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Abstract

We present efficient fully persistent B-trees in the I/O model with block size B
that support range searches on t reported elements at any accessed version
of size n in O (logB n+ t/B) I/Os and updates at any accessed version in
O (logB n+ log2B) amortized I/Os, using O (m/B) disk blocks after m up-
dates. This improves both the query and update I/O-efficiency of the previous
fully persistent B-trees of Lanka and Mays (ACM SIGMOD ICMD 1991).

To achieve the result, we introduce an implementation for ephemeral B-
trees that supports searches and updates in O (logB n) I/Os, using O (n/B)
blocks, where moreover every update makes a worst-case constant number of
modifications to the structure. We make these B-trees fully persistent using an
I/O-efficient method for full persistence, inspired by the node-splitting method
of Driscoll et al. (JCSS 1989). Interesting in its own right, the method is
generic enough to be applied to any external memory pointer-based data struc-
ture with maximum in-degree din and out-degree O (B), where every node oc-
cupies a constant number of blocks on disk. For a user-specified parameter
π = Ω (din), we achieve O

(
π
B + log2 π

)
I/O-overhead per access to a field of an

ephemeral block and amortized O
(
π
B + log2 π + din

π log2B
)

I/O-overhead and
O (1/B) block space-overhead per modification to the ephemeral structure.
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1. Introduction

B-trees are the most common dynamic dictionary data structures used for
external memory [4, 8, 17]. We study the problem of making B-trees fully
persistent in external memory.

Persistent indices enable advanced functionalities over the history of data
modifications. Their applications to massive data-sets attract increasing atten-
tion in practical fields, including database management [30, 25, 28], data stream
sketches [35], historical graphs [20], bloom filters [29] and the cloud [23, 21].
More applications are found in computational geometry [34] and biology [15].

External memory model. We study the problem in the I/O model [1], which is
usually used for computational settings where the amount of stored data is too
large to fit in internal memory, and thus devices of external storage (such as
hard disks) are necessary. The model abstracts the computational bottlenecks
in the time and space complexities that occur between two consecutive levels
of a memory hierarchy, named “internal memory” and “external memory”, re-
spectively. Input data resides in external memory, split into consecutive blocks
of size B. Space-complexity is measured in the number of blocks that the data
occupies in external memory. Time-complexity is measured in terms of I/O-
operations (or I/Os) that transfer one block from external to internal memory,
and vice versa. Computation on blocks in internal memory occurs “for free”.

Persistent data structures. Ordinary dynamic data structures, such as B-trees,
are ephemeral, meaning that updates create a new version of the data structure
without maintaining previous versions. A persistent data structure remembers
all versions of the ephemeral data structure as updates are performed to it.

Depending on the operations we are allowed to do on previous versions, we
get several notions of persistence. If we can only update the version produced
last and the other versions are read-only, the data structure is partially persis-
tent; versions form a list (version list). A more general case, full persistence,
allows any version to be updated, yielding a version tree instead. In turn, this is
a special case of confluent persistence, where the additional operation of merg-
ing different versions together is allowed; versions form a directed acyclic graph
(version DAG). A survey on persistence is presented by Kaplan [18].

1.1. Previous results

Full & confluent persistence. The currently most efficient fully persistent B-
trees [22] achieve multiplicative O(logBm) I/O-overhead per query operation
and multiplicative O(logB n) I/O-overhead per update operation, where n is the
number of elements in the accessed version, m is the total number of updates
performed to all versions, and B is the size of the block in the I/O model.
Specifically, Lanka and Mays [22] present fully persistent B+-Trees (FPBT),
which can also be used for confluent persistence. They support range queries
in O ((logB n+ t/B) logBm) I/Os and updates in O

(
log2

B n
)

amortized I/Os,
using O (m/B) blocks of space, where t is the size of the range query’s output.
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Update I/Os Range Query I/Os
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a
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l TSB [26] logB n logBm

† n/B

MVBT [5] log2
B n logBm+ t/B

MVAS [33] log2
B n logBm+ t/B

ADT [2] logBm logBm+ t/B
F
u
ll FPBT [22] log2

B n (logB n+ t/B) logBm
New logB n+ log2B logB n+ t/B
New logB n log2 log2B (logB n+ t/B) log2 log2B

Table 1: I/O-Bounds for persistent B-trees used in an online setting. The number of operations
is m, the size of the accessed version is n, the size of the block is B and the size of the range
query’s output is t. All structures occupy O(m/B) space. † The update time of the TSB is
worst case. All other update bounds are amortized.

Davoodi et al. [9] present a mechanism for confluent persistence in external
memory with logarithmic I/O-overhead per access and update step. Hence,
applying their mechanism to B-trees matches the I/O-efficiency of confluently
persistent FPBTs.

Partial persistence. I/O-optimal partially persistent B-trees [2] achieve O (1)
I/O-overhead per operation. Multiple variants of B-trees have been made par-
tially persistent [4, 8, 27, 16, 17]. Salzberg and Tsotras’ [30] survey on persistent
access methods and other techniques for time-evolving data provides a compar-
ison among partially persistent B+-Trees used to process databases on disks.
They include the Multiversion B-trees (MVBT) developed by Becker et al. [5],
the Multiversion Access Structure (MVAS) of Varman and Verma [33] and the
Time-Split B-trees (TSB) of Lomet and Salzberg [26]. Moreover, the authors
in [14] acquire partially persistent hysterical B-trees [27] optimized for offline
batched problems. The most efficient implementation of partially persistent B-
trees (ADT) was presented by Arge et al. [2] in order to solve efficiently the
static point location problem in the I/O model. They support range queries
in O (logBm+ t/B) I/Os and updates in O (logBm) amortized I/Os, using
O (m/B) blocks. The O (logBm) update I/Os can be replaced with O (logB n)
I/Os by using standard global rebuilding. In Table 1 we summarize the partially
and fully persistent B-trees that can be used in an online setting.

Discussion. All the previous persistent B-trees follow an approach similar to
those of Driscoll et al. [12] who present several generic and efficient techniques
to make an ephemeral data structure partially or fully persistent in the pointer
machine model. In particular, Driscoll et al. presented two methods in order
to achieve full persistence. The fat node method that achieves O (1) amortized
space-overhead and O (log2m) amortized time-overhead, whenever an update
changes O (1) elements in a node (update step); and O (log2 n) worst case time-
overhead whenever O (1) elements in a node are accessed (access step). Lanka
and Mays [22] follow a similar method for their FPBT that also yields a logarith-
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mic I/O-overhead per update step. The second method proposed by Driscoll et
al. is called node-splitting and achieves O (1) amortized space and time overhead
per update step and O (1) worst case time overhead per access step. However, it
can only be applied to data structures whose underlying graph has its in-degree
and out-degree bounded by a constant.

In the pointer machine model, a direct application of the node-splitting
method to B-trees with constant degree is efficient since the in-degree of every
node is one. However, applying this method directly to the I/O model will not
yield an I/O-efficient fully persistent data structure. The persistent nodes of
Driscoll et al. have constant size and thus they correspond to at most a constant
number of updated elements of the ephemeral structure. However, a persistent
node of size Θ (B) can correspond to Θ (B) versions of an ephemeral node. In
order to find the appropriate version during navigation in the persistent node, as
many version-ids must be compared in the version list, using the data structure
of [11]. This causes Θ (B) I/Os in the worst case, since the version list is too large
to fit in internal memory. By simple modifications an O (log2B) I/O-overhead
per update and access step can be achieved.

1.2. Our results

We obtain fully persistent B-trees with O (1) I/O-overhead per query opera-
tion and additive O (log2B) I/O-overhead per update operation. In particular,
we present an implementation of fully persistent B-trees that supports range
queries at any version in O (logB n+ t/B) I/Os and updates at any version in
O (logB n+ log2B) amortized I/Os, using O(m/B) blocks.

Persistent mechanism. In Section 2 we present a method for making an external
memory data structure fully persistent, inspired by the node-splitting method
of Driscoll et al. [12]. We require that the ephemeral external data structure is
pointer-based, and that every node of its underlying graph occupies at most a
constant number of blocks on disk. This implies that the out-degree of any node
is O (B). In the preliminary version of this work [7], we also had the requirement
that the in-degree of any node is bounded by a constant. In this full version
we waive this assumption, allowing our method to handle ephemeral structures
with maximum in-degree (of any node) din.

Specifically, we introduce the user-specified parameter π = Ω (din) in or-
der to provide a trade-off between the I/O-overhead of the access and the up-
date step (for the I/O model). Access to a block of the ephemeral data struc-
ture (access step for the I/O model) causes in the worst case an overhead of
O
(
π
B + log2 π

)
I/Os. Whenever an update operation makes a constant number

of modifications to a node (update step for the I/O model), the update overhead
is O

(
π
B + log2 π + din

π log2B
)

amortized I/Os and the space overhead is O
(

1
B

)
amortized blocks.

