
Priority Queues with Decreasing Keys⋆

Gerth Stølting Brodala

aAarhus University, Department of Computer Science, Aabogade 34, 8200, Aarhus
N, Denmark

Abstract

A priority queue stores a multiset of items, each item being a ⟨key, value⟩ pair,
and supports the insertion of a new item and extraction of an item with mini-
mum key. In applications like Dijkstra’s single source shortest path algorithm
and Prim-Jarńık’s minimum spanning tree algorithm, the key of an item can
decrease over time. Usually this is handled by either using a priority queue sup-
porting the deletion of an arbitrary item or a dedicated DecreaseKey operation,
or by inserting the same item multiple times but with decreasing keys.

In this paper we study what happens if the keys associated with the items
in a priority queue can decrease over time without informing the priority queue,
and how such a priority queue can be used in Dijkstra’s algorithm. We show
that binary heaps with bottom-up insertions fail to report items with unchanged
keys in correct order, while binary heaps with top-down insertions report items
with unchanged keys in correct order. Furthermore, we show that skew heaps,
leftist heaps, and priority queues based on linking the roots of heap-ordered
trees, like pairing heaps, binomial queues and Fibonacci heaps, work correctly
with decreasing keys without any modifications. Finally, we show that the post-
order heap by Harvey and Zatloukal, a variant of a binary heap with amortized
constant time insertions and amortized logarithmic time deletions, works cor-
rectly with decreasing keys and is a strong contender for an implicit priority
queue supporting decreasing keys in practice.

Keywords: priority queue, decreasing keys, post-order heap, Dijkstra’s
algorithm

1. Introduction

A priority queue is a data structure storing a multiset of items, where each
item is a ⟨key, value⟩ pair. A basic priority queue supports the two operations
Insert and ExtractMin, which insert a new item into the priority queue and

⋆Work presented at the Eleventh International Conference on Fun with Algorithms (FUN
2022) [3]. Supported by Independent Research Fund Denmark, grant 9131-00113B.

Email address: gerth@cs.au.dk (Gerth Stølting Brodal)
URL: https://www.cs.au.dk/~gerth/ (Gerth Stølting Brodal)

Preprint submitted to Elsevier December 21, 2023

extract an item with minimum key from the priority queue, respectively. A clas-
sic example of a data structure supporting these operations is the binary heap
by Williams from 1964 [23]. Although many priority queues exist supporting a
more comprehensive list of operations or having better asymptotic bounds, the
binary heap is the standard priority queue implementation in many languages,
like in Python (module heapq) and Java (class java.util.PriorityQueue).
The popularity of binary heaps is due to its simplicity, it can be stored implic-
itly in an (extendable) array only storing the n items currently in the heap, and
the number of comparisons is relatively low. Insertions require at most log2 n
comparisons, and minimum extractions at most 2 log2 n comparisons, but the
number of comparisons performed are often lower in practice.

Two graph algorithms fundamentally relying on efficient priority queues are
Dijkstra’s algorithm [7] for finding shortest paths from a source node in directed
graphs with non-negative edge weights, and Prim-Jarńık’s algorithm [14, 19] for
finding the minimum spanning tree in a weighted undirected graph. Both main-
tain a priority queue over the nodes not included yet in the shortest path tree
and minimum tree, respectively. A node in the priority queue has an associated
key equal to the shortest distance to the node discovered so far and the light-
est edge connecting the node to the minimum spanning tree constructed so far,
respectively. For both algorithms the key of a node in the priority queue can de-
crease over time, which challenges the interface of the basic priority queue. One
solution is to apply a more specialized priority queue, like Fibonacci heaps [11],
which support a dedicated DecreaseKey operation – but this structure is more
complicated, pointer based, and often not part of a standard library. Although
theoretically worst-case superior, the overhead of supporting DecreaseKey only
pays off when a large fraction of the edges cause a DecreaseKey operation
to be performed. A simpler solution is to stay with a basic priority queue
and just insert a node multiple times, once whenever the key decreases. This
leaves outdated copies of nodes in the priority queue, but these can be skipped
whenever they are extracted from the priority, since only the first extraction
of a node is not outdated. Two possible implementations of this idea for Dijk-
stra’s algorithm are shown as algorithms Dijkstra3 and Dijkstra4 in Figure 1:
Dijkstra3 checks if the distance of an extracted item is outdated by comparing
it to the known minimum distance, whereas Dijkstra4 maintains a set of the
visited nodes, i.e., items in the priority queue storing these nodes are outdated.
In the following we do not discuss Prim-Jarńık’s algorithm any further.

In a typical implementation of Dijkstra’s algorithm one maintains an array
dist , where dist [v] is the currently shortest known distance from the source node
to node v, and the items inserted into the priority queue are pairs ⟨dist [v], v⟩,
where dist [v] is the key of the item. In this paper we consider adopting the idea
of only storing v as an item in the priority queue without an explicitly associ-
ated key. The comparison between two items in the priority instead compares
the current distances dist [v]. This will reduce the space usage for the priority
queue, e.g., a binary heap only needs to store an array of node identifiers. The
challenge is now that keys of inserted items can decrease over time, i.e., the
ordering of the items in the priority queue changes over time and potentially

2

invalidates the internal invariants maintained by a priority queue. In this pa-
per we identify comparison based priority queues working correctly with such
decreasing keys. In particular we show that skew heaps [21], leftist heaps [6],
binomial queues [22], pairing heaps [10], Fibonacci heaps [11], and post-order
heaps [13] work correctly even with decreasing keys. For binary heaps [23]
we show that the standard implementation with bottom-up insertions fails to
support decreasing keys, whereas binary heaps work correctly if operations are
performed top-down.

1.1. Model

We define a priority queue with decreasing keys as follows. It stores a multiset
of items, where each item is a ⟨key, value⟩ pair, where the key is from some
totally ordered universe. Over time the key of an item can decrease an arbitrary
number of times. We let the original key of an item refer to the key when the
item was inserted, whereas the current key refers to the key at the current time.
If the current key equals the original key we say that the item has an unchanged
key. The priority queue is not informed when keys decrease, and whenever two
items are compared by the priority queue the comparison is performed with
respect to their current keys. The priority queue has no access to the original
keys of the items; it can only compare two items and get the relative order of
their current keys. Note that the answer to the comparison between two items
can vary over time depending on how their keys decrease, and that it is possible
that all items in the priority queue can have current keys strictly smaller than
their original keys.

A priority queue with decreasing keys should support the following two op-
erations:

• Insert(x) inserts an item x = ⟨key , value⟩ into the multiset of items
represented by the priority queue.

• ExtractMin() returns an item from the priority queue with current key
less than or equal to the original keys of all items in the priority queue.
The returned item is removed from the multiset of items represented by
the priority queue.

It follows that if ExtractMin returns an item with unchanged key, the item
has smallest original key among all items. Furthermore, if several items in the
priority queue have current key less than or equal to the smallest original key
in the priority queue, then the priority queue is allowed to return any of these
items, i.e., its behavior is non-deterministic. As an example, consider a priority
queue with four inserted items A, B, C and D with original keys 5, 2, 6 and 4,
respectively. Assume C and D have had their keys decreased to have current
keys 3 and 1, respectively. The result of ExtractMin is now not unique. Among
the four items, B has smallest original key equal to 2, i.e., any item with current
key smaller than or equal to 2 is a valid result of ExtractMin. Then ExtractMin

could return either B or D, since they have current keys 2 and 1, respectively.
On the hand, A and C cannot be returned since they have current keys 5

3

and 3, respectively. In Section 2 we discuss how an implementation of Dijkstra’s
algorithm can benefit from the interface of a priority queue with decreasing keys.

1.2. Contributions

This paper introduces no new data structure. Only existing data structures
are analyzed in the context of decreasing keys. Our contributions are:

• Section 2: We show that Dijktra’s algorithm [7] (Dijkstra4 in Figure 1)
works correctly when using a priority queue with decreasing keys, i.e.,
an item in the priority queue only stores the node v instead of the pair
⟨dist [v], v⟩.

