1 = y] = 1jS`j � 1jS`+1j + (1� 1jS`j) � 1jS`+1j= 1jS`+1j :Thus, (4.2) holds for i = `+ 1. This completes the induction.Now, suppose the ith instruction is Delete(x). Then, the probability that zi = x is precisely1=jSij. Thus, the expected number of comparisons performed by the algorithm is(jSij � 2) � 1jSij < 1: 24.6 Randomized lower bounds for FindMinOne may view the problem of maintaining the minimum as a game between two players: the algo-rithm and the adversary. The adversary gives instructions and supplies answers for the comparisonsmade by the algorithm. The objective of the algorithm is to respond to the instructions by making40



as few comparisons as possible, whereas the objective of the adversary is to force the algorithm touse a large number of comparisons.Similarly, if randomization is permitted while maintaining the minimum, one may consider therandomized variants of this game. We have two cases based on whether or not the adversary isadaptive. An adaptive adversary constructs the input as the game progresses; its actions dependon the moves the algorithm has made so far. On the other hand, a non-adaptive adversary �xesthe instruction sequence and the ordering of the elements before the game begins. The input itconstructs can depend on the algorithm's strategy but not on its coin toss sequence.It can be shown that against the adaptive adversary randomization does not help. In fact,if there is a randomized strategy for the algorithm against an adaptive adversary then there is adeterministic strategy against the adversary. Thus, the complexity of maintaining the minimumin this case is the same as in the deterministic case. In this section, we show lower bounds with anon-adaptive adversary.The input to the algorithm is speci�ed by �xing a sequence of Insert, Delete and FindMininstructions, and an ordering for the set fa1; a2; : : : ; ang, based on which the comparisons of thealgorithm are answered.Distributions. We will use two distributions on inputs. For the �rst distribution, we constructa random input I by �rst picking a random permutation � of [n]; we associate with � the sequenceof instructionsInsert(a1); : : : ; Insert(an);Delete(a�(1));Delete(a�(2)); : : : ;Delete(a�(n)); (4.3)and the ordering a�(1) < a�(2) < : : : < a�(n): (4.4)For the second distribution, we construct the random input J by picking i 2 [n] at random and arandom permutation � of [n]; the instruction sequence associated with i and � isInsert(a1); : : : ; Insert(an);Delete(a�(1)); : : : ;Delete(a�(i�1));FindMin; (4.5)and the ordering is given, as before, by (4.4).For an algorithm A and an input I , let CU(A; I) be the number of comparisons made by thealgorithm in response to the update instructions (Insert and Delete) in I ; let CF (A; I) be thenumber of comparisons made by the algorithm while responding to the FindMin instructions.Theorem 10 Let A be a deterministic algorithm for maintaining the minimum. SupposeEI [CU(A; I)] � tn: (4.6)Then GMJ [CF (A; J) + 1] � ne2t :Before we discuss the proof of this result, we derive from it the lower bounds on the randomizedand average case complexities of maintaining the minimum. Yao showed that a randomized algo-rithm can be viewed as a random variable assuming values in some set of deterministic algorithmsaccording to some probability distribution over the set [110]. The randomized lower bound followsfrom this fact and Theorem 10. 41



Corollary 2 (Randomized complexity) Let R be a randomized algorithm for Insert-Delete-FindMin with expected amortized time per update at most t = t(n). Then the expected time forFindMin is at least n=(e22t)� 1.Proof. We view R as a random variable taking values in a set of deterministic algorithms withsome distribution. For every deterministic algorithm A in this set, lett(A) def= EI [CU(A; I)]=n:Then by Theorem 10 we have GMJ [CF (A; J) + 1] � �ne� � 2�t(A): Hence,GMR [GMJ [CF (R; J) + 1] � GMR [�ne� � 2�t(R)] = �ne� � 2�ER[t(R)]:Since the expected amortized time per update is at most t, we have ER[t(R)] � 2t. Hence,ER;J [CF (R; J)] + 1 = ER;J [CF (R; J) + 1] � GMR;J [CF (R; J) + 1] � ne22t :Thus, there exists an instance of J with instructions of the form (4.5), for which the expectednumber of comparisons performed by R in response to the last FindMin instruction is at leastn=(e22t)� 1. 2The average case lower bound follows from the arithmetic-geometric mean inequality and The-orem 10.Corollary 3 (Average case complexity) Let A be a deterministic algorithm for Insert-Del-ete-FindMin with amortized time per update at most t = t(n). Then the expected time to �nd theminimum for inputs with distribution J is at least n=(e22t)� 1.Proof. A takes amortized time at most t per update. Therefore,EI [CU(A; I)] � 2tn:Then, by Theorem 10 we haveEJ [CF (A; J)] + 1 = EJ [CF (A; J) + 1] �GMJ [CF (A; J) + 1] � ne22t : 24.6.1 Proof of Theorem 10The Decision Tree representation. Consider the set of sequences in support[I]. The actionsof a deterministic algorithm on this set of sequences can be represented by a decision tree withcomparison nodes and deletion nodes. (Normally a decision tree representing an algorithm wouldalso have insertion nodes, but since, in support[I ], the elements are always inserted in the sameorder, we may omit them.) Each comparison node is labeled by a comparison of the form ai : aj ,and has two children, corresponding to the two outcomes ai > aj and ai � aj . Each deletion42



node has a certain number of children and each edge, x, to a child, is labeled by some element ax,denoting that element ax is deleted by this delete instruction.For a sequence corresponding to some permutation �, the algorithm behaves as follows. The�rst instruction it must process is Insert(a1). The root of the tree is labeled by the �rst comparisonthat the algorithm makes in order to process this instruction. Depending on the outcome of thiscomparison, the algorithm makes one of two comparisons, and these label the two children of theroot. Thus, the processing of the �rst instruction can be viewed as following a path down thetree. Depending on the outcomes of the comparisons made to process the �rst instruction, thealgorithm is currently at some vertex in the tree, and this vertex is labeled by the �rst comparisonthat the algorithm makes in order to process the second instruction. In this way, the processingof all the insert instructions corresponds to following a path consisting of comparison nodes downthe tree. When the last insert instruction has been processed, the algorithm is at a delete nodecorresponding to the �rst delete instruction. Depending on the sequence, some element, a�(1) isdeleted. The algorithm follows the edge labeled by a�(1) and the next vertex is labeled by the�rst comparison that the algorithm makes in order to process the next delete instruction. In thismanner, each sequence determines a path down the tree, terminating at a leaf.We make two simple observations. First, since, in di�erent sequences, the elements are deletedin di�erent orders, each sequence reaches a distinct leaf of the tree. Hence the number of leaves isexactly n!. Second, consider the ordering information available to the algorithm when it reaches adelete node v. This information consists of the outcomes of all the comparisons on the comparisonnodes on the path from the root to v. This information can be represented as a poset, Pv , on theelements not deleted yet. For every sequence that causes the algorithm to reach v, the algorithmhas obtained only the information in Pv . If a sequence corresponding to some permutation � takesthe algorithm to the delete node v, where ai is deleted, then ai is a minimal element in Pv, since,in �, ai is the minimum among the remaining elements. Hence each of the elements labeling anedge from v to a child is a minimal element of Pv . If this Delete instruction was replaced by aFindMin, then the comparisons done by the FindMin would have to �nd the minimum amongthese minimal elements. A comparison between any two poset elements can cause at most one ofthese minimal elements to become non-minimal. Hence, the FindMin instruction would cost thealgorithm deg(v)� 1 comparisons.The proof. Let T be the decision tree corresponding to the deterministic algorithm A. Setm = n!. For ` 2 leaves(T ), let D` be the set of delete nodes on the path from the root to `, andC` be the set of comparison nodes on the path from the root to `.Each input speci�ed by a permutation � and a value i 2 [n], in support[J ] causes the algorithmto follow a path in T upto some delete node, v, where, instead of a Delete, the sequence issuesa FindMin instruction. As argued previously, the number of comparisons made to process thisFindMin is at least deg(v)� 1. There are exactly n delete nodes on any path from the root to aleaf and di�erent inputs cause the algorithm to arrive at a di�erent delete nodes. HenceGMJ [CF (A; J) + 1] � Y`2leaves(T ) Yv2D`(deg(v))1=nm: (4.7)Since T has m leaves, we have using Lemma 8 thatm � GM`2leaves(T )[ Yv2path(`)deg(v)]= GM`2leaves(T )[Yv2C` deg(v)] � GM`2leaves(T )[ Yv2D` deg(v)]: (4.8)43



Consider the �rst term on the right. Since every comparison node v has arity at most two, we haveQv2C` deg(v) = 2jC`j. Also, by the assumption (4.6) of our theorem,E`2leaves(T )[jC`j] = EI [CU(A; I)] � tn:Thus GM`2leaves(T )[Yv2C` deg(v)] � GM`2leaves(T )[2jC`j] � 2E`[jC`j] � 2tn:From this and (4.8), we have GM`2leaves(T )[ Yv2D` deg(v)] � m2�tn:Then using (4.7) and the inequality n! � (n=e)n, we getGMJ [CF (A; J) + 1] � Y`2leaves(T ) Yv2D`(deg(v))1=nm= ( GM`2leaves(T )[ Yv2D` deg(v)])1=n � ne2t : 2Remark. One may also consider the problem of maintaining the minimum when the algorithm isallowed to use an operator that enables it to compute the minimum of some m values in one step.The case m = 2 corresponds to the binary comparisons model. Since an m-ary minimum operationcan be simulated by m� 1 binary minimum operations, the above proof yields a lower bound of1m� 1 � ne22t(m�1) � 1�on the cost of FindMin, if the amortized cost of Insert and Delete is at most t. However, bymodifying our proof one can improve this lower bound to1m� 1 � nem2t � 1� :Acknowledgment.We thank the referee for his suggestions.
44



Chapter 5Fast Meldable Priority Queues

45



46



Fast Meldable Priority Queues�Gerth St�lting BrodalBRICSy, Department of Computer Science, University of AarhusNy Munkegade, DK-8000 �Arhus C, Denmarkgerth@brics.dkAbstractWe present priority queues that support the operations FindMin, Insert, MakeQueueand Meld in worst case time O(1) and Delete and DeleteMin in worst case time O(logn).They can be implemented on the pointer machine and require linear space. The time boundsare optimal for all implementations where Meld takes worst case time o(n).To our knowledge this is the �rst priority queue implementation that supports Meld inworst case constant time and DeleteMin in logarithmic time.Category: E.1Keywords: priority queues, meld, worst case complexityIntroductionWe consider the problem of implementing meldable priority queues. The operations that should besupported are:MakeQueue Creates a new empty priority queue.FindMin(Q) Returns the minimum element contained in priority queue Q.Insert(Q; e) Inserts element e into priority queue Q.Meld(Q1; Q2) Melds the priority queues Q1 and Q2 to one priority queue and returns the newpriority queue.DeleteMin(Q) Deletes the minimum element of Q and returns the element.Delete(Q; e) Deletes element e from priority queue Q provided that it is known where e is storedin Q (priority queues do not support the searching for an element).The implementation of priority queues is a classical problem in data structures. A few referencesare [43, 47, 52, 53, 63, 108, 109].In the amortized sense, [101], the best performance is achieved by binomial heaps [108]. Theysupport Delete and DeleteMin in amortized time O(logn) and all other operations in amortizedconstant time. If we want to perform Insert in worst case constant time a few e�cient data�This work was partially supported by the ESPRIT II Basic Research Actions Program of the EC under contractno. 7141 (project ALCOM II) and by the Danish Natural Science Research Council (Grant No. 9400044).yBRICS (Basic Research in Computer Science), a Centre of the Danish National Research Foundation.47



structures exist. The priority queue of van Leeuwen [107], the implicit priority queues of Carlssonet al. [27] and the relaxed heaps of Driscoll et al. [43], but neither of these supportMeld e�ciently.However, the last two do support MakeQueue, FindMin and Insert in worst case constant timeand Delete and DeleteMin in worst case time O(logn).Our implementation beats the above by supportingMakeQueue, FindMin, Insert andMeldin worst case time O(1) and Delete and DeleteMin in worst case time O(logn). The computa-tional model is the pointer machine and the space requirement is linear in the number of elementscontained in the priority queues.We assume that the priority queues contain elements from a totally ordered universe. The onlyallowed operation on the elements is the comparisons of two elements. We assume that comparisonscan be performed in worst case constant time. For simplicity we assume that all priority queuesare nonempty. For a given operation we let n denote the size of the priority queue of maximumsize involved in the operation.In Section 5.1 we describe the data structure and in Section 5.2 we show how to implement theoperations. In Section 5.3 we show that our construction is optimal. Section 5.4 contains some�nal remarks.5.1 The Data StructureOur basic representation of a priority queue is a heap ordered tree where each node contains oneelement. This is slightly di�erent from binomial heaps [108] and Fibonacci heaps [53] where therepresentation is a forest of heap ordered trees.With each node we associate a rank and we partition the children of a node into two types,type i and type ii. The heap ordered tree must satisfy the following structural constraints.a) A node has at most one child of type i. This child may be of arbitrary rank.b) The children of type ii of a node of rank r have all rank less than r.c) For a �xed node of rank r, let ni denote the number of children of type ii that have rank i.We maintain the regularity constraint thati) 8i : (0 � i < r) 1 � ni � 3);ii) 8i; j : (i < j ^ ni = nj = 3) 9k : i < k < j ^ nk = 1);iii) 8i : (ni = 3) 9k : k < i^ nk = 1):d) The root has rank zero.The heap order implies that the minimum element is at the root. Properties a), b) and c)bound the degree of a node by three times the rank of the node plus one. The size of the subtreerooted at a node is controlled by property c). Lemma 9 shows that the size is at least exponentialin the rank. The last two properties are essential to achieve Meld in worst case constant time.The regularity constraint c) is a variation of the regularity constraint that Guibas et al. [60] used intheir construction of �nger search trees. The idea is that between two ranks where three childrenhave equal rank there is a rank of which there only is one child. Figure 5.1 shows a heap orderedtree that satis�es the requirements a) to d) (the elements contained in the tree are omitted).Lemma 9 Any subtree rooted at a node of rank r has size � 2r.48



3 20 10 j0j2 j1 j1 j1 j0j1 j0 j0 j0 j0 j1 j1 j0j0 j0 j0j0 HHH���������((((((( XXXXXHHH��������Figure 5.1: A heap ordered tree satisfying the properties a) to d). A box denotes a child of type i,a circle denotes a child of type ii, and the numbers are the ranks of the nodes.Proof. The proof is a simple induction in the structure of the tree. By c.i) leaves have rank zeroand the lemma is true. For a node of rank r property c.i) implies that the node has at least onechild of each rank less than r. By induction we get that the size is at least 1 +Pr�1i=0 2i = 2r. 2Corollary 4 The only child of the root of a tree containing n elements has rank at most blog(n�1)c.We now describe the details of how to represent a heap ordered tree. A child of type i is alwaysthe rightmost child. The children of type ii appear in increasing rank order from right to left. SeeFigure 5.1 and Figure 5.2 for examples.               ����������� ��������� ������ ��� @@@HHHHHHPPPPPPPPPXXXXXXXXXXX`````````````̀j5 j4 j4 j4 j3 j2 j1 j1 j1 j0j6 9� � � � � � � � � �6 � ����               ? .......................................................................................................................................................................................................................I Inext triplenextleftmost child parentFigure 5.2: The arrangement of the children of a node.A node consists of the following seven �elds: 1) the element associated with the node, 2) therank of the node, 3) the type of the node, 4) a pointer to the parent node, 5) a pointer to theleftmost child and 6) a pointer to the next sibling to the left. The next sibling pointer of theleftmost child points to the rightmost child in the list. This enables the access to the rightmostchild of a node in constant time too. Field 7) is used to maintain a single linked list of triples ofchildren of type ii that have equal rank (see Figure 5.2). The nodes appear in increasing rank order.We only maintain these pointers for the rightmost child and for the rightmost child in a triple ofchildren of equal rank. Figure 5.2 shows an example of how the children of a node are arranged.In the next section we describe how to implement the operations. There are two essentialtransformations. The �rst transformation is to add a child of rank r to a node of rank r. Becausewe have a pointer to the leftmost child of a node (that has rank r� 1 when r > 0) this can be donein constant time. Notice that this transformation cannot create three children of equal rank. The49



second transformation is to �nd the smallest rank i where three children have equal rank. Two ofthe children are replaced by a child of rank i+1. Because we maintain a single linked list of triplesof nodes of equal rank we can also do this in constant time.5.2 OperationsIn this section we describe how to implement the di�erent operations. The basic operation we useis to link two nodes of equal rank r. This is done by comparing the elements associated with thetwo nodes and making the node with the largest element a child of the other node. By increasingthe rank of the node with the smallest element to r + 1 the properties a) to d) are satis�ed. Theoperation is illustrated in Figure 5.3. This is similar to the linking of trees in binomial heaps andFibonacci heaps [108, 53]. CCCC���� """���� CCCC ���� CCCC ���� CCCCr �r r + 1rFigure 5.3: The linking of two nodes of equal rank.We now describe how to implement the operations.� MakeQueue is trivial. We just return the null pointer.� FindMin(Q) returns the element located at the root of the tree representing Q.� Insert(Q; e) is equal to Meld Q with a priority queue only consisting of a rank zero nodecontaining e.� Meld(Q1; Q2) can be implemented in two steps. In the �rst we insert one of the heap orderedtrees into the other heap ordered tree. This can violate property c) at one node because thenode gets one additional child of rank zero. In the second step we reestablish property c) atthe node. Figure 5.4 shows an example of the �rst step.hCCCC����T1 e1e01 hCCCC����T2 e2e02 hCCCC����T1 e1e2 hCCCC����T2 e01e02bbb�Figure 5.4: The �rst step of a Meld operation (the case e1 � e2 < e01 � e02).50



Let e1 and e2 denote the roots of the trees representing Q1 and Q2 and let e01 and e02 denotethe only children of e1 and e2. Assume w.l.o.g. that e1 is the smallest element. If e2 � e01 welet e2 become a rank zero child of e01, otherwise e2 < e01. If e02 < e01 we can interchange thesubtrees rooted at e02 and e01, so w.l.o.g. we assume e1 � e2 < e01 � e02. In this case we makee2 a rank zero child of e01 and swap the elements e01 and e2 (see Figure 5.4). We have assumedthat the sizes of Q1 and Q2 are at least two, but the other cases are just simpli�ed cases ofthe general case.The only invariants that can be violated now are the invariants b) and c) at the child of theroot because it has got one additional rank zero child. Let v denote the child of the root. If vhad rank zero we can satisfy the invariants by setting the rank of v to one. Otherwise only c)can be violated at v. Let ni denote the number of children of v that have rank i. By linkingtwo nodes of rank i where i is the smallest rank where ni = 3 it is easy to verify that c) canbe reestablished. The linking reduces ni by two and increments ni+1 by one.If we let (nr�1; : : : ; n0) be a string in f1; 2; 3g� the following table shows that c) is reestablishedafter the above described transformations. We let x denote a string in f1; 2; 3g� and yi stringsin f1; 2g�. The table shows all the possible cases. Recall that c) states that between everytwo ni = 3 there is at least one ni = 1. The di�erent cases are also considered in [60].y11 � y12y213y11 � y221y12y223y11 � y231y12x3y213y11 � x3y221y12x3y31y223y11 � x3y31y231y12y112 � y121y122 � y131x3y112 � x3y121x3y21y122 � x3y21y131After the linking only b) can be violated at v because a child of rank r has been created.This problem can be solved by increasing the rank of v by one.Because of the given representation Meld can be performed in worst case time O(1).� DeleteMin(Q) removes the root e1 of the tree representing Q. The problem is that nowproperty d) can be violated because the new root e2 can have arbitrary rank. This problemis solved by the following transformations.First we remove the root e2. This element later on becomes the new root of rank zero. Atmost O(logn) trees can be created by removing the root. Among these trees the root thatcontains the minimum element e3 is found and removed. This again creates at most O(logn)trees. We now �nd the root e4 of maximum rank among all the trees and replaces it by theelement e3. A rank zero node containing e4 is created.The tree of maximum rank and with root e3 is made the only child of e2. All other trees aremade children of the node containing e3. Notice that all the new children of e3 have rankless than the rank of e3. By iterated linking of children of equal rank where there are threechildren with equal rank, we can guarantee that ni 2 f1; 2g for all i less than the rank of e3.Possibly, we have to increase the rank of e3.Finally, we return the element e1. 51



Because the number of trees is at most O(logn) DeleteMin can be performed in worst casetime O(logn). Figure 5.5 illustrates how DeleteMin is performed............................................................................................................................... .....................hh h h h h hhTTT,,, lll������ BBB ��� TTT ��� BBB ��� BBBPP ���e4 e3e3e2e1 e4e3e2 e2e3 e4 e2� � �Figure 5.5: The implementation of DeleteMin.� Delete(Q; e) can be implemented similar to DeleteMin. If e is the root we just performDeleteMin. Otherwise we start by bubbling e upwards in the tree. We replace e with itsparent until the parent of e has rank less than or equal to the rank of e. Now, e is thearbitrarily ranked child of its parent. This allows us to replace e with an arbitrary rankednode, provided that the heap order is still satis�ed. Because the rank of e increases for eachbubble step, and the rank of a node is bounded by blog(n � 1)c, this can be performed intime O(logn).We can now replace e with the meld of the children of e as described in the implementationof DeleteMin. This again can be performed in worst case time O(logn).To summarize, we have the theorem:Theorem 11 There exists an implementation of priority queues supporting Delete and Delete-Min in worst case time O(logn) and MakeQueue, FindMin, Insert and Meld in worst casetime O(1). The implementation requires linear space and can be implemented on the pointer ma-chine.5.3 OptimalityThe following theorem shows that if Meld is required to be nontrivial, i.e., to take worst casesublinear time, then DeleteMin must take worst case logarithmic time. This shows that theconstruction described in the previous sections is optimal among all implementations where Meldtakes sublinear time.If Meld is allowed to take linear time it is possible to support DeleteMin in worst caseconstant time by using the �nger search trees of Dietz and Raman [34]. By using their datastructure MakeQueue, FindMin, DeleteMin, Delete can be supported in worst case timeO(1), Insert in worst case time O(logn) and Meld in worst case time O(n).Theorem 12 If Meld can be performed in worst case time o(n) then DeleteMin cannot beperformed in worst case time o(logn). 52