The gist of our method lies on the fact that whenever a node of the structure
is accessed by a pointer traversal, the contents of the node for a particular version
can be retrieved by at most a predefined number of version-id comparisons. In
this way we manage to minimize the I/O-cost of an access step. To manage
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space efficiently, we use a packed memory layout for the persistent nodes of
small size.

Incremental B-trees. In Section 3 we present the incremental B-trees, an imple-
mentation of B-trees where rebalancing operations due to insertions and dele-
tions are performed incrementally over the sequence of succeeding updates.
They use O (n/B) blocks and support range searches in O (logB n+ t/B) I/Os.
They support insertions and deletions in O (logB n) I/Os, and each update op-
eration performs in the worst case O (1) modifications to the tree. In a similar
manner, Driscoll et al. applied the lazy recoloring technique [32] on red-black
trees [3] in order to obtain fully persistent red-black trees with O (log2 n) amor-
tized time per insertion and deletion, O (log2 n) worst case time per access, using
O(m) space. Our incremental B-trees can be seen as a generalization of this
technique to B-trees.

The desired fully persistent B-trees are achieved by applying to the incre-
mental B-trees our method for I/O-efficient full persistence. Since incremen-
tal B-trees have din = 1 and an update operation makes O (1) modifications,
by setting π = O (1) it follows that updating the fully persistent incremen-
tal B-trees takes O (logB n+ log2B) amortized I/Os. Levcopoulos and Over-
mars [24], Fleischer [13] and Kaporis et al. [19] also present (a, b)-Trees that
make in the worst case O (1) modifications per update operation, however they
have din = ω (1). Thus, applying our method to them yields less efficient fully
persistent B-trees.

2. Fully persistent data structures in external memory

We present a generic method that makes a pointer-based ephemeral data
structure fully persistent in the I/O model, provided that every node of the
underlying graph occupies at most a constant number of blocks.

We require an ephemeral data structure D to be represented by a graph
where every ephemeral node u contains at most cfB fields, for some constant
cf > 0, and has in-degree at most din. Each field stores either an element,
or a pointer to another ephemeral node. One ephemeral entry node provides
access to the graph. An ephemeral node is empty if none of its fields contains
elements or pointers.

User interface. The following interface provides the necessary operations to
navigate and to update any version of the fully persistent data structure D̄.
The interface assumes that the user has only knowledge of the ephemeral struc-
ture. The i-th version of D̄ is an ephemeral data structure Di where all nodes,
elements and pointers are associated with version i. A field is an identifier of a
field of a node of Di and provides access to it. For example, this identifier may
be the index of a cell in an array stored inside the node. The value of the field
is either the element in the field at version i, or a pointer pi to another node
of Di. Since the pointer resides in and points to nodes of the same version, we
associate this version with the pointer. The version i is Di’s unique identifier.
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pointer pi = Entry(version i) returns a pointer pi to the entry node of
version i.

value x = Read(pointer pi, field f) returns the value x of the field f
in the node at version i pointed by pointer pi. If x is a pointer, we require
that it points to a node also at version i.

Write(pointer pi, field f, value x) writes the value x in the field f of
the node at version i pointed by pointer pi. If x is a pointer, we require that
it points to a node also at version i.

pointer pi = NewNode(version i) creates a new empty node at version i and
returns a pointer pi to it.

version j = Clone(version i) creates a new version Dj that is a copy of the
current version Di, and returns a new version identifier for Dj .

Before every update operation, the user has to call Clone explicitly in order
to create a new version j that corresponds to the ephemeral structure Dj .

2.1. The structure

Our method is inspired by the node-splitting method [12] to which we make
non-trivial modifications, such that whenever a node of the structure is accessed
by a pointer traversal, the contents of the node for a particular version can be
retrieved by at most a predefined number of version comparisons.

2.1.1. Global version list

As defined by full persistence, all the versions of the ephemeral data structure
can be represented by a directed rooted version tree T . If version j is obtained by
modifying version i, version i is the parent of j in T . Similarly to [12], we store
the pre-order layout of T in a dynamic list that supports order-maintenance
queries [10, 31, 11, 6], called the Global Version List (GVL). Given two
versions i and j, an order-maintenance query returns true if i lies before j in
the list, and it returns false otherwise. To preserve the pre-order layout of T
whenever a new version is created, it is inserted in the GVL immediately to the
right of its parent version. In this way, the descendants of every version occur
in the GVL in a consecutive range, i.e. an interval of versions.

Specifically, the interval denoted by [i, j) contains all versions in the GVL
between version i and version j, including version i but excluding version j. We
denote by i+ the successor version of version i in the GVL, i.e. the version
immediately to the right of i. The interval [i, i+) is a singleton interval that
only contains version i.

By implementing the GVL as in [11], order-maintenance queries are sup-
ported in O (1) worst case time and I/Os. The insertion of a version is sup-
ported in O (1) worst case time and I/Os, given a reference to the position of
the version’s parent version in the GVL.
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Figure 1: The family φ(u) records all versions of the ephemeral node u. Black and white
dots represent versions and tuples, respectively. Persistent node ūk ∈ φ(u) points to some
persistent node (bottom left). Some other persistent node (bottom right) points to ūk. The
corresponding backward pointers are represented with thin arrows.

2.1.2. Persistent nodes

We record all the changes that occur to an ephemeral node u in a linked
list of K ≥ 1 persistent nodes ūk, called family φ (u) := ū1 → . . . → ūK . To
implement the linked list, every persistent node ūk contains a pointer c(ūk) to
the next persistent node ūk+1, where c(ūK) = null.

Each node ūk ∈ φ (u) stores the versions of u in some interval of the GVL.
Figure 1 illustrates a persistent node ūk.

Persistent fields. Every persistent node ūk stores an ordered set Ff (ūk) for
every field f of the corresponding ephemeral node u. If field f stores elements,
then the set Ff (ūk) contains pairs of the type (version i, value x), where x is
the element stored in f at version i.

Forward pointers. Otherwise field f stores pointers, so the set Ff (ūk) contains
pairs of the type (version i, pointer −→p ), where the forward pointer −→p corre-
sponds to the ephemeral pointer p that is stored in field f at version i. In
particular, if p points to the ephemeral node v at version i, then −→p points1

to the persistent node v̄ ∈ φ (v) that corresponds to node v at version i. The
set Ff (ūk), where the field f stores pointers, may also contain pairs of the
type (version i, null) to represent the fact that for an interval of versions that
includes version i, the forward pointer does not point to any node.

We denote F (ūk) = ∪fFf (ūk).

1Paragraphs “local version list” and “pointer invariants” clarify where −→p points exactly.
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Backward pointers. For every pair (i,−→p ) ∈ Ff (v̄) where the forward pointer
−→p points to ūk, the persistent node ūk contains a triple2 (version i, version j,
pointer ←−p ), where the backward pointer ←−p points to v̄. We denote by B (ūk)
the set of all triples in ūk with backward pointers.

Backward pointers do not correspond to ephemeral pointers and they are
only used by the persistent mechanism to accommodate updates.

Henceforth, by the term tuples we refer to pairs in F (ūk) and triples in
B (ūk). The tuples in Ff (ūk) for all f , and in B (ūk) are sorted with respect to
the order of their first component (version i) in the GVL.

Local version list. The persistent node ūk contains a Local Version List
LVL(ū) that is a linked list containing all the versions in the tuples of F (ūk)
and B (ūk) ordered with respect to their order in the GVL. We define the first
version in the LVL(ūk) as the version iūk

of the persistent node ūk. Every
forward pointer to node ūk points to some version in the LVL(ūk).

We define the valid interval [i, j) of a tuple (i, x) (or (i,−→p )) in Ff (ūk) to be
the set of versions in the GVL for which field f has the particular value x (or
contains the forward pointer −→p to a particular persistent node, respectively).
Specifically, version j is the version in the immediately next (succeeding) tuple
of Ff (ūk), if the tuple exists. Otherwise j = iūk+1

, if c (ūk) 6= null. Else, j is the
last version in the GVL3. Similarly, the valid interval of a tuple (i, j,←−p ) ∈ B (ūk)
is [i, j); in this case, version j is explicitly contained in the tuple. We define
the valid interval of a persistent node ūk to be [iūk

, iūk+1
), if c (ūk) 6= null.

Otherwise, it is up to the last version in the GVL.
A pair (i, x) ∈ Ff (ūk) implements the values x of field f at all the versions

in the GVL that belong to the pair’s valid interval. A pair (i,−→p ) ∈ Ff (ūk) with
forward pointer −→p to persistent node v̄ implements the pointers pj to node v
at all version j in the GVL that belong to the pair’s valid interval.

