
Worst-Case E�cient External-MemoryPriority Queues?Gerth St�lting Brodal1;?? and Jyrki Katajainen2;? ? ?1 Max-Planck-Institut f�ur Informatik, Im Stadtwald, D-66123 Saarbr�ucken, Germany2 Datalogisk Institut, K�benhavns Universitet, Universitetsparken 1,DK-2100 K�benhavn �, DenmarkAbstract. A priority queue Q is a data structure that maintains a col-lection of elements, each element having an associated priority drawnfrom a totally ordered universe, under the operations Insert, which in-serts an element into Q, and DeleteMin, which deletes an element withthe minimum priority from Q. In this paper a priority-queue implemen-tation is given which is e�cient with respect to the number of blocktransfers or I/Os performed between the internal and external memoriesof a computer. Let B and M denote the respective capacity of a blockand the internal memory measured in elements. The developed datastructure handles any intermixed sequence of Insert and DeleteMinoperations such that in every disjoint interval of B consecutive priority-queue operations at most c logM=B NM I/Os are performed, for some pos-itive constant c. These I/Os are divided evenly among the operations: ifB � c logM=B NM , one I/O is necessary for every B=(c logM=B NM)th oper-ation and if B < c logM=B NM , cB logM=B NM I/Os are performed per everyoperation. Moreover, every operation requires O(log2N) comparisons inthe worst case. The best earlier solutions can only handle a sequenceof S operations with O(PSi=1 1B logM=B NiM) I/Os, where Ni denotes thenumber of elements stored in the data structure prior to the ith opera-tion, without giving any guarantee for the performance of the individualoperations.1 IntroductionA priority queue is a data structure that stores a set of elements, each elementconsisting of some information and a priority drawn from some totally ordereduniverse. A priority queue supports the operations:? The full version has appeared as Technical Report 97/25, Department of ComputerScience, University of Copenhagen, Copenhagen, 1997.?? Supported by the Carlsberg foundation under grant No. 96-0302/20. Partially sup-ported by the ESPRIT Long Term Research Program of the EU under contractNo. 20244 (project ALCOM-IT). Email: brodal@mpi-sb.mpg.de.? ? ? Supported partially by the Danish Natural Science Research Council under contractNo. 9400952 (project Computational Algorithmics). Email: jyrki@diku.dk.

Insert(x): Insert a new element x with an arbitrary priority into the datastructure.DeleteMin(): Delete and return an element with the minimum priority fromthe data structure. In the case of ties, these are broken arbitrarily. Theprecondition is that the priority queue is not empty.Priority queues have numerous applications, a few listed by Sedgewick [28] are:sorting algorithms, network optimization algorithms, discrete event simulationsand job scheduling in computer systems. For the sake of simplicity, we will nothereafter make any distinction between the elements and their priority.In this paper we study the problem of maintaining a priority queue on acomputer with a two-level memory: a fast internal memory and a slow externalmemory. We assume that the computer has a processing unit, the processor, anda collection of hardware, the I/O subsystem, which is responsible for transferringdata between internal and external memory. The processor together with theinternal memory can be seen as a traditional random access machine (RAM) (see,e.g., [3]). In particular, note that the processor can only access data stored ininternal memory. The capacity of the internal memory is assumed to be boundedso it might be necessary to store part of the data in external memory. The I/Osubsystem transfers the data between the two memory levels in blocks of a �xedsize.The behavior of algorithms on such a computer system can be characterizedby two quantities: processor performance and I/O performance. By the proces-sor performance we mean the number of primitive operations performed by theprocessor. Our measure of processor performance is the number of element com-parisons carried out. It is straightforward to verify that the total number ofother (logical, arithmetical, etc.) operations required by our algorithms is pro-portional to that of comparisons. Assuming that the elements occupy only aconstant number of computer words, the total number of primitive operationsis asymptotically the same as that of comparisons. Our measure of I/O perfor-mance is the number of block transfers or I/Os performed, i.e., the number ofblocks read from