Worst-Case Efficient External-Memory
Priority Queues*

Gerth Stglting Brodal' ™ and Jyrki Katajainen2***

' Max-Planck-Tnstitut fiir Informatik, Tm Stadtwald, D-66123 Saarbriicken, Germany
2 Datalogisk Institut, Kgbenhavns Universitet, Universitetsparken 1,

DK-2100 Kgbenhavn @, Denmark

Abstract. A priority queue (@ is a data structure that maintains a col-
lection of elements, each element having an associated priority drawn
from a totally ordered universe, under the operations INSERT, which in-
serts an element into @, and DELETEMIN, which deletes an element with
the minimum priority from . In this paper a priority-queue implemen-
tation is given which is efficient with respect to the number of block
transfers or 1/Os performed between the internal and external memories
of a computer. L.et B and M denote the respective capacity of a block
and the internal memory measured in elements. The developed data
structure handles any intermixed sequence of INSERT and DELETEMIN
operations such that in every disjoint interval of B consecutive priority-
quene operations at most clogyy,p % 1/Os are performed, for some pos-
itive constant ¢. These T/Os are divided evenly among the operations: if
B> clogy,p %, one T/0) is necessary for every B/(c]ogM/R %)th oper-
ation and if B < c]ogM/R %, 5 logM/R % 1/Os are performed per every
operation. Moreover, every operation requires O(log, N) comparisons in
the worst case. The best earlier solutions can only handle a sequence
of S operations with ()(211 %logM/R %) 1/0s, where N; denotes the
number of elements stored in the data structure prior to the ith opera-
tion, without giving any guarantee for the performance of the individual
operations.

1 Introduction

A priority queue is a data structure that stores a set of elements, each element,
consisting of some information and a priority drawn from some totally ordered
universe. A priority queue supports the operations:

* The full version has appeared as Technical Report 97/25, Department of Computer
Science, University of Copenhagen, Copenhagen, 1997.

** Supported by the Carlsberg foundation under grant No. 96-0302/20. Partially sup-
ported by the ESPRIT Long Term Research Program of the EU under contract
No. 20244 (project ALCOM-TT). Email: brodal@mpi-sb.mpg.de.

*** Supported partially by the Danish Natural Science Research Clouncil under contract
No. 9400952 (project Computational Algorithmics). Email: jyrkiediku.dk.

INSERT(%): Tnsert a new element = with an arbitrary priority into the data
structure.

DELETEMIN(): Delete and return an element with the minimum priority from
the data structure. In the case of ties, these are broken arbitrarily. The
precondition is that the priority queue is not empty.

Priority queues have numerous applications, a few listed by Sedgewick [28] are:
sorting algorithms, network optimization algorithms, discrete event simulations
and job scheduling in computer systems. For the sake of simplicity, we will not
hereafter make any distinction between the elements and their priority.

In this paper we study the problem of maintaining a priority queue on a
computer with a two-level memory: a fast internal memory and a slow external
memory. We assume that the computer has a processing unit, the processor, and
a collection of hardware, the I/0 subsystem, which is responsible for transferring
data between internal and external memory. The processor together with the
internal memory can be seen as a traditional random access machine (RAM) (see,
e.g., [3]). Tn particular, note that the processor can only access data stored in
internal memory. The capacity of the internal memory is assumed to be bounded
so 1t might be necessary to store part of the data in external memory. The /0
subsystem transfers the data between the two memory levels in blocks of a fixed
size.

The behavior of algorithms on such a computer system can be characterized
by two quantities: processor performance and I/0Q performance. By the proces-
sor performance we mean the number of primitive operations performed by the
processor. Our measure of processor performance is the number of element com-
parisons carried out. Tt is straightforward to verify that the total number of
other (logical, arithmetical, etc.) operations required by our algorithms is pro-
portional to that of comparisons. Assuming that the elements occupy only a
constant number of computer words, the total number of primitive operations
is asymptotically the same as that of comparisons. Our measure of /0O perfor-
mance is the number of block transfers or I/0s performed, i.e., the number of
blocks read from the external memory plus the number of blocks written to the
external memory. Our main goal is to analyze the total work carried out by the
processor and the T/O subsystem during the execution of the algorithms.