Valid intervals are necessary to implement full persistence within a persistent
node. For instance4, suppose that we write value x in field f of node u at
version i. Let i belong to the valid interval of persistent node ūk for some k,
and in particular to the valid interval [i′, j) of pair (i′, y) ∈ Ff (ūk). Simply
adding pair (i, x) to Ff (ūk) (succeeding (i′, y)) would correctly redefine the
valid interval of (i′, y) to be [i′, i), but would also erroneously define the valid
interval of (i, x) to be [i, j). This is a mistake, because the value of f for
versions [i+, j) obtain value x, instead of the previous correct value y. To avoid
this inconsistency, we follow the principle that whenever we add a pair (i, x)
to Ff (ūk), we also add the succeeding pair (i+, y) (provided i+ 6= j, i.e. i+ is
strictly before j in the GVL). This defines the valid interval of (i, x) to correctly
be [i, i+), and that of (i+, y) to be [i+, j). In other words, the value of field f

2Paragraph “local version list” clarifies version j and paragraph “pointer invariants” clar-
ifies that ←−p does not point anywhere within v̄.

3To make notation [i, j) coherent, the GVL contains a dummy version +∞ at its end.
4The exact details are presented in the paragraph on operation Write in Section 2.3.
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in node u remains y for all versions in the GVL that belong to [i′, i) and [i+, j),
and is set to x only at version i.

Entry array. To provide access to the structure we maintain an entry array
whose i-th position stores the pair (version i, pointer −→p ). Forward pointer −→p
points to the persistent node ūk that corresponds to the entry node at version i.
Here, i is a reference to the position of version i in the GVL. Also, B (ūk)
contains the triple (i, i+,←−p ) with a backward pointer ←−p to the i-th position of
the array.

The array contains all versions, since Clone is called for every version cre-
ated. Thus, the valid interval of tuple (i,−→p ) in the entry array is defined to
be [i, i+).

Packed memory. We define the size of a persistent node ūk to be the number
of tuples in F (ūk) and B (ūk). This is asymptotically equal to the number
of versions in the LVL(ūk), since there exists at least one tuple per version.
A persistent node is small, if its size is at most

cf
2 B − 1. To utilize space

efficiently, we pack in an auxiliary linked list, all singleton families consisting
of one small persistent node.

2.2. Invariants

Henceforth, without loss of generality, we drop subscript k when referring to
a given persistent node ū ∈ φ (u).

Node invariants. The persistent nodes satisfy Invariants 1 and 2.

Invariant 1. For every field f of the persistent node ū, the first pair in Ff (ū)
contains version iū.

Invariant 1 ensures that the contents of an ephemeral node u at any given
version i can be retrieved by accessing exactly one persistent node ū ∈ φ (u).
Specifically, ū is the persistent node in φ (u) whose valid interval contains i.

Invariant 2. The size of a persistent node ū (not stored in the auxiliary linked
list) is |ū| ∈

[ cf
2 B, cmaxB

]
for cmax ≥ 30

(
cf + din

B

)
.

Invariant 2 ensures that a persistent node ū occupies at most a constant
number of blocks. Therefore, the out-degree of every persistent node, and thus
also of every ephemeral node, is bounded by O (B).

Pointer invariants. Forward and backward pointers satisfy Invariants 3 and 4.

Invariant 3. For every forward pointer −→p that points to the persistent node ū
and resides in a pair (i,−→p ) ∈ Ff (v̄) (or in the entry array), there exists a
triple (i, j,←−p ) ∈ B (ū), where the backward pointer ←−p points to the persistent
node ū (or to the i-th position of the entry array, respectively).

The valid intervals of the tuples (i,−→p ) and (i, j,←−p ) are identical.
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Invariant 3 associates every forward pointer −→p with a corresponding back-
ward pointer ←−p and ensures that the valid intervals of their tuples are exactly
the same. We set this forward pointer −→p at version i to particularly point to the
version i in the LVL(ū). It suffices for the corresponding backward pointer ←−p
to simply point to the persistent node v̄.

We describe how to determine the triple with the backward pointer that cor-
responds to a given forward pointer. Let (i,−→p ) ∈ Ff (v̄) be the pair containing
forward pointer −→p to persistent node ū, and let (j,−→q ) be its succeeding pair
in Ff (v̄). We retrieve all triples in B (ū) with backward pointers to v̄, and we
locate among them the triple (i, j,←−p ). By Invariant 3, at least one such triple
exists. More than one such triples exist in the case where there are more than
one pointers from the ephemeral node v to the ephemeral node u at all versions
in the interval [i, j). If so, we pick an arbitrary one.

We describe how to determine the pair with the forward pointer that corre-
sponds to a given backward pointer. Let (i, j,←−p ) ∈ B (ū) be the triple containing
backward pointer ←−p to persistent node v̄. We retrieve all pairs in F(v̄) with
forward pointers to ū, and locate among them, the pair whose valid interval
is [i, j). By Invariant 3, at least one such pair exists. If there are more than one
such pairs, then we pick an arbitrary one.

We define the span of a forward pointer −→p to persistent node ū to be the
versions in the intersection between the valid interval of the pair containing −→p
and the LVL(ū). The size of the span is the number of versions it contains.

Invariant 4. Let π ≥ 10din. The size of the span of every forward pointer is
integer d ∈ [1, 2π].

Note that the span of a forward pointer to persistent node ū is an interval
of versions in LVL(ū). The span of a forward pointer can also be determined by
locating the triple (i, j,←−p ) ∈ B (ū) with the corresponding backward pointer, as
described above. In particular, it is the interval of versions in the LVL(ū) from
version i up to but not including version j.

Invariant 4 ensures that whenever a persistent node is accessed by traversing
a forward pointer, the content of the persistent node for a particular version can
be retrieved by searching in a set of at most 2π versions.

2.3. Algorithms & correctness

We present the implementation of the user-interface and argue about its cor-
rectness. Operations Write, NewNode, and Clone immediately restore Invari-
ants 1 and 3. This may cause O (din) forward pointers to violate Invariant 4 and
some persistent nodes to violate Invariant 2. The auxiliary subroutine Repair()
restores these invariants using an auxiliary violation queue.

We define the predecessor version of a version i in the LVL to be he rightmost
version in the LVL that is not to the right of version i in the GVL. Note that
when i belongs to the LVL, it is the predecessor of itself.
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Figure 2: Ephemeral node u contains value x in field f at version i. To Read(pi, f), we access
the persistent node ū ∈ φ(u) by the pointer pi, implemented by a forward pointer −→p in some
pair (i′,−→p ) whose valid interval contains version i. To determine the pair (j′, x) ∈ Ff (ū) whose
valid interval contains version i, we find the predecessor version j of version i in LVL(ū). By
Invariant 3 the backward pointer ←−p corresponding to −→p belongs to a triple (i′, i′′,←−p ) ∈ B(ū)
whose valid interval contains i. Therefore versions j, i ∈ [i′, i′′) and i′, j, i′′ ∈ LVL(ū), although
i 6∈ LVL(ū). Version j is determined by an order-maintenance binary search for i over the
span of −→p . Version j′ is the predecessor of j among all versions in Ff (ū).

2.3.1. Operation Entry

pointer pi = Entry(version i). We return the forward pointer in the i-th
position of the entry array, since it points to the entry node at version i.

2.3.2. Operation Read

value x = Read(pointer pi, field f). Let pointer pi point to ephemeral
node u at version i. Let version i belong to the valid interval of persistent node
ū ∈ φ (u). To return the value x that field f has in the ephemeral node u at
version i, we locate the pair in Ff (ū) whose valid interval contains version i.
Figure 2 illustrates the setting for the operation Read.

The pairs in F (ū) whose valid intervals contain version i, also contain its
predecessor version j. We determine j by searching in the LVL(ū) as following.
Let the pair (i′,−→p ) contain the forward pointer that implements pointer pi.
By Invariant 3, version i′ belongs to the LVL(ū). Since version i belongs to
the valid interval of this pair, version i′ lies to the left of version i in the GVL.
If i′ 6= j, then version j lies to the right of version i′ in the LVL(ū) and moreover
j belongs to the span of −→p .

To locate the output pair in Ff (ū), we need to find version j. We perform
a binary search for i over the versions in LVL(ū) that belong to the span of −→p .
Every comparison is implemented by an order-maintenance query between the
accessed version in the span and version i. This way, j is the rightmost located
version in the span for which the order-maintenance query returns true. At
least one order-maintenance query returns true, since (the leftmost considered)
version i′ lies to the left of version i in the GVL. We find the pair (j′, x) ∈ Ff (ū)
with the predecessor version j′ of version j in the LVL(ū) and return its value x.
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2.3.3. Operation Write

Write(pointer pi, field f, value x). Let pointer pi point to ephemeral
node u. Let version i belong to the valid interval of persistent node ū ∈ φ (u).
As in Read, we find the predecessor version j of version i in the LVL(ū), and
the pair (j′, y) ∈ Ff (ū) whose valid interval contains version i. Note that j′ is
to the left of j which is in turn to the left of i in the GVL. Figure 3 illustrates
the setting before and after the operation Write.