the external memory plus the number of blocks written to theexternal memory. Our main goal is to analyze the total work carried out by theprocessor and the I/O subsystem during the execution of the algorithms.The system performance, i.e., the total elapsed execution time when the al-gorithms are run on a real computer, depends heavily on the realization of thecomputer. A real computer may have multiple processors (see, e.g., [18]) and/orthe I/O subsystem can transfer data between several disks at the same time(cf. [2,25, 30]), the processor operations (see, e.g., [27]) and/or the I/Os (cf. [19])might be pipelined, but the e�ect of these factors is not considered here. It hasbeen observed that in many large-scale computations the increasing bottleneckof the computation is the performance of the I/O subsystem (see, e.g., [15, 26]),increasing the importance of I/O e�cient algorithms.When expressing the performance of the priority-queue operations, we usethe following parameters:B: the number of elements per block,

M : the number of elements �tting in internal memory, andN : the number of elements currently stored in the priority queue; more specif-ically, the number of elements stored in the structure just prior to the exe-cution of Insert or DeleteMin.We assume that each block and the internal memory also �t some pointersin addition to the elements, and B � 1 and M � 23B. Furthermore, we useloga n as a shorthand notation for max(1; lnn= lna), where ln denotes the naturallogarithm.Several priority-queue schemes, such as implicit heaps [33], leftist heaps [12,20], and binomial queues [9, 31] have been shown to permit both Insert andDeleteMin with worst-case O(log2N) comparisons. Some schemes, such asimplicit binomial queues [10] guarantee worst-case O(1) comparisons for Insertand O(log2N) comparisons for DeleteMin. Also any kind of balanced searchtrees, such as AVL trees [1] or red-black trees [16] could be used as priorityqueues. However, due to the usage of explicit or implicit pointers the perfor-mance of these structures deteriorates on a two-level memory system. It hasbeen observed by several researchers that a d-ary heap performs better thanthe normal binary heap on multi-level memory systems (see, e.g., [22,24]). Forinstance, a B-ary heap reduces the number of I/Os from O(log2 NB) (cf. [4]) toO(logB NB) per operation [24]. Of course, a B-tree [8, 11] could also be used as apriority queue, with which a similar I/O performance is achieved. However, in avirtual-memory environment a B-ary heap seems to be better than a B-tree [24].When a priority queue is maintained in a two-level memory, it is advanta-geous to keep the small elements in internal memory and the large elementsin external memory. Hence, due to insertions large elements are to be movedfrom internal memory to external memory and due to deletions small elementsare to be moved from external memory to internal memory. Assuming that wemaintain two bu�ers of B elements in internal memory, one for Inserts andone for DeleteMins, at most every Bth Insert and DeleteMin will cause abu�er over
ow or under
ow. Several data structures take advantage of this kindof bu�ering. Fishspear, developed by Fischer and Paterson [14], can be imple-mented by a constant number of push-down stacks, implying that any sequenceof S Insert and DeleteMin operations requires at most O(PSi=1 1B log2Ni)I/Os, where Ni denotes the size of the data structure prior to the ith operation.Wegner and Teuhola [32] realized that a binary heap, in which each node storesB elements, guarantees O(log2 NB) I/Os for every Bth Insert and every BthDeleteMin operation in the worst case.The above structures assume that the internal memory can only �t O(B)elements, i.e., a constant number of blocks. Even faster solutions are possible ifthe whole capacity of the internal memory is utilized. Arge [5, 6] introduced an(a,b)-tree structure that can be used to carry out any sequence of S Insert andDeleteMin operations with O(SB logM=B SM) I/Os. Fadel et al. [13] gave a heapstructure with a similar I/O performance but their bound depends on the sizepro�le, not on S. Their heap structure can handle any sequence of S operationswithO(PSi=1 1B logM=B NiM) I/Os, where Ni denotes the size of the data structure

prior to the ith operation. The number of comparisons required when handlingthe sequence is O(PSi=1 log2Ni). When this data structure is used for sorting Nelements, both the processor and I/O performance match the well-known lowerbounds
(NB logM=B NM) I/Os [2] and