• Section 3: Binary heaps [23] with bottom-up insertions do not support
decreasing keys, in particular we show that sorting (with interleaved key
decreases) and Dijkstra’s algorithm fail on small examples.

• Section 4: Binary heaps with top-down insertions support decreasing keys,
i.e., inserting a new item in a binary heap considers the ancestors of the
new leaf top-down until the first ancestor is found with key greater than
or equal to the new key. The central invariant used in the analysis, and
also used in Sections 5 and 6, is decreased heap order requiring that that
any ancestor of a node v in a tree must store an item with current key less
than or equal to the original key of v.

Without decreasing keys, bottom-up and top-down insertions cause the
nodes of the resulting heaps to store identical keys, but for random in-
sertions the number of comparisons increases from average O(1) [18] to
Θ(log n). In Section 7 we present an experimental comparison of the two
variants of a binary heap, and in particular the overhead introduced by
performing insertions top-down.

• Section 5: Skew heaps [21], leftist heaps [6], pairing heaps [10], binomial
queues [22], and Fibonacci heaps [11] work correctly with decreasing keys.

• Section 6: The post-order heap by Harvey and Zatloukal [13] supports
decreasing keys. The post-order heap is a simple implicit heap based
on binary heaps supporting insertions in amortized constant time and
extractions in amortized logarithmic time (like, e.g., binomial queues).
In Section 7 our experimental evaluation shows that the post-order heap
is a strong contender for an efficient implicit priority queue supporting
decreasing keys.

• Section 7: We supplement our theoretical results with an experimental
evaluation of priority queues supporting decreasing keys and compare the
number of key comparisons performed to sort and to run Dijkstra’s algo-
rithm on cliques.

4

1.3. Related work

The literature on priority queues is comprehensive, see, e.g., the survey by
Brodal [2]. Fibonacci heaps [11] support DecreaseKey in amortized constant
time and their discovery initiated the study of data structures supporting effi-
cient DecreaseKey operations. Subsequently, e.g., relaxed heaps [8] were intro-
duced, which support DecreaseKey in worst-case constant time. In this paper
we focus on simpler data structures, not supporting dedicated DecreaseKey op-
erations. Many priority queues can be extended to support an arbitrary Remove

operation, by having a separate index keeping track of where each item is stored
in the data structure. This introduces a space overhead for the index and a time
overhead to keep the index updated, e.g., swapping two items in a binary heap
requires two entries in the index to be updated. If only Insert and ExtractMin

need to be supported, many simple constructions exist—a few commonly used
are mentioned and evaluated in this paper. A special interesting class of prior-
ity queues are those that can be stored in a single array containing the items,
known as implicit priority queues. The classic example is the binary heap [23],
but other examples are, e.g., the implicit binomial trees by Carlsson, Munro
and Poblette [4], and the post-order heap by Harvey and Zatloukal [13] that is
our focus in Section 6. Many priority queues maintain a forest of trees of sizes
corresponding to digits in the binary or skew binary representation of the total
number of items stored. Elmasry, Jensen and Katajainen [9] give an overview
of this relationship for various constructions.

1.4. Background

The motivation for studying priority queues with decreasing keys arose from
experience with undergraduate students having problems translating Dijkstra’s
shortest path algorithm into correct Java programs based on the description
in the standard text book by Cormen et al. [5, Section 22.3]. Students are
challenged by the fact that the priority queue implementation supported by the
Java standard library1 does not support DecreaseKey, the Remove operation
requires linear time, and the ordering of values is provided using a comparator
(or the natural ordering of the values). A priority queue with decreasing keys
allows Dijkstra’s algorithm to store node identifiers only in the priority queue
and using a comparator to compare two nodes by comparing their currently best
known distances—the Java solution many students implement, but fails since
their priority queue does not support decreasing keys.

2. Dijkstra’s algorithm with decreasing keys

Assume we are given a directed graph G = (V,E) with non-negative edge
weights δ and a source node s ∈ V , and we want to compute the shortest

1https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/

PriorityQueue.html

5

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/PriorityQueue.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/PriorityQueue.html

proc Dijkstra1(V,E, δ, s)
dist [v] = +∞ for all v ∈ V \ {s}
dist [s] = 0
Insert(Q, ⟨dist [s], s⟩)
while Q ̸= ∅ do

⟨d, u⟩ = ExtractMin(Q)
for (u, v) ∈ E ∩ ({u} × V) do

if dist [u] + δ(u, v) < dist [v] then
dist [v] = dist [u] + δ(u, v)
if v ∈ Q then

DecreaseKey(Q, v, dist [v])
else

Insert(Q, ⟨v, dist [v]⟩)
return dist

proc Dijkstra2(V,E, δ, s)
dist [v] = +∞ for all v ∈ V \ {s}
dist [s] = 0
Insert(Q, ⟨dist [s], s⟩)
while Q ̸= ∅ do

⟨d, u⟩ = ExtractMin(Q)
for (u, v) ∈ E ∩ ({u} × V) do

if dist [u] + δ(u, v) < dist [v] then
dist [v] = dist [u] + δ(u, v)
if v ∈ Q then

Remove(Q, v)
Insert(Q, ⟨dist [v], v⟩)

return dist

proc Dijkstra3(V,E, δ, s)
dist [v] = +∞ for all v ∈ V \ {s}
dist [s] = 0
Insert(Q, ⟨dist [s], s⟩)
while Q ̸= ∅ do

⟨d, u⟩ = ExtractMin(Q)
if d = dist [u] then

for (u, v) ∈ E ∩ ({u} × V) do
if dist [u] + δ(u, v) < dist [v] then

dist [v] = dist [u] + δ(u, v)
Insert(Q, ⟨dist [v], v⟩)

return dist

proc Dijkstra4(V,E, δ, s)
dist [v] = +∞ for all v ∈ V \ {s}
dist [s] = 0
visited = ∅
Insert(Q, ⟨dist [s], s⟩)
while Q ̸= ∅ do

⟨d, u⟩ = ExtractMin(Q)
if u ̸∈ visited then

visited = visited ∪ {u}
for (u, v) ∈ E ∩ ({u} × V) do

if dist [u] + δ(u, v) < dist [v] then
dist [v] = dist [u] + δ(u, v)
Insert(Q, ⟨dist [v], v⟩)

return dist

Figure 1: Four variations of Dijkstra’s algorithm for the single source shortest path problem
on a digraph with nodes V , edges E, edge weights δ, and source node s. The main result of
this paper is that Dijkstra4 still works correctly if we adopt a priority with decreasing keys.

distance from s to all nodes in the graph. This problem can be solved using
Dijkstra’s algorithm [7]. The basic idea of Dijkstra’s algorithm is to visit nodes
in increasing distance from s. For each node v not visited yet its currently
known distance dist [v] is stored in an array dist , i.e., the distance to v along
paths only containing v and already visited nodes. The next node to visit is
a node u not visited so far and with smallest dist [u] value. When visiting
a node u we relax along its outgoing edges (u, v) by performing the update
dist [v] := min(dist [v], dist [u] + δ(u, v)). To obtain an efficient solution, the
set of nodes not visited yet are stored in a priority queue, with dist [v] as the
key of v. Fibonacci heaps [11] provide a dedicated DecreaseKey operation to
update (decrease) the key of a node whenever the known distance to a node
decreases. Using a Fibonacci heap Dijkstra’s algorithm can be implemented as
shown in Dijkstra1 in Figure 1 obtaining running time O(|E| + |V | log |V |).
If no DecreaseKey is available, but an arbitrary item can be removed by a
Remove operation, we can simulate DecreaseKey by first removing the node
using Remove and then reinserting the node with its smaller distance as key using
Insert as shown in Dijkstra2 in Figure 1. If Remove takes logarithmic time, the
resulting running time is O(|E| log |V |). For sparse graphs, i.e., |E| = O(|V |),

6

the two running times are asymptotically identical. A priority queue supporting
efficient DecreaseKey and/or Remove operations must be able to locate an item
in the priority queue, and for implicit heap structures this is typically achieved
by maintaining a second array that maps a node identifier to a location in the
heap.