The system performance, i.e., the total elapsed execution time when the al-
gorithms are run on a real computer, depends heavily on the realization of the
computer. A real computer may have multiple processors (see, e.g., [18]) and/or
the T/O subsystem can transfer data between several disks at the same time
(cf. [2,25,30]), the processor operations (see, e.g., [27]) and/or the T/Os (cf. [19])
might be pipelined, but the effect of these factors is not considered here. Tt has
been observed that in many large-scale computations the increasing bottleneck
of the computation is the performance of the T/O subsystem (see, e.g., [15,26]),
increasing the importance of T/O efficient algorithms.

When expressing the performance of the priority-queue operations, we use
the following parameters:

B: the number of elements per block,

M: the number of elements fitting in internal memory, and

N: the number of elements currently stored in the priority queue; more specif-
ically, the number of elements stored in the structure just prior to the exe-
cution of INSERT or DELETEMIN.

We assume that each block and the internal memory also fit some pointers
in addition to the elements, and B > 1 and M > 23B. Furthermore, we use
log, n as a shorthand notation for max(1,Inn/Ina), where In denotes the natural
logarithm.

Several priority-quene schemes, such as implicit heaps [33], leftist heaps [12,
20], and binomial queues [9,31] have been shown to permit both TNSERT and
DELETEMIN with worst-case O(logy N) comparisons. Some schemes, such as
implicit binomial queues [10] guarantee worst-case O(1) comparisons for INSERT
and O(log, N) comparisons for DELETEMIN. Also any kind of balanced search
trees, such as AVL trees [1] or red-black trees [16] could be used as priority
queues. However, due to the usage of explicit or implicit pointers the perfor-
mance of these structures deteriorates on a two-level memory system. Tt has
been observed by several researchers that a d-ary heap performs better than
the normal binary heap on multi-level memory systems (see, e.g., [22,24]). For
instance, a B-ary heap reduces the number of 1/0s from O(log, &) (cf. [4]) to
O(logg &) per operation [24]. Of course, a B-tree [8,11] could also be used as a
priority queue, with which a similar T/O performance is achieved. However, in a
virtual-memory environment a B-ary heap seems to be better than a B-tree [24].

When a priority queue is maintained in a two-level memory, it is advanta-
geous to keep the small elements in internal memory and the large elements
in external memory. Hence, due to insertions large elements are to be moved
from internal memory to external memory and due to deletions small elements
are to be moved from external memory to internal memory. Assuming that we
maintain two buffers of B elements in internal memory, one for INSERTs and
one for DELETEMINS, at most every Bth INSERT and DELETEMIN will cause a
buffer overflow or underflow. Several data structures take advantage of this kind
of buffering. Fishspear, developed by Fischer and Paterson [14], can be imple-
mented by a constant number of push-down stacks, implying that any sequence
of § INSERT and DELETEMIN operations requires at most ()(z:f:1 1ﬁlog2 N;)
1/0s, where N; denotes the size of the data structure prior to the ith operation.
Wegner and Teuhola [32] realized that a binary heap, in which each node stores
B elements, guarantees O(log, %) 1/0s for every Bth INSERT and every Bth
DELETEMIN operation in the worst case.

The above structures assume that the internal memory can only fit O(B)
elements, i.e., a constant number of blocks. Even faster solutions are possible if
the whole capacity of the internal memory is utilized. Arge [5, 6] introduced an
(a,b)-tree structure that can be used to carry out any sequence of S5 TNSERT and
DELETEMIN operations with O(& logyr/ g) 1/Os. Fadel et al. [13] gave a heap
structure with a similar T/O performance but their bound depends on the size
profile, not on 5. Their heap structure can handle any sequence of S operations

with ()(z:f:1 = logyr/ i) 1/0s, where N; denotes the size of the data structure

prior to the ith operation. The number of comparisons required when handling
the sequence is ()(z:f:1 log, N;). When this data structure is used for sorting N
elements, both the processor and 1/O performance match the well-known lower
bounds Q(%logM/R) 1/0s [2] and £2(N log, N) comparisons (see, e.g., [20]),
which are valid for all comparison-based algorithms.