(N log2N) comparisons (see, e.g., [20]),which are valid for all comparison-based algorithms.To achieve the above bounds|as well as our bounds|the following facilitiesmust be provided:1. we should know the capacity of a block and the internal memory beforehand,2. we must be able to align elements into blocks, and3. we must have a full control over the replacement of the blocks in internalmemory.There are operating systems that provide support for these facilities (see, e.g.,[17,21, 23]).The tree structure of Arge and the heap structure of Fadel et al. do not giveany guarantees for the performance of individual operations. In fact, one Insertor DeleteMin can be extremely expensive, the cost of handling the wholesequence being an upper bound. Therefore, it is risky to use these structuresin on-line applications. For large-scale real-time discrete event simulations andjob scheduling in computer systems it is often important to have a guaranteedworst-case performance.We describe a new data structure that gives worst-case guarantees for thecost of individual operations. Basically, our data structure is a collection ofsorted lists that are incrementally merged. This idea is borrowed from a RAMpriority-queue structure of Thorup [29]. Thorup used two-way merging in hisinternal data structure but we use multi-way merging since it behaves betterin an external-memory environment. As to the processor and I/O performance,our data structure handles any intermixed sequence of operations as e�cientlyas the heap structure by Fadel et al. [13]. In every disjoint interval of B consec-utive priority-queue operations our data structure requires at most c logM=B NMI/Os, for some positive constant c. These I/Os are divided evenly among the op-erations. If B � c logM=B NM , one I/O is necessary for every B=(c logM=B NM)thpriority-queue operation, and if B < c logM=B NM , cB logM=B NM I/Os are per-formed per every priority-queue operation. Moreover, every operation requiresO(log2N) comparisons in the worst case.2 Basic Data StructureThe basic components of our priority-queue data structure are sorted lists. Whennew elements arrive, these are added to a list which is kept in internal memoryand sorted incrementally. If the capacity of internal memory is exceeded dueto insertions, a fraction of the list containing the recently inserted elementsis transferred to external memory. To bound the number of lists in externalmemory we merge the existing lists. This merging is related to the mergingdone by the external mergesort algorithm [2]. One particular list that is kept in

internal memory contains the smallest elements. If this list is exhausted due todeletions, new smallest elements are extracted from the lists in external memory.Because we are interested in worst-case bounds the merging is accomplishedincrementally. A similar idea has been applied by Thorup [29] to construct RAMpriority queues but instead of two-way merging we rely on multi-way merging.Before giving the details of the data structure, let us recall the basic idea ofexternal mergesort which sorts N elements with O(NB logM=B NM) I/Os [2]. First,the given N elements are partitioned into �(N=M) lists each of length �(M).Second, each of the lists are read into internal memory and sorted, requiringO(N=B) I/Os in total. Third, �(M=B) sorted lists of shortest length are re-peatedly merged until only one sorted list remains containing all the elements.Since each element takes part in O(logM=B NM) merges, the total number of I/Osis O(NB logM=B NM).Our data structure consists of two parts: an internal part and an externalpart. The data structure takes two parameters K and m, where K is a multipleof B, 9K + 5B � M , and m = K=B. The internal part of the data structurestores O(K) elements and is kept all the time in internal memory. The externalpart is a priority queue which permits the operations:BatchInsertK(X): Insert a sorted list X of K elements into the external-memory data structure.BatchDeleteMinK(): Delete the K smallest elements from the data structurein external-memory.Both of these operations require at most O(KB logm NK) I/Os and O(K log2 NK)comparisons in the worst case. For every Kth operation on the internal part wedo at most one batch operation involvingK elements on the external part of thedata structure.The internal part of the data structure consists of two sorted lists MIN andNEW of length at most 3K and 2K, respectively. We represent both MIN andNEW as a balanced search tree that permits insertions and deletions of elementswith