Writing values. If j′ = i, we merely replace y with x, and add pair (i+, y)
to Ff (ū), unless a pair with i+ already exists. In this case, version i is the
currently updated version and it belongs to the LVL(ū). If j′ 6= i, we add both
the pairs (i, x) and (i+, y) to Ff (ū). If there is already a pair in Ff (ū) with
version i+, it suffices to only add the pair (i, x). In this way, version i belongs
only to the valid interval of the pair (i, x). Moreover, the versions that belonged
to the valid interval of the pair (j′, y) and succeed version i in the GVL, continue
having the previous value y. If Ff (ū) is empty, we add the pairs (iū, null), (i, x)
and (i+, null) instead, where iū is the version of the persistent node ū.

Version i is inserted in LVL(ū) immediately to the right of version j. Unless
version i+ already exists in the LVL(ū), i+ is inserted immediately to the right
of version i. These insertions may cause at most 2din forward pointers that
point to ū to violate Invariant 4. That is at most din forward pointers for each
newly inserted version i and i+ in LVL(ū). We denote the set of these forward

pointers by
−→
Pū. The persistent nodes that contain them have to be inserted

to the violation queue, unless they are already there. To locate the forward

pointers in the set
−→
Pū, we determine the corresponding backward pointers in ū.

In particular, we find all the triples (`, `′,←−p ) ∈ B (ū) whose valid intervals
contain the inserted versions, and we check if there are more than 2π versions
in the LVL(ū) between versions ` and `′. If so, we access the persistent node v̄
pointed by ←−p and mark the unmarked pair in Ff (v̄) with the corresponding
forward pointer. We insert v̄ to the violation queue, unless it is already there.

Writing pointers. If x is a pointer then we have to take into account the main-
tenance of backward pointers and the addition of new versions into LVLs. In
particular, if x is a pointer to an ephemeral node z at version i, the argu-
ment pointer xi is implemented by a forward pointer −→x in the persistent node
z̄ ∈ φ (z) whose valid interval contains version i. We assume that −→x points the
to predecessor version g of version i in the LVL(z̄).

The difference with respect to the addition of pairs in Ff (ū) is that (instead
of adding pair (i+, y)) we add the pair (i+,−→y ′) with forward pointer −→y ′ to the
persistent node v̄ that is pointed by −→y , i.e. the forward pointer in the found
pair (j′,−→y ). We add to the LVL(v̄) the versions i and i+, unless they already
belong to it. This is accomplished by a binary search over the span of −→y .

We set −→y ′ to particularly point to version i+ in the LVL(w̄). Note that −→y
already points to version j′ in the LVL(w̄). The at most 2din forward pointers
−→
Pv̄ that violate Invariant 4, because of the addition of i and i+, are processed as

12



(a) Before Write (b) After Write

Figure 3: To write pointer xi from ephemeral node u to ephemeral node z at version i,
Write(pi, f, xi) is called. The internal implementation of Read(pi, f) finds the pair (j′,−→y ) ∈
Ff (ū) whose valid interval contains version i. Forward pointer −→y points to some persistent
node v̄ ∈ φ(v), i.e. u contains a pointer yi to ephemeral node v at version i.
Pairs (i,−→x ) and (i+,−→y ′) are added to Ff (ū) with forward pointers −→x ,−→y ′ to persistent nodes
z̄ ∈ φ(z) (whose valid interval contains i) and v̄, respectively. Corresponding backward point-
ers are added to B(v̄),B(z̄). Versions i, i+ are added to LVL(ū) and LVL(v̄) and i to LVL(z̄).

described for
−→
Pū. To restore Invariant 3, we change the triple (j′, k,←−y ) ∈ B(v̄) to

(j′, i,←−y ), where [j′, k) was the valid interval of the corresponding pair (j′,−→y ) ∈
F (ū). Moreover, we add the triple (i+, k,←−y ′) to B (v̄) that corresponds to the
pair (i+,−→y ′) ∈ F (ū).

To establish the forward pointer −→x we insert version i to the LVL(z̄) suc-
ceeding version g, unless i is already there. We set −→x to particularly point to
version i in the LVL(z̄). The added pair (i,−→x ) implements pointer xi. The at

most din forward pointers
−→
Pz̄ that violate Invariant 4 are processed as described

for
−→
Pū. We restore Invariant 3 for the added pair (i,−→x ) by inserting to B (z̄)

the triple (i, i+,←−x ), where the backward pointer ←−x points to ū.

Managing node sizes. The insertions of tuples in the persistent nodes ū, v̄ and z̄
increases their size. If the nodes are not small any more due to the insertions, we
remove them from the auxiliary linked list and move them to an empty block.
If they violate Invariant 2, we insert them to the violation queue, unless they
are already there. Finally, Repair is called.

2.3.4. Operation NewNode

pointer pi = NewNode(version i). We create a new family φ (u) which con-
sists of one empty persistent node ū. We insert version i to the LVL(ū), so
that ū satisfies Invariant 1. All fields of ū are empty. Node ū is added to the
auxiliary linked list since it is small. We return a forward pointer to version i
in the LVL(ū).

13



2.3.5. Operation Clone

version j = Clone(version i). We find the position of version i in the GVL
from the reference stored at the i-th position of the entry array. We insert
version j immediately to the right of version i in the GVL. We insert in the j-th
position of the entry array a reference to the position of version j in the GVL.

Let ū be the persistent node pointed by the forward pointer −→q in the i-th
position of the entry array. We insert in the j-th position of the entry array a
forward pointer −→p to ū, add the triple (j, j+,←−p ) to B (ū) (where the backward
pointer ←−p points to the j-th position of the entry array and corresponds to −→p )
and replace the triple with −→q in B (ū) with (i, j,←−q ).

At most din forward pointers
−→
Pū that point to ū may violate Invariant 4.

We process them as described in Write. If ū violates Invariant 2 we insert it to
the violation queue, unless it is already there. Finally, Repair is called.

2.3.6. Operation Repair

Repair() iteratively pops a persistent node ū from the violation queue, and
restores Invariant 4 for the forward pointers in the marked pairs of Ff (ū) and
Invariant 2 for ū. These invariants may in turn be violated in other persistent
nodes, which we insert in the violation queue as well. This iteration terminates
when the queue becomes empty. See Section 2.4.2 for the analysis.

Managing spans. To restore Invariant 4 for the forward pointer in the marked
pair (i,−→p ) ∈ Ff (ū) with valid interval [i, k), we reset the size of its span to π
as following. Let −→p point to the persistent node w̄. We find the version j in the
span of −→p that resides π positions to the right of version i in the LVL(w̄). We
set the forward pointer −→p ′ to version j in the LVL(w̄), and add the pair (j,−→p ′)
to Ff (ū). If the span of −→p ′ violates Invariant 4, we mark its pair and insert ū
again to the violation queue.

We restore Invariant 3 by changing the triple (i, k,←−p ) ∈ B (w̄) to (i, j,←−p )
and by adding a new triple (j, k,←−p ) to B (w̄) that corresponds to the new pair
(j,−→p ′) ∈ F (ū). We find the predecessor version of version j in the LVL(ū) by a
binary search over the whole LVL(ū). We insert j immediately to the right of its
predecessor version, unless it already exists. This may cause at most din forward

pointers
−→
Pū to violate Invariant 4. We check them as described in Write. Also,

if ū or w̄ violate Invariant 2 they are added to the violation queue.

Managing node sizes. To restore Invariant 2 for the persistent node ū, we split
it into two persistent nodes, such that the right one, which becomes the new
node, has size approximately cmax

2 B.
We first determine the version j at which we will split ū, by scanning the

LVL(ū) from right to left. Version j is the leftmost version in the LVL(ū), such
that the number of tuples whose version succeeds j is less than cmax

2 B, without
counting the tuples with null values that occur last in Ff (ū) with respect to
the order of the versions. (These tuples represent empty fields in the new node
and as such they are not stored in it.)
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Unless j′ = j, if x is not a pointer, then for every pair (j′, x) ∈ F (ū)
whose valid interval contains version j we add a pair (j, x) to Ff (ū) for the
particular field f . For the pair (j′,−→x ) ∈ Ff (ū), where −→x is a forward pointer
to a persistent node w̄, we first add version j to LV L (w̄) by binary searching
in the span of −→x and then we add to Ff (ū) the pair (j,−→x ′) where −→x ′ points
to w̄ at version j. Then to restore Invariant 3 we change the triple (j′, `,←−x )
that corresponded to the pair (j′,−→x ) ∈ Ff (ū) to (j′, j,←−x ), and we also add the
triple (j, `,←−x ) which correponds to the new pair (j,−→x ′). We do similarly for
the at most din triples with backward pointers in B (ū) that contain version j in
their valid interval. In particular, we replace all triples (k, `,←−x ) that contain j
in their valid interval with two triples (k, j,←−x ) and (j, `,←−x ). By following ←−x
we locate the pair (k,−→x ) ∈ F (v̄) with a forward pointer to ū at version k whose
valid interval is [k, `). We add the pair (j,−→x ′), where −→x ′ is a forward pointer
to ū at version j. We also add j to LVL(v̄) by making a binary search over the

whole LVL(v̄). This may in turn violate Invariant 4 for forward pointers in
−→
Pv̄,

which we process as described above.
We create a new persistent node ū′ that succeeds ū in the family φ (u), by

setting c (ū′) = c (ū) and c (ū) = ū′. We split the LVL(ū) at version j. The
right part becomes LVL(ū′) and version j becomes the version of ū′. All the
tuples in ū with valid interval [k, `), such that k ≥ j are moved to ū′. Then,
all forward and backward pointers in F (ū′) and B (ū′) are traversed in order to
update the corresponding backward and forward pointers to point to ū′ instead
of ū. Note, that this step changes existing pointers and does not introduce new
tuples or versions anywhere in the structure. Node ū′ satisfies Invariant 1 due
to the addition of the pairs (j, x) for each non-empty field.