To achieve the above bounds as well as our bounds the following facilities
must be provided:

1. we should know the capacity of a block and the internal memory beforehand,

2. we must be able to align elements into blocks, and

3. we must have a full control over the replacement of the blocks in internal
memory.

There are operating systems that provide support for these facilities (see, e.g.,
[17,21,23]).

The tree structure of Arge and the heap structure of Fadel et al. do not give
any guarantees for the performance of individual operations. In fact, one INSERT
or DELETEMIN can be extremely expensive, the cost of handling the whole
sequence being an upper bound. Therefore, it is risky to use these structures
in on-line applications. For large-scale real-time discrete event simulations and
job scheduling in computer systems it is often important to have a guaranteed
worst-case performance.

We describe a new data structure that gives worst-case guarantees for the
cost. of individual operations. Basically, our data structure is a collection of
sorted lists that are incrementally merged. This idea is borrowed from a RAM
priority-queue structure of Thorup [29]. Thorup used two-way merging in his
internal data structure but we use multi-way merging since it behaves better
in an external-memory environment. As to the processor and T/ performance,
our data structure handles any intermixed sequence of operations as efficiently
as the heap structure by Fadel et al. [13]. Tn every disjoint interval of B consec-
utive priority-queue operations our data structure requires at most clogy;/ %
1/0s, for some positive constant c. These T/Os are divided evenly among the op-
erations. If B > clogy /5 2, one 1/0 is necessary for every B/(clogy,n ~)th
priority-queue operation, and if B < clogy, g %, 5 logy % 1/0s are per-
formed per every priority-queue operation. Moreover, every operation requires
O(log, N) comparisons in the worst case.

2 Basic Data Structure

The basic components of our priority-quene data structure are sorted lists. When
new elements arrive, these are added to a list which is kept in internal memory
and sorted incrementally. TIf the capacity of internal memory is exceeded due
to insertions, a fraction of the list containing the recently inserted elements
is transferred to external memory. To bound the number of lists in external
memory we merge the existing lists. This merging is related to the merging
done by the external mergesort, algorithm [2]. One particular list that is kept in

internal memory contains the smallest elements. Tf this list is exhausted due to
deletions, new smallest elements are extracted from the lists in external memory.
Because we are interested in worst-case bounds the merging is accomplished
incrementally. A similar idea has been applied by Thorup [29] to construct RAM
priority queues but instead of two-way merging we rely on multi-way merging.

Before giving the details of the data structure, let us recall the basic idea of
external mergesort which sorts NV elements with O(% logyr/ g K.Y 1/0s [2]. First,
the given N elements are partitioned into @(N/M) lists each of length @(M).
Second, each of the lists are read into internal memory and sorted, requiring
O(N/B) T/0s in total. Third, @(M/B) sorted lists of shortest length are re-
peatedly merged until only one sorted list remains containing all the elements.
Since each element takes part in O(logy, g) merges, the total number of T/Os
is ()(%]ogM/R %)

Our data structure consists of two parts: an internal part and an external
part. The data structure takes two parameters K and m, where K is a multiple
of B, 9K + 5B < M, and m = K/B. The internal part of the data structure
stores O(K') elements and is kept all the time in internal memory. The external
part is a priority queue which permits the operations:

BATCHINSERT i (X): Tnsert a sorted list X of K elements into the external-
memory data structure.

BATCHDELETEMIN K (): Delete the K smallest elements from the data structure
in external-memory.

Both of these operations require at most O(% log,,, %) T/Os and O(K log, %)
comparisons in the worst case. For every Kth operation on the internal part we
do at most one batch operation involving K elements on the external part of the
data structure.

The internal part of the data structure consists of two sorted lists MIN and
NEW of length at most 3K and 2K, respectively. We represent both MIN and
NEW as a balanced search tree that permits insertions and deletions of elements
with O(logy K') comparisons. The role of MIN is to store the current at most
3K smallest elements in the priority queue whereas the intuitive role of NEW
is to store the at most 2K recently inserted elements. All elements in MIN are
smaller than the elements in NEW and the elements in the external part of the
data structure, i.e., the overall minimum element is the minimum of MTN.