O(log2K) comparisons. The rôle of MIN is to store the current at most3K smallest elements in the priority queue whereas the intuitive rôle of NEWis to store the at most 2K recently inserted elements. All elements in MIN aresmaller than the elements in NEW and the elements in the external part of thedata structure, i.e., the overall minimum element is the minimum of MIN.The external part of the data structure consists of sorted lists of elements.Each of these lists has a rank, which is a positive integer, and we let R denote themaximum rank. In Sect. 3.4 we show how to guarantee that R � logm NK +2. Thelists with rank i, i 2 f1; : : : ; Rg, are L1i ; L2i ; : : : ; Lnii , L1i ; L2i ; : : : ; Lnii , and Li.For each rank i, we will incrementally merge the lists L1i ; : : : ; Lnii and appendthe result of the merging to the list Li. The list Li contains the already mergedpart of L1i ; : : : ; Lnii , and all elements in Li are therefore smaller than those inL1i ; : : : ; Lnii . When the incremental merge of the lists Lji �nishes, the list Li willbe promoted to a list with rank i + 1, provided that Li is su�ciently long, and

a new incremental merge of lists with rank i is initiated by making L1i ; : : : ; Lniithe new Lji lists. The details of the incremental merge are given in Sect. 3.2.We guarantee that the length of each of the external lists is a multiple of B.An external list L containing jLj elements is represented by a single linked listof jLj=B blocks, each block storing B elements plus a pointer to the next block,except for the last block which stores a null pointer. There is one exception tothis representation. The last block of Li does not store a null pointer, but apointer to the �rst block of L1i (if ni = 0, the last block of Li stores a nullpointer). This allows us to avoid updating the last block of Li when merging thelists L1i ; : : : ; Lnii .In the following, we assume that pointers to all the external lists are kept ininternal memory together with their sizes and ranks. If this is not possible, itis su�cient to store this information in a single linked list in external memory.This increases the number of I/Os required by our algorithms only by a smallconstant.In Sect. 3 we describe how BatchInsertK and BatchDeleteMinK opera-tions are accomplished on the external part of the data structure, and in Sect. 4we describe how the external part can be combined with the internal part of thedata structure to achieve a worst-case e�cient implementation of Insert andDeleteMin operations.3 Maintenance of the External Part3.1 The MergeK ProcedureThe heart of our construction is the procedure MergeK(X1; X2; : : : ; X`); whichincrementally merges and removes the K smallest elements from the sorted listsX1; : : : ; X`. All list lengths are assumed to be multiples of B. After the mergingof the K smallest elements we rearrange the remaining elements in the Xi listssuch that the lists still have lengths which are multiples of B. We allowMergeKto make the Xi lists shorter or longer. We just require that the resulting Xi listsremain sorted. For the time being, we assume that the result of MergeK isstored in internal memory.The procedure MergeK is implemented as follows. For each list Xi we keepthe block containing the current minimum of Xi in internal memory. In internalmemory we maintain a heap [33] over the current minima of all the lists. We usethe heap to �nd the next element to be output in the merging process. Wheneveran element is output, it is the current minimum of some list Xi. We remove theelement from the heap and the list Xi, and insert the new minimum of Xi intothe heap, provided that Xi has not become empty. If necessary, we read the nextblock of Xi into internal memory.After the merging phase, we have from each list Xi a partially �lled blockBi in internal memory. Let jBij denote the number of elements left in block Bi.Because we have merged K elements from the blocks read and K is a multiple ofB,Pì=1 jBij is also a multiple ofB. Now we merge the remaining elements in the

