Priority Queues on Parallel Machines

Gerth Stglting Brodal*

BRICS*™, Computer Science Department, Aarhus University,
Ny Munkegade, DK-8000 Arhus ¢, Denmark.

Abstract. We present time and work optimal priority queues for the
CREW PRAM, supporting FINDMIN in constant time with one proces-
sor and MAKEQUEUE, INSERT, MELD, FINDMIN, EXTRACTMIN, DELETE
and DECREASEKEY in constant time with O(log n) processors. A prior-
ity queue can be build in time O(log n) with O(n/log n) processors and
k elements can be inserted into a priority queue in time O(log k) with
O((log n+k)/log k) processors. With a slowdown of O(loglogn) in time
the priority queues adopt to the EREW PRAM by only increasing the
required work by a constant factor. A pipelined version of the priority
queues adopt to a processor array of size O(log n), supporting the oper-
ations MAKEQURUR, INSERT, MELD, FINDMIN, EXTRACTMIN, DELETE
and DECREASEKEY in constant time.

1 Introduction

The construction of priority queues is a classical topic in data structures. Some
references are [1, 2, 6, 7, 8, 9, 19, 20]. A historical overview of implementations
can be found in [13]. Recently several papers have also considered how to im-
plement priority queues on parallel machines [3, 4, 5, 11, 15, 16, 17, 18]. Tn this
paper we focus on how to achieve optimal speedup for the individual priority
queue operations known from the sequential setting [16, 17]. The operations we
support are all the commonly needed priority queue operations from the se-
quential setting [13] and the parallel insertion of several elements at the same

time [3, 15].

MakEQUREUE Creates and returns a new empty priority queue.

INSERT((), €) Tnserts element e into priority queue Q.

MELD(Q1, Q2) Melds priority quenes Q1 and Q2. The resulting priority queune
is stored in 4.

FINDMIN(Q) Returns the minimum element in priority queue Q.

EXTRACTMIN(Q) Deletes and returns the minimum element in priority queune

Q.

* Supported by the Danish Natural Science Research Council (Grant No. 9400044).
This research was done while visiting the Max-Planck Institut fir Informatik,
Saarbriicken, Germany. F-mail: gerth@daimi.aau.dk.

** Basic Research in Computer Science, a Centre of the Danish National Research
Foundation.

DELETE(Q, ¢) Deletes element e from priority queue @ provided a pointer to e
is given.

DECREASEKEY(Q, e, ¢’) Replaces element e by ¢’ in priority queue @ provided
e’ < e and a pointer to e is given.

Buttn(ey,...,e,) Creates a new priority queue containing elements ey, ..., e,.

MUTLTTINSERT(Q, €1, - . ., ex) Inserts elements a:1,..., 2, into priority queue Q.

We assume that elements are taken from a totally ordered universe and that
the only operation allowed on elements is the comparison of two elements that
can be done in constant time. Throughout this paper n denotes the maximum
allowed number of elements in a priority queue. We assume w.l.o.g. that n is of
the form 2%. This guarantees that logn is an integer.! Our main result is:

Theorem 1. On a CREW PRAM priority queues exist supporting FINDMIN
in constant time with one processor, and MAKEQUEUE, INSERT, MELD, EX-
TRACTMIN, DELETE and DECREASEKEY in constant time with O(logn) pro-
cessors. BUILD is supported in time O(logn) with O(n/logn) processors and
MUTLTTIINSERT in time O(logk) with O((logn + k)/logk) processors.

Table 1 lists the performance of different implementations adopting paral-
lelism to priority queues. Several papers consider how to build heaps [7] optimally
in parallel [4, 5, 11, 18]. On an EREW PRAM an optimal construction time of
O(logn) is achieved in [18] and on a CRCW PRAM an optimal construction
time of O(loglogn) is achieved in [5].

An immediate consequence of the CREW PRAM priority queues we present
is that on an EREW PRAM we achieve the bounds stated in Corollary 2, be-
cause the only bottleneck in the construction requiring concurrent read is the
broadcasting of information of constant size, that on an O(logn/loglogn) pro-
cessor EREW PRAM requires time O(loglogn). The bounds we achieve matches
those of [3] for k equal one and those of [14]. See Table 1.