The external part of the data structure consists of sorted lists of elements.
Fach of these lists has a rank, which is a positive integer, and we let R denote the
mazimum rank. In Sect. 3.4 we show how to guarantee that R <log,, % +2. The
lists with rank 4,4 € {1,..., R}, are L!, L7 ... L7 T;,T?, . ,T:], and T;.

. \17 - . -1 i
For each rank 2, we will incrementally merge the lists I, , ..., T:] and append

the result of the merging to the list ;. The list T; contains the already merged
-1 = A .
part of L, ... L, ", and all elements in I; are therefore smaller than those in

T;, .. ,T:] When the incremental merge of the lists TZ finishes, the list T; will

be promoted to a list with rank i + 1, provided that T,; is sufficiently long, and

L

a new incremental merge of lists with rank i is initiated by making L}, ..., L]

the new TZ lists. The details of the incremental merge are given in Sect. 3.2.
We guarantee that the length of each of the external lists is a multiple of B.

I.| elements is represented by a single linked list

/B blocks, each block storing B elements plus a pointer to the next block,

An external list I containing
of |L

except for the last block which stores a null pointer. There is one exception to

this representation. The last block of T, does not store a null pointer, but a

pointer to the first block of T: (if m; = 0, the last block of I, stores a null
pointer). This allows us to avoid updating the last block of T; when merging the
. -1 i
lists L,,..., L, .

In the following, we assume that pointers to all the external lists are kept in
internal memory together with their sizes and ranks. If this is not possible, it
is sufficient to store this information in a single linked list in external memory.
This increases the number of T/Os required by our algorithms only by a small
constant.

In Sect. 3 we describe how BATOHINSERT and BATCHDELETEMIN ;¢ opera-
tions are accomplished on the external part of the data structure, and in Sect. 4
we describe how the external part can be combined with the internal part of the
data structure to achieve a worst-case efficient implementation of INSERT and
DELETEMIN operations.

3 Maintenance of the External Part

3.1 The MERGEK Procedure

The heart. of our construction is the procedure MERGEK (X1, Xa,..., X;), which
incrementally merges and removes the K smallest elements from the sorted lists
X1y.--, Xy All list lengths are assumed to be multiples of B. After the merging
of the K smallest elements we rearrange the remaining elements in the X; lists
such that the lists still have lengths which are multiples of B. We allow MERGE
to make the X; lists shorter or longer. We just require that the resulting X; lists
remain sorted. For the time being, we assume that the result of MERGEE is
stored in internal memory.

The procedure MERGEf is implemented as follows. For each list X; we keep
the block containing the current minimum of X; in internal memory. In internal
memory we maintain a heap [33] over the current minima of all the lists. We use
the heap to find the next element to be output in the merging process. Whenever
an element is output, it is the current minimum of some list X;. We remove the
element from the heap and the list X;, and insert the new minimum of X; into
the heap, provided that X; has not become empty. If necessary, we read the next
block of X; into internal memory.

After the merging phase, we have from each list X; a partially filled block
B; in internal memory. Let |B;| denote the number of elements left, in block B;.
Because we have merged K elements from the blocks read and K is a multiple of
B, Zf:1 | B;| is also a multiple of B. Now we merge the remaining elements in the

B; blocks in internal memory. This merge requires O(¢B log, £) comparisons. Let
X denote the resulting list and let. B; be the block that contained the maximum
element of X. Finally, we write X to external memory such that X; becomes the
list consisting of X concatenated with the part of X; that already was stored in
external memory. Note that X; remains sorted.

In total, MERGEK performs at most K/B + £ T/Os for reading the prefixes
of X1,..., Xy (for each list X;, we read at most one block of elements that
do not take part in the merging) and at most £ T/Os for writing X to external
memory. The number of comparisons required for MERGE i for each of the K+/B
elements read into internal memory is O(log, £). Hence, we have proved

Lemma 1. MERGRK (X1, ..., X;) performs at most 20+ K /B 1/0s and O((K +
IB)log, £) comparisons. The number of elements to be kepl in internal memory
by MERGE s af most K + €B. If the resulting list is written to external mem-
ory incrementally, only (£ + 1)B elements have to be kept in internal memory
stmultaneously.