Proof. The proof is by contradiction. Assume Meld takes worst case time o(n) and DeleteMintakes worst cast time o(logn). We show that this implies a contradiction with the 
(n logn) lowerbound on comparison based sorting.Assume we have n elements that we want to sort. Assume w.l.o.g. that n is a power of 2, n = 2k.We can sort the elements by the following list of priority queue operations. First, create n priorityqueues each containing one of the n elements (each creation takes worst case time O(1)). Thenjoin the n priority queues to one priority queue by n� 1 Meld operations. The Meld operationsare done bottom-up by always melding two priority queues of smallest size. Finally, perform nDeleteMin operations. The elements are now sorted.The total time for this sequence of operations is:nTMakeQueue + k�1Xi=0 2k�1�iTMeld(2i) + nXi=1TDeleteMin(i) = o(n logn):This contradicts the lower bound on comparison based sorting. 25.4 ConclusionWe have presented an implementation of meldable priority queues where Meld takes worst casetime O(1) and DeleteMin worst case time O(logn).Another interesting operation to consider is DecreaseKey. Our data structure supportsDecreaseKey in worst case time O(logn), because DecreaseKey can be implemented in termsof a Delete operation followed by an Insert operation. Relaxed heaps [43] support Decrease-Key in worst case time O(1) but do not support Meld. But it is easy to see that relaxed heapscan be extended to support Meld in worst case time O(logn). The problem to consider is if it ispossible to support both DecreaseKey and Meld simultaneously in worst case constant time.As a simple consequence of our construction we get a new implementation of meldable doubleended priority queues, which is a data type that allows both FindMin/FindMax and Delete-Min/ DeleteMax [9, 38]. For each queue we just have to maintain two heap ordered trees asdescribed in Section 5.1. One tree ordered with respect to minimum and the other with respect tomaximum. If we let both trees contain all elements and the elements know their positions in bothtrees we get the following corollary.Corollary 5 An implementation of meldable double ended priority queues exists that supportsMakeQueue, FindMin, FindMax, Insert and Meld in worst case time O(1) and Delete-Min, DeleteMax, Delete, DecreaseKey and IncreaseKey in worst case time O(logn).
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Worst Case E�cient Priority Queues�Gerth St�lting BrodalBRICSy, Department of Computer Science, University of AarhusNy Munkegade, DK-8000 �Arhus C, Denmarkgerth@brics.dkAbstractAn implementation of priority queues is presented that supports the operations Make-Queue, FindMin, Insert,Meld andDecreaseKey in worst case timeO(1) andDeleteMinand Delete in worst case time O(logn). The space requirement is linear. The data structurepresented is the �rst achieving this worst case performance.Category: E.1Keywords: priority queues, meld, decrease key, worst case complexity6.1 IntroductionWe consider the problem of implementing priority queues which are e�cient in the worst casesense. The operations we want to support are the following commonly needed priority queueoperations [76].MakeQueue creates and returns an empty priority queue.FindMin(Q) returns the minimum element contained in priority queue Q.Insert(Q; e) inserts an element e into priority queue Q.Meld(Q1; Q2) melds priority queues Q1 and Q2 to a new priority queue and returns the resultingpriority queue.DecreaseKey(Q; e; e0) replaces element e by e0 in priority queue Q provided e0 � e and it isknown where e is stored in Q.DeleteMin(Q) deletes and returns the minimum element from priority queue Q.Delete(Q; e) deletes element e from priority queue Q provided it is known where e is stored in Q.The construction of priority queues is a classical topic in data structures [15, 27, 43, 46, 49, 52,53, 71, 97, 107, 108, 109]. A historical overview of implementations can be found in [76]. There aremany applications of priority queues. Two of the most prominent examples are sorting problemsand network optimization problems [100].�This work was partially supported by the ESPRIT II Basic Research Actions Program of the EC under contractno. 7141 (project ALCOM II) and by the Danish Natural Science Research Council (Grant No. 9400044).yBRICS (Basic Research in Computer Science), a Centre of the Danish National Research Foundation.57



Amortized Worst caseFredman et al. [53] Driscoll et al. [43] Brodal [15] New resultMakeQueue O(1) O(1) O(1) O(1)FindMin O(1) O(1) O(1) O(1)Insert O(1) O(1) O(1) O(1)Meld O(1) O(logn) O(1) O(1)DecreaseKey O(1) O(1) O(logn) O(1)Delete/DeleteMin O(logn) O(logn) O(logn) O(logn)Table 6.1: Time bounds for the previously best priority queue implementations.In the amortized sense, [101], the best performance for these operations is achieved by Fibonacciheaps [53]. They achieve amortized constant time for all operations except for the two deleteoperations which require amortized time O(logn). The data structure we present achieves matchingworst case time bounds for all operations. Previously, this was only achieved for various strictsubsets of the listed operations [15, 27, 43, 107]. For example the relaxed heaps of Driscoll etal. [43] and the priority queues in [15] achieve the above time bounds in the worst case sense exceptthat in [43]Meld requires worst case time �(logn) and in [15] DecreaseKey requires worst casetime �(log n). Refer to Table 6.1. If we ignore the Delete operation our results are optimal in thefollowing sense. A lower bound for DeleteMin in the comparison model is proved in [15] whereit is proved that if Meld can be performed in time o(n) then DeleteMin cannot be performedin time o(logn).The data structure presented in this paper originates from the same ideas as the relaxed heapsof Driscoll et al. [43]. In [43] the data structure is based on heap ordered trees where �(logn) nodesmay violate heap order. We extend this to allow �(n) heap order violations which is a necessarycondition to be able to support Meld in worst case constant time and if we allow a nonconstantnumber of violations.In Section 6.2 we describe the data structure representing a priority queue. In Section 6.3we describe a special data structure needed internally in the priority queue construction. In Sec-tion 6.4 we show how to implement the priority queue operations. In Section 6.5 we summarize therequired implementation details. Finally some concluding remarks on our construction are givenin Section 6.6.6.2 The Data StructureIn this section we describe the components of the data structure representing a priority queue. Alot of technical constraints are involved in the construction. Primary these are consequences of thetransformations to be described in Section 6.3 and Section 6.4.3. In Section 6.5 we summarize therequired parts of the construction described in the following sections.The basic idea is to represent a priority queue by two trees T1 and T2 where all nodes containone element and have a nonnegative integer rank assigned. Intuitively the rank of a node is thelogarithm of the size of the subtree rooted at the node. The details of the rank assignment achievingthis follow below.The children of a node are stored in a doubly linked list in increasing rank order from right toleft. Each node has also a pointer to its leftmost child and a pointer to its parent.The notation we use is the following. We make no distinction between a node and the element58



it contains. We let x; y; : : : denote nodes, p(x) the parent of x, r(x) the rank of x, ni(x) the numberof children of rank i that x has and ti the root of Ti. Nodes which are larger than their parents arecalled good nodes | good because they satisfy heap order. Nodes which are not good are calledviolating nodes.The idea is to let t1 be the minimum element and to lazy merge the two trees T1 and T2such that T2 becomes empty. Since t1 is the minimum element we can support FindMin in worstcase constant time and the lazy merging of the two trees corresponds intuitively to performingMeld incrementally over the next sequence of operations. The merging of the two trees is doneby incrementally increasing the rank of t1 by moving the children of t2 to t1 such that T2 becomesempty and t1 becomes the node of maximum rank. The actual details of implementing Meld followin Section 6.4.5.As mentioned before we have some restrictions on the trees forcing the rank of a node to berelated to the size of the subtree rooted at the node. For this purpose we maintain the invariantsS1{S5 below for any node x.S1 : If x is a leaf, then r(x) = 0,S2 : r(x) < r(p(x)),S3 : if r(x) > 0, then nr(x)�1(x) � 2,S4 : ni(x) 2 f0; 2; 3; : : : ; 7g,S5 : T2 = ; or r(t1) � r(t2).The �rst two invariants just say that leaves have rank zero and that the ranks of the nodesstrictly increase towards the root. Invariant S3 says that a node of rank k has at least two childrenof rank k� 1. This guarantees that the size of the subtree rooted at a node is at least exponentialin the rank of the node (by induction it follows from S1 and S3 that the subtree rooted at nodex has size at least 2r(x)+1 � 1). Invariant S4 bounds the number of children of a node that havethe same rank within a constant. This implies the crucial fact that all nodes have rank and degreeO(logn). Finally S5 says that either T2 is empty or its root has rank larger than or equal to therank of the root of T1.Notice that in S4 we do not allow a node to have only a single child of a given rank. This isbecause this allows us to cut o� the leftmost children of a node such that the node can get a newrank assigned where S3 is still satis�ed. This property is essential to the transformations to bedescribed in Section 6.4.3. The requirement ni(x) � 7 in S4 is a consequence of the constructiondescribed in Section 6.3.After having described the conditions of how nodes are assigned ranks and how this forcesstructure on the trees we now turn to consider how to handle the violating nodes | which togetherwith the two roots could be potential minimum elements. To keep track of the violating nodes weassociate to each node x two subsets V (x) and W (x) of nodes larger than x from the trees T1 andT2. That is the nodes in V (x) and W (x) are good with respect to x. We do not require that ify 2 V (x) [W (x) that x and y belong to the same Ti tree. But we require that a node y belongsto at most one V or one W set. Also we do not require that if y 2 V (x)[W (x) then r(y) � r(x).The V sets and the W sets are all stored as doubly linked lists. Violations added to a V set arealways added to the front of the list. Violations added to a W set are always added in such a waythat violations of the same rank are adjacent. So if we have to add a violation to W (x) and thereis already a node in W (x) of the same rank, then we insert the new node adjacent to this node.Otherwise we just insert the new node at the front of W (x).59



We implement the V (x) andW (x) sets by letting each tree node x have four additional pointers:One to the �rst node in V (x), one to the �rst node in W (x), and two to the next and previous nodein the violation list that x belongs to | provided x is contained in a violation list. Each time weadd a node to a violation set we always �rst remove the node from the set it possibly belonged to.Intuitively V (x)'s purpose is to contain violating nodes of large rank. Whereas W (x)'s purposeis to contain violating nodes of small rank. If a new violating node is created which has large rank,i.e., r(x) � r(t1), we add the violation to V (t1), otherwise we add the violation to W (t1). To beable to add a node to W (t1) at the correct position we need to know if a node already exists inW (t1) of the same rank. In case there is we need to know such an element. For this purpose wemaintain an extendible array1 of size r(t1) of pointers to nodes in W (t1) of each possible rank. Ifno node exists of a given rank in W (t1) the corresponding entry in the array is null.The structure on the V and W sets is enforced by the following invariants O1{O5. We let wi(x)denote the number of nodes in W (x) of rank i.O1 : t1 = minT1 [ T2,O2 : if y 2 V (x)[W (x), then y � x,O3 : if y < p(y), then an x 6= y exists such that y 2 V (x) [W (x),O4 : wi(x) � 6,O5 : if V (x) = (yjV (x)j; : : : ; y2; y1), thenr(yi) � b(i� 1)=�c for i = 1; 2; : : : ; jV (x)jwhere � is a constant.O1 guarantees that the minimum element contained in a priority queue always is the root ofT1. O2 says that the elements are heap ordered with respect to membership of the V and W sets.O3 says that all violating nodes belong to a V or W set. Because all nodes have rank O(logn)invariants O4 and O5 imply that the sizes of all V and W sets are O(logn). Notice that if weremove an element from a V or W set, then the invariants O4 and O5 cannot become violated.That invariants O4 and O5 are stated quite di�erently is because the V and W sets have verydi�erent roles in the construction. Recall that the V sets take care of large violations, i.e., violationsthat have rank larger than r(t1) when they are created. The constant � is the number of largeviolations that can be created between two increases in the rank of t1.For the roots t1 and t2 we strengthen the invariants such that R1{R3 also should be satis�ed.R1 : ni(tj) 2 f2; 3; : : : ; 7g for i = 0; 1; : : : ; r(tj)� 1,R2 : jV (t1)j � �r(t1),R3 : if y 2 W (t1) then r(y) < r(t1).Invariant R1 guarantees that there are at least two children of each rank at both roots. Thisproperty is important for the transformations to be described in Section 6.4.2 and Section 6.4.3.Invariant R2 together with invariant O5 guarantee that if we can increase the rank of t1 by one wecan create � new large violations and add them to V (t1) without violating invariant O5. InvariantR3 says that all violations in W (t1) have to be small.1An extendible array is an array of which the length can be increased by one in worst case constant time. It isfolklore that extendible arrays can be obtained from ordinary arrays by array doubling and incremental copying. Inthe rest of this paper all arrays are extendible arrays. 60



The maintenance of R1 and O4 turns out to be nontrivial but they can all be maintained byapplying the same idea. To unify this idea we introduce the concept of a guide to be described inSection 6.3.The main idea behind the construction is the following captured by the DecreaseKey oper-ation. The details follow in Section 6.4. Each time we perform a DecreaseKey operation wejust add the new violating node to one of the sets V (t1) or W (t1). To avoid having too manyviolations stored at the root of T1 we incrementally do two di�erent kinds of transformations. The�rst transformation moves the children of t2 to t1 such that the rank of t1 increases. The secondtransformation reduces the number of violations in W (t1) by replacing two violations of rank k byat most one violation of rank k+ 1. These transformations are performed to reestablish invariantsR2 and O4.6.3 GuidesIn this section we describe the guide data structure that helps us maintaining the invariants R1and O4 on ni(t1); ni(t2) and wi(t1). The relationship between the abstract sequences of variablesin this section and the children and the violations stored at the roots are explained in Section 6.4.The problem can informally be described as follows. Assume we have to maintain a sequence ofinteger variables xk ; xk�1; : : : ; x1 (all sequences in this section goes from right to left) and we wantto satisfy the invariant that all xi � T for some threshold T . On the sequence we can only performReduce(i) operations which decrease xi by at least two and increase xi+1 by at most one. The xiscan be forced to increase and decrease by one, but for each change in an xi we are allowed to doO(1) Reduce operations to prevent any xi from exceeding T . The guide's job is to tell us whichoperations to perform.This problem also arises implicitly in [15, 27, 60, 67]. But the solution presented in [60] requirestime �(k) to �nd which Reduce operations to perform whereas the problems in the other papersare simpler because only x1 can be forced to increase and decrease. The data structure we presentcan �nd which operations to perform in worst case time O(1) for the general problem.To make the guide's knowledge about the xis as small as possible we reveal to the guide anothersequence x0k ; : : : ; x01 such that xi � x0i 2 fT � 2; T � 1; Tg (this choice is a consequence of theconstruction we describe below). As long as all xi � x0i we do not require help from the guide.First when an xi = x0i is forced to become xi+1 we require help from the guide. In the following weassume w.l.o.g. that the threshold T is two such that x0i 2 f0; 1; 2g and that Reduce(i) decreasesx0i by two and increases x0i+1 by one.The data structure maintained by the guide partitions the sequence x0k; : : : ; x01 into blocks ofconsecutive x0is of the form 2; 1; 1; : : : ; 1; 0 where the number of ones is allowed to be zero. Theguide maintains the invariant that all x0is not belonging to a block of the above type have valueeither zero or one. An example of a sequence satisfying this is the following where blocks are shownby underlining the subsequences.1; 2; 1; 1; 0 ; 1; 1; 2; 0 ; 2; 0 ; 1; 0; 2; 1; 0 :The guide stores the values of the variables x0i in one array and uses another array to handle theblocks. The second array contains pointers to memory cells which contain the index of an xi or thevalue ?. All variables in the same block point to the same cell and this cell contains the index ofthe leftmost variable in the block. Variables not belonging to a block point to a cell containing ?.A data structure for the previous example is illustrated in Figure 6.1. Notice that several variablescan share a memory cell containing ?. This data structure has two very important properties:61



x1x2x3� � �x9� � �x16 0120102021101121r r r r r r r r r r r r r r r r3?79?15?? ? ? ? ? ? ?� � � � � � � �� � � � �� �6 Figure 6.1: The guide data structure.1. Given a variable we can in worst case time O(1) �nd the leftmost variable in the block, and2. we can in worst case time O(1) destroy a given block, i.e., let all nodes in the block belongto no block, by simply assigning ? to the block's memory cell.When an x0i is forced to increase the guide can in worst case time O(1) decide which Reduceoperations to perform. We only show how to handle one nontrivial case, all other cases are similar.Assume that there are two blocks of variables adjacent to each other and that the leftmost x0i = 1 inthe rightmost block has to be increased. Then the following transformations have to be performed:2; 1; 1; 0 ; 2; 1; 1; 1; 0� 2; 1; 1; 0 ; 2; 2; 1; 1; 0 increment x0i;� 2; 1; 1; 1 ; 0; 2; 1; 1; 0 Reduce;� 2; 1; 1; 1 ; 1; 0; 1; 1; 0 Reduce;� 2; 1; 1; 1; 1; 0 ; 1; 1; 0 reestablish blocks:To reestablish the blocks the two pointers of the new variables in the leftmost block are set topoint to the leftmost block's memory cell and the rightmost block's memory cell is assigned thevalue ?.In the case described above only twoReduce operations were required and these were performedon x0js where j � i. This is true for all cases.We conclude this section with two remarks on the construction. By using extendible arrays thesequence of variables can be extended by a new xk+1 equal to zero or one in worst case time O(1).If we add a reference counter to each memory cell we can reuse the memory cells such that thetotal number of needed memory cells is at most k.6.4 OperationsIn this section we describe how to implement the di�erent priority queue operations. We beginby describing some transformations on the trees which are essential to the operations to be imple-mented.6.4.1 Linking and delinking treesThe fundamental operation on the trees is the linking of trees. Assume that we have three nodesx1; x2 and x3 of equal rank and none of them is a root ti. By doing two comparisons we can �nd62



the minimum. Assume w.l.o.g. that x1 is the minimum. We can now make x2 and x3 the leftmostchildren of x1 and increase the rank of x1 by one. Neither x2 or x3 become violating nodes and x1still satis�es all the invariants S1{S5 and O1{O5.The delinking of a tree rooted at node x is a little bit more tricky. If x has exactly two or threechildren of rank r(x)� 1, then these two or three children can be cut o� and x gets the rank of thelargest ranked child plus one. From S4 it follows that x still satis�es S3 and it follows that S1{S5and O1{O5 are still satis�ed. In the case where x has at least four children of rank r(x)� 1 twoof these children are simply cut o�. Because x still has at least two children of rank r(x)� 1 theinvariants are still satis�ed.It follows that the delinking of a tree of rank k always results in two or three trees of rank k� 1and one additional tree of rank at most k (the tree can be of any rank between zero and k).6.4.2 Maintaining the children of a rootWe now describe how to add children below a root and how to cut o� children at a root whilekeeping R1 satis�ed. For this purpose we require four guides, two for each of the roots t1 and t2.We only sketch the situation at t1 because the construction for t2 is analogous.To have constant time access to the children of t1 we maintain an extendible array of pointersthat for each rank i = 0; : : : ; r(t1) � 1 has a pointer to a child of t1 of rank i. Because of R1such children are guaranteed to exist. This enables us to link and delink children of rank i inworst case time O(1) for an arbitrary i. One guide takes care of that ni(t1) � 7 and the other ofthat ni(t1) � 2 for i = 0; : : : ; r(t1) � 3 (to maintain a lower bound on a sequence of variables isequivalent to maintaining an upper bound on the negated sequence). The children of t1 of rankr(t1)� 1 and r(t1)� 2 are treated separately in a straight forward way such that there always arebetween 2 and 7 children of these ranks. This is necessary because of the dependency between theguide maintaining the upper bound on ni(t1) and the guide maintaining the lower bound on ni(t1).The \marked" variables that we reveal to the guide that maintains the upper bound on ni(t1) havevalues f5; 6; 7g and to the guide that maintains the lower bound have values f4; 3; 2g.If we add a new child at t1 of rank i we tell the guide maintaining the upper bound that ni(t1)is forced to increase by one (this assumes i < r(t1) � 2). Then the guide then tells us where todo at most two Reduce operations. The Reduce(i) operation in this context corresponds to thelinking of three trees of rank i. This decreases ni(t1) by three and increases ni+1(t1) by one. Weonly do the linking when ni(t1) = 7 so that the guide maintaining the lower bound on ni(t1) willbe una�ected (this implies a minor change in the guide). If this results in too many children ofrank r(t1) � 2 or r(t1) � 1 we link some of these children and possibly increase the rank of t1. Ifthe rank of t1 increases we also have to increase the domain of the two guides.To cut o� a child is similar, but now the Reduce operation corresponds to the delinking of atree. The additional tree from the delinking transformation that can have various ranks is treatedseparately after the delinking. We just add it below t1 as described above.At t2 the situation is nearly the same. The major di�erence is that because we knew that t1was the smallest element the linking and delinking of children of t1 would not create new violations.This is not true at t2. The linking of children never creates new violations but the delinking ofchildren at t2 can create three new violations. We will see in Section 6.4.4 that it turns out thatwe only cut o� children of t2 which have rank larger than r(t1). The tree \left over" by a delinkingis made a child of t1 if it has rank less than r(t1). Otherwise it is made a child of t2. The newviolations which have rank larger than r(t1) are added to V (t1). To satisfy O5 and R2 we just haveto guarantee that the rank of t1 will be increased and that � in R2 and O5 is chosen large enough.63