Finally, all nodes that had their size increased because of the introduction of
new tuples are checked with respect to Invariant 2 and each node that violates
it is inserted into the violation queue, unless it is already there.

2.4. Analysis

In this subsection we prove the following theorem.

Theorem 1. Let D be a pointer-based ephemeral data structure that supports
queries in O (q) worst case I/Os and where updates make O (u) modifications
to the structure in the worst case. Given that every node of D occupies at
most dcfe blocks, for a constant cf , D can be made fully persistent such that
a query and an update to a particular version of the persistent structure D̄ is
supported, respectively, in:

O (q (cmax + log2 π)) worst case I/Os and

O
(
u
(
cmax + log2 π + din

π log2 (cmaxB)
))

amortized I/Os,

where din is the maximum in-degree of any node in D, π ≥ 10din is the size of
the span and where any node of D̄ occupies at most cmax ≥ 30

(
cf + π

B

)
blocks.

After performing a sequence of m updates, D̄ occupies O
(
umB
)

blocks of space.
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The following remarks are necessary for the analysis. A version in the LVL(ū)
belongs to the span of at most din forward pointers that point to ū, and thus it
belongs to the valid interval of at most din pairs in B (ū).

Lemma 1. After splitting a persistent node ū the size of the new persistent
node ū′ is within the range

[(
cmax

2 − cf
)
B − din,

(
cmax

2 + cf
)
B + din − 1

]
.

Proof. The number of tuples with version j and with versions that succeed
version j in LVL(ū) before the split is at least

(
cmax

2 − cf
)
B − din, since at

most cfB + din tuples contain version j in their valid interval. This sets the
lower bound. The number of tuples with a version that succeeds j in the LVL(ū)
is at most cmax

2 B−1. There are at most cfB pairs with a single version in F (ū),
and at most din triples in B (ū) whose valid interval contains version j. We add
one tuple for each of them to ū′. This sets the upper bound.

2.4.1. Worst-case analysis

First, we list the worst-case I/O-cost of the basic subroutines called by the
operations. Accessing the entry array takes O (1) I/Os. Querying and updating
the GVL takes O (1) time [11] and thus O (1) I/Os. Loading a persistent node in
memory or inserting it to the violation queue takes O (cmax) I/Os. After having
accessed a persistent node by a forward pointer, the fields of a particular ver-
sion are retrieved by O (log2 π) calls to the order-maintenance structure. After
having accessed a persistent node by a backward pointer, the fields of a par-
ticular version are retrieved by O (log2 (cmaxB)) calls to the order-maintenance
structure.

During navigation, operations Entry and Read incur worst-case I/Os. Specif-
ically, Entry takes O (1) worst-case I/Os in total, since it only accesses the entry
array. Read accesses the persistent node ū by a forward pointer, and thus it
takes O (cmax + log2 π) worst-case I/Os in total to load ū into memory and to
determine the appropriate version j.

During update, only operation NewNode incurs worst-case I/Os. Specifically,
NewNode takes O (1) worst-case I/Os in total, since it creates a persistent entry
node and inserts it into the auxiliary linked list.

2.4.2. Amortized analysis

During update, the remaining operations incur amortized I/Os. Specifically,
an update operation commenced by the user consists of a call to Write or
to Clone that is followed by a Repair operation. To derive the amortized I/O-
cost of the update operations, we count the amortized number of modifications
that the operations cause to the structure and we charge every modification with
an amortized number of I/Os. A modification particularly consists of adding a
tuple or a version to a persistent node, or of changing the value in a tuple. To
unify the above types of modifications, we assume that a version and a tuple fit
in a field of a block, and we count the number of modified fields. Note that this
number bounds asymptotically the number of persistent nodes updated by the
operations.

16



Potential function. Let Di be the persistent structure after the i-th update
operation has been performed and without loss of generality let it be performed
on persistent structure Di−1. The amortized number of modifications caused
by the i-th update operation is c̃i = ci + Φ (Di) − Φ (Di−1), where ci is the
actual number of modifications to Di−1, and where Φ (Di) is the potential of
the persistent structure Di. In particular, we define the potential of Di to be

Φ (Di) =
∑
−→p ∈P

Ξ (−→p ) +
∑
ū∈U

Ψ (ū)

where P is the set of all forward pointers and U is the set of all persistent nodes
in Di. The function

Ξ (−→p ) = max

{
0,
|−→p | − π
din

}
provides the potential to the forward pointer −→p for the splitting of its span.
By |−→p | we denote the size of the span of −→p . Function

Ψ (ū) = max
{

0, 3
(
|ū| −

((cmax
2

+ cf

)
B + din

))}
provides the potential to the persistent node ū for its split. By |ū| we denote
the size of the persistent node ū. The amortized number of modifications is an
upper bound on the actual number of modifications of a worst-case sequence of
operations, since the potential function is always non-negative.

Change in potential. We calculate how much a single update operation changes
the potential. Operation Write, without the call to Repair, increases the po-
tential by at most ∆Ψ = 12. In particular, it increases Ψ (ū), Ψ (z̄) and Ψ (w̄),
since at most two pairs are added in ū, one triple is added in w̄ and one in z̄, or
because at most three pairs are added in ū and one in z̄. Moreover, it increases
the potential by at most ∆Ξ = 5. In particular, the potential of the at most din
forward pointers of

−→
Pz̄, the potential of the at most 2din forward pointers of

−→
Pū

and the potential of at most 2din forward pointers
−→
Pw̄ is increased by 1

din
. Note

that although the span of a forward pointer may contain both new versions,
and as such its potential is increased by 2

din
, in total the increase in potential

cannot be larger than 2 for each such node. In total, the potential increases by
at most ∆Φ = 17.

Operation Clone, without the call to Repair, increases the potential by at
most ∆Ψ = 3, because of the addition of the new triple in ū. Moreover, it
increases the potential by at most ∆Ξ = 1, since the potential of at most din
forward pointers of

−→
Pū is increased by 1

din
. In total, the potential increases by

∆Φ = 4.
When operation Repair restores Invariant 4 for one marked pair with a

forward pointer, it increases the potential by at most ∆Ψ = 6, since a pair is
added to ū and a triple is added to w̄. Moreover, it increases the potential by
at most ∆Ξ = 1− π

din
. This is because the potential of the at most din forward
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pointers of Pū is increased by 1
din

, due to the addition of version j. In addition,
the potential of the forward pointer in the pair is decreased by π

din
, due to the

split of the span. In total, the potential changes by ∆Φ = 7− π
din

.
When operation Repair restores Invariant 2 for a persistent node ū, it in-

creases the potential by at most ∆Ψ =
(
9cf − 3

2cmax
)
B+5din. This is because

it adds at most cfB pairs and at most din triples in ū, and at most cfB + din
triples and pairs with the corresponding backward and forward pointers in other
persistent nodes. After the split ( cmax

2 − cf )B − din pairs and triples have
been moved to the new persistent node ū′, as implied by the lower bound in
Lemma 1. Moreover, it increases the potential by at most ∆Ξ = cfB + din,
since at most din (cfB + din) forward pointers have the size of their span in-
creased by 1

din
, due to the addition of version j. In total the potential changes

by ∆Φ =
(
10cf − 3

2cmax
)
B + 6din.

Number of modifications. We calculate the amortized number of modifications
caused by the Repair operation. When Repair restores Invariant 4 for α forward
pointers, then the actual number of modifications is ci = 3α, since for each such
forward pointer we add a new version in an LVL as well as a pair and its
corresponding triple. Thus, the amortized number of modifications is

c̃i = α

(
3 +

(
7− π

din

))
which is non-positive for π ≥ 10din.