3.2 Batch Insertions

To insert a sorted list of K elements into the external part of the data structure
we increment ny by one and let L7 contain the K new elements, and apply the

procedure MERGESTEP (i), for each i € {1,..., R}.
The procedure MERGESTEP(i) does the following. Tf m; = 0, the incremental
merge of lists with rank i is finished, and we make T.; the list L?’_;?H

that |T; > K'm'. Otherwise, we let T, be the list L?”"H because the list is too
short to be promoted. Finally, we initiate a new incremental merge by making

, provided

the lists I}, ..., L} the new TZ lists. If 7, > 0, we concatenate I; with the result
-1 Ny . - .

of MERGEK (L, ,. ,T:]), i.e., we perform K steps of the incremental merge of

-1 ;i ops .

L;,.. ,T:] . Note that, by writing the first block of the merged list on the place

occcupied earlier by the first block of T;, we do not need to update the pointer
in the previous last block of T;.

The total number of T/Os performed in a batched insertion of K elements is
K /B for writing the K new elements to external memory and by Lemma 1 af
most 2(m; + K/B) for incrementally merging the lists with rank i. The number
of comparisons for rank i is O((n;B + K)log, ;). The maximum number of
elements to be stored in internal memory for batched insertions is (Tmax + 1) B,
where Timax — max{ny,...,7gr}. To summarize, we have

Lemma 2. A sorted list of K elements can be inserted into the external part of
the data structure by performing (1+2R)K/B +2 Zfﬂ n; 1/0s and performing

O(ZB (m; B+ K)log,m;) comparisons. Al most (max + 1) B elements need to

7=1
be stored in internal memory.

3.3 Batch Deletions

The removal of the K smallest elements from the external part of the data
structure is carried out in two steps. In the first step the K smallest elements
are located. In the second step the actual deletion is accomplished.

Let £ be one of the lists I or T;, for some i, or an empty list. We will guaran-
tee that the list £ contains the K smallest elements of the lists considered so far.
Tnitially £ is empty. By performing ! < MERGEg (L},..., L) - L}, L} now
contains the K smallest elements of L}, ..., L7". The procedure SPLITMERGFx
takes two sorted lists as its arguments and returns (the name of) one of the lists.
If the first argument is an empty list, then the second list is returned. Otherwise,
we require that the length of both lists to be at least K and we rearrange the
K smallest elements of both lists as follows. The two prefixes of length K are
merged and split among the two lists such that the lists remain sorted and the
length of the lists remain unchanged. One of the lists will now have a prefix con-
taining K elements which are smaller than all the elements in the other list. The
list with this prefix is returned. For each rank 7 € {1,... R}, we now carry ouf,
the assignments L] < MERGEg (L}, ..., L7} - L}, L + SPLITMERGEK (L, L)),
and £ + SPLITMERGEK (£, T;).

Tt is straightforward to verify that after performing the above, the prefix of
the list £ contains the K smallest elements in the external part of the data
structure. We now delete the K smallest elements from list £, and if £ is T; we
perform MRERGESTEP(i) once.

By always keeping the prefix of £ in internal memory the total number of T/Os
for the deletion of the K smallest elements (without the call to MERGESTEP)
is (4R — 1)(K/B) + 227}11 n; because, for each rank i, n, + 2(K/B) blocks
are to be read into internal memory and all blocks except the K/B blocks
holding the smallest elements should be written back to external memory. The
number of comparisons for rank i is O((K + Bn;)log, n;). The additional call
to MERGESTEP requires att most K/B + 7m; additional block reads and block
writes, and O((K + Bn;) log, ;) comparisons. Let nyax = max{n,,...,ng} and
Tomax — Max{ni,...,nr}. The maximum number of elements to be stored in in-
ternal memory for the batched minimum deletions is 2K + B max{nmax, Tmax }-

Lemma 3. The K smallest elements can be deleted from the external part of
the data structure by performing at most 4R(K/B) + 227}11 n; + Tmax 1/0s
and O(Zfﬂ (K 4+ n; B)logy n; + (K 4+ BTimax) 108 Tmax) comparisons. At most
2K + B max{nmax, Tmax | €lements need to be stored in internal memory.