Corollary 2. On an FREW PRAM priority queues exist supporting FINDMIN
in constant time with one processor, and supporting MAKEQUEUE, INSERT,
MFELD, EXTRACTMIN, DELETE and DECREASEKEY in time O(loglogn) with
O(logn/loglogn) processors. With O(n/logn) processors BUILD can be per-
Jormed in time O(logn) and with O((k 4+ logn)/(logk + loglogn)) processors
MUTLTTINSERT can be performed in time O(logk + loglogn).

That a systolic processor array with @(n) processors can implement a pri-
ority queue supporting the operations INSERT and EXTRACTMIN in constant
time is parallel computing folklore, see Exercise 1.119 in [12]. Recently Ranade
et al. [17] showed how to achieve the same bounds on a processor array with
only O(logn) processors. Tn Sect. 5 we describe how the priority queues can
be modified to allow operations to be performed via pipelining. As a result we
get an implementation of priority queues on a processor array with O(logn)

' All logarithms in this paper are to the base two.

[16] [14] [15] [3] [17] This paper

Model FREW EREW? CREW FEREW Array CREW
FinnDMN 1 loglogn 1 1 1 1
INSERT loglog n loglogn 1 1
EXTRACTMIN loglogn loglogn 1 1
MELD loglogn log Z + loglog k loglog £ + log k 1
DELETE loglogn 1
DECREASEKEY loglogn 1
Bum.n log n Zlogk log Zlogk log n
MurTrINSERT log & +1logk loglog Z +logk log k
MurTIDRELETE log 7 + loglog k loglog 7 +log k

Table 1. Performance of different parallel implementations of priority queues.

processors, supporting the operations MAKEQUEUE, INsERT, MELD, FINDMIN,
ExTrACTMIN, DELETE and DECREASEKEY in constant time. This extends the
result of [17].

The priority queues we present in this paper do not support the operation
MULTIDELRETE, that deletes the k smallest elements from a priority queue (where
k is fixed [3, 15]). However, a possible solution is to apply the k-bandwidth idea
used in [3, 15], by letting each node contain k elements instead of one. If we apply
the idea to the data structure in Sect. 2 we get the time bounds in Theorem 3,
improving upon the bounds achieved in [15], see Table 1. We omit the details
and refer the reader to [15].

Theorem 3. On a CREW PRAM priority queues exist, supporting MULTI-
INSERT in time O(logk), MULTIDELETE and MELD in time O(loglogk), and
Buitn in time O(log k + log 7 loglog k).

2 Meldable priority queues

In this section we describe how to implement the priority queue operations
MAKEQUEUE, INSERT, MELD, FINDMIN and EXTRACTMIN in constant time
on a CREW PRAM with O(logn) processors. Tn Sect. 3 we describe how to
extend the repertoire of priority queue operations to include DELETE and DE-
CREASEKEY.

The priority queues in this section are based on heap ordered binomial
trees [19]. Throughout this paper we assume a one to one mapping between
tree nodes and priority queue elements.

Binomial trees are defined as follows. A binomial tree of rank zero is a single
node. A binomial tree of rank r > () is achieved from two binomial trees of rank
r — 1 by making one of the roots a son of the other root. Tt follows by induction
that a binomial tree of rank r contains exactly 2” nodes and that a node of rank

2 The operations DELETE and DECREASEKEY require the CREW PRAM and require
amortized time O(loglogn).

r has exactly one son of each of the ranks 0,...,7 — 1. Throughout this section
a tree denotes a heap ordered binomial tree.

A priority queue is represented by a forest of binomial trees. In the following
we let the largest ranked tree be of rank r(Q), we let n,;(Q) denote the number
of trees of rank i and we let nyay(Q) denote the value maxo<i<,(g) 7i(Q). We
require that a priority queue satisfies the constraints:

Ay n(Q)€eq{1,2,3} fori=0,...,7(Q), and

A5 : the minimum root of rank i is smaller than all roots of rank larger than 1.