6.4.3 Violation reducing transformationsWe now describe the most essential transformation on the trees. The transformation reduces thenumber of potential violations Sy2T1[T2 V (y)[W (y) in the tree by at least one.Assume we have two potential violations x1 and x2 of equal rank k < r(t1) which are not rootsor children of a root. First we check that both x1 and x2 are violating nodes. If one of the nodesalready is a good node we remove it from the corresponding violation set. Otherwise we proceedas described below.Because of S4 we know that both x1 and x2 have at least one brother. If x1 and x2 are notbrothers assume w.l.o.g. that p(x1) � p(x2) and swap the subtrees rooted at x1 and at a brother ofx2. The number of violations can only decrease by doing this swap. We can now w.l.o.g. assumethat x1 and x2 are brothers and both children of node y.If x1 has more than one brother of rank k we just cut o� x1 and make it a good child of t1 asdescribed in Section 6.4.2. Because x1 had at least two brothers of rank k, S4 is still satis�ed at y.In case x1 and x2 are the only brothers of rank k and r(y) > k + 1 we just cut o� both x1 andx2 and make them new good children of t1 as described in Section 6.4.2. Because of invariant S4we are forced to cut o� both children.The only case that remains to be considered is when x1 and x2 are the only children of rank kand that r(y) = k+ 1. In this case we cut o� x1, x2 and y. The new rank of y is uniquely given byone plus the rank of its new leftmost child. We replace y by a child of t1 of rank k + 1 which canbe cut o� as described in Section 6.4.2. If y was a child of t1 we only cut o� y. If the replacementfor y becomes a violating node of rank k + 1 we add it to W (t1). Finally, x1, x2 and y are madegood children of t1 as described in Section 6.4.2.Above it is important that the node y is replaced by is not an ancestor of y, because if ywas replaced by such a node a cycle among the parent pointers would be created. Invariant S2guarantees that this cannot happen.6.4.4 Avoiding too many violationsWe now describe how to avoid too many violations. The only violation sets we add violations toare V (t1) and W (t1). Violations of rank larger than r(t1) are added to V (t1) and otherwise theyare added to W (t1). The violations in W (t1) are controlled by a guide. This guide guarantees thatwi(t1) � 6. We maintained a single array so we could access the violating nodes in W (t1) by theirrank.If we add a violation toW (t1) the guide tells us for which ranks we should do violation reducingtransformations as described in the previous section. We only do the transformation if there areexactly six violations of the given rank and that there is at least two violating nodes which are notchildren of t2. If there are more than four violations that are children of t2 we cut the additionalviolations o� and links them below t1. This makes these nodes good and does not a�ect the guidesmaintaining the children at t2.For each priority queue operation that is performed we increase the rank of t1 by at least oneby moving a constant number of children from t2 to t1 | provided T2 6= ;. By increasing the rankof t1 by one we can a�ord creating � new violations of rank larger than r(t1) by invariant O5 andwe can just add the violations to the list V (t1). If T2 6= ; and r(t2) � r(t1) + 2 we just cut ofthe largest children of t2 and link them below t1 and �nally add t2 below t1. This will satisfy theinvariants. Otherwise we cut o� a child of t2 of rank r(t1) + 2 and delink this child and add theresulting trees below t1 such that the rank of t1 increases by at least one. By choosing � largeenough the invariants will become reestablished.64



If T2 is empty we cannot increase the rank t1, but this also implies that t1 is the node ofmaximum rank so no large violations can be created and R2 cannot become violated.6.4.5 Priority queue operationsIn the following we describe how to implement the di�erent priority queue operations such that theinvariants from Section 6.2 are maintained.� MakeQueue is trivial. We return a pair of empty trees.� FindMin(Q) returns t1.� Insert(Q; e) is a special case of Meld where Q2 is a priority queue only containing oneelement.� Meld(Q1; Q2) involves at most four trees; two for each queue. The tree having the newminimum element as root becomes the new T1 tree. This tree was either the T1 tree of Q1 orof Q2. If this tree is the tree of maximum rank we just add the other trees below this tree asdescribed previously. In this case no violating node is created so no transformation is doneon the violating nodes.Otherwise the tree of maximum rank becomes the new T2 tree and the remaining trees areadded below this node as described in Section 6.4.2, possibly delinking the new children onceif they have the same rank as t2. The violations created by this are treated as described inSection 6.4.4. The guides and arrays used at the old roots that now are linked below the newt2 node we just discard.� DecreaseKey(Q; e; e0) replaces the element of e by e0 (e0 � e). If e0 is less than t1 we swapthe elements in the two nodes. If e0 is a good node we stop, otherwise we proceed as describedin Section 6.4.4 to avoid having too many violations stored at t1.� DeleteMin(Q) is allowed to take worst case time O(logn). First T2 is made empty bymoving all children of T2 to T1 and making the root t2 a rank zero child of t1. Then t1 isdeleted. This gives us at most O(logn) independent trees. The minimum element is thenfound by looking at the sets V andW of the old root of T1 and all the roots of the independenttrees. If the minimum element is not a root we swap it with one of the independent trees ofequal rank. This at most creates one new violation. By making the independent trees childrenof the new minimum element and performing O(logn) linking and delinking operations onthese children we can reestablish S1{S5 and R1 and R3. By merging the V and W sets at theroot to one set and merging the old minimum element's V and W sets with the set we getone new set of violations of size O(logn). Possibly we also have to add the single violationcreated by the swapping. By doing at most O(logn) violation reducing transformations asdescribed previously we can reduce the set to contain at most one violation of each rank. Wemake the resulting set the new W set of the new root and let the corresponding V set beempty. This implies that O1{O5 and R2 are being reestablished. The guides involved areinitiated according to the new situation at the root of T1.� Delete(Q; e). If we let �1 denote the smallest possible element, then Delete can beimplemented as DecreaseKey(Q; e;�1) followed by DeleteMin(Q).6.5 Implementation detailsIn this section we summarize the required details of our new data structure.65



Each node we represent by a record having the following �elds.� The element associated with the node,� the rank of the node,� pointers to the node's left and right brothers,� a pointer to the parent node,� a pointer to the leftmost child,� pointers to the �rst node in the node's V and W sets, and� pointers to the next and the previous node in the violation list that the node belongs to. The�rst node in a violation list V (x) or W (x) has its previous violation pointer pointing to x.In addition to the above nodes we maintain the following three extendible arrays:� An array of pointers to children of t1 of rank i = 0; : : : ; r(t1)� 1,� a similar array for t2, and� an array of pointers to nodes in W (t1) of rank i = 0; : : : ; r(t1)� 1 (if no node in W (t1) existof a given rank we let the corresponding pointer be null).Finally we have �ve guides: Three to maintain the upper bounds on ni(t1); ni(t2) and wi(t1)and two to maintain the lower bounds on ni(t1) and ni(t2).6.6 ConclusionFrom the construction presented in the previous sections we conclude that:Theorem 13 An implementation of priority queues exists that supports the operations Make-Queue, FindMin, Insert, Meld and DecreaseKey in worst case time O(1) and DeleteMinand Delete in worst case time O(logn). The space required is linear in the number of elementscontained in the priority queues.The data structure presented is quite complicated. An important issue for further work is tosimplify the construction to make it applicable in practice. It would also be interesting to see if itis possible to remove the requirement for arrays from the construction.AcknowledgementThe author thanks Rolf Fagerberg for the long discussions that lead to the results presented in thepaper.
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Priority Queues on Parallel MachinesGerth St�lting Brodal�BRICSy, Department of Computer Science, University of AarhusNy Munkegade, DK-8000 �Arhus C, Denmarkgerth@brics.dkAbstractWe present time and work optimal priority queues for the CREW PRAM, supporting Find-Min in constant time with one processor andMakeQueue, Insert,Meld, DeleteMin, Del-ete and DecreaseKey in constant time with O(logn) processors. A priority queue can bebuild in time O(logn) with O(n= logn) processors and k elements can be inserted into a priorityqueue in time O(logk) with O((logn + k)= logk) processors. With a slowdown of O(log logn)in time the priority queues adopt to the EREW PRAM by only increasing the required workby a constant factor. A pipelined version of the priority queues adopt to a processor array ofsize O(logn), supporting the operationsMakeQueue, Insert,Meld, FindMin, DeleteMin,Delete and DecreaseKey in constant time.Category: E.1, F.1.2Keywords: priority queues, meld, PRAM, worst case complexity7.1 IntroductionThe construction of priority queues is a classical topic in data structures. Some references are [15,18, 43, 49, 52, 53, 108, 109]. A historical overview of implementations can be found in [76]. Recentlyseveral papers have also considered how to implement priority queues on parallel machines [28, 32,35, 70, 89, 90, 94, 95]. In this paper we focus on how to achieve optimal speedup for the individualpriority queue operations known from the sequential setting [90, 94]. The operations we supportare all the commonly needed priority queue operations from the sequential setting [76] and theparallel insertion of several elements at the same time [28, 89].MakeQueue Creates and returns a new empty priority queue.Insert(Q; e) Inserts element e into priority queue Q.Meld(Q1; Q2) Melds priority queues Q1 and Q2. The resulting priority queue is stored in Q1.FindMin(Q) Returns the minimum element in priority queue Q.DeleteMin(Q) Deletes and returns the minimum element in priority queue Q.Delete(Q; e) Deletes element e from priority queue Q provided a pointer to e is given.�Supported by the Danish Natural Science Research Council (Grant No. 9400044). Partially supported by theESPRIT Long Term Research Program of the EU under contract #20244 (ALCOM-IT). This research was donewhile visiting the Max-Planck Institut f�ur Informatik, Saarbr�ucken, Germany.yBRICS (Basic Research in Computer Science), a Centre of the Danish National Research Foundation.69



DecreaseKey(Q; e; e0) Replaces element e by e0 in priority queue Q provided e0 � e and a pointerto e is given.Build(e1; : : : ; en) Creates a new priority queue containing elements e1; : : : ; en.MultiInsert(Q; e1; : : : ; ek) Inserts elements e1; : : : ; ek into priority queue Q.We assume that elements are taken from a totally ordered universe and that the only oper-ation allowed on elements is the comparison of two elements that can be done in constant time.Throughout this paper n denotes the maximum allowed number of elements in a priority queue.We assume w.l.o.g. that n is of the form 2k. This guarantees that logn is an integer.1 Our mainresult is:Theorem 14 On a CREW PRAM priority queues exist supporting FindMin in constant timewith one processor, and MakeQueue, Insert, Meld, DeleteMin, Delete and DecreaseKeyin constant time with O(logn) processors. Build is supported in time O(logn) with O(n= logn)processors and MultiInsert in time O(log k) with O((logn + k)= logk) processors.Table 7.1 lists the performance of di�erent implementations adopting parallelism to priorityqueues. Several papers consider how to build heaps [49] optimally in parallel [32, 35, 70, 95]. Onan EREW PRAM an optimal construction time of O(logn) is achieved in [95] and on a CRCWPRAM an optimal construction time of O(log logn) is achieved in [35].An immediate consequence of the CREW PRAM priority queues we present is that on anEREW PRAM we achieve the bounds stated in Corollary 6, because the only bottleneck in theconstruction requiring concurrent read is the broadcasting of information of constant size, that onan O(logn= log log n) processor EREW PRAM requires time O(log log n). The bounds we achievematches those of [28] for k equal one and those of [88]. See Table 7.1.Corollary 6 On an EREW PRAM priority queues exist supporting FindMin in constant timewith one processor, and supporting MakeQueue, Insert, Meld, DeleteMin, Delete andDecreaseKey in time O(log logn) with O(logn= log logn) processors. With O(n= logn) proces-sors Build can be performed in time O(logn) and with O((k+log n)=(logk+log logn)) processorsMultiInsert can be performed in time O(log k + log logn).That a systolic processor array with �(n) processors can implement a priority queue support-ing the operations Insert and DeleteMin in constant time is parallel computing folklore, seeExercise 1.119 in [72]. Recently Ranade et al. [94] showed how to achieve the same bounds on aprocessor array with only O(logn) processors. In Section 7.5 we describe how the priority queuescan be modi�ed to allow operations to be performed via pipelining. As a result we get an implemen-tation of priority queues on a processor array with O(logn) processors, supporting the operationsMakeQueue, Insert, Meld, FindMin, DeleteMin, Delete and DecreaseKey in constanttime. This extends the result of [94].The priority queues we present in this paper do not support the operation MultiDelete, thatdeletes the k smallest elements from a priority queue (where k is �xed [28, 89]). However, a possiblesolution is to apply the k-bandwidth idea used in [28, 89], by letting each node contain k elementsinstead of one. If we apply the idea to the data structure in Section 7.2 we get the time bounds inTheorem 15, improving upon the bounds achieved in [89], see Table 7.1. We omit the details andrefer the reader to [89].1All logarithms in this paper are to the base two. 70



[90] [88] [89] [28] [94] This paperModel EREW EREW2 CREW EREW Array CREWFindMin 1 log logn 1 1 1 1Insert log logn log logn { { 1 1DeleteMin log logn log logn { { 1 1Meld { log logn log nk + log log k log log nk + logk { 1Delete { log logn { { { 1DecreaseKey { log logn { { { 1Build logn { nk logk log nk log k { lognMultiInsert { { log nk + logk log log nk + logk { logkMultiDelete { { log nk + log log k log log nk + logk { {Table 7.1: Performance of di�erent parallel implementations of priority queues.Theorem 15 On a CREW PRAM priority queues exist supportingMultiInsert in time O(log k),MultiDelete and Meld in time O(log log k), and Build in time O(log k + log nk log log k).7.2 Meldable priority queuesIn this section we describe how to implement the priority queue operations MakeQueue, Insert,Meld, FindMin and DeleteMin in constant time on a CREW PRAM with O(logn) processors.In Section 7.3 we describe how to extend the repertoire of priority queue operations to includeDelete and DecreaseKey.The priority queues in this section are based on heap ordered binomial trees [108]. Throughoutthis paper we assume a one to one mapping between tree nodes and priority queue elements.Binomial trees are de�ned as follows. A binomial tree of rank zero is a single node. A binomialtree of rank r > 0 is achieved from two binomial trees of rank r � 1 by making one of the roots achild of the other root. It follows by induction that a binomial tree of rank r contains exactly 2rnodes and that a node of rank r has exactly one child of each of the ranks 0; : : : ; r� 1. Throughoutthis section a tree denotes a heap ordered binomial tree.A priority queue is represented by a forest of binomial trees. In the following we let the largestranked tree be of rank r(Q), we let ni(Q) denote the number of trees of rank i and we let nmax(Q)denote the value max0�i�r(Q) ni(Q). We require that a priority queue satis�es the constraints:A1 : ni(Q) 2 f1; 2; 3g for i = 0; : : : ; r(Q), andA2 : the minimum root of rank i is smaller than all roots of rank larger than i.It follows from A2 that the minimum root of rank zero is the minimum element.A priority queue is stored as follows. Each node v in a priority queue is represented by a recordconsisting of:e : the element associated to v,r : the rank of v, andL : a linked list of the children of v in decreasing rank order.2The operations Delete and DecreaseKey require the CREW PRAM and require amortized time O(log log n).71



Proc ParLink(Q)for p := 0 to logn� 1 pardoif np(Q) � 3 thenLink two trees from Q:L[p] nmin(Q:L[p]) andadd the resulting tree to Q:L[p+ 1]Proc ParUnlink(Q)for p := 1 to logn pardoif np(Q) � 1 thenUnlink min(Q:L[p]) and add the resulting two trees to Q:L[p� 1]Figure 7.1: Parallel linking and unlinking binomial trees.Proc FindMin(Q)return min(Q:L[0])Proc Insert(Q; e)Q:L[0] := Q:L[0][ fnew-node(e)gParLink(Q)Proc Meld(Q1; Q2)for p := 0 to logn pardoQ1:L[p] := Q1:L[p][Q2:L[p]do 3 times ParLink(Q1) Proc MakeQueueQ :=new-queuefor p := 0 to logn pardo Q:L[p] := ;return QProc DeleteMin(Q)e := min(Q:L[0])Q:L[0] := Q:L[0] n fegParUnlink(Q)ParLink(Q)return eFigure 7.2: CREW PRAM priority queue operations.For each priority queue Q an array Q:L is maintained of size 1 + log n of pointers to linkedlists of roots of equal rank. By A1, jQ:L[i]j � 3 for all i. Notice that the chosen representation forstoring the children of a node allows two nodes of equal rank to be linked in constant time by oneprocessor. The required space for a priority queue is O(n).Two essential procedures used by our algorithms are the procedures ParLink and ParUnlinkin Figure 7.1. In parallel ParLink for each rank i links two trees of rank i to one tree of ranki + 1, if possible. By requiring that the trees of rank i that are linked together are di�erent frommin(Q:L[i]), A2 does not become violated. Let n0i(Q) denote the value of ni(Q) after performingParLink. If ni(Q) � 3 before performing ParLink then n0i(Q) � ni(Q)� 2+1, because processori removes two trees of rank i and processor i � 1 adds at most one tree of rank i. Otherwisen0i(Q) � ni(Q) + 1. This implies that n0max(Q) � maxf3; nmax(Q)� 1g. The equality states that ifthe maximum number of trees of equal rank is larger than three, then an application of ParLinkdecreases this value by at least one. The procedure ParUnlink unlinks the minima of all Q:L[i].All ni(Q) at most increase by one except for n0(Q) that can increase by two. Notice that the newminimum of Q:L[i] is less than or equal to the old minimum of Q:L[i + 1]. This implies that ifA2 is satis�ed before performing ParUnlink then A2 is also satis�ed after the unlinking. Noticethat ParLink and ParUnlink can be performed on an EREW PRAM with O(logn) processorsin constant time if all processors know Q.The priority queue operations can now be implemented as:MakeQueue The list Q:L is allocated and in parallel all Q:L[i] are assigned the empty set.Insert(Q; e) A new tree of rank zero containing e is created and added to Q:L[0]. To avoidnmax(Q) > 3, ParLink(Q) is performed once.72



Meld(Q1; Q2) First Q2:L is merged into Q1:L by letting processor p set Q1:L[p] to Q1:L[p] [Q2:L[p]. The resulting forest satis�es nmax(Q1) � 6. Performing ParLink(Q1) three timesreestablishes A1.FindMin(Q) The minimum element in priority queue Q is min(Q:L[0]).DeleteMin(Q) First the minimum element min(Q:L[0]) is removed. Performing ParUnlinkonce guarantees that A2 is satis�ed, especially that the new minimum element is contained inQ:L[0], because the new minimum element was either already contained in Q:L[0] or it wasthe minimum element in Q:L[1]. Finally ParLink performed once reestablishes A1.A pseudo code implementation for a CREW PRAM based on the previous discussion is shownin Figure 7.2. Notice that the only part of the code requiring concurrent read is to \broadcast" thevalues of Q;Q1 and Q2 to all the processors. Otherwise the code only requires an EREW PRAM.From the fact that ParLink and ParUnlink can be performed in constant time with O(logn)processors we get:Theorem 16 On a CREW PRAM priority queues exist supporting FindMin in constant time withone processor, and MakeQueue, Insert, Meld and DeleteMin in constant time with O(logn)processors.7.3 Priority queues with deletionsIn this section we extend the repertoire of supported priority queue operations to include Deleteand DecreaseKey. Notice that DecreaseKey(Q; e; e0) can be implemented as Delete(Q; e)followed by Insert(Q; e0).The priority queues in this section are based on heap ordered trees de�ned as follows. A rankzero tree is a single node. A rank r tree is a tree where the root has exactly �ve children of eachof the ranks 0; 1; : : : ; r � 1. A tree of rank r can be created by linking six trees of rank r � 1 bymaking the �ve larger roots children of the smallest root.The e�ciency we achieve for Delete and DecreaseKey is due to the concept of holes. Ahole of rank r in a tree is a location in the tree where a child of rank r is missing.We represent a priority queue by a forest of trees with holes. Let r(Q); ni(Q) and nmax(Q) bede�ned as in Section 7.2. We require that:B1 : ni(Q) 2 f1; 2; : : : ; 7g, for i = 1; : : : ; r(Q),B2 : the minimum root of rank i is smaller than all roots of rank larger than i,B3 : at most two holes have equal rank.Temporary while performing Meld we allow the number of holes of equal rank to be at mostfour. The requirement that a node of rank r has �ve children of each of the ranks 0; : : : ; r � 1implies that at least one child of each rank is not replaced by a hole. This implies that the subtreerooted at a node has at least size 2r and therefore the largest possible rank is at most logn.A priority queue is stored as follows. Each node v of a tree is represented by a record consistingof:e : the element associated to v,r : the rank of v, 73



f : a pointer to the parent of v, andL : an array of size logn of pointers to linked lists of children of equal rank.For each priority queue Q two arraysQ:L and Q:H are maintained of size 1+logn. Q:L containspointers to linked lists of trees of equal rank and Q:H contains pointers to linked lists of \holes"of equal rank. More precisely Q:H [i] is a linked list of nodes such that for each missing child ofrank i of node v, v appears once in Q:H [i]. By B1 and B3, jQ:L[i]j � 7 and jQ:H [i]j � 2 for all i.Notice that the space required is O(n logn). By using worst case constant time extendible arraysto store the required arrays such that jv:Lj = v:r, the space requirement can be reduced to O(n).For simplicity we in the following assume that jv:Lj = logn for all v.The procedures ParLink and ParUnlink have to be modi�ed such that linking and unlinkinginvolves six trees and such that ParUnlink catches holes to be removed from Q:H . ParLinknow satis�es n0max(Q) � maxf7; nmax(Q) � 5g, and ParUnlink n0i(Q) � ni(Q) + 5 for i > 0 andn00(Q) � n0(Q) + 6.We now describe a procedure FixHoles that reduces the number of holes similar to how Par-Link reduces the number of trees. The procedure is constructed such that processor p takes careof holes of rank p. The work done by processor p is the following. If jQ:H [p]j < 2 the processordoes nothing. Otherwise it considers two holes in Q:H [p]. Recall that all holes have at least onereal tree node of rank p as a brother. If the two holes have di�erent parents, we swap one of theholes with a brother of the other hole. This makes both holes have the same parent f . By choosingthe largest node among the two holes' brothers as the swap node we are guaranteed to satisfy heaporder after the swap.There are now two cases to consider. The �rst case is when the two holes have a brother b ofrank p+1. Notice that b has at least three children of rank p because we allowed at most four holesof rank p. We can now cut o� b and all children of b of rank p. By assigning b the rank p we onlycreate one hole of rank p+ 1. We can now eliminate the two original holes by replacing them withtwo previous children of b. At most four trees remain to be added to Q:L[p]. The second case iswhen f has rank p+ 1. Assume �rst that f 6= min(Q:L[p+ 1]). In this case the subtree rooted atf can be cut o� without violating B2. This creates a new hole of rank p+ 1. We can now cut o�all children of f that have rank p and assign f the rank p. This eliminates the two holes. At mostfour trees now need to be added to Q:L[p]. Finally there is the case where f = min(Q:L[p+ 1]).By performing ParUnlink and ParLink once the two holes disappear. To compensate for thecreated new trees we �nally perform ParLink once.The priority queue operations can now be implemented as follows.MakeQueue Allocate a new priority queue Q and assign the empty set to all Q:L[i] and Q:H [i].Insert(Q; e) Create a tree of rank zero containing e and add this tree to Q:L[0]. Perform Par-Link(Q) once to reestablish B1. Notice that Insert does not a�ect the number of holes inQ.Meld(Q1; Q2) Merge Q2:L into Q1:L, and Q2:H into Q1:H . We now have jQ1:Lj � 14 andjQ1:H [i]j � 4 for all i. That B2 is satis�ed follows from that Q1 and Q2 satis�ed B2. Per-forming ParLink(Q1) twice followed by FixHoles(Q2) twice reestablishes B1 and B3.FindMin(Q) Return min(Q:L[0]).DeleteMin(Q) First perform FindMin and then perform Delete on the found minimum.Delete(Q; e) Let v be the node containing e. Remove the subtree with root v. If this creates ahole then add the hole to Q:H . Merge v:L into Q:L and remove all appearances of v from74