3.4 Bounding the Maximum Rank

We now describe a simple approach to guarantee that the maximum rank R of
the external data structure is bounded by log,, N/K + 2. Whenever insertions
cause the maximum rank to increase, this is because of MERGESTEP(R — 1) has
finished an incremental merge resulting a list of length Km™~ ', which implies

that R <log,, % + 1. The problem we have to consider is how to decrement R
when deletions are performed.

Our solution is the following. Whenever MERGESTEP(R) finishes the incre-
mental merge of lists with rank R, we check if the resulting list T is very small.
Lr| < KmP~=1, and there are no other list of rank R,
we make Lg a list with rank B — 1 and decrease R.

Tf T.r is very small, i.e.,

To guarantee that the same is done also in the connection with batched
minimum deletions, we always call after each BATCHDELETEMIN operation,
described in Sect. 3.3, MERGESTEP(R) k times (for m > 4 it turns out that
k = 1 is sufficient, and for m = 3 or m = 2 it is sufficient, to let k = 2 or k = 3).

It can be proved that this guarantees R <log,, % + 2.

3.5 Resource Bounds for the External Part

In the previous discussion we assumed that n; and n; where sufficiently small,

such that we could apply MERGESTEP to the LZ and TZ lists. Let. m’ denote a
maximum bound on the merging degree. Tt can be proved that m’ < 5+ 2m,
for m > 2. Because m — K/B it follows that the maximum rank is at most
logr, %4—2 and that the maximum merging degree is 5+2K/B. From L.emmas 2
and 3 it follows that the number of T/Os required for inserting K elements or
deleting the K smallest elements is at most ()(%log,(/,g %) and the number of
comparisons required is O(K log, %) The maximal number of elements to be
stored in internal memory is 4K + 5B.

4 Internal Buffers and Incremental Batch Operations

We now describe how to combine the buffers NEW and MIN represented by
binary search trees with the external part of the priority-queue data structure.
We maintain the invariant that |MIN| > 1, provided that the priority queue is
nonempty. Recall that we also required that |[MIN] < 3K and |NEW| < 2K.

We first consider TNSERT(z). Tf 2 is less than or equal to the maximum of
MIN or all elements of the priority queue are stored in MIN, we insert x into MIN
with O(log, K') comparisons. Tf MIN exceeds its maximum allowed size, | MIN] =
3K 4+ 1, we move the maximum of MIN to NEW. Otherwise, x is larger than the
maximum of MIN and we insert # into NEW with O(log, K) comparisons. The
implementation of DELETEMIN deletes and returns the minimum of MIN. Both
operations require at most O(log, K) comparisons.

There are two problems with the implementation of INSERT and DELETEMIN.
Insertions can cause NEW to become too big and deletions can make MTN empty.
Therefore, for every Kth priority-queue operation we perform one batch inser-
tion or deletion. Tf |[NEW| > K, we remove K elements from NEW one by
one and perform BATCHINSERTk on the removed elements. Tf [NEW| < K and
| MIN] < 2K, we instead increase the size of MIN by moving K small elements
to MIN as follows. First, we perform a BATCHDELETEMIN operation to ex-
tract the K least elements from the external part of the data structure. The

K extracted elements are inserted into NEW one by one, using O(K log, K)
comparisons. Second, we move the K smallest elements of NEW to MIN one
by one. If [INEW| < K and |MIN] > 2K, we do nothing but delay the batch
operation until |[MIN] = 2K or [NEW| = K. Each batch operation requires af
most ()(% logr/p %) 1/0s and at most O(K (log, % +log, K)) = O(K logy, N)
comparisons.

By doing one of the above described batch operations for every Kth priority-
queue operation it is straightforward to verify that |[NEW|+ (3K —|MIN|) < 2K,
provided that the priority queue contains at least K elements, implying |[NEW| <
2K and |MIN|] > K, because each batch operation decreases the left-hand side
of the equation by K.

The idea is now to perform a batch operation incrementally over the next K
priority-queue operations. Let. N denote the number of elements in the priority
queue, when the corresponding batch operation is initiated. Notice that N can
at most be halved while performing a batch operation, because N > 2K prior to
the batch operation. Because |MIN| > K when a batch operation is initiated, it
is guaranteed that MIN is nonempty while incrementally performing the batch
operation over the next K priority-queue operations.