It follows from A4 that the minimum root of rank zero is the minimum element.
A priority queue is stored as follows. Each node » in a priority queue is
represented by a record consisting of:

e : the element associated to v,
r : the rank of v, and
I ¢ a linked list of the sons of v in decreasing rank order.

For each priority queue @ an array @.I is maintained of size 1 + logn of
pointers to linked lists of roots of equal rank. By A+, |Q.L[7]| < 3 for all 7. Notice
that the chosen representation for storing the sons of a node allows two nodes of
equal rank to be linked in constant time by one processor. The required space
for a priority queue is O(n).

Two essential procedures used by our algorithms are the procedures PAR-
LINK and PARUNLINK in Fig. 1. Tn parallel PARTLLINK for each rank 7 links two
trees of rank i to one tree of rank ¢ + 1, if possible. By requiring that the trees
of rank i that are linked together are different from min(Q.L[i]), Ay does not
become violated. Tet n}(Q) denote the value of n,;(Q) after performing Par-
LiNk. Tf n;(@) > 3 before performing PARLINK then n}(Q) < n,;(Q) — 2 + 1,
because processor i removes two trees of rank ¢ and processor i — 1 adds at most,
one ftree of rank i. Otherwise n}(Q) < n;(Q) + 1. This implies that n/ .. (Q) <
max{3, nmax(Q) — 1}. The equality states that if the maximum number of trees
of equal rank is larger than three, then an application of PARTINK decreases
this value by at least one. The procedure PARUNIINK unlinks the minima of
all Q.L[7]. All n;(Q) at most increase by one except for ng(Q) that can increase
by two. Notice that the new minimum of Q.L[7] is less than or equal to the old
minimum of Q.L[7 + 1]. This implies that if A, is satisfied before performing
PARUNLINK then Ag is also satisfied after the unlinking. Notice that PARTINK
and PARUNLINK can be performed on an EREW PRAM with O(logn) proces-
sors in constant time if all processors know Q.

The priority queue operations can now be implemented as:

MakEQUREUE The list Q. is allocated and in parallel all Q.L[/] are assigned
the empty set.

INSERT(Q, ¢) A new tree of rank zero containing e is created and added to
Q.L[0]. To avoid nmax(Q) > 3, PARLINK(Q) is performed once.

Proc PARLINK(Q)
for p := 0 to logn — 1 pardo
if n,(Q) > 3 then
Link two trees from Q.L[p] \ min(Q.7.[p]) and
add the resulting tree to Q.L[p + 1]

Proc PARUNLINK(Q)
for p := 1 to log n pardo
if n,(Q) > 1 then
Unlink min(Q.L[p]) and add the resulting two trees to Q.L[p — 1]

Fig. 1. Parallel linking and unlinking binomial trees.

Proc FINDMIN(Q) Proc MAKEQURUE
return min(Q.L[0]) @ :=new-queue
Proc INSERT(Q, €) f-::fr.n (3 to log n pardo Q.11p}:=0
Q.L[0] := Q.L[0] U {new-node(e) }
PART.INK(Q) Proc EXTRACTMIN(Q)
e := min(Q.L[0])
Proc MEID(Qr, Q2) Q7[0) = Q.L[0]\ {e}
for p := 0 to log n pardo PARUNLINK(Q)
Q1. L[p] == Q1. Llp] U Q2. L[p] PARTJNK(Q)
do 3 times PART.INK(Q1) retirn e

Fig. 2. CREW PRAM priority queue operations.

MELD(Q1, Q2) First Q2.L is merged into Q4.1 by letting processor p set Q1.L[p]
to Q1.L[p|UQ2-L[p]. The resulting forest satisfies nyax(@1) < 6. Performing
PARTLINK(Q1) three times reestablishes Ay.

FINDMTIN(Q) The minimum element in priority queue @ is min(Q.L[0]).

EXTRACTMIN(Q) First the minimum element min(Q.L[0]) is removed. Perform-
ing PARUNLINK once guarantees that As is satisfied, especially that the new
minimum element is contained in @.L[0], because the new minimum ele-
ment was either already contained in Q.L[0] or it was the minimum element
in @Q.L[1]. Finally PARLINK performed once reestablishes Aj.