Here we consider a simpler implementation using a binary heap only sup-
porting Insert and ExtractMin, but also achieving running time O(|E| log |V |).
Whenever a shorter distance is found to a node v, we insert the item ⟨dist [v], v⟩
into the heap, i.e., the same node v can be inserted multiple times, but with
decreasing keys. All instances of v in the heap, except for the one with key
equal to the current dist [v], are outdated and should be ignored/skipped when
extracted from the heap. We can identify nodes to be skipped by either compar-
ing the extracted distance with the currently best known distance or by keeping
a set of all visited nodes, e.g., a bit-vector visited . Algorithms Dijkstra3 and
Dijkstra4 in Figure 1 contain the pseudo code for these implementations of
Dijkstra’s algorithm. Note that Dijkstra3 and Dijkstra4 perform exactly the
same computations, the only difference is the approach used to identify outdated
items extracted from the priority queue. We will not argue further about the
correctness of these variations of Dijkstra’s algorithm (leaving outdated items
in the priority queue is also a common approach to external memory algorithms
for the single source shortest path problem, see, e.g., [15, Section 4.2]).2

Crucial to the above implementations of Dijkstra’s algorithm is that each
item we insert into the heap is a pair ⟨dist [v], v⟩, where the key dist [v] is fixed
when inserted. These keys require space in the heap, that could be tempting to
save. The (potentially dangerous) idea is now: Skip storing the keys explicitly
in the items and instead use the current value dist [v] as the current key for all
items storing v in the heap.

In the following we argue that Dijkstra4 still works correctly if we adopt
a priority with decreasing keys, e.g., those in Sections 4–6. The only changes
to Dijkstra4 is that Insert should only take the node to insert (without the
distance), and ExtractMin does not return the key/distance d (that anyway was
not used by Dijkstra4 after the item was extracted), and whenever the priority
queue compares the keys of two nodes u and v it compares the currently known
distances dist [u] and dist [v].

The invariant maintained by the algorithm is that only nodes v with dist [v] <
+∞ are stored in the priority queue, and for all nodes with dist [v] < +∞ and
v /∈ visited , the priority queue contains an item containing v with unchanged
key equal to the current dist [v]. This is true since we insert an item containing
v with original key dist [v] whenever dist [v] has decreased.

Whenever an item with a node v is extracted from the priority queue, we

2In the worst-case the priority queue stores O(|E|) items, but this can be reduced to O(|V |)
items by rebuilding the heap whenever it contains > (1+ε)|V | items, for some constant ε > 0,
where all outdated items are removed. The time for rebuilding the heap can be charged to
the removed items, i.e., the asymptotic running time remains unchanged.

7

have three cases: i) v ∈ visited , ii) v ̸∈ visited and the current key of the item
equals the original key, and iii) v ̸∈ visited and current key of the item is less
than the original key. In case i) we extract a node that has already been visited,
and therefore should be skipped. In case ii) we extract an item with current key
equal to its original key. Since the priority queue guarantees that the current key
of the extracted item is less than or equal to all original keys stored in the priority
queue, the item has minimum original key among all items in the priority queue.
From the invariant it follows that v has smallest dist [v] value among all nodes
not visited yet—as required by Dijkstra’s algorithm. Finally, in case iii) an item
is extracted containing a node v not visited yet and with current key less than
its original key. By the priority queue specification, its current key, i.e., dist [v],
is less than all original keys in the priority queue, in particular those stored
with unchanged keys. Since v ̸∈ visited the invariant implies there must exist
another item in the priority queue storing v with original and current key equal
to dist [v]—i.e., v is a node not visited yet with minimum dist value as required
by Dijkstra’s algorithm. It follows that a priority queue supporting decreasing
keys extracts unvisited nodes in increasing order of distance as required by
Dijkstra’s algorithm.

3. Binary heaps and binary search trees fail with decreasing keys

In this section we show how binary heaps with bottom-up insertions [23]
fail to support decreasing keys on two simple examples: Sorting and Dijkstra’s
single source shortest path algorithm. We also show that binary search trees
fail to support decreasing keys.

We first briefly recall the structure of a binary heap. A binary heap stores
n items in an array H[1..n], that can be viewed as a binary tree where node i
has children 2i and 2i + 1.3 The items are stored such that heap order is
satisfied, i.e., the key of item H[i] is greater than or equal to the key of its
parent H[⌊i/2⌋]. A bottom-up insertion places the new item as the last item
in H and repeatedly swaps it with its parent (sift-up) as long as its key is less
than the parent’s current key. A minimum extraction returns the item at the
root H[1], and moves the last item x from H[n] to H[1], and sifts-down x by
repeatedly swapping x with the item with smallest key among its children until
no child stores an item with key less than x.

3.1. Sorting

Consider sorting items by inserting them into a priority queue and then
extracting them in increasing key order. If an item gets its key decreased during
the sequence of operations, a priority queue with decreasing keys guarantees
that the items with unchanged keys are still reported in increasing key order. A
binary heap with bottom-up insertions fails to do so when inserting four items

3In the paper we assume arrays start at index 1. In our implementation we adapt to
Python lists, which start at index 0.

8

2

43

2

40

2

40

1

0

41

1

4

4
insert 2
insert 3
insert 4

decrease
3 → 0

insert 1 extract 2 extract 0 extract 1 extract 4

Figure 2: Binary heap failing to sort ⟨2, 3, 4, 1⟩ if 3 is decreased to 0 (underlined) before
inserting 1.

s

a b c d
1 1 1

1
5 4 5

s0 a1

c4b5

d5

c4

d5b2

b2

b2

d5b2

b2

d5

d5

extract s0
insert a1

insert b5
insert c4
insert d5

extract a1

insert b2

extract c4

extract b2 extract b2 extract d5

Figure 3: Execution of Dijkstra’s single source shortest path algorithm (Dijkstra4), using
dist as keys and a binary heap with bottom-up insertions, incorrectly computing the distance
to d as 5. Top is input graph and below the content of the binary heap. Subscripts are keys,
and underlined keys are decreased keys.

with keys 2, 3, 4 and 1, and where key 3 is decreased to 0 before inserting 1, as
illustrated in Figure 2. Recall that the heap is not informed when keys decrease,
causing the current keys to violate heap order. Instead of reporting the items
with unchanged keys in order ⟨1, 2, 4⟩ they are reported in order ⟨2, 1, 4⟩. Note
that when inserting 1 as the last leaf, it is compared to its parent with current
key 0 (but original key 3), where the sift-up terminates, and incorrectly leaves
1 in the subtree of 2, causing 2 to be the first item extracted by ExtractMin.

3.2. Dijkstra’s algorithm

Figure 3 shows a graph with 5 nodes and 7 edges, where Dijkstra’s algorithm
(Dijkstra4) fails when using a binary heap with bottom-up insertions and using
dist [v] as the current key for node v. Whenever a smaller distance to a node is
discovered, the node is inserted with the new distance as its original key. The
previously inserted copies of the node (if any) get their current keys decreased
to the new smaller distance, like b where b2 is the copy of b in the heap with
original key 5 and current key 2. Note that when inserting b2, b2 blocks b2 from

9

3

2

0

2

0

12

0

1

1
insert 3
insert 2

decrease
2 → 0

insert 1 extract 2 extract 0 extract 1

Figure 4: Binary search trees fail to support decreasing keys, when 3 is decreased to 0 (un-
derlined) before inserting 1.

sifting up to the root, causing the algorithm to incorrectly visit node c before
node b. The result is that the distance to node d is incorrectly computed to
be 5 instead of 4.