Because a batch operation requires at most ()(%]og,(/,g £) 1/0s and at
most O(K log, N) comparisons, it is sufficient to perform at most O(log, N)
comparisons of the incremental batch operation per priority-queue operation
and operations if B > clogy/ g &, one 1/0 for every B/(clogy,n 2)th priority-

queue operation and if B < clogy g %, 5 logy % 1/0s for every priority-
queue operation, for some positive constant ¢, to guarantee that the incremental
batch operation is finished after K priority-queue operations.

Because |MIN| < 3K, INEFW| < 2K, and a batched operation at most
requires 4K + 5B elements to be stored in internal memory, we have the con-
straint that 9K + 5B < M. Let now K = |(M — 5B)/9]. Recall that we as-
sumed that M > 23B, and therefore, K' > 2B. Since M > K, O(logy;,p)=

()(]og,(/R %) Hence, we have proved the main result of this paper.

Main theorem There exists an external-memory priority-queue implementa-
tion that supports INSERT and DELETEMIN operations with worst-case O(logy N)
comparisons per operation. If B > clogy g %, one 1/0 is necessary for every
B/(clogy,p) th operation and if B < clogy/p . 5 lognn & 1/0s are per-
formed per every operation, for some positive constant c.

5 Concluding Remarks

We have presented an efficient priority-queue implementation which guarantees
a worst-case bound on the number of comparisons and 1/Os required for the
individual priority-queue operations. Our bounds are comparison based.

If the performance bounds are allowed to be amortized, the data structure
can be simplified considerably, because no list merging and batch operation is

required to be incrementally performed. Then no T,; and TZ lists are required, and

we can satisfy 1 < |MIN| < K, INEW| < K, and n; < m by always (completely)

merging exactly m lists of equal rank, the rank of a list L being |log,, %J

What if the size of the elements or priorities is not assumed to be constant?
That is, express the bounds as a function of N and the length of the priorities.
How about the priorities having variable lengths? Initial research in this direction
has been carried out, by Arge et al. [7], who consider the problem of sorting strings
in external memory.

References

1. G. M. Adel’son-Vel’skii and E.M. Landis. An algorithm for the organization of
information. Sowiet Mathematics, volume 3, pages 1259 1263, 1962.

2. A. Aggarwal and J.S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, volume 31, pages 1116 1127, 1988.

3. A.V. Aho, J.E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley Publishing Company, Reading, 1974.

4. T.0. Alanko, H.H. A. Frkio, and 1..J. Haikala. Virtual memory behavior of some
sorting algorithms. TEEFE Transactions on Software Fngineering, volume SE-10,
pages 422 431, 1984.

5. T.. Arge. The buffer tree: A new technique for optimal 1/O-algorithms. ITn Proceed-
ings of the 4th Workshop on Algorithms and Data Structures, Lecture Notes in
Computer Science 955, Springer, Berlin/Heidelberg, pages 334 345, 1995.

6. 1.. Arge. Efficient external-memory data structures and applications. BRICS Dis-
sertation NS-96-3, Department of Computer Science, University of Aarhus, Arhus,
1996.

7. T.. Arge, P. Ferragina, R. Grossi, and J.S. Vitter. On sorting strings in exter-
nal memory. In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, ACM Press, New York, pages 540 548, 1997.

8. R. Bayer and E.M. McCreight. Organization and maintenance of large ordered
indexes. Acta Informatica, volume 1, pages 173 189, 1972.

9. M.R. Brown. Implementation and analysis of binomial queue algorithms. STAM
Journal on Computing, volume 7, pages 298 319, 1978.

10. S. Carlsson, J.I. Munro, and P.V. Poblete. An implicit binomial queue with
constant insertion time. In Proceedings of the 1st Scandinavian Workshop on
Algorithm Theory, Lecture Notes in Computer Science 318, Springer-Verlag,
Berlin/Heidelberg, pages 1 13, 1988.