Proc MakeQueueQ :=new-queuefor p := 0 to logn pardoQ:L[p]; Q:H[p] := ;return QProc FindMin(Q)return min(Q:L[0])Proc Insert(Q; e)Q:L[0] := Q:L[0][ fnew-node(e)gParLink(Q)Proc Meld(Q1; Q2)for p := 0 to logn pardoQ1:L[p] := Q1:L[p][Q2:L[p]Q1:H[p] := Q1:H[p][Q2:H[p]do 2 times ParLink(Q1)do 2 times FixHoles(Q1)Proc DecreaseKey(Q; e; e0)Delete(Q; e)Insert(Q; e0)
Proc DeleteMin(Q)e := FindMin(Q)Delete(Q; e)return eProc Delete(Q; e)v := the node containing eif v:f 6= null thenQ:H[v:r] := Q:H[v:r][ fv:fgv:f:L[v:r] := v:f:L[v:r] n fvgfor p := 0 to logn pardofor u 2 v:L[p] do u:f := nullQ:L[p] := Q:L[p][ v:L[p]Q:H[p] := Q:H[p] n fvgfor p := 0 to logn pardoif np(Q) � 1 and p > v:r thenQ:H[p� 1] := Q:H[p� 1] nmin(Q:L[p])Unlink min(Q:L[p]) andadd the resulting trees to Q:L[p� 1]do 2 times ParLink(Q)FixHoles(Q)Figure 7.3: CREW PRAM priority queue operations.Q:H . Notice that only for i = v:r, min(Q:L[i]) can change and this only happens if e wasmin(Q:L[i]). Unlinking min(Q:L[i]) for i = v:r+1; : : : ; r(Q) reestablishes B2. Finally performParLink twice to reestablish B1 and FixHoles once to reestablish B3.DecreaseKey(Q; e; e0) Perform Delete(Q; e) followed by Insert(Q; e0).A pseudo code implementation for a CREW PRAM based on the previous discussion is shown inFigure 7.3. Notice that the only part of the code that requires concurrent read is the \broadcasting"of the parameters of the procedures and v:r in Delete. The rest of the code does very localcomputing, in fact processor p only accesses entries p and p � 1 of arrays, and that these localcomputations can be done in constant time with O(logn) processors on an EREW PRAM.Theorem 17 On a CREW PRAM priority queues exist supporting FindMin in constant timewith one processor, and MakeQueue, Insert, Meld, DeleteMin, Delete and DecreaseKeyin constant time with O(logn) processors.7.4 Building priority queuesIn this section we describe how to perform Build(e1; : : : ; en) for the priority queues in Section 7.3.Because our priority queues can report a minimum element in constant time and that there is lowerbound of 
(logn) for �nding the minimum of a set of elements on a CREW PRAM [66] we havean 
(logn) lower bound on the construction time on a CREW PRAM. We now give a matchingupper bound on an EREW PRAM.First a collection of trees is constructed satisfying B1 and B3 but not B2. We partition theelements into b(n � 1)=6c blocks of size six. In parallel we now construct a rank one tree from75



each block. The remaining 1{6 elements are stored in Q:L[0]. The same block partitioning andlinking is now done for the rank one trees. The remaining rank one trees are stored in Q:L[1].This process continues until no tree remains. There are at most O(logn) iterations because eachiteration reduces the number of trees by a factor six. The resulting forest satis�es B1 and B3. It iseasy to see that the above construction can be done in time O(logn) with O(n= logn) processorson an EREW PRAM.To establish B2 we logn times perform ParUnlink followed by ParLink. By induction itfollows that in the ith iteration all Q:L[j] where j � logn� i satisfy B2. This �nishes the construc-tion of the priority queue. The last step of the construction requires time O(logn) with O(logn)processors. We conclude that:Theorem 18 On an EREW PRAM a priority queue containing n elements can be constructedoptimally with O(n= logn) processors in time O(logn).Because Meld(Q;Build(e1; : : : ; ek)) implements the priority queue operation MultiInsert(Q; e1; : : : ; ek) we have the corollary below. Notice that k does not have to be �xed as in [28, 89].Corollary 7 On a CREW PRAMMultiInsert can be performed in time O(log k) with O((logn+k)= logk) processors.7.5 Pipelined priority queue operationsThe priority queues in Section 7.2, 7.3 and 7.4 require the CREW PRAM to achieve constant timeper operation. In this section we address how to perform priority queue operations in a pipelinedfashion. As a consequence we get an implementation of priority queues on a processor array ofsize O(logn) supporting priority queue operations in constant time. On a processor array weassume that all requests are entered at processor zero and that output is generated at processorzero too [94].The basic idea is to represent a priority queue by a forest of heap ordered binomial trees as inSection 7.2, and to perform the operations sequentially in a loop that does constant work for eachrank in increasing rank order. This approach then allows us to pipeline the operations. We requirethat a forest of binomial trees representing a priority queue satis�es:C1 : ni(Q) 2 f1; 2g, for i = 1; : : : ; r(Q),C2 : the minimum root of rank i is smaller than all roots of rank larger than i.Notice that C1 is stronger than A1 in Section 7.2. Sequential implementations of the priorityqueue operations are shown in Figure 7.4. We assume a similar representation as in Section 7.3.The pseudo code uses the following two procedures similar to those used in Section 7.2.Link(Q; i) Links two trees from Q:L[i] n min(Q:L[i]) to one tree of rank i + 1 that is added toQ:L[i+ 1], provided i � 0 and jQ:L[i]j � 3.Unlink(Q; i) Unlinks the tree min(Q:L[i]) and adds the resulting two trees to Q:L[i�1], providedi � 1 and jQ:L[i]j � 1.Each of the priority queue operations can be viewed as running in steps i = 0; : : : ; logn. Step ionly accesses, creates and destroys nodes of rank i and i + 1. Notice that requirement C1 implies76



Proc MakeQueueQ :=new-queuefor p := 0 to logn do Q:L[p] := ;return QProc FindMin(Q)return min(Q:L[0])Proc Insert(Q; e)Q:L[0] := Q:L[0][ fnew-node(e)gfor i := 0 to logn do Link(Q; i)Proc Meld(Q1; Q2)for i := 0 to logn doQ1:L[i] := Q1:L[i][Q2:L[i]do 2 times Link(Q1; i)Proc DecreaseKey(Q; e; e0)Delete(Q; e)Insert(Q; e0)Proc DeleteMin(Q)e := FindMin(Q)Delete(Q; e)return e
Proc Delete(Q; e)v := the node containing efor i := 0 to v:r � 1 doMove v:L[i] to Q:L[i]Link(Q; i)r; f := v:r; v:fRemove node vwhile f 6= null doif f:r = r + 1 thenf:r := f:r � 1Move f to Q:L[r] andf := f:felseUnlink f:L[r + 1] and addone tree to f:L[r] andone tree to Q:L[r]Link(Q; i)r := r + 1for i := r to logn doUnlink(Q; i + 1)do 2 times Link(Q; i)Figure 7.4: A sequential implementation allowing pipelining.that Meld only has to perform Link two times for each rank, whereas the implementation ofMeld in Figure 7.2 has to do the corresponding linking three times. Otherwise the only interestingprocedure is Delete. Procedure Delete proceeds in three phases. First all children of the nodeto be removed are cut o� and moved to Q:L. In the second phase the hole created is eliminated bymoving it up thru the tree by unlinking the brother node of the hole's current position or unlinkingthe parent node of the hole. Finally the third phase reestablishes C2 in case phase two removedmin(Q:L[i]) for some i. This phase is similar to the last for loop in the implementation of Deletein Figure 7.3.The pseudo code given in Figure 7.4 assumes the same representation for nodes as in Sec-tion 7.3. To implement the priority queues on a processors array a representation is required thatis distributed among the processors. The canonical distribution is to let processor p store nodes ofrank p.The representation we distribute is the following. Assume that the children of a node areordered from right-to-left in increasing rank order (this allows us to talk about the leftmost andrightmost children of a node). A node v is represented by a record with the �elds:e : the element associated to v,r : the rank of v,left, right : pointers to the left and right brothers of v,leftmost-child : a pointer to the leftmost child of v,f : a pointer to the parent of v, if v is the leftmost child. Otherwise null.77



The array Q:L is replaced by linked lists. Finally an array rightmost-child is maintained thatfor each node stores a pointer to the rank zero child of the node or to the node itself if it has rankzero. Notice that this representation only has pointers between nodes with rank di�erence at mostone.It is straightforward to modify the code given in Figure 7.4 to this new representation. Theonly essential di�erence is when performing Delete. The �rst rank zero child of v to be moved toQ:L is found by using the array rightmost-child. The succeeding children are found by using theleft pointers.On a processor array we let processor p store all nodes of rank p. In addition processor pstores Q:L[p] for all priority queues Q. The array rightmost-child is stored at processor zero. The\locations" that Delete and DecreaseKey refer to are now not the nodes but the correspondingentries in the rightmost-child array.With the above described representation step i of an operation only involves information storedat processors fi�1; i; i+1; i+2g (processor i�1 and i+2 because back pointers have to be updatedin the involved linked lists) that can be accessed in constant time. This immediately allows us topipeline the operations, such that we for each new operation perform exactly four steps of each ofthe previous operations. Notice that no latency is involved in performing the queries: The answerto a FindMin query is known immediately.Theorem 19 On a processor array of size O(logn) each of the operations MakeQueue, Insert,Meld, FindMin, DeleteMin, Delete and DecreaseKey can be supported in constant time.
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Chapter 8A Parallel Priority Data Structurewith Applications
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A parallel priority data structure with applications�Gerth St�lting BrodalyBRICSz, Department of Computer Science, University of AarhusNy Munkegade, DK-8000 �Arhus C, Denmarkgerth@brics.dkJesper Larsson Tr�a� Christos D. ZaroliagisMax-Planck-Institut f�ur Informatik, Im Stadtwald, D-66123 Saarbr�ucken, Germanyftraff,zarog@mpi-sb.mpg.deAbstractWe present a parallel priority data structure that improves the running time of certain algo-rithms for problems that lack a fast and work e�cient parallel solution. As a main application,we give a parallel implementation of Dijkstra's algorithm for the single-source shortest pathproblem which runs in O(n) time while performing O(m logn) work on a CREW PRAM. Thisis a logarithmic factor improvement for the running time compared with previous approaches.The main feature of our data structure is that the operations needed in each iteration of Dijk-stra's algorithm can be supported in O(1) time.Keywords: Parallel algorithms, network optimization, graph algorithms, data structures.8.1 IntroductionDeveloping work e�cient parallel algorithms for graph and network optimization problems continuesto be an important area of research in parallel computing. Despite much e�ort a number of basicproblems have tenaciously resisted a very fast (i.e., NC) parallel solution that is simultaneouslywork e�cient. A notorious example is the single-source shortest path problem.The best sequential algorithm for the single-source shortest path problem on directed graphswith non-negative real valued edge weights is Dijkstra's algorithm [37]. For a given digraphG = (V;E) the algorithm iteratively steps through the set of vertices, in each iteration �xingthe distance of a vertex for which a shortest path has been found, while maintaining in the pro-cess, for each of the remaining vertices, a tentative distance from the source. For an n-vertex,m-edge digraph the algorithm can be implemented to run in O(m + n logn) operations by usinge�cient priority queues like Fibonacci heaps [53] for maintaining tentative distances, or other prior-ity queue implementations supporting deletion of the minimum key element in amortized or worstcase logarithmic time, and decrease key in amortized or worst case constant time [18, 43, 63].�This work was partially supported by the EU ESPRIT LTR Project No. 20244 (ALCOM-IT), and by the DFGproject SFB 124-D6 (VLSI Entwurfsmethoden und Parallelit�at).ySupported by the Danish Natural Science Research Council (Grant No. 9400044).zBRICS (Basic Research in Computer Science), a Centre of the Danish National Research Foundation.81



The single-source shortest path problem is in NC (by virtue of the all-pairs shortest pathproblem being in NC), and thus a fast parallel algorithm exists, but for general digraphs no worke�cient algorithm in NC is known. The best NC algorithm runs in O(log2 n) time and performsO(n3(log logn= logn)1=3) work on an EREW PRAM [61]. Moreover, work e�cient algorithms whichare (at least) sublinearly fast are also not known for general digraphs.Dijkstra's algorithm is highly sequential, and can probably not be used as a basis for a fast (NC)parallel algorithm. However, it is easy to give a parallel implementation of the algorithm that runsin O(n logn) time [87]. The idea is to perform the distance updates within each iteration in parallelby associating a local priority queue with each processor. The vertex of minimum distance for thenext iteration is determined (in parallel) as the minimum of the minima in the local priority queues.For this parallelization it is important that the priority queue operations have worst case runningtime, and therefore the original Fibonacci heap cannot be used to implement the local queues.This was �rst observed in [43] where a new data structure, called relaxed heaps, was developed toovercome this problem. Using relaxed heaps, an O(n logn) time and O(m+n logn) work(-optimal)parallel implementation of Dijkstra's algorithm is obtained. This seems to be the currently fastestwork e�cient parallel algorithm for the single-source shortest path problem. The parallel timespent in each iteration of the above implementation of Dijkstra's algorithm is determined by the(processor local) priority queue operations of �nding a vertex of minimum distance and deleting anarbitrary vertex, plus the time to �nd and broadcast a global minimum among the local minima.Either or both of the priority queue operations take O(logn) time, as does the parallel minimumcomputation; for the latter 
(logn) time is required, even on a CREW PRAM. Hence, the approachwith processor local priority queues does not seem to make it possible to improve the running timebeyond O(n logn) without resorting to a more powerful PRAM model. This was considered in [87]where two faster (but not work e�cient) implementations of Dijkstra's algorithm were given ona CRCW PRAM: the �rst (resp. second) algorithm runs in O(n log logn) (resp. O(n)) time, andperforms O(n2) (resp. O(n2+�), 80 < � < 1) work.An alternative approach would be to use a parallel global priority queue supporting some formof multi-decrease key operation. Unfortunately, no known parallel priority queues support suchan operation; they only support a multi-delete operation which assumes that the k elements to bedeleted are the k elements with smallest priority in the priority queue (see e.g., [17, 28, 35, 88, 89,90, 94]). A di�erent idea is required to improve upon the running time.We present a parallel priority data structure that speeds up the parallel implementation ofDijkstra's algorithm, by supporting the operations required at each iteration in O(1) time. Usingthis data structure we give an alternative implementation of Dijkstra's algorithm that runs inO(n) time and performs O(m logn) work on a CREW PRAM. More speci�cally, by sorting theadjacency lists after weight it is possible in constant time both to determine a vertex of minimumdistance, as well as to add in parallel any number of new vertices and/or update the distance ofvertices maintained by the priority data structure. It should also be mentioned that the PRAMimplementation of the data structure requires concurrent read only for broadcasting constant sizeinformation to all processors in constant time.The idea of the parallel priority data structure is to perform a pipelined merging of keys. Weillustrate the idea by �rst giving a simple implementation using a linear pipeline, which requiresO(n2+m logn) work (Section 8.2). We then show how the pipeline can be dynamically restructuredin a tree like fashion and how to schedule the available processors over the tree such that onlyO(m logn) operations are required (Section 8.3). Further applications are discussed in Section 8.4.82



8.2 A parallel priority data structureIn this section we introduce our new parallel priority data structure, and show how to use it to givean alternative, parallel implementation of Dijkstra's algorithm. Let G = (V;E) be an n-vertex,m-edge directed graph with edge weights c : E ! IR+0 , represented as a collection of adjacencylists. For a set S � V of vertices, de�ne �(S) to be the neighbors of the vertices in S, excludingvertices in S, i.e., �(S) = fw 2 V n Sj9v 2 S; (v; w) 2 Eg. We associate with each vertexv 2 S a (�xed) real valued label �v . For a vertex w 2 �(S), de�ne the distance from S to was dist(S;w) = minu2Sf�u + c(u; w)g. The distance has the property that dist(S [ fvg; w) =minfdist(S;w);�v + c(v; w)g. We de�ne the vertex closest to S to be the vertex z 2 �(S) thatattains the minimum minw2�(S)fdist(S;w)g (with ties broken arbitrarily).Assume that a processor Pv is associated with each vertex v 2 V of G. Among the processorsassociated with vertices in S at any given instant one will be designated as the master processor.Our data structure supports the following four operations:� Init: initializes the priority data structure.� Eject(S): deletes the vertex v of �(S) that is closest to S, and returns the pair (v;Dv) tothe master processor, where Dv = dist(S; v).� Extend(S; v;�; Pv): adds a vertex v associated with processor Pv to S, and assigns it label �.Processor Pv becomes the new master processor.� Empty(S): returns true to the master processor of S if �(S) = ;.Performing j�(S)j successive Eject-operations on a set S ejects the vertices in �(S) in non-decreasing order of closeness, and leaves the priority data structure empty. Each vertex of �(S)is ejected once. Note also that there is no operation to change the labels associated with verticesin S.These operations su�ce for an alternative, parallel implementation of Dijkstra's algorithm. Lets 2 V be a distinguished source vertex. The algorithm computes for each vertex v 2 V the length ofa shortest path from s to v, where the length of a path is the sum of the weights of the edges on thepath. Dijkstra's algorithm maintains a set S of vertices for which a shortest path have been found,in each iteration adding one more vertex to S. Each vertex w 2 V n S has a tentative distancewhich is equal to dist(S;w) as de�ned above. Hence, instead of the usual priority queue withDeleteMin to select the vertex closest to S, and DecreaseKey operations to update tentativedistances for the vertices in V n S, we use the priority data structure above to determine in eachiteration a vertex closest to the current set S of correct vertices. The Extend-operation replacesthe updating of tentative distances. Let Pv be the processor associated with vertex v.Our main result in this section is that the New-Parallel-Dijkstra algorithm runs in linear timein parallel.Theorem 20 Dijkstra's algorithm can be implemented to run in O(n) time and O(n2 +m logn)work using O(n+m) space on a CREW PRAM.The proof of Theorem 20 is based on the following lemma. The space bound of Theorem 20 isdiscussed at the end of this section.Lemma 10 Operation Init takes O(m logn) work and O(logn) time. After initialization, eachEject(S)-operation takes constant time using jSj processors, and each Extend(S; v;�; Pv)-oper-ation takes constant time using jSj+degin(v) processors, where degin(v) is the in-degree of v. TheEmpty(S)-operation takes constant time per processor. The space required per processor is O(n).83