It should be noted that if we skipped the test u ̸∈ visited , the algorithm
would compute the correct distances by revisiting nodes whenever a shorter
distance to a node has been discovered. This is against the principle idea of
Dijkstra’s algorithm to only visit nodes once in increasing order of distance from
the source, so that each edge is considered at most once. See the discussion in
Section 7.3 on Figure 9 for further details.

3.3. Binary search trees

Binary search trees can also be used as a priority queue (both balanced
search trees, like AVL-trees [1] and red-black trees [12], and unbalanced binary
search trees). Recall that a binary search tree stores the items left-to-right in
sorted key order, i.e., the item with minimum key is stored at the leftmost node
on the left spline in the tree. Insertions are performed top-down by comparing
with the root, and recursively inserting in left subtree if the key at the root is
larger than the new key. Otherwise, the new item is recursively inserted in the
right subtree. The insertion terminates at an empty leaf, where the new item is
inserted.

Figure 4 shows how a binary search fails to support decreasing keys: We
insert keys 3, 2, 1, but before inserting 1 the key 3 is decreased to 0, i.e., 1
will be inserted as the rightmost node. When performing the first ExtractMin
operation, the leftmost key is 2, that will be returned as being the smallest key
by a binary search tree (a binary search tree never needs to compare keys when
extracting the item with minimum key). This is incorrect, since 1 is a smaller
original key in the tree. Both 0 and 1 would have been correct, since they are
both less than or equal to 1, that is the smallest original key.

4. Binary heaps with top-down insertions

In a binary heap with top-down insertions Insert(x) creates a new empty
leaf at position n, and items on the path from the root to the new leaf are
compared with x top-down until the first node u is found with current key
greater than or equal to the new key. The items on the path from u to the new
leaf are sifted one level down and item x is inserted in node u. The ancestor
at depth d = 0, . . . , ⌊log2 n⌋ is node ⌊n/2⌊log2 n⌋−d⌋. If keys are distinct and do

10

not decrease, then top-down insertions and bottom-up insertions yield identical
structures.

In the following we let keyorg denote an original key and keycur a current
key. For a tree structure, where each node stores an item, we say that the
tree satisfies the decreased heap order if and only if u.keycur ≤ v.keyorg for all
ancestors u of a node v. Note that if decreased heap order is satisfied, then the
item at the root of a tree satisfies the conditions to be returned by ExtractMin,
and decreased heap order remains satisfied when current keys decrease.

During Insert(x) a node v can only get one new ancestor, namely x. This
happens when x is compared with an ancestor u of v with the result x.keycur ≤
u.keycur. Since before the insertion decreased heap order ensures u.keycur ≤
v.keyorg, we have x.keycur ≤ v.keyorg and the tree satisfies decreased heap order
after the insertion.

An ExtractMin operation returns the root of the tree. By the decreased heap
order the item returned has current key less than or equal to all original keys in
the tree. Before returning the answer, the last item x is moved to the root and
sifted down, where x is swapped with the item at the child with smallest current
key until the items of both children have current key ≥ x.keycur. Whenever two
siblings v and w are compared, say v.keycur ≤ w.keycur, we have two cases. If
x becomes the parent of v and w, since x.keycur ≤ v.keycur ≤ w.keycur, then
x.keycur is less than or equal to the original keys in all nodes below x, since
either v.keycur or w.keycur was so before the operation. Otherwise, v becomes
the parent of w, and x and all nodes in w’s subtree get v as a new ancestor.
Since v.keycur ≤ w.keycur, then v.keycur is less than or equal to all original
keys in w’s subtree, and v.keycur ≤ x.keycur ≤ x.keyorg. It follows that after
ExtractMin the tree still satisfies decreased heap order.

5. Existing heaps supporting decreasing keys

In the following we argue that the internal workings of several existing pri-
ority queues ensure decreased heap order to be maintained in the presence of
decreasing keys.

5.1. Skew heaps and Leftist heaps

Skew heaps [21] and leftist heaps [6] support Insert and ExtractMin on a
heap storing n items in timeO(log n), where the time for skew heaps is amortized
and for leftist heaps worst-case. Both data structures represent a priority queue
by a (decreased) heap ordered binary tree, and support ExtractMin by removing
the root and returning its item. All other structural changes consist of merging
top-down two root-to-leaf paths in two (decreased) heap ordered binary trees,
and potentially swapping the left and right subtrees at nodes of the resulting
tree. Swapping the left and right subtrees of a node does not change ancestor
relationships, i.e., does not affect decreased heap order. To argue that the
two data structures maintain decreased heap order, we only need to argue that
merging two paths ensures that the resulting tree satisfies decreased heap order.

11

proc merge(u = ⟨u0, u1, . . .⟩), v = ⟨v0, v1, . . .⟩)
if u = ∅ then

return v
if v = ∅ then

return u
if u0.keycur ≤ v0.keycur then

return ⟨u0⟩+ merge(⟨u1, . . .⟩, v)
else

return ⟨v0⟩+ merge(u, ⟨v1, . . .⟩)

3T1 u0

4

214

16u1

78u2

2T2 v0

155v1

41329v2

2merge(T1, T2) v0

153u0

4

214

16u1

75v1

41329v2

8u2

Figure 5: Top-down merging two paths u and v. In the example values are current keys and
subscripts original keys (subscripts are omitted if current and original keys are equal).

Normally the keys along the two paths would appear in increasing key order,
but this is not necessarily the case when keys can decrease (in fact the current
keys can appear in any order). Assume the nodes along the two root-to-leaf
paths to be merged are ⟨u0, u1, u2, . . .⟩ and ⟨v0, v1, v2, . . .⟩, and the merging is
performed top-down recursively as in Figure 5. If ui ends up before vj , i.e.,
ui is a new ancestor of vj , then there exists j′ ≤ j where ui and vj′ have
been compared with the outcome ui.keycur ≤ vj′ .keycur. Since by assumption
vj′ .keycur ≤ vj .keyorg, it follows that ui satisfies decreased heap order with vj
and all its descendants. It follows that the resulting tree after merging two
root-to-leaf paths in two decreased heap ordered trees also satisfies decreased
heap order.

5.2. Pairing heaps, Binomial queues, and Fibonacci heaps

Many priority queues represent a priority queue by one or more heap ordered
trees of arbitrary degree. Pairing heaps [10], binomial queues [22], and Fibonacci
heaps [11] are examples of such priority queues supporting Insert in amortized
time O(1) and ExtractMin in amortized time O(log n). Here we prove that
these data structures maintain decreased heap order when used with decreasing
keys. Pairing heaps only represent a priority queue by a single tree, whereas
binomial queues and Fibonacci heaps maintain a forest, and the item removed
by ExtractMin is the root with minimum current key, i.e., the returned item has
current key less than or equal to all original keys in all trees. Nodes only get new
ancestors when two roots are linked, that makes the root v with greatest current

12

key a child of the root u with smallest current key. Since u.keycur ≤ v.keycur

and any node w in the tree rooted at v has v.keycur ≤ w.keyorg, it follows
that u.keycur ≤ w.keyorg, i.e., the linked tree satisfies decreased heap order. It
follows that the resulting heaps satisfy decreased heap order.

For Fibonacci heaps, the operations DecreaseKey replaces the key of an item
by a smaller key. In our context this corresponds to lowering the original key. In
the context of decreasing keys, it is important that DecreaseKey is implemented
to always cut the edge from the node to its parent (without comparing with the
current key of the parent, since that could have been decreased arbitrarily), and
to add the node as a new root to the forest.

6. Post-order heap

In practice, binary heaps with bottom-up insertions often benefit from the
fact that insertions do not sift-up items far in the tree. With top-down insertions
this property cannot be exploited. In this section we consider the post-order
heap by Harvey and Zatloukal [13]. In our experiments (see Section 7) it ap-
pears to be a strong contender for an efficient implicit priority queue supporting
decreasing keys, which is why we consider it in more detail in this section. Har-
vey and Zatloukal [13] did an experimental comparison of C# implementations
of post-order heaps and binary-heaps with bottom-up insertions and found that
post-order heaps had faster insertions but slower deletions.