11. D. Comer. The ubiquitous B-tree. ACM Computing Surveys, volume 11, pages
121 137, 1979.

12. C.A. Crane. Linear lists and priority queues as balanced trees. Technical Report
STAN-CS-72-259, Computer Science Department, Stanford University, Stanford,
1972.

13. R. Fadel, K. V. Jakobsen, J. Katajainen, and .J. Teuhola. Heaps and heapsort on
secondary storage. To appear in Theoretical Computer Science.

14. M.J. Fischer and M. S. Paterson. Fishspear: A priority queue algorithm. Journal
of the ACM, volume 41, pages 3 30, 1994.

15. G. A. Gibson, J.S. Vitter, J. Wilkes et al. Strategic directions in storage T/0 issues
in large-scale computing. ACM Computing Surveys, volume 28, pages 779 793,
1996.

16.

17.

18.

19.

20.

21.

22.

23.

24.

26.

27.

28.

29.

30.

31.

32.

33.

I..J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In
Proceedings of the 19th Annual Symposium on Foundations of Computer Science,
IEEE, New York, pages 8 21, 1978.

K. Harty and D. R. Cheriton. Application-controlled physical memory using exter-
nal page-cache management. In Proceedings of the 5th International Conference on
Architectural Support for Programming Languages and Operating Systems, ACM
STGPILAN Notices, volume 27, number 9, pages 187 197, 1992.

J. JAJA. An Introduction to Parallel Algorithms. Addison-Wesley Publishing Com-
pany, Reading, 1992.

B. H.H. Juurlink and H. A.G. Wijshoff. The parallel hierarchical memory model.
In Proceedings of the 4th Scandinavian Workshop on Algorithm Theory, Tecture
Notes in Computer Science 824, Springer-Verlag, Berlin/Heidelberg, pages 240
251, 1994.

N. E. Knuth. The Art of Computer Programming, volume 3/ Sorting and Searching.
Addison-Wesley Publishing Company, Reading, 1973.

K. Krueger, D. lLoftesness, A. Vahdat, and T. Anderson. Tools for the develop-
ment of application-specific virtual memory management. In Proceedings of the
8th Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications, ACM SIGPLAN Notices, volume 28, number 10, pages 48 64, 1993.
A. L.aMarca and R. E. Ladner. The influence of caches on the performance of heaps.
The ACM Journal of Experimental Algorithmics, volume 1, article 4, 1996.

D. McNamee and K. Amstrong. Fxtending the Mach external pager interface to
accommodate user-level block replacement policies. Technical Report 90-09-05, De-
partment of Computer Science and Fngineering, University of Washington, Seattle,
1990.

D. Naor, C.U. Martel, and N.S. Matloff. Performance of priority queue structures
in a virtual memory environment. The Computer Journal, volume 34, pages 428

437, 1991.

. M. H. Nodine and J.S. Vitter. Large-scale sorting in parallel memories. In Proceed-

ings of the 3rd ACM Symposium on Parallel Algorithms and Architectures, ACM
Press, New York, pages 29 39, 1991.

Y.N. Patt. Guest editor’s introduction: The T/O subsystem A candidate for
improvement. [FEF Computer, volume 27, number 3, pages 15 16, 1994.

D. A. Patterson and J.1.. Henmessy. Computer Organization € Design: The Hard-
ware/Software Interface. Morgan Kaufmann Publishers, San Francisco, 1994.

R. Sedgewick. Algorithms. Addison-Wesley Publishing Company, Reading, 1983.
M. Thorup. On RAM priority queues. In Proceedings of the 7th Annual ACM-STAM
Symposium on Discrete Algorithms, ACM, New York and STAM, Philadelphia,
pages 59 67, 1996.

J.S. Vitter and E. A. M. Shriver. Algorithms for parallel memory I: Two-level mem-
ories. Algorithmica, volume 12, pages 110 147, 1994.

J. Vuillemin. A data structure for manipulating priority queues. Communications
of the ACM, volume 21, pages 309 315, 1978.

..M. Wegner and J.I. Teuhola. The external heapsort. TEFE Transactions on
Software Fngineering, volume 15, pages 917 925, 1989.

J.W_J. Williams. Algorithm 232, Heapsort. Communications of the ACM, volume
7, pages 347 348, 1964.