A pseudo code implementation for a CREW PRAM based on the previous
discussion is shown in Fig. 2. Notice that the only part of the code requiring
concurrent read is to “broadcast” the values of), Q1 and Q2 to all the processors.
Otherwise the code only requires an EREW PRAM. From the fact that PART.INK
and PARUNLINK can be performed in constant time with O(logn) processors we
get:

Theorem4. On a CREW PRAM priority queues exist supporting FINDMIN
in constant time with one processor, and MAKEQUEUE, INSERT, MELD and
EXTRACTMIN in constant time with O(logn) processors.

3 Priority queues with deletions

In this section we extend the repertoire of supported priority queue operations to
include DELETE and DECREASEKEY. Notice that DECREASEKEY(Q, e,€’) can
be implemented as DELETE(Q, ¢) followed by INSERT(Q), €’).

The priority queues in this section are based on heap ordered trees defined
as follows. A rank zero tree is a single node. A rank r tree is a tree where the
root has exactly five sons of each of the ranks 0,1,...,7» — 1. A tree of rank r
can be created by linking six trees of rank » — 1 by making the five larger roots
sons of the smallest root.

The efficiency we achieve for DELETE and DECREASEKEY is due to the con-
cept of holes. A hole of rank r in a tree is a location in the tree where a son of
rank r is missing.

We represent a priority queue by a forest of trees with holes. Let 7(@), n;(Q)
and Nmax(@) be defined as in Sect. 2. We require that:

Bi:n(Q)e{1,2,...,7} fori=1,...,7(Q),
B, : the minimum root of rank 7 is smaller than all roots of rank larger than i,
B3 : at most two holes have equal rank.

Temporary while performing MELD we allow the number of holes of equal
rank to be at most four. The requirement that a node of rank r has five sons of
each of the ranks 0,...,r — 1 implies that at least one son of each rank is not
replaced by a hole. This implies that the subtree rooted at a node has at least
size 27 and therefore the largest possible rank is at most log n.

A priority queue is stored as follows. Each node v of a tree is represented by
a record consisting of:

e : the element associated to v,

r : the rank of v,

[+ a pointer to the father of », and

I : an array of size log n of pointers to linked lists of sons of equal rank.

For each priority queue) two arrays .1 and Q.H are maintained of size
1 4 logn. Q.1 contains pointers to linked lists of trees of equal rank and Q.H
contains pointers to linked lists of “holes” of equal rank. More precisely Q.H[7]
is a linked list of nodes such that for each missing son of rank ¢ of node v, »
appears once in Q.H[7]. By By and Bs, |Q.L[{]| < 7 and |Q.H]Ji]| < 2 for all 4.
Notice that the space required is O(nlogn). By using worst case constant time

extendible arrays to store the required arrays such that |v.l.| = v.r, the space
requirement, can be reduced to O(n). For simplicity we in the following assume
that |v.L| = logn for all v.

The procedures PARTINK and PARUNLINK have to be modified such that
linking and unlinking involves six trees and such that PARUNTLINK catches holes
to he removed from @Q.H. PARTLINK now satisfies nl,, (@) < max{7, nma(Q) —

5}, and PARUNLINK nl(Q) < n;(Q) + 5 for i > 0 and n{(Q) < no(Q) + 6.

We now describe a procedure FixHoLES that reduces the number of holes
similar to how PARLINK reduces the number of trees. The procedure is con-
structed such that processor p takes care of holes of rank p. The work done by
processor p is the following. If |Q.H[p]| < 2 the processor does nothing. Other-
wise it considers two holes in Q.H[p]. Recall that all holes have at least one real
tree node of rank p as a brother. If the two holes have different fathers, we swap
one of the holes with a brother of the other hole. This makes both holes have
the same father f. By choosing the largest node among the two holes’ brothers
as the swap node we are guaranteed to satisfy heap order after the swap.