A post-order heap consists of a forest of complete heap ordered binary trees,
where all trees have distinct size, except for possibly the two trees of smallest
size. Since a complete binary tree has size 2i−1, for some i, the number of trees
of each size corresponds to the digits in the skew binary number representation
of n. Myers [17] proved that the set of tree sizes is unique for a given n. The
trees are laid out consecutively in a single array H in decreasing size order, and
each tree in post-order. For a subtree of size s with root H[i], the subtree is
stored in H[i − s + 1, i], the subtrees at the children have size ⌊s/2⌋, the right
child is H[i− 1], and the left child is H[i− 1− ⌊s/2⌋]. See Figure 6.

1

3

19

2628

14

1824

10

20

2523

13

2116

2

4

1217

6

827

7

1511

5

229

1

16

2

21

3

13

4

23

5

25

6

20

7

10

8

24

9

18

10

14

11

28

12

26

13

19

14

3

15

1

16

27

17

8

18

6

19

17

20

12

21

4

22

2

23

11

24

15

25

7

26

9

27

22

28

5

Figure 6: Top: A post-order heap storing 28 items in four trees of size 15, 7, 3 and 3. Bottom:
The implicit post-order layout in a single array.

Insert(x) inserts the item x as the last item of H. If the last two trees
had different size, x becomes a tree of size one. Otherwise, the last two trees

13

proc Insert(x)
push(H,x)
if |S| ≥ 2 and S[|S|] = S[|S| − 1] then

size = pop(S) + pop(S) + 1
push(S, size)
Heapify(|H|, size)

else
push(S, 1)

proc Heapify(i, size)
if size > 1 then

size = ⌊size/2⌋
right = i− 1
left = right − size
smallest = H[left] < H[right] ? left : right
if H[smallest] < H[i] then

swap H[i] and H[smallest]
Heapify(smallest , size)

proc ExtractMin()
min = +∞
i = |H|
for j = 1 to |S| do

size = S[|S| − j + 1]
if H[i] < min then

min = H[i]
imin = i
sizemin = size

i = i− size
size = ⌊pop(S)/2⌋
if size > 0 then

push(S, size)
push(S, size)

x = pop(H)
if imin < |H| then

H[imin] = x
Heapify(imin , sizemin)

return min

Figure 7: Post-order heap operations, where H stores the items and S is a list of tree sizes.

of size s together with x are combined to a new tree of size 2s + 1 with x as
the root, and we apply the sift-down operation Heapify(|H|, 2s+1) (where the
first argument is the node position, and the second argument is the size of the
subtree). Except for node indexing, Heapify is implemented as for binary heaps.
To support decreasing keys, it is crucial that Heapify is performed top-down.
ExtractMin() identifies the root min with minimum (current) key to return,
and removes the root x from the rightmost tree (causing the two subtrees to
become new trees). If x ̸= min, x replaces the root min, and x is sifted down
using Heapify. Pseudo-code for the operations is given in Figure 7 (in [13] it is
discussed how the list of tree sizes S of length O(log n) can be stored using only
O(log n) bits). Since a post-order heap structurally is just a collection of binary
heaps updated only using top-down Heapify, the discussion from Section 4
carries over to prove that post-order heaps support decreasing keys.

If we consider the worst-case number of comparisons for binary heaps with
top-down insertions, then Insert uses at most ⌊log2 n⌋ comparisons whereas
ExtractMin at most 2⌊log2 n⌋ comparisons. Harvey and Zatloukal [13] proved
that post-order heaps support Insert in amortized time O(1) and ExtractMin

in amortized time O(log n). The worst-case number of comparisons for oper-
ations on post-order heaps is not competitive with binary heaps, since in the
worst-case Insert performs Heapify on a tree containing all items, i.e., requir-
ing at most 2⌊log2 n⌋ comparisons, and ExtractMin first must find the root
with minimum value, and then perform Heapify on this tree, requiring at most
3⌊log2 n⌋ comparisons.

It appears that adding support for decreasing keys to an implicit priority
queue with the ExtractMin/Insert interface comes with a significant overhead.
That the overhead in a sequence of ExtractMin and Insert operations can be
smaller, follows from the example of sorting by performing n Insert operations

14

followed by n ExtractMin operations (without using the support for decreasing
keys). The above worst-case bounds for the operations implies an upper bound
on sorting using a post-order heap of 5n⌊log2 n⌋ comparisons, whereas using a
binary heap requires at most 3n⌊log2 n⌋ comparisons. But for sorting we can
derive a better bound for post-order heaps. During the n insertions at most
n/2h roots are created at height h, each requiring 2h comparisons for a sift-
down, causing a total of at most

∑∞
h=0 2h·n/2h ≤ 4n comparisons for insertions.

Furthermore, during the sequence of minimum extractions the average number
of trees is 1

2 log2 n+O(1), causing the total number of comparisons for finding
the minimum roots to be at most 1

2n log2 n + O(n). Together with the upper
bound of 2⌊log2 n⌋ comparisons for each Heapify caused by an ExtractMin

gives a total bound of 2.5n log2 n+ O(n) comparisons for sorting using a post-
order heap. An experimental comparison of post-order heaps with binary heaps
with top-down insertions is done in Section 7 (Figure 8).

7. Experimental evaluation

The previous sections state that many priority queue data structures work in
the setting with decreasing keys. Any implementation of these data structures
will also work if explicit keys can be removed and handled by implicit decreasing
keys, e.g., as in Dijkstra’s algorithm implemented by a comparator accessing
the array dist . The worst-case analysis of these data structures carries over to
the setting with decreasing keys and the worst-case running time analysis of
Dijkstra’s algorithm remains unchanged, though in practice the picture could
be different. In particular items to be skipped (i.e., with decreased keys) in
Dijkstra’s algorithm can be extracted earlier when allowing decreasing keys.

We implemented in Python 3.12 various priority queues and Dijkstra’s algo-
rithm to have code as close as possible to pseudo code, and to focus on measuring
counts that were hardware, language, and compiler independent.4 A priority
queue was implemented as a class with extract min and insert methods to
update the priority queue, and a method empty to test for emptiness. Items
are compared using the < operator, i.e., using the lt method of the items.
Finally, each priority queue has a method validate to check the structural
integrity of its current content, e.g., a recursive traversal checking heap order,
number of children, and balance conditions. The experimental evaluation was
done on a HP EliteBook 840 G8 laptop (Intel i7-1165G7 CPU, 16 GB RAM)
running Python 3.12.0 under Windows 11.

The following priority queues were implemented: Skew heaps [21], leftist
heaps [6], binomial queues [22], pairing heaps [10], post-order heaps [13], and
binary heaps [23] with bottom-up and top-down insertions. Finally, we made a
wrapper class around Python’s builtin module heapq that is a C implementation5

4Python source code used for experiments and data visualized in figures is available at
https://www.cs.au.dk/~gerth/papers/fun22code.zip

5https://github.com/python/cpython/blob/master/Modules/_heapqmodule.c

15

https://www.cs.au.dk/~gerth/papers/fun22code.zip
https://github.com/python/cpython/blob/master/Modules/_heapqmodule.c

of binary heaps with bottom-up insertions. We did not implement Fibonacci
heaps [11], since we do not consider dedicated DecreaseKey operations, and
without DecreaseKey Fibonacci heaps are identical to binomial queues.