Algorithm New-Parallel-Dijkstra/* Initialization */Init; d(s) 0; S  ;;Extend(S; s; d(s); Ps);/* Main loop */while :Empty(S) do(v;Dv) Eject(S); /* instead of DeleteMin */d(v) Dv;Extend(S; v; d(v); Pv);/* replaces the update step */odFigure 8.1: The O(n) time parallel Dijkstra algorithm.The remainder of this section will be devoted to provide a proof for Lemma 10.In the Init-operation the adjacency lists of G are sorted in non-decreasing order after edgeweight, i.e., on the adjacency list of v vertex w1 appears before w2 if c(v; w1) � c(v; w2) (with tiesbroken arbitrarily). The adjacency lists are assumed to be implemented as doubly linked lists, suchthat any vertex w on v's adjacency list can be removed in constant time. For each vertex v we alsoassociate an array of vertices uj to which v is adjacent, i.e., vertices uj for which (uj ; v) 2 E. In thearray of v we store for each such uj a pointer to the position of v in the adjacency list of uj . Thisenables us to delete all occurrences of v in adjacency lists of such vertices uj 2 S = V nS in constanttime. Sorting of the adjacency lists takes O(logn) time and O(m logn) work [29]. Constructinglinks and building the required arrays can then be done in constant time using O(m) operations.This completes the description of the Init operation.The processors associated with vertices in S at any given instant are organized in a linearpipeline. Let vi be the ith vertex added to S, let Si denote S after the ith Extend(S; vi;�i; Pi)-operation where �i is the label to be associated with vi, and let Pi be the processor assigned to vi (inthe implementation of Dijkstra's algorithm the label �i to be associated with vertex vi was d(v)).Let �nally Li be the sorted, doubly linked adjacency list of vi. Processor Pi which was assignedat the ith Extend-operation receives input from Pi�1, and, after the (i+ 1)th Extend-operation,will send output to Pi+1. The last processor assigned to S will be the master processor, and theoutput from this processor will be the result of the next Eject-operation, i.e., the vertex closestto S. The pipeline for i = 4 is shown in Figure 8.2. The input queue Q1 of processor P1 is emptyand not shown.Assume now that Eject(Si�1) can be performed in constant time by the processors assignedto the vertices in Si�1, and returns to the master processor of Si�1 the vertex in �(Si�1) thatis closest to Si�1. We show how to maintain this property after an Extend-operation; morespeci�cally, that the vertex v ejected by Eject(Si), immediately after Extend(Si�1; vi;�i; Pi),is produced in constant time, is indeed the vertex closest to Si, and that each vertex in �(Si) isejected exactly once.Performing an Eject(Si�1) returns the vertex u closest to Si�1 with value Du = dist(Si�1; u).Either this vertex, or the vertex closest to vi is the vertex to be ejected from Si. Let w be the�rst vertex on the sorted adjacency list Li. If �i + c(vi; w) � Du, then the result of Eject(Si)is w with value Dw = �i + c(vi; w); otherwise, the result is u with value Du. In the �rst case, w84



���P1Q2 F1� 6L1 = Ls���P2Q3 F2� 6L2���P3Q4 F3� 6L3���P4Q5 F4� 6L4Figure 8.2: The linear processor pipeline with the associated data structures.Function Eject(S)for all vi 2 S do in parallel/* processor Pi is associated with vertex vi */(v0; D0) Head(Qi);v00  Head(Li); D00 c(vi; v00) + �i;if D00 < D0 then (v0; D0) (v00; D00) �;remove v0 from Li and Qi if present;insert v0 into Fi;if v0 =2 Fi+1 then append (v0; D0) to Qi+1 �od;if Pi is the master processor return Head(Qi+1)Figure 8.3: The Eject-operation.is ejected and simply removed from Li, but the ejected vertex of Si�1 must be saved for a laterEject-operation. For this purpose we associate an input queue Qi with each Pi which stores thevertices ejected from Si�1 by processor Pi�1. The Eject-operation of Pi thus consists in selectingthe smaller value from either the input queue Qi or the adjacency list Li of vi. In other words, Piperforms one merging step of the two ordered lists Qi and Li. In case Pi exhausts its own adjacencylist Li, it always ejects from Qi. It must be shown that Qi never gets empty, unless all vertices of�(Si�1) have been ejected, in which case processor Pi may terminate. The Empty(Si) thus has toreturn true when both adjacency list Li and input queue Qi of the master processor are empty.In order to ensure that a vertex output by Pi is never output at a later Eject-operation (i.e.,inserted into Qi+1 with di�erent priorities), we associate a set Fi of forbidden vertices with each Pi.Each Fi set is implemented as a Boolean array (i.e., Fi[w] = true if and only if w has been ejectedfrom Li). When a vertex w is removed from Li and ejected, w is put into Fi and removed from Qi(if it is there). A vertex ejected from Si�1 is only put into the input queue Qi of Pi if it is not inthe forbidden set Fi of Pi. In the case where a vertex u at the head of Qi (previously ejected fromSi�1) \wins" at Pi and is ejected, it is removed from Li (in case u is adjacent to vi), and is madeforbidden for Pi by putting it into Fi. In order to be able to remove vertices from Qi in constanttime, each Pi has an array of pointers into Qi, which is updated whenever Pi�1 outputs a vertexinto Qi. The Eject-operation is shown in Figure 8.3.85



Function Extend(S; v;�; P )connect the master processor of S to P ;make P the (new) master processor;(u;D0) Eject(S);append (u;D0) to the input queue Q of P ;�v  �; S  S [ fvg;remove v from S using pointers constructed by InitFigure 8.4: The Extend-operation.An Extend(Si�1; vi;�i; Pi)-operation must �rst perform an Eject(Si�1) in order to get anelement into the input queue Qi of Pi. Since we must prevent that a vertex already in S is everejected (as �(S) excludes S), once a vertex is appended to S it must be removed from the adjacencylists of all vertices in S. This can be done in parallel in constant time using the array of pointersconstructed by the Init-operation (since v occurs at most once in any adjacency list), if concurrentread is allowed: a pointer to the array of vertices uj to which v is adjacent must be made availableto all processors. In parallel they remove v from the adjacency lists of the uj 's, which takes constanttime using degin(v) processors, degin(v) being the in-degree of v. The required concurrent read isof the restricted sort of broadcasting the same constant size information to all processors. TheExtend-operation is shown in Figure 8.4.We now show that each input queue Qi 6= ; unless there are no more vertices to be ejected from�(Si�1). We argue that it always holds that jQij > jFi n Fi�1j � 0, and that Qi always containsdi�erent vertices. The last claim follows by induction. Assume namely that Eject(Si�1) produceseach vertex in �(Si�1) once. Whenever a vertex from �(Si�1) is ejected by Pi it is removed fromLi, and hence by induction can never occur again; on the other hand, whenever a vertex is ejectedfrom Li it is removed from Qi and also put into the forbidden set Fi which prevents it from enteringQi at any future Eject-operation on Si�1. After each new Extend(Si�1; vi;�i; Pi) the queue ofPi is not empty since the Extend-operation �rst performs an Eject(Si�1). It remains to showthat as long as there are still vertices in �(Si�1) the invariant that jQij > jFi n Fi�1j holds by allsubsequent Eject-operations. Consider the work of Pi at some Eject-operation. Either jFinFi�1jis increased by one, or jQij is decreased by one, but not both since in the case where Pi outputsa vertex from Qi this vertex has been put into Fi�1 at some previous operation, and in the casewhere Pi outputs a vertex from Li which was also in Qi, this vertex has again been put into Fi�1at some previous operation. In both cases jFi n Fi�1j does not change when Pi puts the vertexinto Fi. The operation of Pi therefore maintains jQij � jFi n Fi�1j; inequality is reestablished byconsidering the work of Pi�1 which either increases jQij or, in the case where Pi�1 is not allowedto put its ejected vertex u into Qi (because u 2 Fi), decreases jFi nFi�1j (because u is inserted intoFi�1).The O(n2) space due to the forbidden sets and the arrays of pointers into the input queues canactually be reduced to O(n +m). The idea is to maintain for each vertex v 2 V a doubly linkedlist of occurrences of v in the priority data structure in such a way that processor Pi�1 can stilldetermine in constant time whether v 2 Fi, and such that Pi can in constant time remove v fromQi when it is ejected from Li. We do this as follows. We maintain an array of size n of pointers,which for each each v 2 V points to the occurrence of v in the priority data structure which isclosest to the master processor (i.e., the highest index i for which either v 2 Li or v 2 Qi). Each vcan occur in either an Lj list of some processor Pj or an input queue Qj0 of some other processor86



Pj0 , where j 0 > j; furthermore a vertex v in Qj0 is marked as forbidden for all processors Pj ; : : : ; Pj0,assuming that v was at some instant ejected from the adjacency list Lj of Pj . Each occurrence ofv has information recording whether it is (still) in a list Lj or whether it has been moved to somequeue Qj0 , in which case it is also recorded that this occurrence of v is forbidden from processorPj . If v occurs in some Qj0 , the position in the queue is also kept such that v can eventually beremoved from Qj0 in constant time. Obviously, this information takes only constant space. Foreach occurrence of v there is a pointer to the next occurrence of v closer to the master processor(unless this v is the closest occurrence), and a pointer to the previous occurrence (unless this v isthe �rst occurrence).We can now implement the Eject-operation for processor Pj as follows. This processor musttake the minimum vertex from either Qj or Lj , say v, and eject it to Qj+1, unless it is forbiddenby Pj+1. To check this, Pj looks at the next occurrence of v. If this is an occurrence in somequeue Qj0 , then Pj can immediately see if v was forbidden from Pj+1 (and onwards), in which casev is not ejected; instead, the next occurrence of v is marked as forbidden from the processor Pj ,from which v originated, if v was taken from Lj , or some earlier processor if v was taken from Qj .This occurrence of v is then removed from the doubly linked list of v's occurrences. If v is notforbidden for processor Pj+1, v is put into Qj+1, marked as forbidden from Pj and its position inQj+1 is recorded. If v was taken from Lj , it has to be checked if an occurrence of v is also in theinput queue Qj of Pj , in which case it has to be removed from Qj . This can be done by lookingat the previous occurrence of v, which records where this previous occurrence can be found. Incase an occurrence of v was present and is removed from Qj , this occurrence is unlinked from theoccurrence list, updating the Qj+1 occurrence of v as forbidden from some previous processor. Ifv was instead taken from Qj , a possible occurrence of v in Lj must be taken out of the occurrencelist.The implementation of the Extend-operation is simple. Upon a call Extend(S; v;�; P ) allvertices adjacent to v just have to be linked up in their respective occurrence lists, which can be donein constant time in parallel using the aforementioned array of pointers to the closest occurrence.We have thus dispensed with all of the linear-sized arrays used in the previous implementation atthe expense of only one array of size O(n).This concludes the proof of Lemma 10, Theorem 20 and the basic implementation of the prioritydata structure.Note that the n2 term in the work comes from the fact that once a processor is assigned to thedata structure it resides there until the end of the computation, even if its own adjacency list getsempty. In order to reduce the work we need a way of removing processors whose adjacency list hasbecome empty.8.3 A dynamic tree pipelineWe now describe how to decrease the amount of work required by the algorithm in Section 8.2.Before doing so, we �rst make an observation about the merging part of the algorithm. The workdone by processor Pi is intuitively to output vertices by incrementally merging its adjacency list Liwith the incoming stream Qi of vertices output by processor Pi�1. Processor Pi terminates whenit has nothing left to merge. An alternative bound on the real work done by this algorithm is thenthe sum of the distance each vertex v from an adjacency list Li travels, where the distance is thenumber of processors that output v. Because each vertex v from Li can at most be output by apre�x of the processors Pi; Pi+1; : : : ; Pn, the distance v travels is at most n � i + 1. This gives atotal bound on the work done by the processors of O(mn). That the real work can actually be87



i1 i2i1 i1���� i3i2i1 i1���� i2i1 i1�������� i4i3i2i1 i1���� i2i1 i1�������� i3i2i1 i1���� i2i1 i1�������������*Figure 8.5: The tree arrangement of processors. Numbers denote processor ranks.bounded by O(n2) is due to the fact that vertices get annihilated by forbidden sets.Using this view of the work done by the algorithm during merging, we now describe a variationof the data structure that basically bounds the distance a vertex can travel by O(logn), i.e., boundsthe work by O(m logn). The main idea is to replace the sequential pipeline of processors by a binarytree pipeline of processors of height O(logn). What we prove is:Theorem 21 Dijkstra's algorithm can be implemented to run in O(n) time and O(m logn) workon a CREW PRAM.We �rst describe how to arrange the processors in a tree and how to dynamically change thistree while adding new processors for each Extend-operation. We then describe how the work doneby the processors can be bounded by O(m logn) and �nally how to perform the required processorscheduling.8.3.1 Tree structured processor connectionsTo arrange the processors in a tree we modify slightly the information stored at each processor.Each processor Pi still maintains an adjacency list Li and a set of forbidden vertices Fi. The outputof processor Pi is still inserted into an input queue of a processor Pj , but Pi can now receive inputfrom two processors instead of one.The basic organization of the processor connections are perfect binary trees. Each node corre-sponds to a processor and the unique outgoing edge of a node corresponds to the output queue ofthe node (and an input queue to the successor node). The rank of a node is the height of the node inthe perfect binary tree and the rank of a tree is the rank of the root. The nodes are connected suchthat the incoming edges of a node v come from the left child of v and the sibling of v. Figure 8.5shows trees of size 1, 3, 7 and 15 (processor local information is omitted). A tree of rank r+ 1 canbe constructed from two trees of rank r plus a single node, by connecting the two roots with thenew node. By induction a tree of rank r has size 2r � 1.The processors are organized in a sequence of trees of rank rk; rk�1 : : : ; r1, where the ith rootis connected to the i+ 1st root (see Figure 8.6). We maintain the invariant thatrk � rk�1 < rk�2 < � � � < r2 < r1: (8.1)When performing an Extend-operation a new processor is initialized. If rk < rk�1 the newprocessor is inserted as a new rank one tree at the front of the list of trees (as in the sequentialpipeline case). That (8.1) is satis�ed follows from 1 � rk < rk�1 < � � � < r1. If rk = rk�1 we linkthe kth and k � 1st tree with the new node to form a tree of rank 1 + rk�1. That (8.1) is satis�edfollows from 1 + rk�1 � rk�2 < rk�3 < � � � < r1. Figure 8.6 illustrates the relinking for the case88



ixi i���� iyi i���� iziii i���� ii i�������� iii i���� ii i�������������*e� � � iwixi i���� iyi i�������� iziii i���� ii i�������� iii i���� ii i�������������*e� �Figure 8.6: How to restructure the tree when performing Extend.where rk = rk�1 = 2 and rk�2 = 4. Note that the only restructuring required is to make e anincoming edge of the new node w.The described approach for relinking has recently been applied in a di�erent context to constructpurely functional random-access lists [83]. In [83] it is proved that a sequence of trees satisfying(8.1) is unique for a given number of nodes.8.3.2 A work e�cient implementationIn the following we let the output queue of processor Pi be denoted Qout(i). Compared to thesequential pipeline, processor Pi now only outputs a subset of �(Si) due to the dynamic relinking.For the tree pipeline we basically only have to prove that all non-terminated processors have thenext vertex to output in one of its input queues. Let Pj be a processor connected to a processorPi, i > j, by the queue Qout(j). Let Jj denote the set of vertices ejected between the creation ofPj and Pi (excluding calls to Eject internal to Extend). Our main invariant isj(Fi [ Jj) n Fj j < jFj n (Fi [ Jj)j: (8.2)The important observation is that Jj are the vertices that can be output by Pj but are illegalas input to Pi, because they already have been ejected prior to the creation of Pi. To guaranteethat Qout(j) does not contain any illegal input to Pi we maintain the invariantjQout(j) \ (Fi [ Jj)j = ;: (8.3)We now describe how to implement the Eject-operation such that the invariants (8.2) and (8.3)remain satis�ed. The implementation is basically the same as for the sequential pipeline. ProcessorPj �rst selects the vertex v with least priority in Lj and the input queues of Pj in constant time.Then all occurrences of v is removed from Lj and the input queues of Pj , and v is added to Fj . IfQout(j) is an input queue of Pi and v =2 Fi [ Jj , then v is inserted in Qout(j). That (8.2) and (8.3)are satis�ed after an Eject-operation follows by the same arguments as for the sequential pipeline.Invariant (8.2) allows Qout(j) to be empty throughout an Eject-operation (without Pj beingterminated) because Fj n (Fi [ Jj) 6= ; implies that there exists a vertex v that has been output byPj that neither has been ejected from the data structure before Pi was created nor has been outputby Pi (yet). Because Qout(j) is assumed to be empty it is easily seen that v can only be stored inan output queue of a processor in the subtree rooted at Pi due to how the dynamic relinking isperformed, i.e., v appears in a Qout(k), k 2 fj + 1; : : : ; i� 1g. It follows that v has to be outputby Pi (perhaps with a smaller priority because v gets annihilated by an appearance of v with lesspriority) before the next vertex to be output by Pj can be output by Pi. This means that Pi can89



safely skip to consider input from the empty input queue Qout(j), even if Qout(j) later can becomenonempty. Note that (8.2) guarantees that a queue between Pi�1 and Pi always is nonempty.We now describe how to implement the Extend-operation. The implementation is as for thesequential pipeline case, except for the dynamic relinking of a connection (edge e in Figure 8.6).Assume that Pi is the newly created processor. That Qout(i�1) satis�es (8.2) and (8.3) follows fromthe fact that Ji�1 � Fi�1 (jJi�1j+ 1 = jFi�1j) and Fi = ;. What remains to be shown is how tosatisfy the invariants for the node Pj when Qout(j), j < i, is relinked to become an input queueof Pi.When Qout(j) is relinked, Pj has totally output jJj j+ i� j vertices (jJj j for Eject-operationsand i� j for Extend-operation). Because Fi = ; and i > j it follows that (8.2) is satis�ed afterthe relinking. To guarantee that (8.3) is satis�ed we just have to perform the following updatingof Qout(j) Qout(j)  Qout(j) n Jj :Since Qout(j) and Jj can be arbitrary sets it seems hard to do this updating in constant timewithout some kind of precomputation. Note that the only connections that can be relinked is theconnections between the tree roots. The approach we take is that for each Eject-operation, wemark the ejected vertex v as \dirty" in all the output queues Qout(j) where Pj is a root. Whenevera queue Qout(j) is relinked we just need to be able to delete all vertices marked dirty from Qout(j)in constant time. When inserting a new vertex into a queue Qout(j) it can easily be checked if it isdirty or not.A reasonably simple solution to the above problem is the following. Note that each time Qout(j)is relinked it is connected to a node having rank one higher, i.e., we can use this rank to countthe number of delete-dirty operations or as a time stamp t. We represent a queue as a sequence ofvertices where each vertex v has two time stamped links to vertices in each direction from v. Thelink with the highest time stamp � t is the current link in a direction. A link with time stampt + 1 is a link that will become active when a delete-dirty command is performed. We ommit theimplementation details of the marking procedure.1That the real work done by the processors is O(m logn) follows from the following argument.Vertices can at most travel a distance of 2 logn in a tree (in the sense mentioned in the beginningof this section) before they reach the root of the tree. The problem is that the root processorsmove vertices to lower ranked vertices, but the total distance to travel increases at most by 2 lognfor each Eject-operation, because the increase in total distance to travel along the root pathresults in a telescoping sum that is bounded by 2 logn. Because there are 2n calls to Eject byDijkstra's algorithm (n internal to Extend), we conclude that the actual merging work is boundedby O(2m logn + 4n logn), i.e., O(m logn).8.3.3 Processor schedulingWhat remains is to divide the O(m logn) work among the available processors. Assuming thatO(m lognn ) processors are available, the idea is to simulate the tree structured pipeline for O(logn)time steps, after which we stop the simulation and in O(logn) time eliminate the (simulated)terminated processors, and reschedule. By this scheme a terminated processor is kept alive for onlyO(logn) time steps, and hence no superuous work is done. In total the simulation takes lineartime.1As described here the marking of dirty vertices requires concurrent read to know the ejected vertex, but by pipelin-ing the dirty marking process along the tree roots, concurrent read can be avoided in this part of the construction.90



8.4 Further applicationsThe improved single-source shortest path algorithm immediately gives rise to corresponding im-provements in algorithms in which the single-source shortest path problem occurs as a subproblem.We mention here the assignment problem, the minimum cost ow problem, (for de�nitions see [3]),and the single-source shortest path problem in planar digraphs.The minimum cost ow problem (which is P-complete [57]) can be solved by O(m logn) callsto Dijkstra's algorithm (see e.g. [3, Section 10.7]). Using our implementation, we obtain a par-allel algorithm that runs in O(nm logn) time and performs O(m2 log2 n) work. The assignmentproblem can be solved by n calls to Dijkstra's algorithm (see e.g. [3, Section 12.4]). Using ourimplementation, we obtain a parallel algorithm that runs in O(n2) time and performs O(nm logn)work. The assignment problem is not known to be in NC, but an RNC algorithm exists for thespecial case of unary weights [81, 69], and a weakly polynomial CRCW PRAM algorithm existsthat that runs in O(n2=3 log2 n log(nC)) time and performs O(n11=3 log2 n log(nC)) work for thecase of integer weights in the range [�C;C] [56]. Our bounds are strongly polynomial and speedup the best previous ones [43] by a logarithmic factor.Greater parallelism for the single-source shortest path problem in the case of planar digraphscan be achieved by plugging our implementation of Dijkstra's algorithm into the algorithm of [103]resulting in an algorithm which runs O(n2� + n1��) time and performs O(n1+�) work on a CREWPRAM. With respect to work, this gives the best (deterministic) parallel algorithm known for thesingle-source shortest path problem in planar digraphs that runs in sublinear time.
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Chapter 9Predecessor Queries in DynamicInteger Sets
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Predecessor Queries in Dynamic Integer SetsGerth St�lting Brodal�BRICSy, Department of Computer Science, University of AarhusNy Munkegade, DK-8000 �Arhus C, Denmarkgerth@brics.dkAbstractWe consider the problem of maintaining a set of n integers in the range 0::2w � 1 under theoperations of insertion, deletion, predecessor queries, minimumqueries and maximumqueries ona unit cost RAM with word size w bits. Let f(n) be an arbitrary nondecreasing smooth functionsatisfying log logn � f(n) � plogn. A data structure is presented supporting insertions anddeletions in worst case O(f(n)) time, predecessor queries in worst case O((logn)=f(n)) time andminimum and maximum queries in worst case constant time. The required space is O(n2�w) foran arbitrary constant � > 0. The RAM operations used are addition, arbitrary left and right bitshifts and bit-wise boolean operations. The data structure is the �rst supporting predecessorqueries in worst case O(logn= log logn) time while having worst case O(log logn) update time.Category: E.1, F.2.2Keywords: searching, dictionaries, priority queues, RAM model, worst case complexity9.1 IntroductionWe consider the problem of maintaining a set S of size n under the operations:Insert(e) inserts element e into S,Delete(e) deletes element e from S,Pred(e) returns the largest element � e in S, andFindMin/FindMax returns the minimum/maximum element in S.In the comparison model Insert, Delete and Pred can be supported in worst case O(logn)time and FindMin and FindMax in worst case constant time by a balanced search tree, sayan (a; b)-tree [64]. For the comparison model a tradeo� between the operations has been shownby Brodal et al. [20]. The tradeo� shown in [20] is that if Insert and Delete take worst caseO(t(n)) time then FindMin (and FindMax) requires at least worst case n=2O(t(n)) time. Becausepredecessor queries can be used to answer member queries, minimum queries and maximum queries,Pred requires worst case maxf
(logn); n=2O(t(n))g time. For the sake of completeness we mentionthat matching upper bounds can be achieved by a (2; 4)-tree of depth at most t(n) where each leafstores �(n=2t(n)) elements, provided Delete takes a pointer to the element to be deleted.�Supported by the Danish Natural Science Research Council (Grant No. 9400044). Partially supported by theESPRIT Long Term Research Program of the EU under contract #20244 (ALCOM-IT).yBRICS (Basic Research in Computer Science), a Centre of the Danish National Research Foundation.95