When Repair restores Invariant 2 for β persistent nodes, then the actual
number of modifications is ci = β

(
3cfB + 5din + 2B

(
cmax

2 + cf
)
− 2
)
. That

is because we add at most cfB new pairs in ū with forward pointers, and we
add one corresponding new triple with a backward pointer and a new version
at every persistent node pointed by each of these forward pointers. Moreover,
we add at most din triples with backward pointers in ū, and we add one corre-
sponding forward pointer and version at every persistent node pointed by each
such backward pointer. Finally, we transfer at most

(
cmax

2 + cf
)
B + din − 1

pairs to ū′ and we update at most an equal number of pointers so that they
point to ū′ insteaf of ū. Thus, the amortized number of modifications is

c̃i = β

(
3cfB + 5din + 2B

(cmax
2

+ cf

)
− 2 +

(10cf −
3

2
cmax)B + 6din

)

which is non-positive for cmax ≥ 30cf + 22din−4
B . Moreover cmax = Ω

(
π
B

)
, since

the span of a forward pointer cannot be larger than the size of a persistent node.
Hence, we choose the constant 30 for the lower bound of cmax in Theorem 1.
It follows that by choosing π and cmax appropriately we guarantee that the
amortized number of modifications caused by the updates is not affected by the
Repair operation.
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Finally, we calculate the amortized number of modifications caused by oper-
ations Write and Clone. The actual number of modifications caused by Write

is ci = 8. This is because we add at most 4 versions and 4 pairs. Thus the amor-
tized number of modifications caused by Write is c̃i = 8+∆Φ = 25. The actual
number of modifications caused by Clone is ci = 2. This is because we add at
most one version and one pair. Thus the amortized number of modifications
caused by Clone is c̃i = 2 + ∆Φ = 6.

I/O-cost per modification. We calculate the amortized I/O-cost per modifica-
tion. A sequence of m updates incurs Θ (m) modifications to the structure,
since the amortized number of modifications made by Repair is 0 for a suit-
able choice of π and cmax, and the amortized number of modifications made
by Write and Clone is Θ (1). Every modification takes O (cmax + log2 π) I/Os
since the modified persistent node is loaded into memory to add the appropri-
ate tuples, and the O (log2 π) queries are performed to the GVL to add the
appropriate versions to the LVL of the persistent node. Moreover, every mod-
ification increases the span of at most din forward pointers by 1. Thus, in a
sequence of m modifications the spans increase by O(mdin) in total. Without
loss of generality we assume that m is large enough, such that every span ini-
tially has size π, and thus it must suffer π version insertions in order to be
split. Splitting a span takes O (log2 (cmaxB)) I/Os. Therefore, the total cost
for splitting all spans in a sequence of m updates is O

(
din
π log2 (cmaxB)

)
I/Os.

It follows that the total amortized I/O-cost for processing one modification is
O
(
din
π log2 (cmaxB) + cmax + log2 π

)
. This also upper bounds the amortized

I/O-cost of every update operation, since the amortized number of modifica-
tions made by Write and Clone is Θ (1).

Note that depending on the in-degree of the given ephemeral structure, we
can set the parameters cmax and din appropriately, in order to obtain different
trade-offs between the I/O-overheads. For example, if din = O (1) we can obtain
an I/O-efficient mechanism for full persistence with O (1) I/O-overhead per
access step and O (log2B) I/O-overhead per update step, by setting π = Θ (1)
and cmax = Θ (1). Moreover, if din = O (log2B), we can also obtain an I/O-
efficient mechanism for full persistence with Ω (log2 log2B) I/O-overhead per
access and update step by setting π = logk2 B and cmax = Θ (1), for a constant
k ≥ 2. Finally, if din = B, we can also obtain an I/O-efficient mechanism for full
persistence with O (log2B) I/O-overhead per access and update step by setting
π = 11B and cmax = Θ (1). However, in this case it would be better to apply
the naive solution.

Space cost. The space usage after m operations with O (u) modifications each
in the worst case is Θ

(
umB
)

blocks, since an update operation makes O (1)
amortized number of fields modifications and since all small blocks are packed
in the auxiliary linked list.
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3. Incremental B-trees

In this section we design B-trees [4, 8, 17] that use O (n/B) blocks of space,
support insertions and deletions of elements in O (logB n) I/Os, and range
queries in O (logB n+ t/B) I/Os. They are designed such that an update makes
in the worst case O (1) modifications to the tree. This is achieved by marking
unbalanced nodes and by incrementally performing the expensive rebalancing
operations of ordinary B-trees over the sequence of succeeding updates.

Ordinary B-trees. Before we describe our B-trees, we briefly recall the properties
of ordinary B-trees [4, 8, 17]. All the nodes of a B-Tree, except possibly the root,
have degree Θ (B). The tree has height O (logB n) when n elements are stored
in it. Range searching is supported in O (logB n+ t/B) I/Os and inserting and
deleting an element in O (logB n) I/Os.

The latter operations might cause some nodes to exceed the upper and lower
bounds of the degree. Thus, updates perform rebalancing operations to restore
the bounds. These are splitting a node into two nodes of almost equal degree,
fusing two low degree nodes into one, and moving children from a high degree
node to a low degree node (share). In ordinary implementations of B-trees, a
single update might cause the rebalancing operations to cascade up on a path of
the tree, causing O (logB n) I/Os in the worst case. In particular, insertions of
elements in the leaves might cause cascaded splits on a leaf-to-u path, where u is
an ancestor node of the leaf in the tree. Similarly deletions might cause cascaded
fusions on a leaf-to-u path, possibly followed by a share at the parent of u.

3.1. The structure

An incremental B-Tree is a rooted tree with all leaves on the same level. Each
element is stored exactly once in the tree, either in a leaf or in an internal node.
In the latter case it acts as a search key. An internal node u with k children
stores a list [p1, e1, p2, . . . , ek−1, pk] of k− 1 elements e1, . . . , ek−1 stored in non-
decreasing order and k children pointers p1, . . . , pk. The discussion that follows
shows that B

2 − 1 ≤ k ≤ 2B + 1. If xi is an element stored in the i-th subtree
of u, then x1<e1<x2<e2<· · ·<ek−1<xk holds.

Node marks. To handle the rebalancings of the tree incrementally, we mark the
nodes to be rebalanced. In particular, each node can either be unmarked or it
contains one of the following marks:

Overflowing mark : The node should be replaced by two nodes.

Splitting mark : The node w is being incrementally split by moving elements
and children pointers to its unmarked right sibling w′. We say that nodes w
and w′ define an incremental splitting pair.

Fusion mark : The node w is being incrementally fused by moving elements and
children pointers to its unmarked right sibling w′. In case w is the rightmost
child of its parent, then w′ is its unmarked left sibling and elements and children
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pointers are moved from w′ to w. We say that nodes w and w′ define an
incremental fusion pair5.

All kinds of marks can be stored in the nodes explicitly. However, we cannot
afford to explicitly mark all unbalanced nodes since an update operation may
unbalance more than a constant number of them. We can also store overflowing
and fusion marks implicitly, based on the observation that the unbalanced nodes
occur consecutively in a path of the tree. In particular, for a u→v path in the
tree, where u is an ancestor of v and all nodes in the path have overflowing
marks, we can represent the marks implicitly, by marking u with an overflowing
mark and additionally storing in u an element of v. The rest of the nodes in
the path have no explicit mark. This defines an overflowing path. Similarly, we
can represent paths of nodes with fusion marks, which defines a fusion path.

Definitions. Unmarked nodes that do not belong to incremental pairs are called
good nodes. We define the size of an internal node u to be su = ug + 2uo − uf ,
where ug, uo and uf are the number of the children of u that are good, have
an overflowing mark and have a fusion mark, respectively. The size of a leaf
is the number of elements in it. Conceptually, the size of an internal node is
the degree that the node would have, when the incremental rebalancing of its
children has been completed.

Invariants. The advance of the incremental rebalancing is captured by the fol-
lowing invariants.

Invariant 5. An incremental splitting pair (w,w′) with sizes sw and sw′ respec-
tively satisfies 2 · |sw + sw′ − 2B − 1| ≤ sw′ < sw. Node w is explicitly marked
with a splitting mark and node w′ is unmarked.

The left inequality of Invariant 5 ensures that the incremental split termi-
nates before the resulting nodes may participate in a split or a fusion again. In
particular, it ensures that the number of the transferred elements and children
pointers from w to w′ is at least twice the number of insertions and deletions
that involve the nodes of the splitting pair since the beginning of the incremen-
tal split. This allows for the transfer of one element and one child pointer for
every such insertion and deletion. The right inequality of Invariant 5 ensures
that the incremental split terminates, since the size of w′ increases and the size
of w decreases for every such insertion and deletion.

Invariant 6. An incremental fusion pair (w,w′) with sizes sw and sw′ respec-
tively, where elements and children pointers are moved from w to w′, satisfies
0 < sw ≤ B

2 + 3 − 2 · |sw + sw′ − B + 1|. Node w is explicitly marked with a
fusion mark and node w′ is unmarked.

5The difference from splitting pairs is that elements and pointers are moved from the
“small” node w to the “large” node w′, whereas in a splitting pair, w is “larger” than w′.
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The right inequality of Invariant 6 ensures that the incremental fusion ter-
minates before the resulting node may participate in a split or a fusion again.
The left inequality of Invariant 6 ensures that the incremental fusion terminates,
since the size of w decreases for every insertion and deletion that involve the
nodes of the incremental pair.