We considered four versions of binary heaps, where the first two do not sup-
port decreasing keys: BinaryHeap is a standard binary heap with bottom-up
insertions and top-down heapify to sift-down the new root value during min-
imum extractions. BinaryHeapHeapifyBottomup improves typical performance
by letting heapify first recursively pull up the child with smallest (current) key
until an empty leaf is created, where the item from the last leaf is inserted and
sifted up (our experiments confirm that module heapq implements this idea).
The last two variants support decreasing keys. BinaryHeapTopdown supports in-
sertions by performing comparisons top-down along the root-to-new-leaf path,
until the first node is reached with greater or equal (current) key. The new item
is inserted in this node, and all remaining nodes on the path to the last leaf are
sifted one level down. BinaryHeapTopdownHeapify has a slightly näıver insertion
implementation, where all items on the root-to-new-leaf path are sifted one level
down, and the new item is inserted at the root and sifted down by heapify.

Experiments were parameterized by the priority queue class to be tested, to
ensure identical testing overhead for the different classes. In our experiments
we have measured the number of comparisons performed, various counts and
running time. All priority queues were tested with exactly the same set of
inputs. Data structures not supporting decreasing keys (Heapq, BinaryHeap and
BinaryHeapHeapifyBottomup) are shown with dashed curves. In all plots Heapq
and BinaryHeapHeapifyBottomup have identical curves, except for the time for
sorting in Figure 8(e).

7.1. Correctness of implementation

To have some evidence for the correctness of our implementations, we per-
formed two simple sorting tests: The first checks if Insert and ExtractMin

work correctly if no keys decrease, and the second checks if decreasing keys are
supported. The second stress test was in fact used to identify which priority
queues supported decreasing keys, before knowing if they did so, directing the
search for the formal arguments presented in Sections 3–6.

7.1.1. Sorting

Each priority queue implementation was used to sort various input sequences
of n numbers, 1 ≤ n ≤ 1000, with input being the increasing sequence 1, . . . , n,
the decreasing sequence n, . . . , 1, a uniform random permutation of 1, . . . , n, and
n uniformly selected random integers from 1, . . . , n (with possible repetitions).
Only the random integer inputs can contain duplicates, where the expected
number of distinct integers among n integers is n(1 − (1 − 1/n)n) ≈ n(1 −
1/e) ≈ 0.632n. Each input was first inserted using n calls to insert followed
by calls to extract min until empty returned true. The output was checked
against Python’s builtin function sorted. After each update the priority queue’s
validate method was called to check for internal integrity.

16

7.1.2. Decrease key support

Each priority queue implementation was tested for the support of decreasing
keys by performing the following experiment 1000 times with n = 100: Insert
a random permutation of 1, . . . , n using n calls to Insert, followed by n calls
to ExtractMin. After each operation, with probability 1/2 a random inserted
item has its key decreased to zero. At the end it is checked if all items with
unchanged key were reported in sorted order. As expected by the theory, all
priority queues not supporting decreasing keys failed this stress test, whereas
the others succeeded on all inputs

7.2. Sorting performance

We evaluated the performance of the different priority queues by using them
to sort n integers for different n (powers of two, n ≤ 220) and different input
distributions: increasing sequences, decreasing sequences, uniformly permuted
sequences, uniformly selected random integers from 1, . . . , n. Each input was
run at least 3 times and until at least 0.2 seconds were passed. For random
inputs 10 different inputs were generated and the average computed. The mea-
sured average number of comparisons for each input size and type is shown in
Figure 8(a, b, c, d). In the plots we on the y-axis have number of comparisons
performed divided by n log2 n, i.e., the theoretical asymptotic worst-case bound
of sorting.

That Python’s builtin in Heapq module is equivalent to the Python imple-
mentation BinaryHeapHeapifyBottomup follows from the plots, where the two
priority queues achieve coinciding number of comparisons (it was checked that
the number of comparisons performed were identical). Among the implicit con-
structions based on binary heaps we have a clear ordering (except for decreas-
ing sequences) where BinaryHeapHeapifyBottomup (and Heapq) performs the
fewest comparisons, followed by BinaryHeap, BinaryHeapTopdown and Binary-
HeapTopdownHeapify, where only the last two support decreasing keys. In
all cases the implicit PostOrderHeap achieves a better performance than the
other implicit binary heaps supporting decreasing keys. In particular we see
that PostOrderHeap performs about 1

2n log2 n fewer comparisons as BinaryHeap-
Topdown for random input, as expected by the discussion in Section 6. The
only priority queues supporting decreasing keys that achieve significant better
bounds on the number of comparisons are all pointer based (SkewHeap, Leftist-
Heap, PairingHeap and BinomialQueue). This leaves the post-order heap as a
strong contender for an implicit priority queue supporting decreasing keys—at
least with respect to comparisons.

With respect to running times the builtin Heapq consistently achieved the
best time-wise performance, which is not surprising since it is implemented
in C, whereas the other implementations are clearly penalized by the overhead
of Python being interpreted. Running times for random input is shown in
Figure 8(e). The increased running time for less than ten elements for all priority
queues is likely due to the overhead of the timing framework. Interestingly, for
large random inputs the running time of post-order heaps is only outmatched by

17

the builtin heapq, although the overhead of using Python makes the results less
conclusive. Since the motivation for studying priority queues with decreasing
keys is to achieve space efficiency by avoiding storing keys with the items, the
implicit post-order heap appears to be a good choice of data structure in this
context.

7.3. Dijkstra’s algorithm performance
We implemented a generic version of Dijkstra’s algorithm for the single-

source shortest path problem corresponding to Dijkstra4 in Figure 1. This
algorithm was selected since it allows to be executed both with a priority queue
supporting decreasing keys (and no explicit keys in the items) and with a stan-
dard priority queue (with explicit keys in the items), and to study if allowing
decreasing keys caused the number of comparisons performed to increase or
decrease. We also tested what happens if we in addition to removing the ex-
plicit keys from the items also removed the visited array from the algorithm.
This further reduces the space requirement for the algorithm, but breaks the
O(|E| log |V |) running time guarantee.

Our function implementing Dijkstra4 takes as arguments the graph, the
priority queue to be used, and two Boolean flags use visited and use dist. If
use visited is false, the algorithm will not check if extracted nodes from the
priority queue have been visited before, i.e., we could save the space for having
a bit-vector for the visited nodes, the cost being that we might revisit nodes
(and relax their outgoing edges) multiple times (once for each shorter distance
discovered to the node). If use dist is true, dist [v] is used as the key of v
when comparing v, otherwise an item in the priority queue consists of a pair
⟨distance,node⟩.

As input we tested directed cliques (including self loops) with n nodes and
n2 edges, where 10 ≤ n ≤ 250. We did not consider other graph classes.
We chose to consider cliques since they are the most dense graphs, potentially
causing the largest number of decrease keys per node. We considered two types
of edge weights: random integer weights from 1, . . . , n, and weights forcing the
worst-case number of key decreases. Node 0 is the source node. In the latter
case, the edge from node u to v, for 0 ≤ u, v ≤ n− 1, has weight 1 if v = u+ 1,
weight 0 if v ≤ u, and weight n(n− u) + σu(v− u− 2) otherwise, where σu is a

random permutation of {0, 1, . . . , n−u−3}. The path 0
1→ 1

1→ · · · 1→ v−1
1→ v

is the shortest path to node v with distance v.
In the experiments we measured the number of comparisons performed by

the priority queues, the number of nodes inserted into the priority queue, the
number of nodes visited, and the number of edges relaxed. Each data point
is the average over 10 random inputs. We do not report on the number of
edges relaxed and nodes visited, since for cliques the number of edges relaxed
is exactly n times the number of nodes visited, and each node is visited exactly
once when using a visited bit-vector. Without a visited bit-vector each node
insertion into the priority queue also causes the node to be visited once.

The experimental results are summarized in Figures 9–11, where different
combinations of use visited and use dist were tested. E.g., “+visited −dist”

18

is when use visited is true and use dist is false, i.e., Dijkstra4 without
decreasing keys. The y-axis in Figures 9 and 10 is the measured cost divided
by n, i.e., the average cost per node.