Bi blocks in internal memory. This merge requires O(`B log2 `) comparisons. LetX̂ denote the resulting list and let Bj be the block that contained the maximumelement of X̂ . Finally, we write X̂ to external memory such that Xj becomes thelist consisting of X̂ concatenated with the part of Xj that already was stored inexternal memory. Note that Xj remains sorted.In total, MergeK performs at most K=B + ` I/Os for reading the pre�xesof X1; : : : ; X` (for each list Xi, we read at most one block of elements thatdo not take part in the merging) and at most ` I/Os for writing X̂ to externalmemory.The number of comparisons required forMergeK for each of theK+`Belements read into internal memory is O(log2 `). Hence, we have provedLemma 1. MergeK(X1; : : : ; X`) performs at most 2`+K=B I/Os and O((K+`B) log2 `) comparisons. The number of elements to be kept in internal memoryby MergeK is at most K + `B. If the resulting list is written to external mem-ory incrementally, only (` + 1)B elements have to be kept in internal memorysimultaneously.3.2 Batch InsertionsTo insert a sorted list of K elements into the external part of the data structurewe increment n1 by one and let Ln11 contain the K new elements, and apply theprocedure MergeStep(i), for each i 2 f1; : : : ; Rg.The procedure MergeStep(i) does the following. If ni = 0, the incrementalmerge of lists with rank i is �nished, and we make Li the list Lni+1+1i+1 , providedthat jLij � Kmi. Otherwise, we let Li be the list Lni+1i because the list is tooshort to be promoted. Finally, we initiate a new incremental merge by makingthe lists L1i ; : : : ; Lnii the new Lji lists. If ni > 0, we concatenate Li with the resultof MergeK(L1i ; : : : ; Lnii), i.e., we perform K steps of the incremental merge ofL1i ; : : : ; Lnii . Note that, by writing the �rst block of the merged list on the placeocccupied earlier by the �rst block of L1i , we do not need to update the pointerin the previous last block of Li.The total number of I/Os performed in a batched insertion of K elements isK=B for writing the K new elements to external memory and by Lemma 1 atmost 2(ni +K=B) for incrementally merging the lists with rank i. The numberof comparisons for rank i is O((niB + K) log2 ni). The maximum number ofelements to be stored in internal memory for batched insertions is (nmax+ 1)B,where nmax = maxfn1; : : : ; nRg. To summarize, we haveLemma 2. A sorted list of K elements can be inserted into the external part ofthe data structure by performing (1+2R)K=B+2PRi=1 ni I/Os and performingO(PRi=1(niB +K) log2 ni) comparisons. At most (nmax + 1)B elements need tobe stored in internal memory.

3.3 Batch DeletionsThe removal of the K smallest elements from the external part of the datastructure is carried out in two steps. In the �rst step the K smallest elementsare located. In the second step the actual deletion is accomplished.Let L be one of the lists L1i or Li, for some i, or an empty list. We will guaran-tee that the list L contains the K smallest elements of the lists considered so far.Initially L is empty. By performing L1i MergeK(L1i ; : : : ; Lnii) � L1i , L1i nowcontains the K smallest elements of L1i ; : : : ; Lnii . The procedure SplitMergeKtakes two sorted lists as its arguments and returns (the name of) one of the lists.If the �rst argument is an empty list, then the second list is returned. Otherwise,we require that the length of both lists to be at least K and we rearrange theK smallest elements of both lists as follows. The two pre�xes of length K aremerged and split among the two lists such that the lists remain sorted and thelength of the lists remain unchanged. One of the lists will now have a pre�x con-tainingK elements which are smaller than all the elements in the other list. Thelist with this pre�x is returned. For each rank i 2 f1; : : :Rg, we now carry outthe assignments L1i MergeK(L1i ; : : : ; Lnii) � L1i , L SplitMergeK(L; L1i),and L SplitMergeK(L; Li).It is straightforward to verify that after performing the above, the pre�x ofthe list L contains the K smallest elements in the external part of the datastructure. We now delete the K smallest elements from list L, and if L is Li weperform MergeStep(i) once.By always keeping the pre�x of L in internal memory the total number of I/Osfor the deletion of the K smallest elements (without the call to MergeStep)is (4R � 1)(K=B) + 2PRi=1 ni because, for each rank i, ni + 2(K=B) blocksare to be read into internal memory and all blocks except the K=B blocksholding the smallest elements should be written back to external memory. Thenumber of comparisons for rank i is O((K + Bni) log2 ni). The additional callto MergeStep requires at most K=B + ni additional block reads and blockwrites, and O((K+Bni) log2 ni) comparisons. Let nmax = maxfn1; : : : ; nRg andnmax = maxfn1; : : : ; nRg. The maximumnumber of elements to be stored in in-ternal memory for the batched minimum deletions is 2K +Bmaxfnmax; nmaxg.Lemma 3. The K smallest elements can be deleted from the external part ofthe data structure by performing at most 4R(K=B) + 2PRi=1 ni + nmax I/Osand O(PRi=1(K + niB) log2 ni + (K + Bnmax) log2 nmax) comparisons. At most2K +Bmaxfnmax; nmaxg elements need to be stored in internal memory.3.4 Bounding the Maximum RankWe now describe a simple approach to guarantee that the maximum rank R ofthe external data structure is bounded by logmN=K + 2. Whenever insertionscause the maximum rank to increase, this is because of MergeStep(R� 1) has�nished an incremental merge resulting a list of length KmR�1, which implies