Invariant 7. Except for the root, all good nodes have size within [B/2, 2B]. If
the root is unmarked, it has at least two children and size at most 2B.

It follows from the invariants that the root of the tree cannot have a splitting
or a fusion mark, since no sibling is defined. It can only have an overflowing
mark or be unmarked. The following invariants are maintained with respect to
the incremental paths.

Invariant 8. Let u→v be an overflowing path. All nodes of the path have size
2B + 1. Node u is explicitly marked with an overflowing mark, and the rest of
the nodes are implicitly marked with an overflowing mark.

Invariant 8 implies that a node with an overflowing mark has size 2B + 1.

Invariant 9. Let u→v be a fusion path. All nodes of the path have size B/2.
Node u is explicitly marked with a fusion mark, and the rest of the nodes are
implicitly marked with a fusion mark.

Invariant 9 implies that a node with an implicit fusion mark has size B/2. A
node with an explicit fusion mark may have size B/2 or belong to an incremental
fusion pair.

Invariant 10. All overflowing and fusion paths are node-disjoint.

Lemma 2. The height of the incremental B-Tree with n elements is O (logB n).

Proof. We transform the incremental B-tree into a tree where all incremental
operations are completed and thus all nodes are unmarked. We process the
marked nodes bottom-up in the tree and replace them by unmarked nodes,
such that when processing a node all its children are already unmarked.

A node with an overflowing mark that has size 2B + 1 is replaced by two
unmarked nodes of size B and B + 1 respectively. The two nodes in an incre-
mental splitting pair (w,w′) are replaced by two nodes, each containing half the
union of their children. More precisely, they have sizes b sw+sw′

2 c and d sw+sw′
2 e

respectively. By Invariant 5 we derive that 8
5B ≤ sw+sw′ , i.e. each of the nodes

has degree at least B/2. The two nodes in an incremental fusion pair (w,w′)
are replaced by a single node that contains the union of their children and has
size sw + sw′ . By Invariant 6 we derive that 3

4B − 1 ≤ sw + sw′ .
In all cases the nodes of the transformed tree have degree at least B/2, thus

its height is O (logB n). The height of the transformed tree is at most the height
of the initial tree minus one. It may be lower than that of the initial tree, if the
original root had degree two and its two children formed a fusion pair.
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3.2. Algorithms

The insertion and deletion algorithms use the explicit mark and the incre-
mental step algorithms as subroutines. The former maintains Invariant 10 by
transforming implicit marks into explicit marks. The latter maintains Invari-
ants 5 and 6 by moving at most four elements and child pointers between the
nodes of an incremental pair, when an insertion or deletion involve these nodes.

Explicit mark. Let u→v be an implicitly defined overflowing (resp. fusion)
path where u is an ancestor of v in the tree. That is, all marks are implicitly
represented by marking u explicitly with an overflowing (resp. fusion) mark and
storing in u an element e of v. Let w be a node on u→v, and wp, wc be its
parent and child node in the path respectively. Also, let ep be an element in wp.

The subroutine explicit mark makes the mark on w explicit, by breaking the
u→v path into three node-disjoint subpaths u→wp, w, and wc→v. Hence, the
element e at u is replaced with ep, an overflowing mark is explicitly set on w,
and an overflowing mark together with element e are explicitly set in wc. If
u = w or w = v, then the first or the third subpath is empty, respectively.

Incremental step. The incremental step algorithm is executed on a node w that
belongs to a fusion or a splitting pair (w,w′), or on an overflowing node w. In the
latter case, we first call the procedure explicit mark on w. Then, we mark it with
an incremental split mark and create a new unmarked right sibling w′, defining
a new incremental splitting pair. The algorithm proceeds as in the former case,
moving one or two children from w to w′, while preserving consistency for the
search algorithm. Note that the first moved child causes an element to be
inserted to the parent of w, increasing its size.

In the former case, the rightmost element ek and child pk+1 of w are moved
from w to w′. If the special case of the fusion mark definition holds, they are
moved from w′ to w. Let wp be the common parent of w and w′, and let ei be
the element at wp that separates w and w′. If pk+1 is part of an overflowing or a
fusion path before the move, we first call explicit mark on it. Next, we delete ek
and pk+1 from w, replace ei with ek, and add pk+1 and ei to w′. If pk+1 was
part of a splitting or fusion pair, we repeat the above once again so that both
nodes of the pair are moved to w′. We also ensure that the left node of the
pair is marked with an incremental fusion mark, and that the right node is
unmarked. Finally, if the algorithm causes sw′ ≥ sw for a splitting pair (w,w′),
the incremental split is complete and thus we unmark w. It is also complete if it
causes sw = 0 for a node w of a fusion pair. Thus, we unmark the nodes of the
pair, possibly first marking them explicitly with a fusion mark and dismissing
the empty node w from being a child of its parent.

Insert. The insertion algorithm inserts one new element e in the tree. Like
in ordinary B-trees, it begins by searching down the tree to find the leaf v in
which the element should be inserted, and inserts e in v as soon as it is found.
If v is marked, we perform two incremental steps at v and we are done. If v
is unmarked and has size at most 2B after the insertion, we are done as well.
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Finally, if v has size 2B + 1 it becomes overflowing. We define an overflowing
path from the highest ancestor u of v, where all the nodes on the u→v path have
size exactly 2B, are unmarked and do not belong to an incremental pair. We do
this by explicitly marking u with an overflowing mark and inserting element e
in it as well. This increases the size of up, the parent of u. We perform two
incremental steps to up, if it is a marked node or if it is an unmarked node that
belongs to an incremental pair. Otherwise, increasing the size of up leaves it
unmarked and we are done.

Note that in order to perform the above algorithms, the initial search has
to record node up, the topmost ancestor and the bottommost node of the last
accessed implicitly marked path, and the last accessed explicitly marked node.

Delete. The deletion algorithm removes an element e from the tree. Like in ordi-
nary B-trees, it begins by searching down the tree to find node z that contains e,
while recording the topmost and the bottommost node of the last accessed im-
plicitly marked path and the last accessed explicitly marked node. If z belongs
to an overflowing or a fusion path, it explicitly marks it. If z is not a leaf, we
then find the leaf v that stores the successor element e′ of e. Next, we swap e
and e′ in order to guarantee that a deletion always takes place at a leaf of the
tree. If v belongs to an overflowing or a fusion path, we mark it explicitly as
well. The explicit markings are done in order to ensure that e and e′ are not
stored as implicit marks in ancestors of z or v.

We then delete e from v. If v is good and has size at least B/2 after the
deletion, then we are done. If v is overflowing or belongs to an incremental
pair, we perform two incremental steps on v and we are done. Otherwise, if
leaf v is unmarked and has size B/2 − 1 after the deletion, we check its right
sibling v′. If v′ is overflowing or belongs to an incremental pair, we perform
two incremental steps on v′, move the leftmost child of v′ to v and we are done.
Only the move of the leftmost child suffices when v′ is good and has degree more
than B/2 + 1. Finally, if v′ is good and has size at most B/2 + 1, we begin a
search from the root towards v in order to identify all its consecutive unmarked
ancestors u of size B/2 that have a good right sibling u′ of size at most B/2+1.
We act symmetrically for the special case of the fusion pair.

Let up be the node where the search ends and u be its child that was last
accessed by this search towards v. We implicitly mark all the nodes on the u→v
path as fusion pairs by setting a fusion mark on u and storing an element of v
in u. We next check node up. If it is unmarked and has size greater than B/2,
defining the fusion path only decreases the size of up by one, hence we are done.
If node up is marked, we additionally apply two incremental steps on it and we
are done. If up is good and has size B/2, and its sibling u′p is good and has
size bigger than B/2 + 1, we move the leftmost child of u′p to up. This restores
the size of u′p back to B/2 and we are done. Finally, if node up is good and
has size B/2, but its sibling is marked or belongs to an incremental pair, we
explicitly mark up and move the leftmost child of u′p to up. Next, we apply two
incremental steps on u′p.
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Range search. A range search is implemented as in ordinary B-trees. It decom-
poses into two searches for the leaves that contain the marginal elements of the
range, and a linear scan of the leaves that lie in the range interleaved with an
in-order traversal of the search keys in the range.

3.3. Correctness & analysis

We show that the update algorithms maintain all invariants. Invariant 8
follows from the definition of overflowing paths in the insert algorithm. The
insert and delete algorithms perform two incremental steps, whenever the size
of a node that belongs to an incremental pair increases or decreases by one.
This suffices to move at least one element and pointer and thus to preserve
Invariants 5 and 6. Invariant 7 is a corollary of Invariant 8, 5 and 6. With
respect to Invariant 10, the insert and delete algorithms define node-disjoint
incremental paths. Moreover, each incremental step ensures that two paired
nodes remain children of a common parent node. Finally, the moves performed
by the delete algorithm excluding incremental steps, explicitly mark the involved
node preventing the overlap of two paths.