Figure 9 shows the number of insertions into the priority queue when not us-
ing a visited bit-vector. For random edge weights, Figure 9(a, c), the probability
is at most 1/k that the k’th edge considered with node v as target decreases the
distance to v (this follows by a simple backwards analysis argument), i.e., the
expected number of times node v is inserted into the priority queue is at most∑n

k=1
1
k ≈ lnn. This explains the nature of the curves in Figure 9(a), where the

priority queue stores ⟨distance,node⟩ pairs. When using dist as key, it follows
from Section 2 that the same applies to the priority queues supporting decreas-
ing keys, the non-dashed curves in Figure 9(c). For cliques with worst-case edge
weights, each edge (u, v), where u < v, will cause a new shorter distance to v
to be discovered, causing the number of insertions into the priority queue to be
exactly 1 +

(
n
2

)
. This explains the linear curves in Figure 9(b, d).

Priority queues not supporting decreasing keys (Heapq, BinaryHeap and
BinaryHeapHeapifyBottomup) might return the wrong items when using the cur-
rent dist as keys. In combination with using a visited bit-vector, the algo-
rithm might fail to compute the correct shortest distances. If the visited bit-
vector is not used, then incorrect nodes returned by the priority queue will just
be revisited later with a shorter distance, so the algorithm will still correctly
find shortest paths—but there is no guarantee on the number of edge relaxes
performed (except for an exponential upper bound that holds for any relax
based approach). The increase in the number priority queue inserts appears ne-
glectable for random weighted cliques (the dashed curves in Figure 9(c) versus
Figure 9(a)), whereas for worst-case weights the number of insertions into the
priority queue increases by 60–90%, cf. Figure 9(d) versus Figure 9(b).

Finally, the number of comparisons performed in the priority queues when
not using a visited bit-vector is depicted in Figure 10 for the two types of edge
weights and when using dist as key or not. In Figure 10(a, b) the curve for
SkewHeap is not very visible, since it essentially coincides with the PairingHeap
curve. We have omitted all plots concerning experiments using a visited bit-
vector. As mentioned above, the shortest distances might not be found for
the combination using a visited bit-vector, dist as key, and a priority queue
not supporting decreasing keys. For all priority queues supporting decreasing
keys the sequence of priority queue operations is exactly the same when using
a visited bit-vector and when not using it. The only difference is that using a
visited bit-vector prevents the repeated relaxing of the same edge, where only
the first relax can obtain a shorter distance.

The relative order on the number of comparisons for the difference priority
queues on random weighted cliques in Figure 10(a) is consistent with the order-
ing observed for sorting random integers in Figure 8(a). The relative ordering
for priority queues supporting decreasing keys is roughly unchanged when us-
ing dist as key or not (solid curves in Figure 10(c) versus Figure 10(a)). For
worst-case weighted cliques the story is roughly the same, except that the in-
creased number of priority queue insertions for Heapq when using dist as key

19

(Figure 9(d)) also increases the comparison count (Figure 10(d) versus Fig-
ure 10(b)). Interestingly, for BinaryHeap the significant increase in the number
of priority queue insertions results in a smaller number of comparisons.

Interestingly, the number of comparisons performed appears in many cases
to be a little bit lower if we use dist as key, cf. Figure 10 (a) versus (c), and (b)
versus (d). In Figure 11 we have plotted the number of comparisons performed
when using dist as the key relative to using ⟨distance,node⟩ pairs. The gain
is largest for random cliques where the number of comparisons is reduced by
typically at least 10%. For worst-case weights the gain/loss varies heavily among
the priority queues. It appears that using a priority queue supporting decreasing
keys one can often both save the space for storing explicit keys in the priority
queue and reduce the number of comparisons performed.

8. Conclusion

We have considered using priority queues supporting decreasing keys in Di-
jkstra’s single source shortest path algorithm, motivated by the idea of saving
space by omitting explicit keys for the items in the priority queue. Although
standard binary heaps with bottom-up insertion fail to support decreasing keys,
many other priority queues have been identified to do so, and in particular post-
order heaps have been identified as a strong contender for a good alternative
implicit priority queue in this context.

An open problem is to do a detailed experimental evaluation of the priority
queues supporting decreasing keys in a low-level programming language like C.
This is beyond the scope of this paper. Optimizing the running time of such im-
plementations would require to carefully tune the code to take into account, e.g.,
caching, paging, branch mispredictions, and exploiting SIMD instructions [20].
Since the cache performance of binary heaps is known to be improvable by in-
creasing the degree of the heap [16], one should also consider post-order heaps
of higher degree.

Acknowledgment

The author wants to thank Rolf Fagerberg for insightful discussions.

References

[1] Georgy Adelson-Velsky and Evgenii Landis. An algorithm for the organi-
zation of information. Proceedings of the USSR Academy of Sciences (in
Russian), 146:263–266, 1962.

[2] Gerth Stølting Brodal. A survey on priority queues. In Andrej Brod-
nik, Alejandro López-Ortiz, Venkatesh Raman, and Alfredo Viola, edi-
tors, Space-Efficient Data Structures, Streams, and Algorithms - Papers
in Honor of J. Ian Munro on the Occasion of His 66th Birthday, volume
8066 of Lecture Notes in Computer Science, pages 150–163. Springer, 2013.
doi:10.1007/978-3-642-40273-9_11.

20

https://doi.org/10.1007/978-3-642-40273-9_11

[3] Gerth Stølting Brodal. Priority queues with decreasing keys. In Pierre
Fraigniaud and Yushi Uno, editors, 11th International Conference on Fun
with Algorithms, FUN 2022, May 30 to June 3, 2022, Island of Favig-
nana, Sicily, Italy, volume 226 of LIPIcs, pages 8:1–8:19. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.FUN.2022.8.

[4] Svante Carlsson, J. Ian Munro, and Patricio V. Poblete. An implicit
binomial queue with constant insertion time. In Rolf G. Karlsson and
Andrzej Lingas, editors, SWAT 88, 1st Scandinavian Workshop on Al-
gorithm Theory, Halmstad, Sweden, July 5-8, 1988, Proceedings, volume
318 of Lecture Notes in Computer Science, pages 1–13. Springer, 1988.
doi:10.1007/3-540-19487-8_1.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms, 4th Edition. MIT
Press, 2022. URL: https://mitpress.mit.edu/9780262046305/

introduction-to-algorithms/.

[6] Clark A. Crane. Linear Lists and Priority Queues as Balanced Binary
Trees. PhD thesis, Department of Computer Science, Stanford University,
1972.

[7] Edsger W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959. doi:10.1007/BF01386390.

[8] James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert Endre
Tarjan. Relaxed heaps: An alternative to Fibonacci heaps with applications
to parallel computation. Commun. ACM, 31(11):1343–1354, 1988. doi:

10.1145/50087.50096.

[9] Amr Elmasry, Claus Jensen, and Jyrki Katajainen. Two skew-binary nu-
meral systems and one application. Theory Comput. Syst., 50(1):185–211,
2012. doi:10.1007/s00224-011-9357-0.

[10] Michael L. Fredman, Robert Sedgewick, Daniel Dominic Sleator, and
Robert Endre Tarjan. The pairing heap: A new form of self-adjusting
heap. Algorithmica, 1(1):111–129, 1986. doi:10.1007/BF01840439.

[11] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. J. ACM, 34(3):596–615,
1987. doi:10.1145/28869.28874.

[12] Leonidas J. Guibas and Robert Sedgewick. A dichromatic framework for
balanced trees. In 19th Annual Symposium on Foundations of Computer
Science, Ann Arbor, Michigan, USA, 16-18 October 1978, pages 8–21.
IEEE Computer Society, 1978. doi:10.1109/SFCS.1978.3.

[13] Nicholas J. A. Harvey and Kevin C. Zatloukal. The post-order
heap. In Proceedings Third International Conference on Fun with Algo-
rithms (FUN 2004), 2004. URL: http://people.csail.mit.edu/nickh/
Publications/PostOrderHeap/FUN04-PostOrderHeap.pdf.