In the following we consider the problem on a unit cost RAM with word size w bits allowingaddition, arbitrary left and right bit shifts and bit-wise boolean operations on words in constanttime. Miltersen [78] refers to this model as a Practical RAM. We assume the elements are integersin the range 0::2w � 1. A tradeo� similar to the one for the comparison model [20] is not knownfor a Practical RAM.A data structure of van Emde Boas et al. [104, 106] supports the operations Insert, Delete,Pred, FindMin and FindMax on a Practical RAM in worst case O(logw) time. For word sizelogO(1)n this implies an O(log logn) time implementation.Thorup [102] recently presented a priority queue supporting Insert and DeleteMin in worstcase O(log logn) time independently of the word size w. Thorup notes that by tabulating the multi-plicity of each of the inserted elements the construction supports Delete in amortized O(log logn)time by skipping extracted integers of multiplicity zero. The data structure of Thorup does notsupport predecessor queries but Thorup mentions that an 
(log1=3�o(1)n) lower bound for Predcan be extracted from [77, 79]. The space requirement of Thorup's data structure is O(n2�w) (ifthe time bounds are amortized the space requirement is O(n+ 2�w)).Andersson [5] has presented a Practical RAM implementation supporting insertions, deletionsand predecessor queries in worst case O(plogn) time and minimum and maximum queries in worstcase constant time. The space requirement of Andersson's data structure is O(n + 2�w). Severaldata structures can achieve the same time bounds as Andersson [5], but they all require constanttime multiplication [6, 54, 93].The main result of this paper is Theorem 22 stated below. The theorem requires the notion ofsmooth functions. Overmars [86] de�nes a nondecreasing function f to be smooth if and only iff(O(n)) = O(f(n)).Theorem 22 Let f(n) be a nondecreasing smooth function satisfying log logn � f(n) � plog n.On a Practical RAM a data structure exists supporting Insert and Delete in worst case O(f(n))time, Pred in worst case O((logn)=f(n)) time and FindMin and FindMax in worst case constanttime, where n is the number of integers stored. The space required is O(n2�w) for any constant � > 0.If f(n) = log logn we achieve the result of Thorup but in the worst case sense, i.e., we cansupport Insert, DeleteMin and Delete in worst case O(log log n) time. We can support Predqueries in worst case O(logn= log log n) time. The data structure is the �rst allowing predecessorqueries in O(logn= log log n) time while having O(log logn) update time. If f(n) = plogn, weachieve time bounds matching those of Andersson [5].The basic idea of our construction is to apply the data structure of van Emde Boas et al. [104,106] for O(f(n)) levels and then switch to a packed search tree of height O(logn=f(n)). This isvery similar to the data structure of Andersson [5]. But where Andersson uses O(logn=f(n)) timeto update his packed B-tree, we only need O(f(n)) time. The idea we apply to achieve this speedupis to add bu�ers of delayed insertions and deletions to the search tree, such that we can work onseveral insertions concurrently by using the word parallelism of the Practical RAM. The idea ofadding bu�ers to a search tree has in the context of designing I/O e�cient data structures beenapplied by Arge [7].Throughout this paper we w.l.o.g. assume Delete only deletes integers actually contained inthe set and Insert never inserts an already inserted integer. This can be satis�ed by tabulatingthe multiplicity of each inserted integer.In the description of our data structure we in the following assume n is a constant such that thecurrent number of integers in the set is �(n). This can be satis�ed by using the general dynamizationtechnique described by Overmars [86], which requires f(n) to be smooth. In Section 9.2 if we write96



1 0 � � �0 � � � 1 0 � � �0 0 x` � � � 0 x1| {z }�eld k | {z }�eld `+ 1| {z }�eld ` | {z }�eld 1Figure 9.1: The structure of a list of maximum capacity k, containing integers x1; : : : ; x`.log5 n � k, we actually mean that k is a function of n, but because we assume n to be a constantk is also assumed to be a constant.In Section 9.2 we describe our packed search trees with bu�ers. In Section 9.3 we describe howto perform queries in a packed search tree and in Section 9.4 how to update a packed search tree. InSection 9.5 we combine the packed search trees with a range reduction based on the data structureof van Emde Boas et al. [104, 106] to achieve the result stated in Theorem 22. Section 9.6 containssome concluding remarks and lists some open problems.9.2 Packed search trees with bu�ersIn this and the following two sections we describe how to maintain a set of integers of w=k bitseach, for k satisfying log5 n � k � w= logn. The bounds we achieve are:Lemma 11 Let k satisfy log5 n � k � w= logn. If the integers to be stored are of w=k bits eachthen on a Practical RAM Insert and Delete can be supported in worst case O(log k) time, Predin worst case O(log k+logn= logk) time and FindMin and FindMax in worst case constant time.The space required is O(n).The basic idea is to store O(k) integers in each word and to use the word parallelism of thePractical RAM to work on O(k) integers in parallel in constant time. In the following we w.l.o.g.assume that we can apply Practical RAM operations to a list of O(k) integers stored in O(1) wordsin worst cast constant time. Together with each integer we store a test bit, as in [4, 5, 102]. Aninteger together with the associated test bit is denoted a �eld. Figure 9.1 illustrates the structureof a list of maximum capacity k containing ` � k integers x1; : : : ; x`. A �eld containing the integerxi has a test bit equal to zero. The remaining k � ` empty �elds store the integer zero and a testbit equal to one.Essential to the data structure to be described is the following lemma due to Albers andHagerup [4].Lemma 12 (Albers and Hagerup) On a Practical RAM two sorted lists each of at most O(k)integers stored in O(1) words can be merged into a single sorted list stored in O(1) words in O(log k)time.Albers and Hagerup's proof of Lemma 12 is a description of how to implement the bitonicmerging algorithm of Batcher [10] in a constant number of words on the Practical RAM. Thealgorithm of Albers and Hagerup does not handle partial full lists as de�ned (all test bits areassumed to be zero), but it is straightforward to modify their algorithm to do so, by considering aninteger's test bit as the integer's most signi�cant bit. A related lemma we need for our constructionis the following: 97



Lemma 13 Let k satisfy k � w= logn. Let A and B be two sorted and repetition free lists each ofat most O(k) integers stored in O(1) words on a Practical RAM. Then the sorted list A nB can becomputed and stored in O(1) words in O(log k) time.Proof. Let C be the list consisting of A merged with B twice. By Lemma 12 the merging canbe done in worst case O(log k) time. By removing all integers appearing at least twice from Cwe get A n B. In the following we outline how to eliminate these repetitions from C. Tediousimplementation details are omitted.First a mask is constructed corresponding to the integers only appearing once in C. This canbe done in worst case constant time by performing the comparisons between neighbor integers inC by subtraction like the mask construction described in [4]. The integers appearing only once inC are compressed to form a single list as follows. First a pre�x sum computation is performed tocalculate how many �elds each integer has to be shifted to the right. This can be done in O(log k)time by using the constructed mask. Notice that each of the calculated values is an integer in therange 0; : : : ; jAj+2jBj, implying that each �eld is required to contain at least O(log k) bits. Finallywe perform O(log k) iterations where we in the i'th iteration move all integers xj , 2i �elds to theright if the binary representation of the number of �elds xj has to be shifted has the i'th bit set.A similar approach has been applied in [4] to reverse a list of integers. 2The main component of our data structure is a search tree T where all leaves have equal depthand all internal nodes have degree at least one and at most � � k= log4 n. Each leaf v stores asorted list Iv of between k=2 and k integers. With each internal node v of degree d(v) we stored(v)� 1 keys to guide searches. The d(v) pointers to the children of v can be packed into a singleword because they require at most d(v) logn � w bits, provided that the number of nodes is lessthan n.This part of the data structure is quite similar to the packed B-tree described by Andersson [5].To achieve faster update times for Insert and Delete than Andersson, we add bu�ers of delayedInsert and Delete operations to each internal node of the tree.With each internal node v we maintain a bu�er Iv containing a sorted list of integers to beinserted into the leaves of the subtree Tv rooted at v, and a bu�er Dv containing a sorted listof integers to be deleted from Tv. We maintain the invariants that Iv and Dv are disjoint andrepetition free, and that maxfjIvj; jDvjg < � logn: (9.1)The set Sv of integers stored in a subtree Tv can recursively be de�ned asSv = ( Iv if v is a leaf,Iv [ ((Sw a child of v Sw) nDv) otherwise. (9.2)Finally we maintain two nonempty global bu�ers of integers L and R each of size O(k) to beable to answer minimum and maximum queries in constant time. The integers in L are less thanall other integers stored, and the integers in R are greater than all other integers stored.Let h denote the height of T . In Section 9.4 we show how to guarantee that h = O(logn= log k),implying that the number of nodes is O(hn=k) = O(n).9.3 Queries in packed search treesBy explicitly remembering the minimum integer in L and the maximum integer in R it is trivial toimplement FindMin and FindMax in worst case constant time. A Pred(e) query can be answered98



as follows. If e � max(L) then the predecessor of e is contained in L and can be found in worstcase O(logk) time by standard techniques. If min(R) � e then the predecessor of e is contained inR. Otherwise we have to search for the predecessor of e in T .We �rst perform a search for e in the search tree T . The implementation of the search for e inT is identical to how Andersson searches in a packed B-tree [5]. We refer to [5] for details. Let �be the leaf reached and w1; : : : ; wh�1 be the internal nodes on the path from the root to �. De�newh = �. Because we have introduced bu�ers at each internal node of T the predecessor of e doesnot necessarily have to be stored in I� but can also be contained in one of the insert bu�ers Iwi .An integer a 2 Iwi can only be a predecessor of e if it has not been deleted by a delayed deleteoperation, i.e., a =2 Dwj for 1 � j < i. It seems necessary to ush all bu�ers Iwi and Dwi forintegers which should be inserted in or deleted from I� to be able to �nd the predecessor of e. Ifdom� denotes the interval of integers spanned by the leaf �, the bu�ers Iwi and Dwi can be ushedfor elements in dom� by the following sequence of operations:Iwi+1  Iwi+1 n (Dwi \ dom�)[ (Iwi \ dom�) nDwi+1 ;Dwi+1  Dwi+1 n (Iwi \ dom�)[ (Dwi \ dom�) n Iwi+1 ;Iwi  Iwi n dom�;Dwi  Dwi n dom�:Let Î� denote the value of I� after ushing all bu�ers Iwi and Dwi for integers in the rangedom�. From (9.2) it follows that Î� can also be computed directly by the expressionÎ� = dom� \ (((� � �((I� nDwh�1) [ Iwh�1) � � �) nDw1) [ Iw1): (9.3)Based on Lemmas 12 and 13 we can compute this expression in O(h logk) time. This is unfor-tunately O(logn) for the tree height h = logn= log k. In the following we outline how to �nd thepredecessor of e in Î� without actually computing Î� in O(log k + logn= log k) time.Let I 0wi be Iwi \ dom�\]1; e] for i = 1; : : : ; h. An alternative expression to compute thepredecessor of e in Î� is max [i=1;:::;h(I 0wi n [j=1;:::;i�1Dwj): (9.4)Because jSj=1;:::;h�1Dwj j < � log2 n we can w.l.o.g. assume jI 0wh j � � log2 n in (9.4) by restrictingour attention to the � log2 n largest integers in I 0wh , i.e., all sets involved in (9.4) have size at most� log2 n. The steps we perform to compute (9.4) are the following. All implementation details areomitted.� First all bu�ers Iwi and Dwi for i < h are inserted into a single word W where the contentsof W is considered as 2h� 2 independent lists each of maximum capacity � log2 n. This canbe done in O(h) = O(logn= log k) time.� Using the word parallelism of the Practical RAM we now for all Iwi compute I 0wi . This canbe done in O(log k) time if min(dom�) is known. The integer min(dom�) can be computedin the search phase determining the leaf �. W now contains I 0wi and Dwi for i < h.� The value of I 0wh is computed (satisfying jI 0wh j � � log2 n) and appended to W . This can bedone in O(log k) time. The contents of W is nowI 0whDwh�1I 0wh�1 � � �Dw1I 0w1 :99



WI I0wh � � � I 0wh I0wh � � � I 0w1 � � � I 0w1 I0w1WD Dwh�1 � � � Dw2 Dw1 � � � Dwh�1 � � � Dw2 Dw1WM Mh;h�1 � � � Mh;2 Mh;1 � � � M1;h�1 � � � M1;2 M1;1Figure 9.2: The structure of the words WI , WD and WM .� Let WI = (I 0wh)h�1 � � � (I 0w1)h�1 and WD = (Dwh�1 � � �Dw1)h. See Figure 9.2. The numberof �elds required in each word is h(h � 1)� log2 n � � log4 n � k. The two words can beconstructed from W in O(log k) time.� From WI and WD we now construct h(h � 1) masks Mi;j such that Mi;j is a mask for the�elds of I 0wi which are not contained in Dwj . See Figure 9.2. The construction of a maskMi;jfrom the two list I 0wi and Dwj is very similar to the proof of Lemma 13 and can be done asfollows in O(log k) time.First I is merged with D twice (we omit the subscripts while outlining the mask construction).Let C be the resulting list. From C construct in constant time a mask C 0 that contains onesin the �elds in which C stores an integer only appearing once in C and zero in all other�elds. By removing all �elds from C having exactly one identical neighbor we can recoverI from C. By removing the corresponding �elds from C 0 we get the required mask M . Asan example assume I = (7; 5; 4; 3; 1) and D = (6; 5; 2). Then C = (7; 6; 6; 5; 5; 5; 4; 3; 2; 2; 1),C0 = (1; 0; 0; 0; 0; 0; 1; 1; 0; 0; 1) and M = (1; 0; 1; 1; 1) where underlined �elds are the �elds inC having exactly one identical neighbor.� We now compute masks Mi = Vj=1;:::;i�1Mi;j for all i. By applying Mi to I 0wi we getI 0wi nSj=1;:::;i�1Dwj . This can be done in O(log k) time from WM and WI .� Finally we in O(log k) time compute (9.4) as the maximum over all the integers in the setscomputed in the previous step. Notice that it can easily be checked if e has a predecessor inÎ� by checking if all the sets computed in the previous step are empty.We conclude that the predecessor of e in Î� can be found in O(log k+h) = O(log k+logn= log k)time.If e does not have a predecessor in Î� there are two cases to consider. The �rst is if there existsa leaf �� to the left of �. Then the predecessor of e is the largest integer in Î��. Notice that Î�� isnonempty because jSj=1;:::;h�1D �wj j < jI��j. If � is the leftmost leaf the predecessor of e is the largestinteger in L. We conclude that Pred queries can be answered in worst case O(log k+ logn= log k)time on a Practical RAM.9.4 Updating packed search treesIn the following we describe how to perform Insert and Delete updates. We �rst give a solutionachieving the claimed time bounds in the amortized sense. The amortized solution is then convertedinto a worst case solution by standard techniques.We �rst consider Insert(e). If e < max(L) we insert e into L in log k time, remove the maximumfrom L such that jLj remains unchanged, and let e become the removed integer. If min(R) < e weinsert e in R, remove the minimum from R, and let e become the removed integer.100



Let r denote the root of T . If e 2 Dr, remove e from Dr in worst case O(log k) time, i.e.,Insert(e) cancels a delayed Delete(e) operation. Otherwise insert e into Ir.If jIrj < � logn this concludes the Insert operation. Otherwise there must exist a child w ofr such that logn integers can be moved from Ir to the subtree rooted at w. The child w and thelogn integers X to be moved can be found by a binary search using the search keys stored at rin worst case O(log k) time. We omit the details of the binary search in Ir. We �rst remove theset of integers X from Ir such that jIrj < � logn. We next remove all integers in X \Dw from Xand from Dw in O(log k) time by Lemma 13, i.e., we let delayed deletions be cancel out by delayedinsertions. The remaining integers in X are merged into Iw in O(log k) time. Notice that Iw andDw are disjoint after the merging and that if w is an internal node then jIwj < (�+ 1) logn.If jIwj � � logn and w is not a leaf we recursively apply the above to Iw. If w is a leaf andjIwj � k we are done. The only problem remaining is if w is a leaf and k < jIwj � k + logn � 2k.In this case we split the leaf w into two leaves each containing between k=2 and k integers, andupdate the search keys and child pointers stored at the parent of w. If the parent p of w now has� + 1 children we split p into two nodes of degree � �=2 while distributing the bu�ers Ip and Dpamong the two nodes w.r.t. the new search key. The details of how to split a node is describedin [5]. If the parent of p gets degree � + 1 we recursively split the parent of p.The implementation of inserting e in T takes worst case O(h log k) time. Because the numberof leaves is O(n) and that T is similar to a B-tree if we only consider insertions we get that theheight of T is h = O(logn= log�) = O(logn= log(k= log4 n)) = O(logn= log k) because k � log5 n.It follows that the worst case insertion time in T is O(logn). But because we remove log n integersfrom Ir every time jIrj = � logn we spend at most worst case O(logn) time once for every log ninsertion. All other insertions require worst case O(log k) time. We conclude that the amortizedinsertion time is O(log k).We now describe how to implement Delete(e) in amortized O(log k) time. If e is containedin L we remove e from L. If L is nonempty after having removed e we are done. If L becomesempty we proceed as follows. Let � be the leftmost leaf of T . The basic idea is to let L becomeÎ�. We do this as follows. First we ush all bu�ers along the leftmost path in the tree for integerscontained in dom�. Based on (9.3) this can be done in O(h logk) time. We can now assume(Iw [Dw) \ dom� = ; for all nodes w on the leftmost path and that I� = Î�. We can now assignL the set I� and remove the leaf �. If the parent p of � gets degree zero we recursively removep. Notice that if p gets degree zero then Ip and Dp are both empty. Because the total size ofthe of insertion and deletion bu�ers on the leftmost path is bounded by h� logn � k= log2 n itfollows that logn � k=2� k= log2 n � jLj � k + k= log2 n. It follows that L cannot become emptythroughout the next logn Delete operations. The case e 2 R is handled symmetrically by letting� be the rightmost leaf.If e =2 L [ R we insert e in Dr provided e =2 Ir. If e 2 Ir we remove e from Ir in O(log k) timeand are done. If jDrj � � logn we can move logn integers X from Dr to a child w of r. If w isan internal node we �rst remove X \ Iw from X and Iw , i.e., delayed insertions cancels delayedinsertions, and then inserts the remaining elements in X into Dw. If jDwj � � logn we recursivelymove logn integers from Dw to a child of w. If w is a leaf � we just remove the integers X fromI�. If jI�j � k=2 we are done. Otherwise let �� denote the leaf to the right or left of � (If �� doesnot exist the set only contains O(k) integers and the problem is easy to handle. In the followingwe w.l.o.g. assume �� exists). We �rst ush all bu�ers on the paths from the root r to � and �� suchthat the bu�ers do not contain elements from dom� [ dom��. This can be done in O(h logn) timeas previously described. Fromk=2 + k=2� logn � 2h� logn � jI� [ I��j � k=2 + k � 1 + 2h� logn101



it follows that k=2 � jI� [ I��j � 2k. There are two cases to consider. If j�+ ��j � k we redistributeI� and I�� such that they both have size at least k=2 and at most k. Because all bu�ers on thepath from � (��) to the root intersect empty with dom�[ dom�� we in addition only need to updatethe search key stored at the nearest common ancestor of � and �� in T which separates dom� anddom��. This can be done in O(h+ log k) time. The second case is if j�+ ��j < k. We then move theintegers in I� to I�� and remove the leaf � as described previously. The total worst case time for adeletion becomes O(h logk) = O(logn). But again the amortized time is O(log k) because L andR become empty for at most every logn'th Delete operation, and because Dr becomes full for atmost every log n'th Delete operation.In the previous description of Delete we assumed the height of T is h = O(logn= log k). Weargued that this was true if only Insert operations were performed because then our search tree issimilar to a B-tree. It is easy to see that if only O(n) leaves have been remove, then the height of Tis still h = O(logn= log k). One way to see this is by assuming that all removed nodes still resist inT . Then T has at most O(n) leaves and each internal node has degree at least �=2, which impliesthe claimed height. By rebuilding T completely such that all internal nodes have degree �(�) forevery n'th Delete operation we can guarantee that at most n leaves have been removed since Twas rebuild the last time. The rebuilding of T can easily be done in O(n log k) time implying thatthe amortized time for Delete only increases by O(log k).We conclude that Insert and Delete can be implemented in amortized O(log k) time. Thespace required is O(n) because each node can be stored in O(1) words.To convert the amortized time bounds into worst case time bounds we apply the standardtechnique of incrementally performing a worst case expensive operation over the following sequenceof operations by moving the expensive operation into a shadow process that is executed in a quasi-parallel fashion with the main algorithm. The rebuilding of T when O(n) Delete operations havebeen performed can be handled by the general dynamization technique of Overmars [86] in worstcase O(log k) time per operation. For details refer to [86]. What remains to be described is howto handle the cases when L or R becomes empty and when Ir or Dr becomes full. The basic ideais to handle these cases by simply avoiding them. Below we outline the necessary changes to theamortized solution.The idea is to allow Ir and Dr to have size � logn + O(logn) and to divide the sequence ofInsert and Delete operations into phases of log n=4 operations. In each phase we perform one ofthe transformations below to T incrementally over the logn=4 operations of the phase by performingworst case O(1) work per Insert or Delete operation. We cyclic choose which transformationto perform, such that for each logn'th operation each transformation has been performed at leastonce. Each of the transformations can be implemented in worst case O(logn) time as described inthe amortized solution.� If jLj < k at the start of the phase and � denotes the leftmost leaf of T we incrementally mergeL with Î� and remove the leaf �. It follows that L always has size at least k �O(logn) > 0.� The second transformation similarly guarantees that jRj > 0 by merging R with Î� where �is rightmost leaf of T if jRj < k.� If jIrj � � logn at the start of the phase we incrementally remove logn integers from Ir. Itfollows that the size of Ir is bounded by � logn+ O(logn) = O(k).� The last transformation similarly guarantees that the size of Dr is bounded by � logn +O(logn) by removing logn integers from Dr if jDrj � � logn.This �nishes our description of how to achieve the bounds stated in Lemma 11.102