Theorem 2. Incremental B-trees on n elements can be implemented in exter-
nal memory using O (n/B) blocks of space and support searching, insertions
and deletions of elements in O (logB n) I/Os and range searches on t reported
elements in O (logB n+ t/B) I/Os. Moreover, every update makes a constant
number of modifications to the tree.

Proof. By Lemma 2 we get that the height of the tree is O (logB n). We now
argue that the tree has O (n/B) nodes, each of which has degree O (B), i.e. the
space bound follows and each node can be accessed in O (1) I/Os.

From Invariants 5 - 9, it follows that all overflowing and the good leaves
have size at least B/2. Also two leaves in an incremental pair have at least B/2
elements combined. Thus the leaves consume O (n/B) blocks of space, which
dominates the total space of the tree. The same invariants show that all nodes
have at most 8B+4

3 elements in them and their degree is upper bounded by
16B+8

3 . Thus every node consumes O (1) blocks of space and can be accessed in
O (1) I/Os.

In conclusion, searching, inserting and deleting an element costs O (logB n)
I/Os. A range search costs O (logB n) I/Os for the search and O (t/B) I/Os
for the traversal. Finally, the rebalancing algorithms are defined such that they
perform at most a constant number of modifications (incremental steps and
definitions of paths) to the structure.

3.4. Application of the fully persistent mechanism to incremental B-trees

The interface in Section 2 can be used to make incremental B-trees fully
persistent. The marks of every node are recorded by an additional field. Since
din = 1, cf ≤ 3, by Theorem 1 we can choose some constants π ≥ 10 and
cmax ≥ 90. A range search operation on the i-th version of the fully persistent
incremental B-tree is implemented by an Entry(i) operation to determine the
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root at version i, and a Read operation for every node at version i visited by the
ephemeral algorithm. Since every node at version i is accessed in O (1) I/Os,
the range search makes O (logB n+ t/B) I/Os. An update operation on the i-th
version is implemented first by a Clone(i) operation that creates a new version
identifier j for the structure after the update operation. Then, an Entry(j)
operation and a sequence of Read operations follow in order to determine the
nodes at version j to be updated. Finally, a sequence of O (1) Write operations
follows in order to record the modifications made by the insertion and the dele-
tion algorithms described in Section 3.2. By Theorem 1 we get the following
corollary.

Corollary 1. Fully persistent B-trees support range searches that report t el-
ements at any version of size n in O (logB n+ t/B) I/Os and updates at any
version in O (logB n+ log2B) amortized I/Os, using space O (m/B) blocks af-
ter m updates.

Applying to the incremental B-trees, the I/O-efficient mechanism for full per-
sistence with parameter π = log2

2B and constant cmax ≥ 90, by Theorem 1 we
obtain an implementation of fully persistent B-trees that support range searches
at any version in O ((logB n+ t/B) log2 log2B) I/Os and updates at any version
in O ((logB n) log2 log2B) amortized I/Os, using space O (m/B) blocks.

4. Conclusion

Our results are an important step forwards towards addressing the open
problem of Vitter [34], which asks to make B-trees fully persistent with O (1)
amortized update time. In this work we presented access-I/O-optimal fully
persistent B-trees with a mere additive O (log2B) amortized I/O-overhead per
update step.

An important problem left open is to improve this overhead to O (1) I/Os
or, conversely, to show that this is not doable. One direction is to investigate
whether our generic method for full persistence can be improved any further, or
if it is tight to any superconstant “access step”-to-“update step” I/O-complexity
trade-off inherent in the dynamic indexability model [36]. On the other hand,
one may attempt to relax the conditions on incremental B-trees in pursuit of
subconstant amortized modifications per update operation (perhaps by exploit-
ing bit-packing techniques on the word-RAM variant of the I/O model). Finally,
contrary to our approach that focuses on real-time (i.e. worst-case optimized)
implementations of ephemeral B-trees, making ordinary (i.e. with amortized
update I/O-cost) B-tree implementations fully persistent remains unaddressed,
even in internal memory models.
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Data Structures, pages 402–414. Springer, 2013.

[16] Scott Huddleston and Kurt Mehlhorn. Robust balancing in B-trees.
In Peter Deussen, editor, Theoretical Computer Science, pages 234–244.
Springer, 1981.

[17] Scott Huddleston and Kurt Mehlhorn. A new data structure for represent-
ing sorted lists. Acta Informatica, 17(2):157–184, 1982.

[18] Haim Kaplan. Handbook on data structures and applications, chapter Per-
sistent data structures, pages 241–246. CRC Press, 2004.

[19] Alexis Kaporis, Christos Makris, George Mavritsakis, Spyros Sioutas,
Athanasios K. Tsakalidis, Kostas Tsichlas, and Christos Zaroliagis. ISB-
tree: A new indexing scheme with efficient expected behaviour. Journal of
Discrete Algorithms, 8(4):373 – 387, 2010.

[20] Andreas Kosmatopoulos, Kostas Tsichlas, Anastasios Gounaris, Spyros
Sioutas, and Evaggelia Pitoura. HiNode: An asymptotically space-optimal
storage model for historical queries on graphs. Distrib. Parallel Databases,
35(3-4):249–285, 2017.

[21] Bradley C. Kuszmaul, Matteo Frigo, Justin Mazzola Paluska, and Alexan-
der (Sasha) Sandler. Everyone loves file: File storage service (FSS) in Or-
acle cloud infrastructure. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 15–32. USENIX Association, July 2019.

[22] Sitaram Lanka and Eric Mays. Fully persistent B+-trees. SIGMOD Rec.,
20(2):426–435, 1991.

[23] Pierre Bernard le Roux, Steve Kroon, and Willem Bester. DSaaS: a cloud
service for persistent data structures. In Proceedings of the 6th International
Conference on Cloud Computing and Services Science - Volume 1 and 2,
CLOSER 2016, pages 37–48. SCITEPRESS, 2016.

[24] Christos Levcopoulos and Mark H. Overmars. A balanced search tree with
O(1) worst-case update time. Acta Informatica, 26(3):269–277, 1988.

[25] David Lomet, Roger Barga, Mohamed F. Mokbel, German Shegalov, Rui
Wang, and Yunyue Zhu. Immortal DB: Transaction time support for SQL
server. In Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’05, pages 939–941. ACM, 2005.

[26] David B. Lomet and Betty Salzberg. Exploiting a history database for
backup. In Proceedings of the 19th International Conference on Very Large
Data Bases, VLDB ’93, pages 380–390. Morgan Kaufmann Publishers Inc.,
1993.

28



[27] David Maier and Sharon C. Salveter. Hysterical B-trees. Information
Processing Letters, 12(4):199–202, 1981.

[28] Apostolos N. Papadopoulos, Kostas Tsichlas, Anastasios Gounaris, and
Yannis Manolopoulos. Access methods. In Computing Handbook, 3rd Edi-
tion: Information Systems and Information Technology, pages 1–18. CRC
Press, 2014.

[29] Yanqing Peng, Jinwei Guo, Feifei Li, Weining Qian, and Aoying Zhou.
Persistent bloom filter: Membership testing for the entire history. In Pro-
ceedings of the 2018 International Conference on Management of Data,
SIGMOD ’18, pages 1037–1052. ACM, 2018.

[30] Betty Salzberg and Vassilis J. Tsotras. Comparison of access methods for
time-evolving data. ACM Comput. Surv., 31(2):158–221, 1999.

[31] Athanasios K. Tsakalidis. Maintaining order in a generalized linked list.
Acta Informatica, 21(1):101–112, 1984.

[32] Athanasios K. Tsakalidis. AVL-trees for localized search. Inf. Control,
67(1-3):173–194, 1986.

[33] Peter J. Varman and Rakesh M. Verma. An efficient multiversion access
structure. IEEE Trans. on Knowl. and Data Eng., 9(3):391–409, 1997.

[34] Jeffrey S. Vitter. Algorithms and data structures for external memory.
Found. Trends Theor. Comput. Sci., 2(4):305–474, 2008.

[35] Zhewei Wei, Ge Luo, Ke Yi, Xiaoyong Du, and Ji-Rong Wen. Persistent
data sketching. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15, pages 795–810. ACM,
2015.

[36] Ke Yi. Dynamic indexability and the optimality of B-trees. J. ACM,
59(4):21:1–21:19, 2012.

29


	Introduction
	Previous results
	Our results

	Fully persistent data structures in external memory
	The structure
	Global version list
	Persistent nodes

	Invariants
	Algorithms & correctness
	Operation Entry
	Operation Read
	Operation Write
	Operation NewNode
	Operation Clone
	Operation Repair

	Analysis
	Worst-case analysis
	Amortized analysis


	Incremental B-trees
	The structure
	Algorithms
	Correctness & analysis
	Application of the fully persistent mechanism to incremental B-trees

	Conclusion