that R � logm NK + 1. The problem we have to consider is how to decrement Rwhen deletions are performed.Our solution is the following. Whenever MergeStep(R) �nishes the incre-mental merge of lists with rank R, we check if the resulting list LR is very small.If LR is very small, i.e., jLRj < KmR�1, and there are no other list of rank R,we make LR a list with rank R� 1 and decrease R.To guarantee that the same is done also in the connection with batchedminimum deletions, we always call after each BatchDeleteMinK operation,described in Sect. 3.3, MergeStep(R) k times (for m � 4 it turns out thatk = 1 is su�cient, and for m = 3 or m = 2 it is su�cient to let k = 2 or k = 3).It can be proved that this guarantees R � logm NK + 2.3.5 Resource Bounds for the External PartIn the previous discussion we assumed that ni and ni where su�ciently small,such that we could apply MergeStep to the Lji and Lji lists. Let m0 denote amaximum bound on the merging degree. It can be proved that m0 � 5 + 2m,for m � 2. Because m = K=B it follows that the maximum rank is at mostlogK=B NK+2 and that the maximummerging degree is 5+2K=B. FromLemmas 2and 3 it follows that the number of I/Os required for inserting K elements ordeleting the K smallest elements is at most O(KB logK=B NK) and the number ofcomparisons required is O(K log2 NK). The maximal number of elements to bestored in internal memory is 4K + 5B.4 Internal Bu�ers and Incremental Batch OperationsWe now describe how to combine the bu�ers NEW and MIN represented bybinary search trees with the external part of the priority-queue data structure.We maintain the invariant that jMINj � 1, provided that the priority queue isnonempty. Recall that we also required that jMINj � 3K and jNEWj � 2K.We �rst consider Insert(x). If x is less than or equal to the maximum ofMIN or all elements of the priority queue are stored inMIN, we insert x intoMINwith O(log2K) comparisons. IfMIN exceeds its maximumallowed size, jMINj =3K+1, we move the maximum of MIN to NEW. Otherwise, x is larger than themaximum of MIN and we insert x into NEW with O(log2K) comparisons. Theimplementation of DeleteMin deletes and returns the minimum of MIN. Bothoperations require at most O(log2K) comparisons.There are two problems with the implementation of Insert andDeleteMin.Insertions can cause NEW to become too big and deletions can makeMIN empty.Therefore, for every Kth priority-queue operation we perform one batch inser-tion or deletion. If jNEWj � K, we remove K elements from NEW one byone and perform BatchInsertK on the removed elements. If jNEWj < K andjMINj � 2K, we instead increase the size of MIN by moving K small elementsto MIN as follows. First, we perform a BatchDeleteMinK operation to ex-tract the K least elements from the external part of the data structure. The

K extracted elements are inserted into NEW one by one, using O(K log2K)comparisons. Second, we move the K smallest elements of NEW to MIN oneby one. If jNEWj < K and jMINj > 2K, we do nothing but delay the batchoperation until jMINj = 2K or jNEWj = K. Each batch operation requires atmost O(KB logK=B NK) I/Os and at most O(K(log2 NK + log2K)) = O(K log2N)comparisons.By doing one of the above described batch operations for every Kth priority-queue operation it is straightforward to verify that jNEWj+(3K�jMINj) � 2K,provided that the priority queue contains at leastK elements, implying jNEWj �2K and jMINj � K, because each batch operation decreases the left-hand sideof the equation by K.The idea is now to perform a batch operation incrementally over the next Kpriority-queue operations. Let N denote the number of elements in the priorityqueue, when the corresponding batch operation is initiated. Notice that N canat most be halved while performing a batch operation, because N � 2K prior tothe batch operation. Because jMINj � K when a batch operation is initiated, itis guaranteed that MIN is nonempty while incrementally performing the batchoperation over the next K priority-queue operations.Because a batch operation requires at most