9.5 Range reductionTo prove Theorem 22 we combine Lemma 11 with a range reduction based on a data structure ofvan Emde Boas et al. [104, 106]. This is similar to the data structure of Andersson [5], and fordetails we refer to [5]. We w.l.o.g. assume w � 2f(n) logn.The idea is to use the topmost f(n) levels of the data structure of van Emde Boas et al. andthen switch to our packed search trees. If f(n) � 5 log logn the integers we need to store are ofw=2f(n) � w= log5 n bits each and Lemma 11 applies for k = 2f(n). By explicitly remembering theminimum and maximum integer stored FindMin and FindMax are trivial to support in worst caseconstant time. The remaining time bounds follow from Lemma 11. The space bound of O(n2�w)follows from storing the arrays at each of the O(n) nodes in the data structure of van Emde Boaset al. as a trie of degree 2�w.9.6 ConclusionWe have presented the �rst data structure for a Practical RAM allowing the update operationsInsert and Delete in worst case O(log logn) time while answering Pred queries in worst caseO(logn= log logn) time. An interesting open problem is if it is possible to support Insert andDelete in worst case O(log logn) time and Pred in worst case O(plog n) time. The general openproblem is to �nd a tradeo� between the update time and the time for predecessor queries on aPractical RAM.AcknowledgmentsThe author thanks Theis Rauhe, Thore Husfeldt and Peter Bro Miltersen for encouraging discus-sions, and the referees for comments.
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Approximate Dictionary QueriesGerth St�lting Brodal�BRICSy, Department of Computer ScienceUniversity of AarhusNy Munkegade, 8000 �Arhus C, Denmarkgerth@brics.dk Leszek G�asienieczMax{Planck{Institut f�ur InformatikIm Stadtwald, 66123 Saarbr�ucken, Germanyleszek@mpi-sb.mpg.deAbstractGiven a set of n binary strings of length m each. We consider the problem of answeringd{queries. Given a binary query string � of length m, a d{query is to report if there exists astring in the set within Hamming distance d of �.We present a data structure of size O(nm) supporting 1{queries in time O(m) and thereporting of all strings within Hamming distance 1 of � in time O(m). The data structure canbe constructed in time O(nm). A slightly modi�ed version of the data structure supports theinsertion of new strings in amortized time O(m).Category: F.2.2Keywords: dictionaries, approximate queries, RAM model10.1 IntroductionLet W = fw1; : : : ; wng be a set of n binary strings of length m each, i.e., wi 2 f0; 1gm. The setW is called the dictionary. We are interested in answering d{queries, i.e., for any query string� 2 f0; 1gm to decide if there is a string wi in W with at most Hamming distance d of �.Minsky and Papert originally raised this problem in [80]. Recently a sequence of papers haveconsidered how to solve this problem e�ciently [41, 42, 59, 74, 112]. Manber and Wu [74] consideredthe application of approximate dictionary queries to password security and spelling correction ofbibliographic �les. Their method is based on Bloom �lters [12] and uses hashing techniques. Dolevet al. [41, 42] and Greene, Parnas and Yao [59] considered approximate dictionary queries for thecase where d is large.The initial e�ort towards a theoretical study of the small d case was given by Yao and Yaoin [112]. They present for the case d = 1 a data structure supporting queries in time O(m log logn)with space requirement O(nm logm). Their solution was described in the cell-probe model ofYao [111] with word size equal to 1. In this paper we adopt the standard unit cost RAMmodel [105].For the general case where d > 1, d{queries can be answered in optimal space O(nm) doingPdi=0 �mi � exact queries each requiring time O(m) by using the data structure of Fredman, Komlos�Supported by the Danish Natural Science Research Council (Grant No. 9400044). Partially supported by theESPRIT Long Term Research Program of the EU under contract #20244 (ALCOM-IT). This research was donewhile visiting the Max-Planck Institut f�ur Informatik, Saabr�ucken, Germany.yBasic Research in Computer Science, a Centre of the Danish National Research Foundation.zOn leave from Institute of Informatics, Warsaw University, ul. Banacha 2, 02{097, Warszawa, Poland.WWW: http://zaa.mimuw.edu.pl/�lechu/lechu.html.107



and Szemeredi [51]. On the other hand d{queries can be answered in time O(m) when the sizeof the data structure can be O(nPdi=0 �mi �). We present the corresponding data structure of sizeO(nm) for the 1{query case.We present a simple data structure based on tries [2, 50] which has optimal size O(nm) andsupports 1{queries in time O(m). Unfortunately, we do not know how to construct the datastructure in time O(nm) and we leave this as an open problem. However, we give a more involveddata structure of size O(nm), based on two tries, supporting 1{queries in time O(m) and whichcan be constructed in time O(nm). Both data structures support the reporting of all stringswith Hamming distance at most one of the query string � in time O(m). For general d both datastructures support d{queries in time O(mPd�1i=0 �mi �). The second data structure can be made semi-dynamic in terms of allowing insertions in amortized time O(m), when starting with an initiallyempty dictionary. Both data structures work as well for larger alphabets j�j > 2, when the querytime is slowed down by a log j�j factor.The paper is organized as follows. In Section 10.2 we give a simple O(nm) size data structuresupporting 1{queries in time O(m). In Section 10.3 we present an O(nm) size data structureconstructible in time O(nm) which also supports 1{queries in time O(m). In Section 10.4 we presenta semi-dynamic version of the second data structure allowing insertions. Finally in Section 10.5 wegive concluding remarks and mention open problems.10.2 A trie based data structureWe assume that all strings considered are over a binary alphabet � = f0; 1g. We let jwj denote thelength of w, w[i] denote the ith symbol of w and wR denote w reversed. The strings in the dictionaryW are called dictionary strings. We let distH(u; v) denote the Hamming distance between the twostrings u and v.The basic component of our data structure is a trie [50]. A trie, also called a digital search tree,is a tree representation of a set of strings. In a trie all edges are labeled by symbols such that everystring corresponds to a path in the trie. A trie is a pre�x tree, i.e., two strings have a commonpath from the root as long as they have the same pre�x. Since we consider strings over a binaryalphabet the maximum degree of a trie is at most two.Assume that all strings wi 2 W are stored in a 2-dimensional array AW of size n �m, i.e., ofn rows and m columns, such that the ith string is stored in the ith row of the array AW . Noticethat AW [i; j] is the jth symbol wi. For every string wi 2 W we de�ne a set of associated stringsAi = fv 2 f0; 1gmjdistH(v; wi) = 1g, where jAij = m, for i = 1; : : : ; n. The main data structureis a trie T containing all strings wi 2 W and all strings from Ai, for all i = 1; : : : ; n, i.e., everypath from the root to a leaf in the trie represents one of the strings. The leaves of T are labeled byindices of dictionary strings such that a leaf representing a string s and labeled by index i satis�esthat s = wi or s 2 Ai.Given a query string � an 1{query can be answered as follows. The 1{query is answeredpositively if there is an exact match, i.e., � = wi 2 W , or � 2 Aj , for some 1 � j � n. Thusthe 1{query is answered positively if and only if there is a leaf in the trie T representing the querystring �. This can be checked in time O(m) by a top-down traverse in T . If the leaf exists thenthe index stored at the leaf is an index of a matched dictionary string.Notice that T has at most O(nm) leaves because it contains at most O(nm) di�erent strings.Thus T has at most O(nm) internal vertices with degree greater than one. If we compress allchains in T into single edges we get a compressed trie T 0 of size O(nm). Edges which correspondto compressed chains are labeled by proper intervals of rows in the array AW . If a compressed108



chain is a substring of a string in the a Aj then the information about the corresponding substringof wj is extended by the position of the changed bit. Since every entry in AW can be accessed inconstant time every 1{query can still be answered in time O(m).A slight modi�cation of the trie T 0 allows all dictionary strings which match the query string� to be reported. At every leaf s representing a string u in T 0 instead of one index we store allindices i of dictionary strings satisfying s = wi or s 2 Ai. Notice that the total size of the trie isstill O(nm) since every index i, for i = 1; : : : ; n, is stored at exactly m + 1 leaves. The reportingalgorithm �rst �nds the leaf representing the query string � and then reports all indices storedat that leaf. There are at most m + 1 reported string thus the reporting algorithm works in timeO(m). Thus the following theorem holds.Theorem 23 There exists a data structure of size O(nm) which supports the reporting of allmatched dictionary strings to an 1{query in time O(m).The data structure above is quite simple, occupies optimally space O(nm) and allows 1{queriesto be answered optimally in time O(m). But we do not know how to construct it in time O(nm).The straight forward approach gives a construction time of O(nm2) (this is the total size of thestrings in W and the associated strings from all Ai sets).In the next section we give another data structure of size O(nm), supporting 1{queries in timeO(m) and constructible in optimal time O(nm).10.3 A double-trie data structureIn the following we assume that all strings in W are enumerated according to their lexicographicalorder. We can satisfy this assumption by sorting the strings in W , for example, by radix sort intime O(nm). Let I = f1; : : : ; ng denote the set of the indices of the enumerated strings from W .We denote a set of consecutive indices (consecutive integers) an interval.The new data structure is composed of two tries. The trie TW contains the set of stings Wwhereas the trie TW contains all strings from the set W , where W = fwRi jwi 2Wg.Since TW is a pre�x trie every path from the root to a vertex u represents a pre�x pu of a stringwi 2 W . Denote by Wu the set fwi 2 W jwi has pre�x pug. Since strings in W are enumeratedaccording to their lexicographical order those indices form an interval Iu, i.e., wi 2 Wu if and onlyif i 2 Iu. Notice that an interval of a vertex in the trie TW is the concatenation of the intervals ofits children. For each vertex u in TW we compute the corresponding interval Iu, storing at u the�rst and last index of Iu.Similarly every path from the root to a vertex v in TW represents a reversed su�x sRv of a stringwj 2 W . Denote by W v the set fwi 2 W jwi has su�x svg and by Sv � I the set of indices ofstrings in W v. We organize the indices of every set Sv in sorted lists Lv (in increasing order). Atthe root r of the trie TW the list Lr is supported by a search tree maintaining the indices of allthe dictionary strings. For an index in a list Lv the neighbor with the smaller value is called leftneighbor and the one with greater value is called right neighbor. If a vertex x is the only child ofvertex v 2 TW then Sx and Sv are identical. If vertex v 2 TW has two children x and y (there areat most two children since TW is a binary trie) the sets Sx and Sy form a partition of the set Sv.Since indices in the set Sv are not consecutive (Sv is usually not an interval) we use additional linksto keep fast connection between the set Sv and its partition into Sx and Sy . Each element e in thelist Lv has one additional link to the closest element in the list Lx, i.e., to the smallest element erin the list Lx such that e � er or the greatest element el in the list Lx such that e � el. Moreover109



in case vertex v has two children, element e has also one additional link to the analogously de�nedelement el 2 Ly or er 2 Ly.Lemma 14 The tries TW and TW can be stored in O(nm) space and they can be constructed intime O(nm).Proof. The trie TW has at most O(nm) edges and vertices, i.e., the number of symbols in all stringsin W . Every vertex u 2 TW keeps only information about the two ends of its interval Iu = [l::r].For all u 2 TW both indices l and r can be easily computed by a postorder traversal of TW in timeO(nm).The number of vertices in TW is similarly bounded by O(nm). Moreover, for any level i =1; : : : ; m in TW , the sum P jSvj over all vertices v at this level is exactly n since the sets of indicesstored at the children forms a partition of the set kept by their parent. Since TW has exactly mlevels and every index in an Lv list has at most two additional links the size of TW does not exceedO(nm) too. The Lv lists are constructed by a postorder traversal of TW . A leaf representing thestring wRi has Lv = (i) and the Lv list of an internal vertex of TW can be constructed by mergingthe corresponding disjoint lists at its children. The additional links are created along with themerging. Thus the trie TW can be constructed in time O(nm). 2Answering queriesIn this section we show how to answer 1{queries in time O(m) assuming that both tries TW and TWare already constructed. We present a sequence of three 1{query algorithms all based on the double-trie structure. The �rst algorithm Query1 outlines how to use the presented data structure toanswer 1{queries. The second algorithm Query2 reports the index of a matched dictionary string.The third algorithm Query3 reports all matched dictionary strings.Let pref� be the longest pre�x of the string � that is also a pre�x of a string in W . The pre�xpref� is represented by a path from the root to a vertex u in the trie TW , i.e., p� = pu but for theonly child x of vertex u the string px is not a pre�x of �. We call the vertex u the kernel vertexfor the string � and the path from the root of TW to the kernel vertex u the leading path in TW .The interval I� = Iu associated with the kernel vertex u is called the kernel interval for the string� and the smallest element �� 2 I� is called the key for the query string �. Notice that the key�� 2 Iw, for every vertex w on the leading path in TW .Similarly in the trie TW we de�ne the kernel set Sv̂ which is associated with the vertex v̂, wherev̂ corresponds to the longest pre�x of the string �R in TW . The vertex v̂ is called a kernel vertexfor the string �R, and the path from the root of TW to v̂ is called the leading path in TW .The general idea of the algorithm is as follows. If the query string � has an exact match in theset W , then there is a leaf in TW which represents the query string �. The proper leaf can be foundin time O(m) by a top-down traverse of TW , starting from its root.If the query string � has no exact match in W but it has a match within distance one, we knowthat there is a string wi 2 W which has a factorization ��b��, satisfying:(1) �� is a pre�x of � of length l�,(2) �� is a su�x of � of length r�,(3) b 6= �[l� + 1] and(4) l� + r� + 1 = m. 110



ALGORITHM Query1beginu := u | the kernel vertex in TW .Find on the leading path in TW vertex v such that (u; v) is a feasible pair.while vertex v exists doif Iu \ Sv 6= ; then return \There is a match"u :=Parent(u)v :=Child-on-Leading-Path(v)odreturn \No match"end.Notice that pre�x �� must be represented by a vertex u in the leading path in TW and su�x ��must be represented by a vertex v in the leading path of TW . We call such a pair (u; v) a feasiblepair. To �nd the string wi within distance 1 of the query string � we have to search all feasiblepairs (u; v). Every feasible pair (u; v) for which Iu \ Sv 6= ;, represents at least one string withindistance 1 of the query string �. The algorithm Query1 generates consecutive feasible pairs (u; v)starting with u = u, the kernel vertex in TW . The algorithm Query1 stops with a positive answerjust after the �rst pair (u; v) with Iu\Sv 6= ; is found. It stops with a negative answer if all feasiblepairs (u; v) have Iu \ Sv = ;.Notice that the steps before the while loop in the algorithm Query1 can be performed in timeO(m). The algorithm looks for the kernel vertex in TW going from the root along the leading path(representing the pre�x pref�) as long as possible. The last reached vertex u is the kernel vertexu. Then the corresponding vertex v on the leading path in TW is found, if such a vertex exists.Recall that a pair (u; v) must be a feasible pair. At this point the following problem arises. Howto perform the test Iu \ Sv 6= ; e�ciently?Recall that the smallest index �� in the kernel interval I� is called the key for the query string �and recall also that the key �� 2 Iw, for every vertex w in the leading path in the trie TW . Duringthe �rst test Iu \ Sv 6= ; the position of the key �� in Sv is found in time log jSvj � log n � m(since W only contains binary strings we have log n � m). Let Iu = [l::r], a be the left (a � ��)and b the right (b > ��) neighbors of �� in the set Sv . Now the test Iu \ Sv 6= ; can be stated as:Iu \ Sv 6= ; � l � a _ b � r:If the above test is positive the algorithm Query2 reports the proper index among a and b andstops. Otherwise, in the next round of the while loop the new neighbors a and b of the key �� inthe new list Lv are computed in constant time by using the additional links between the elementsof the old and new list Lv.Theorem 24 1{queries to a dictionary W of n strings of length m can be answered in time O(m)and space O(nm).Proof. The initial steps of the algorithm (preceding the while loop) are performed in time O(m+logn) = O(m). The feasible pair (u; v) (if such exists) is simply found in time O(m). Then thealgorithm �nds in time O(logn) the neighbors of �� in the list Lr which is held at the root of TW .111



ALGORITHM Query2beginu := u | the kernel vertex in TW .Find on the leading path in TW vertex v such that (u; v) is a feasible pair.Find the neighbors a and b of the key �� in Sv.while vertex v exists doif l � a then return \String a is matched"if b � r then return \String b is matched"u :=Parent(u); Set l and r according to the new interval Iu.v :=Child-on-Leading-Path(v)Find new neighbors of ��, a and b, in the new list Lv.odreturn \No match"end.This is possible since the list Lr is supported by a search tree. Now the algorithm traverses theleading path in TW recovering at each level neighbors of �� in constant time using the additionallinks. There are at most m iterations of the while loop since there is exactly m levels in both triesTW and TW . Every iteration of the while loop is done in constant time since both neighbors a andb of the key �� in the new more sparse set Sv are found in constant time. Thus the total runningtime of the algorithm is O(m). 2We explain now how to modify the algorithm Query2 to an algorithm reporting all matchesto a query string. The main idea of the new algorithm is as follows. At any iteration of the whileloop instead of looking only for the left and the right neighbor of the key index �� the algorithmQuery3 searches one by one all indices to the left and right of �� which belong to the list Lv andto the interval Iu. To avoid multiple reporting of the same index the algorithm searches only thatpart of the new interval Iu which is an extension of the previous one. The variables a and b storethe leftmost and the rightmost searched indices in the list Lv.Theorem 25 There exists a data structure of size O(nm) and constructible in time O(nm) whichsupports the reporting of all matched dictionary strings to a 1{query in time O(m).Proof. The algorithm Query3 works in time O(m + #matched), where #matched is the numberof all reported strings. Since there is at most m + 1 reported strings (one exact matching and atmost m matches with one error) the total time of the reporting algorithm is O(m). 210.4 A semi-dynamic data structureIn this section we describe how the data structure presented in Section 10.3 can be made semi-dynamic such that new binary strings can be inserted into W in amortized time O(m). In thefollowing w0 denotes a string to be inserted into W .The data structure described in Section 10.3 requires that the strings wi are lexicographicallysorted and that each string has assigned its rank with respect to the lexicographical ordering of thestrings. If we want to add w0 to W we can use TW to locate the position of w0 in the sorted list of112