21

https://doi.org/10.4230/LIPIcs.FUN.2022.8
https://doi.org/10.1007/3-540-19487-8_1
https://mitpress.mit.edu/9780262046305/introduction-to-algorithms/
https://mitpress.mit.edu/9780262046305/introduction-to-algorithms/
https://doi.org/10.1007/BF01386390
https://doi.org/10.1145/50087.50096
https://doi.org/10.1145/50087.50096
https://doi.org/10.1007/s00224-011-9357-0
https://doi.org/10.1007/BF01840439
https://doi.org/10.1145/28869.28874
https://doi.org/10.1109/SFCS.1978.3
http://people.csail.mit.edu/nickh/Publications/PostOrderHeap/FUN04-PostOrderHeap.pdf
http://people.csail.mit.edu/nickh/Publications/PostOrderHeap/FUN04-PostOrderHeap.pdf

[14] Vojtěch Jarńık. O jistém problem minimálńım. Práce Moravské Pri-
dovedecké Spolecnosti v Brně, 4:57–63, 1930.

[15] Irit Katriel and Ulrich Meyer. Elementary graph algorithms in exter-
nal memory. In Ulrich Meyer, Peter Sanders, and Jop F. Sibeyn, ed-
itors, Algorithms for Memory Hierarchies, Advanced Lectures, volume
2625 of Lecture Notes in Computer Science, pages 62–84. Springer, 2002.
doi:10.1007/3-540-36574-5_4.

[16] Anthony LaMarca and Richard E. Ladner. The influence of caches on
the performance of heaps. ACM J. Exp. Algorithmics, 1:4, 1996. doi:

10.1145/235141.235145.

[17] Eugene W. Myers. An applicative random-access stack. Inf. Process. Lett.,
17(5):241–248, 1983. doi:10.1016/0020-0190(83)90106-0.

[18] Thomas Porter and István Simon. Random insertion into a priority queue
structure. IEEE Trans. Software Eng., 1(3):292–298, 1975. doi:10.1109/
TSE.1975.6312854.

[19] R. C. Prim. Shortest connection networks and some generalizations.
Bell System Technical Journal, 36(6):1389–1401, 1957. doi:10.1002/j.

1538-7305.1957.tb01515.x.

[20] Peter Sanders. Fast priority queues for cached memory. ACM J. Exp.
Algorithmics, 5:7, 2000. doi:10.1145/351827.384249.

[21] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting heaps.
SIAM J. Comput., 15(1):52–69, 1986. doi:10.1137/0215004.

[22] Jean Vuillemin. A data structure for manipulating priority queues. Com-
mun. ACM, 21(4):309–315, 1978. doi:10.1145/359460.359478.

[23] J. W. J. Williams. Algorithm 232 heapsort. Commun. ACM, 7(6):347–348,
1964. doi:10.1145/512274.512284.

22

https://doi.org/10.1007/3-540-36574-5_4
https://doi.org/10.1145/235141.235145
https://doi.org/10.1145/235141.235145
https://doi.org/10.1016/0020-0190(83)90106-0
https://doi.org/10.1109/TSE.1975.6312854
https://doi.org/10.1109/TSE.1975.6312854
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1145/351827.384249
https://doi.org/10.1137/0215004
https://doi.org/10.1145/359460.359478
https://doi.org/10.1145/512274.512284

a)

101 102 103 104 105 106

n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

co
m

pa
ris

on
s /

 (n
lo

g 2
n)

n random integers
BinaryHeapTopdownHeapify
BinaryHeapTopdown
BinaryHeap
PostOrderHeap
BinaryHeapHeapifyBottomup
SkewHeap
LeftistHeap
PairingHeap
BinomialQueue
Heapq

b)

101 102 103 104 105 106

n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

co
m

pa
ris

on
s /

 (n
lo

g 2
n)

n permuted integers

c)

101 102 103 104 105 106

n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

co
m

pa
ris

on
s /

 (n
lo

g 2
n)

n increasing integers d)

101 102 103 104 105 106

n

0.0

0.5

1.0

1.5

2.0

2.5

co
m

pa
ris

on
s /

 (n
lo

g 2
n)

PostOrderHeap = BinomialQueue

SkewHeap = LeftistHeap = PairingHeap

n decreasing integers

e)

101 102 103 104 105 106

n

0.0

0.2

0.4

0.6

0.8

1.0

tim
e

/ (
n

lo
g 2

n)

1e 6 n random integers

Figure 8: Sorting n integers using various priority queues.

23

a)

0 50 100 150 200 250
Nodes n

0

1

2

3

4

5

in
se

rti
on

s /
 n

Random clique visited dist

BinaryHeapTopdownHeapify
BinaryHeapTopdown
BinaryHeap
PostOrderHeap
BinaryHeapHeapifyBottomup
SkewHeap
LeftistHeap
PairingHeap
BinomialQueue
Heapq

b)

0 50 100 150 200 250
Nodes n

0

20

40

60

80

100

120

in
se

rti
on

s /
 n

Worst-case clique visited dist

c)

0 50 100 150 200 250
Nodes n

0

1

2

3

4

5

in
se

rti
on

s /
 n

Random clique visited +dist d)

0 50 100 150 200 250
Nodes n

0

50

100

150

200

250

in
se

rti
on

s /
 n

Worst-case clique visited +dist

Figure 9: Dijkstra, number of insertions into the priority queue when not using a visited
bit-vector. (c, d) Using dist as key with a heap not supporting decreasing keys (dash curves)
can cause multiple visits to the same node to discover shorter distances.

24

a)

0 50 100 150 200 250
Nodes n

0

20

40

60

80

100

120

140

co
m

pa
ris

on
s /

 n

Random clique visited dist
BinaryHeapTopdownHeapify
BinaryHeapTopdown
BinaryHeap
PostOrderHeap
BinaryHeapHeapifyBottomup
SkewHeap
LeftistHeap
PairingHeap
BinomialQueue
Heapq

b)

0 50 100 150 200 250
Nodes n

0

1000

2000

3000

4000

5000

6000

co
m

pa
ris

on
s /

 n

Worst-case clique visited dist

c)

0 50 100 150 200 250
Nodes n

0

20

40

60

80

100

120

co
m

pa
ris

on
s /

 n

Random clique visited +dist d)

0 50 100 150 200 250
Nodes n

0

1000

2000

3000

4000

5000

co
m

pa
ris

on
s /

 n

Worst-case clique visited +dist

Figure 10: Dijkstra, comparisons performed.

a)

0 50 100 150 200 250
Nodes n

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Co
m

pa
ris

on
s +

di
st

 /
Co

m
pa

ris
on

s
di

st

Random clique visited
BinaryHeapTopdownHeapify
BinaryHeapTopdown
BinaryHeap
PostOrderHeap
BinaryHeapHeapifyBottomup
SkewHeap
LeftistHeap
PairingHeap
BinomialQueue
Heapq

b)

0 50 100 150 200 250
Nodes n

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Co
m

pa
ris

on
s +

di
st

 /
Co

m
pa

ris
on

s
di

st

Worst-case clique visited

Figure 11: Dijkstra, number of comparisons performed when using dist as key divided by the
number of comparisons performed when storing explicit keys in the priority queues.

25

	Introduction
	Model
	Contributions
	Related work
	Background

	Dijkstra's algorithm with decreasing keys
	Binary heaps and binary search trees fail with decreasing keys
	Sorting
	Dijkstra's algorithm
	Binary search trees

	Binary heaps with top-down insertions
	Existing heaps supporting decreasing keys
	Skew heaps and Leftist heaps
	Pairing heaps, Binomial queues, and Fibonacci heaps

	Post-order heap
	Experimental evaluation
	Correctness of implementation
	Sorting
	Decrease key support

	Sorting performance
	Dijkstra's algorithm performance

	Conclusion