O(KB logK=B NK) I/Os and atmost O(K log2N) comparisons, it is su�cient to perform at most O(log2N)comparisons of the incremental batch operation per priority-queue operationand operations if B � c logM=B NM , one I/O for every B=(c logM=B NM)th priority-queue operation and if B < c logM=B NM , cB logM=B NM I/Os for every priority-queue operation, for some positive constant c, to guarantee that the incrementalbatch operation is �nished after K priority-queue operations.Because jMIN j � 3K, jNEW j � 2K, and a batched operation at mostrequires 4K + 5B elements to be stored in internal memory, we have the con-straint that 9K + 5B � M . Let now K = b(M � 5B)=9c. Recall that we as-sumed that M � 23B, and therefore, K � 2B. Since M > K, O(logM=B NM) =O(logK=B NM). Hence, we have proved the main result of this paper.Main theorem There exists an external-memory priority-queue implementa-tion that supports Insert and DeleteMin operations with worst-case O(log2N)comparisons per operation. If B � c logM=B NM , one I/O is necessary for everyB=(c logM=B NM)th operation and if B < c logM=B NM , cB logM=B NM I/Os are per-formed per every operation, for some positive constant c.5 Concluding RemarksWe have presented an e�cient priority-queue implementation which guaranteesa worst-case bound on the number of comparisons and I/Os required for theindividual priority-queue operations. Our bounds are comparison based.If the performance bounds are allowed to be amortized, the data structurecan be simpli�ed considerably, because no list merging and batch operation isrequired to be incrementally performed. Then no Li and Lji lists are required, and

we can satisfy 1 � jMINj � K, jNEWj � K, and ni < m by always (completely)merging exactly m lists of equal rank, the rank of a list L being blogm jLjK c.What if the size of the elements or priorities is not assumed to be constant?That is, express the bounds as a function of N and the length of the priorities.How about the priorities having variable lengths? Initial research in this directionhas been carried out by Arge et al. [7], who consider the problem of sorting stringsin external memory.References1. G.M. Adel'son-Vel'ski�� and E.M. Landis. An algorithm for the organization ofinformation. Soviet Mathematics, volume 3, pages 1259{1263, 1962.2. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and relatedproblems. Communications of the ACM, volume 31, pages 1116{1127, 1988.3. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of ComputerAlgorithms. Addison-Wesley Publishing Company, Reading, 1974.4. T.O. Alanko, H.H.A. Erki�o, and I.J. Haikala. Virtual memory behavior of somesorting algorithms. IEEE Transactions on Software Engineering, volume SE-10,pages 422{431, 1984.5. L. Arge. The bu�er tree: A new technique for optimal I/O-algorithms. In Proceed-ings of the 4th Workshop on Algorithms and Data Structures, Lecture Notes inComputer Science 955, Springer, Berlin/Heidelberg, pages 334{345, 1995.6. L. Arge. E�cient external-memory data structures and applications. BRICS Dis-sertation DS-96-3, Department of Computer Science, University of Aarhus, �Arhus,1996.7. L. Arge, P. Ferragina, R. Grossi, and J. S. Vitter. On sorting strings in exter-nal memory. In Proceedings of the 29th Annual ACM Symposium on Theory ofComputing, ACM Press, New York, pages 540{548, 1997.8. R. Bayer and E.M. McCreight. Organization and maintenance of large orderedindexes. Acta Informatica, volume 1, pages 173{189, 1972.9. M. R. Brown. Implementation and analysis of binomial queue algorithms. SIAMJournal on Computing, volume 7, pages 298{319, 1978.10. S. Carlsson, J. I. Munro, and P.V. Poblete. An implicit binomial queue withconstant insertion time. In Proceedings of the 1st Scandinavian Workshop onAlgorithm Theory, Lecture Notes in Computer Science 318, Springer-Verlag,Berlin/Heidelberg, pages 1{13, 1988.11. D. Comer. The ubiquitous B-tree. ACM Computing Surveys, volume 11, pages121{137, 1979.12. C.A. Crane. Linear lists and priority queues as balanced trees. Technical ReportSTAN-CS-72-259, Computer Science Department, Stanford University, Stanford,1972.13. R. Fadel, K.V. Jakobsen, J. Katajainen, and J. Teuhola. Heaps and heapsort onsecondary storage. To appear in Theoretical Computer Science.14. M. J. Fischer and M. S. Paterson. Fishspear: A priority queue algorithm. Journalof the ACM, volume 41, pages 3{30, 1994.15. G. A. Gibson, J. S. Vitter, J. Wilkes et al. Strategic directions in storage I/O issuesin large-scale computing. ACM Computing Surveys, volume 28, pages 779{793,1996.