ALGORITHM Query3beginu := u | the kernel vertex in TW .Find on the leading path in TW vertex v such that (u; v) is a feasible pair.Find the neighbors a and b of the key �� in Sv.while vertex v exists dowhile l � a doreport \String a is matched"a := left neighbor of a in Lv.odwhile b � r doreport \String b is matched"b := right neighbor of b in Lv.odu :=Parent(u); Set l and r according to new Iu.v :=Child-on-Leading-Path(v)Find a or the left neighbor of a in the new list Lv .Find b or the right neighbor of b in the new list Lv.odend.wis in time O(m). If we continue to maintain the ranks explicitly assigned to the strings we haveto reassign new ranks to all strings larger than w0. This would require time 
(n). To avoid thisproblem, observe that the indices are used to store the endpoints of the intervals Iu and to storethe sets Sv , and that the only operation performed on the indices is the comparison of two indicesto decide if one string is lexicographically less than another string in constant time.Essentially what we need to know is if given the handles of two strings from W , which one ofthe two strings is the lexicographically smallest. A solution to this problem was given by Dietz andSleator [36]. They presented a data structure that allows a new element to be inserted into a linkedlist in constant time if the new element's position is known, and that can answer order queries inconstant time.By applying the data structure of Dietz and Sleator to maintain the ordering between thestrings, an insertion can now be implemented as follows. First insert w0 into TW . This requirestime O(m). The position of w0 in TW also determines its location in the lexicographically orderimplying that the data structure of Dietz and Sleator can be updated too. By traversing the pathfrom the new leaf representing w0 in TW to the root of TW , the endpoints of the intervals Iu canbe updated in time O(m).The insertion of w0R into TW without updating the associated �elds can be done in time O(m).Analogously to the query algorithm in Section 10.3, the positions in the Sv sets along the insertionpath of w0 in TW where to insert the handle of w0 can be found in time O(m).The problem remaining is to update the additional links between the elements in the Lv lists.For this purpose we change our representation to the following. Let v be a node with children xand y. In the following we only consider how to handle the links between Lv and Lx. The linksbetween Lv and Ly are handled analogously. For each element e 2 Lv \ Lx we maintain a pointer113



from the position of e in Lv to the position of e in Lx. For each element e 2 Lv nLx the pointer isnull. Let e 2 Lv . We can now �nd the closest element to e in Lx by �nding the closest element inLv that has a non null pointer. We denote such an element to be marked. For this purpose we usethe Find-Split-Add data structure of Imai and Asano [65], an extension of a data structure byGabow and Tarjan [55]. The data structure supports the following operations: Given a pointer toan element in a list, to �nd the closest marked element (Find); to mark an unmarked list element(Split); and to insert a new unmarked element into the list adjacent to an element in the list(Add). The operations Split and Add can be performed in amortized constant time and Findin worst case constant time on a RAM. Going from e in Lv to e's closest neighbor in Lx can stillbe performed in worst case constant time, because this only requires one Find operation to beperformed. When a new element e is added to Lv we just perform Add once, and in case e isadded to Lx too we also perform Split on e. This requires amortized constant time. Totally wecan therefore update all the links between the Lv lists in amortized time O(m) when inserting anew string into the dictionary.Theorem 26 There exists a data structure which supports the reporting of all matched dictionarystrings to a 1{query in worst case time O(m) and that allows new dictionary strings to be insertedin amortized time O(m).10.5 ConclusionWe have presented a data structure for the approximate dictionary query problem that can beconstructed in time O(nm), stored in O(nm) space and that can answer 1{queries in time O(m).We have also shown that the data structure can be made semi-dynamic by allowing insertions inamortized time O(m), when we start with an initially empty dictionary. For the general d casethe presented data structure allows d{queries to be answered in time O(mPd�1i=0 �mi �) by asking1{queries for all strings within Hamming distance d� 1 of the query string �. This improves thequery time of a na��ve algorithm by a factor of m. We leave as an open problem if the above querytime for the general d case can be improved when the size of the data structure is O(nm). Forexample, is there any o(m2) 2{query algorithm?Another interesting problem which is related to the approximate query problem and the ap-proximate string matching problem can be stated as follows. Given a binary string t of length n,is it possible to create a data structure for t of size O(n) which allows 1{queries, i.e., queries foroccurrences of a query string with at most one mismatch, in time O(m), where m is the size ofthe query string? By creating a compressed su�x tree of size O(n) for the string, 1{queries can beanswered in time O(m2) by an exhaustive search.AcknowledgmentThe authors thank Dany Breslauer for pointing out the relation to the Find-Split-Add problem.
114



Bibliography[1] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Design And Analysis ofComputer Algorithms. Addison-Wesley, Reading, MA, 1974.[2] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. Data Structures and Algorithms.Addison-Wesley, Reading, MA, 1983.[3] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows. Prentice-Hall,1993.[4] Susanne Albers and Torben Hagerup. Improved parallel integer sorting without concurrentwriting. In Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 463{472, 1992.[5] Arne Andersson. Sublogarithmic searching without multiplications. In Proc. 36th Ann. Symp.on Foundations of Computer Science (FOCS), pages 655{663, 1995.[6] Arne Andersson. Faster deterministic sorting and searching in linear space. In Proc. 37thAnn. Symp. on Foundations of Computer Science (FOCS), pages 135{141, 1996.[7] Lars Arge. The bu�er tree: A new technique for optimal I/O-algorithms. In Proc. 4th Work-shop on Algorithms and Data Structures (WADS), volume 955 of Lecture Notes in ComputerScience, pages 334{345. Springer Verlag, Berlin, 1995.[8] Mikhail J. Atallah and S. Rao Kosaraju. An adversary-based lower bound for sorting. Infor-mation Processing Letters, 13:55{57, 1981.[9] Michael D. Atkinson, J�org-R�udiger Sack, Nicola Santoro, and Thomas Strothotte. Min-maxheaps and generalized priority queues. Communications of the ACM, 29(10):996{1000, 1986.[10] Kenneth E. Batcher. Sorting networks and their applications. In Proc. AFIPS Spring JointComputer Conference, 32, pages 307{314, 1968.[11] Jit Biswas and James C. Browne. Simultaneous update of priority structures. In Int. Con-ference on Parallel Processing, pages 124{131, 1987.[12] Burton H. Bloom. Space/time trade-o�s in hash coding with allowable errors. Communica-tions of the ACM, 13:422{426, 1970.[13] B�ela Bollob�as and Istvan Simon. Repeated random insertion into a priority queue. Journalof Algorithms, 6:466{477, 1985.[14] Allan Borodin, Leonidas J. Guibas, Nancy A. Lynch, and Andrew C. Yao. E�cient searchingusing partial ordering. Information Processing Letters, 12:71{75, 1981.115



[15] Gerth St�lting Brodal. Fast meldable priority queues. In Proc. 4th Workshop on Algorithmsand Data Structures (WADS), volume 955 of Lecture Notes in Computer Science, pages 282{290. Springer Verlag, Berlin, 1995.[16] Gerth St�lting Brodal. Partially persistent data structures of bounded degree with constantupdate time. Nordic Journal of Computing, 3(3):238{255, 1996.[17] Gerth St�lting Brodal. Priority queues on parallel machines. In Proc. 5th ScandinavianWorkshop on Algorithm Theory (SWAT), volume 1097 of Lecture Notes in Computer Science,pages 416{427. Springer Verlag, Berlin, 1996.[18] Gerth St�lting Brodal. Worst-case e�cient priority queues. In Proc. 7th ACM-SIAM Sym-posium on Discrete Algorithms (SODA), pages 52{58, 1996.[19] Gerth St�lting Brodal. Predecessor queries in dynamic integer sets. In Proc. 14th Sympo-sium on Theoretical Aspects of Computer Science (STACS), volume 1200 of Lecture Notes inComputer Science, pages 21{32. Springer Verlag, Berlin, 1997.[20] Gerth St�lting Brodal, Shiva Chaudhuri, and Jaikumar Radhakrishnan. The randomizedcomplexity of maintaining the minimum. Nordic Journal of Computing, Selected Papers ofthe 5th Scandinavian Workshop on Algorithm Theory (SWAT'96), 3(4):337{351, 1996.[21] Gerth St�lting Brodal and Leszek G�asieniec. Approximate dictionary queries. In Proc. 7thCombinatorial Pattern Matching (CPM), volume 1075 of Lecture Notes in Computer Science,pages 65{74. Springer Verlag, Berlin, 1996.[22] Gerth St�lting Brodal and Chris Okasaki. Optimal purely functional priority queues. Journalof Functional Programming, December 1996.[23] Gerth St�lting Brodal, Jesper Larsson Tr�a�, and Christos D. Zaroliagis. A parallel prioritydata structure with applications. In Proc. 11th Int. Parallel Processing Symposium (IPPS),pages 689{693, 1997.[24] Mark R. Brown. Implementation and analysis of binomial queue algorithms. SIAM Journalof Computing, 7:298{319, 1978.[25] Adam L. Buchsbaum and Robert Endre Tarjan. Conuently persistent deques via data-structural bootstrapping. In Proc. 4th ACM-SIAM Symposium on Discrete Algorithms(SODA), pages 155{164, 1993.[26] Svante Carlsson. Heaps. PhD thesis, Dept. of Computer Science, Lund University, Lund,Sweden, 1986.[27] Svante Carlsson, Patricio V. Poblete, and J. Ian Munro. An implicit binomial queue withconstant insertion time. In Proc. 1st Scandinavian Workshop on Algorithm Theory (SWAT),volume 318 of Lecture Notes in Computer Science, pages 1{13. Springer Verlag, Berlin, 1988.[28] Danny Z. Chen and Xiaobo Hu. Fast and e�cient operations on parallel priority queues(preliminary version). In Algorithms and Computation: 5th International Symposium, ISAAC'93, volume 834 of Lecture Notes in Computer Science, pages 279{287. Springer Verlag, Berlin,1994. 116



[29] Richard Cole. Parallel merge sort. SIAM Journal of Computing, 17(4):130{145, 1988.[30] Sajal K. Das, Maria C. Pinotti, and Falguni Sarkar. Optimal and load balanced mappingof parallel priority queues in hypercubes. To appear in IEEE Transactions on Parallel andDistributed Systems.[31] Paul F. Dietz. Fully persistent arrays. In Proc. 1st Workshop on Algorithms and DataStructures (WADS), volume 382 of Lecture Notes in Computer Science, pages 67{74. SpringerVerlag, Berlin, 1989.[32] Paul F. Dietz. Heap construction in the parallel comparison tree model. In Proc. 3rd Scandi-navian Workshop on Algorithm Theory (SWAT), volume 621 of Lecture Notes in ComputerScience, pages 140{150. Springer Verlag, Berlin, 1992.[33] Paul F. Dietz and Rajeev Raman. Persistence, amortization and randomization. In Proc.2nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 78{88, 1991.[34] Paul F. Dietz and Rajeev Raman. A constant update time �nger search tree. InformationProcessing Letters, 52:147{154, 1994.[35] Paul F. Dietz and Rajeev Raman. Very fast optimal parallel algorithms for heap construction.In Proc. 6th Symposium on Parallel and Distributed Processing, pages 514{521, 1994.[36] Paul F. Dietz and Daniel D. Sleator. Two algorithms for maintaining order in a list. In Proc.19th Ann. ACM Symp. on Theory of Computing (STOC), pages 365{372, 1987.[37] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-matik, 1:269{271, 1959.[38] Yuzheng Ding and Mark Allen Weiss. The relaxed min-max heap. Acta Informatica, 30:215{231, 1993.[39] Ernst E. Doberkat. Deleting the root of a heap. Acta Informatica, 17:245{265, 1982.[40] Ernst E. Doberkat. An average case analysis of Floyd's algorithm to compute heaps. Infor-mation and Control, 61:114{131, 1984.[41] Danny Dolev, Yuval Harari, Nathan Linial, Noam Nisan, and Michael Parnas. Neighborhoodpreserving hashing and approximate queries. In Proc. 5th ACM-SIAM Symposium on DiscreteAlgorithms (SODA), pages 251{259, 1994.[42] Danny Dolev, Yuval Harari, and Michael Parnas. Finding the neighborhood of a query ina dictionary. In Proc. 2nd Israel Symposium on Theory of Computing and Systems, pages33{42, 1993.[43] James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert Endre Tarjan. Relaxedheaps: An alternative to �bonacci heaps with applications to parallel computation. Commu-nications of the ACM, 31(11):1343{1354, 1988.[44] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert Endre Tarjan. Making datastructures persistent. Journal of Computer and System Sciences, 38:86{124, 1989.117



[45] James R. Driscoll, Daniel D. K. Sleator, and Robert Endre Tarjan. Fully persistent lists withcatenation. In Proc. 2nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages89{99, 1991.[46] Rolf Fagerberg. A generalization of binomial queues. Information Processing Letters, 57:109{114, 1996.[47] Michael J. Fischer and Michael S. Paterson. Fishspear: A priority queue algorithm. Journalof the ACM, 41(1):3{30, 1994.[48] Rudolf Fleischer. A simple balanced search tree with O(1) worst-case update time. In Algo-rithms and Computation: 4th International Symposium, ISAAC '93, volume 762 of LectureNotes in Computer Science, pages 138{146. Springer Verlag, Berlin, 1993.[49] Robert W. Floyd. Algorithm 245: Treesort3. Communications of the ACM, 7(12):701, 1964.[50] Edward Fredkin. Trie memory. Communications of the ACM, 3:490{499, 1962.[51] Michael L. Fredman, Jan�os Koml�os, and Endre Szemer�edi. Storing a sparse table with O(1)worst case access time. Journal of the ACM, 31(3):538{544, 1984.[52] Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert Endre Tarjan. Thepairing heap: A new form of self{adjusting heap. Algorithmica, 1:111{129, 1986.[53] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improvednetwork optimization algorithms. Journal of the ACM, 34(3):596{615, 1987.[54] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound withfusion trees. Journal of Computer and System Sciences, 47:424{436, 1993.[55] Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case ofdisjoint set union. Journal of Computer and System Sciences, 30:209{221, 1985.[56] Andrew V. Goldberg, Serge A. Plotkin, and Pravin M. Vaidya. Sublinear-time parallel algo-rithms for matching and related problems. Journal of Algorithms, 14(2):180{213, 1993.[57] Leslie M. Goldschlager, Ralph A. Shaw, and John Staples. The maximum ow problem isLOGSPACE complete for P. Theoretical Computer Science, 21:105{111, 1982.[58] Gaston H. Gonnet and J. Ian Munro. Heaps on heaps. SIAM Journal of Computing,15(4):964{971, 1986.[59] Dan Greene, Michal Parnas, and Frances Yao. Multi-index hashing for information retrieval.In Proc. 35th Ann. Symp. on Foundations of Computer Science (FOCS), pages 722{731, 1994.[60] Leo J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R. Roberts. A new rep-resentation for linear lists. In Proc. 9th Ann. ACM Symp. on Theory of Computing (STOC),pages 49{60, 1977.[61] Y. Han, Victor Pan, and John H. Reif. Algorithms for computing all pair shortest pathsin directed graphs. In Proc. 4th ACM Symposium on Parallel Algorithms and Architectures(SPAA), pages 353{362, 1992. 118



[62] Godfrey H. Hardy, John E. Littlewood, and Gy�orgy P�olya. Inequalities. Cambridge UniversityPress, Cambridge, 1952.[63] Peter H�yer. A general technique for implementation of e�cient priority queues. In Proc.3rd Israel Symposium on Theory of Computing and Systems, pages 57{66, 1995.[64] Scott Huddleston and Kurt Mehlhorn. A new data structure for representing sorted lists.Acta Informatica, 17:157{184, 1982.[65] Hiroshi Imai and Taka Asano. Dynamic orthogonal segment intersection search. Journal ofAlgorithms, 8:1{18, 1987.[66] Joseph J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.[67] Haim Kaplan and Robert Endre Tarjan. Persistent lists with catenation via recursive slow-down. In Proc. 27th Ann. ACM Symp. on Theory of Computing (STOC), pages 93{102,1995.[68] Haim Kaplan and Robert Endre Tarjan. Purely functional representations of catenable sortedlists. In Proc. 28th Ann. ACM Symp. on Theory of Computing (STOC), pages 202{211, 1996.[69] Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a maximum matching is inrandom NC. Combinatorica, 6(1):35{38, 1986.[70] Chan M. Khoong. Optimal parallel construction of heaps. Information Processing Letters,48:159{161, 1993.[71] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching.Addison-Wesley, Reading, MA, 1973.[72] Frank Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,Trees, Hypercubes. Morgan Kaufmann, 1992.[73] Christos Levcopoulos and Mark H. Overmars. A balanced search tree with O(1) worst-caseupdate time. Acta Informatica, 26:269{277, 1988.[74] Udi Manber and Sun Wu. An algorithm for approximate membership checking with applica-tion to password security. Information Processing Letters, 50:191{197, 1994.[75] Colin McDiarmid. Average-case lower bounds for searching. SIAM Journal of Computing,17(5):1044{1060, 1988.[76] Kurt Mehlhorn and Athanasios K. Tsakalidis. Data structures. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity. MITPress/Elsevier, 1990.[77] Peter Bro Miltersen. Lower bounds for Union-Split-Find related problems on random accessmachines. In Proc. 26th Ann. ACM Symp. on Theory of Computing (STOC), pages 625{634,1994.[78] Peter Bro Miltersen. Lower bounds for static dictionaries on RAMs with bit operations butno multiplications. In Proc. 23rd Int. Colloquium on Automata, Languages and Programming(ICALP), volume 1099 of Lecture Notes in Computer Science, pages 442{453. Springer Verlag,Berlin, 1996. 119



[79] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structuresand asymmetric communication complexity. In Proc. 27th Ann. ACM Symp. on Theory ofComputing (STOC), pages 103{111, 1995.[80] Marvin Minsky and Seymour Papert. Perceptrons. MIT Press, Cambridge, Mass., 1969.[81] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrixinversion. Combinatorica, 7(1):105{113, 1987.[82] J. Ian Munro and Hendra Suwanda. Implicit data structures for fast search and update.Journal of Computer and System Sciences, 21:236{250, 1980.[83] Chris Okasaki. Purely functional random-access lists. In Functional Programming Languagesand Computer Architecutre, pages 86{95, 1995.[84] Chris Okasaki. Simple and e�cient purely functional queues and deques. Journal of Func-tional Programming, October 1995.[85] Chris Okasaki. Purely Functional Data Structures. PhD thesis, School of Computer Science,Carnegie Mellon University, 1996. Tech report CMU-CS-96-177.[86] Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notesin Computer Science. Springer Verlag, Berlin, 1983.[87] Richard C. Paige and Clyde P. Kruskal. Parallel algorithms for shortest path problems. InInt. Conference on Parallel Processing, pages 14{20, 1985.[88] Maria C. Pinotti, Sajal K. Das, and Vincenzo A. Crupi. Parallel and distributed meldablepriority queues based on binomial heaps. In Int. Conference on Parallel Processing, 1996.[89] Maria C. Pinotti and Geppino Pucci. Parallel priority queues. Information Processing Letters,40:33{40, 1991.[90] Maria C. Pinotti and Geppino Pucci. Parallel algorithms for priority queue operations. The-oretical Computer Science, 148(1):171{180, 1995.[91] Thomas Porter and Istvan Simon. Random insertion into a priority queue structure. IEEETransactions on Software Engineering, 1(3):292{298, 1975.[92] Rajeev Raman. Eliminating Amortization: On Data Structures with Guaranteed ResponseTime. PhD thesis, University of Rochester, New York, 1992. Computer Science Dept., U.Rochester, tech report TR-439.[93] Rajeev Raman. Priority queues: Small, monotone and trans-dichotomous. In ESA '96,Algorithms, volume 1136 of Lecture Notes in Computer Science, pages 121{137. SpringerVerlag, Berlin, 1996.[94] Abhiram Ranade, Szu-Tsung Cheng, Etienne Deprit, Je� Jones, and Sun-Inn Shih. Paral-lelism and locality in priority queues. In Proc. 6th Symposium on Parallel and DistributedProcessing, pages 490{496, 1994.[95] Nageswara S. V. Rao and Weixiong Zhang. Building heaps in parallel. Information ProcessingLetters, 37:355{358, 1991. 120



[96] V. Nageshwara Rao and Vipin Kumar. Concurrent access of priority queues. IEEE Transac-tions on Computers, 37(12):1657{1665, 1988.[97] J�org-R�udiger Sack and Thomas Strothotte. An algorithm for merging heaps. Acta Informat-ica, 22:171{186, 1985.[98] Neil Sarnak and Robert Endre Tarjan. Planar point location using persistent search trees.Communications of the ACM, 29:669{679, 1986.[99] Daniel Dominic Sleator and Robert Endre Tarjan. Self adjusting heaps. SIAM Journal ofComputing, 15(1):52{68, 1986.[100] Robert Endre Tarjan. Data Structures and Network Algortihms. Society for Industrial andApplied Matehmatics, Philadelphia, Pennsylvania, 1983.[101] Robert Endre Tarjan. Amortized computational complexity. SIAM Journal on Algebraic andDiscrete Methods, 6:306{318, 1985.[102] Mikkel Thorup. On RAM priority queues. In Proc. 7th ACM-SIAM Symposium on DiscreteAlgorithms (SODA), pages 59{67, 1996.[103] Jesper Larsson Tr�a� and Christos D. Zaroliagis. Simple parallel algorithm for the single-source shortest path problem on planar digraphs. In A Parallel Algorithms for IrregularlyStructured Problems (IRREGULAR'96), volume 1117 of Lecture Notes in Computer Science,pages 183{194. Springer Verlag, Berlin, 1996.[104] Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and linearspace. Information Processing Letters, 6:80{82, 1977.[105] Peter van Emde Boas. Machine models and simulations. In J. van Leeuwen, editor, Handbookof Theoretical Computer Science, Volume A: Algorithms and Complexity. MIT Press/Elsevier,1990.[106] Peter van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an e�cientpriority queue. Mathematical Systems Theory, 10:99{127, 1977.[107] Jan van Leeuwen. The composition of fast priority queues. Technical Report RUU-CS-78-5,Department of Computer Science, University of Utrecht, 1978.[108] Jean Vuillemin. A data structure for manipulating priority queues. Communications of theACM, 21(4):309{315, 1978.[109] John William Joseph Williams. Algorithm 232: Heapsort. Communications of the ACM,7(6):347{348, 1964.[110] A. C-C. Yao. Probabilistic computations: Towards a uni�ed measure of complexity. In Proc.17th Ann. Symp. on Foundations of Computer Science (FOCS), pages 222{227, 1977.[111] Andrew C. Yao. Should tables be sorted? Journal of the ACM, 28(3):615{628, 1981.[112] Andrew C. Yao and Frances F. Yao. Dictionary look-up with small errors. In Proc. 6thCombinatorial Pattern Matching (CPM), volume 937 of Lecture Notes in Computer Science,pages 388{394. Springer Verlag, Berlin, 1995.121



Recent BRICS Dissertation Series Publications

DS-97-1 Gerth Stølting Brodal. Worst Case Efficient Data Structures.
January 1997. Ph.D. thesis. x+121 pp.
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