16. L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. InProceedings of the 19th Annual Symposium on Foundations of Computer Science,IEEE, New York, pages 8{21, 1978.17. K. Harty and D. R. Cheriton. Application-controlled physical memory using exter-nal page-cache management. In Proceedings of the 5th International Conference onArchitectural Support for Programming Languages and Operating Systems, ACMSIGPLAN Notices, volume 27, number 9, pages 187{197, 1992.18. J. J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley Publishing Com-pany, Reading, 1992.19. B. H.H. Juurlink and H.A.G. Wijsho�. The parallel hierarchical memory model.In Proceedings of the 4th Scandinavian Workshop on Algorithm Theory, LectureNotes in Computer Science 824, Springer-Verlag, Berlin/Heidelberg, pages 240{251, 1994.20. D. E. Knuth. The Art of Computer Programming, volume 3/ Sorting and Searching.Addison-Wesley Publishing Company, Reading, 1973.21. K. Krueger, D. Loftesness, A. Vahdat, and T. Anderson. Tools for the develop-ment of application-speci�c virtual memory management. In Proceedings of the8th Annual Conference on Object-Oriented Programming Systems, Languages, andApplications, ACM SIGPLAN Notices, volume 28, number 10, pages 48{64, 1993.22. A. LaMarca and R.E. Ladner. The in
uence of caches on the performance of heaps.The ACM Journal of Experimental Algorithmics, volume 1, article 4, 1996.23. D. McNamee and K. Amstrong. Extending the Mach external pager interface toaccommodate user-level block replacement policies. Technical Report 90-09-05, De-partment of Computer Science and Engineering, University of Washington, Seattle,1990.24. D. Naor, C.U. Martel, and N. S. Matlo�. Performance of priority queue structuresin a virtual memory environment. The Computer Journal, volume 34, pages 428{437, 1991.25. M.H. Nodine and J. S. Vitter. Large-scale sorting in parallel memories. In Proceed-ings of the 3rd ACM Symposium on Parallel Algorithms and Architectures, ACMPress, New York, pages 29{39, 1991.26. Y.N. Patt. Guest editor's introduction: The I/O subsystem | A candidate forimprovement. IEEE Computer, volume 27, number 3, pages 15{16, 1994.27. D. A. Patterson and J. L. Hennessy. Computer Organization & Design: The Hard-ware/Software Interface. Morgan Kaufmann Publishers, San Francisco, 1994.28. R. Sedgewick. Algorithms. Addison-Wesley Publishing Company, Reading, 1983.29. M. Thorup. On RAM priority queues. In Proceedings of the 7th Annual ACM-SIAMSymposium on Discrete Algorithms, ACM, New York and SIAM, Philadelphia,pages 59{67, 1996.30. J. S. Vitter and E.A.M. Shriver. Algorithms for parallel memory I: Two-level mem-ories. Algorithmica, volume 12, pages 110{147, 1994.31. J. Vuillemin. A data structure for manipulating priority queues. Communicationsof the ACM, volume 21, pages 309{315, 1978.32. L.M. Wegner and J. I. Teuhola. The external heapsort. IEEE Transactions onSoftware Engineering, volume 15, pages 917{925, 1989.33. J.W. J. Williams. Algorithm 232, Heapsort. Communications of the ACM, volume7, pages 347{348, 1964.