There are now two cases to consider. The first case is when the two holes have
a brother b of rank p+ 1. Notice that b has at least three sons of rank p because
we allowed at most four holes of rank p. We can now cut off b and all sons of b
of rank p. By assigning b the rank p we only create one hole of rank p + 1. We
can now eliminate the two original holes by replacing them with two previous
sons of b. At most four trees remain to be added to Q.L[p]. The second case is
when f has rank p + 1. Assume first that f # min(Q.L[p+ 1]). Tn this case the
subtree rooted at f can be cut off without violating By. This creates a new hole
of rank p+ 1. We can now cut off all sons of f that have rank p and assign f the
rank p. This eliminates the two holes. At most four trees now need to be added
to Q.L[p]. Finally there is the case where f = min(Q.L[p + 1]). By performing
PARUNTINK and PARLINK once the two holes disappear. To compensate for the
created new trees we finally perform PARIINK once.

The priority queue operations can now be implemented as follows.

MaKEQUREUE Allocate a new priority queue () and assign the empty set to all
Q.IL[7]] and Q.H[i].

INSERT((Q, €) Create a tree of rank zero containing e and add this tree to @Q.L[0].
Perform PARLINK(Q) once to reestablish By. Notice that TNSERT does not,
affect the number of holes in Q).

MELD(Q1, Q2) Merge @Qo.L into @Qq1.L, and Q2.H into @¢1.H. We now have
|@Q1.7] < 14 and |Q+.H[:]| < 4 for all 7. That By is satisfied follows from
that @ and @ satisfied By. Performing PARTINK(Q1) twice followed by
FIXHOLES(Q2) twice reestablishes By and Bs.

FINDMIN(Q) Return min(Q.L[0]).

EXTRACTMIN(Q) First perform FINDMIN and then perform DELETE on the
found minimum.

DELETE(Q, ¢) Tet v be the node containing e. Remove the subtree with root ». Tf
this creates a hole then add the hole to Q.H. Merge v.1 into Q.1 and remove
all appearances of v from @.H. Notice that only for i = v.r, min(Q.L[7]) can
change and this only happens if e was min(@.L[i]). Unlinking min(Q.L[4])
fori=wvr+4+1,...,7(Q) reestablishes Bs. Finally perform PARLINK twice to
reestablish By and FIXHoOTLES once to reestablish Ba.

DECREASEKEY(Q, e,€’) Perform DELETE(Q, €) followed by INSERT(Q, €').

A pseudo code implementation for a CREW PRAM based on the previous
discussion is shown in Fig. 3. Notice that the only part of the code that requires

Proc MAKEQURUE Proc EXTRACTMIN(Q)

Q) :==new-queue e := FINDMIN(Q)
for p := 0 to log n pardo DELETE(Q, €)
Q.Lpl,Q.Hp] =0 return e
return ()
Proc DELETE(Q, €)
Proc FINDMIN(Q) v := the node containing e
return min(Q.L[0]) if v.f # nm, then
Q.Hlvr]:=Q.HuvrlU{v.f}
Proc INSERT(Q, ¢) v.f. Lvr] = v.f . Lvr]\ {v}

Q.1[0] := Q.L0O]U {new-node(e)} gor p:= 0 to log n pardo
ParLINK(Q) for u € v..[p] do u.f := NI
Q-1Lp] :== Q-Llp] Uv.L[p]
Proc MRID(Q1,Q>) _

for p := 0 to logn pardo forQhHEp]O.tio(l?(;ngp] \ai::}li)

Q- Lp) := G Lp] U Q> T [y] ifpn.?Q) > 1 ir;dpp > v.r then

1.H = 1 H U 2.H i - ’ .

don tirEﬁ]es Pﬁm[i](@? v Q-Hlp —1]:= Q.Hp— 1]\ min(Q.T[p])

do 2 times FrxHorrs(Q1) Unlink min(Q./[p]) and
add the resulting trees to Q.1L[p — 1]

Proc DECREASEKEY(Q, e, ¢e’) do 2 times PARLINK(Q)
DELETE(Q, €) FixHoLrs(Q)
INSERT(Q, €)

Fig. 3. CREW PRAM priority queue operations.

concurrent read is the “broadcasting” of the parameters of the procedures and
v.r in DELETE. The rest of the code does very local computing, in fact processor
p only accesses entries p and p+ 1 of arrays, and that these local computations
can be done in constant, time with O(logn) processors on an EREW PRAM.

Theorem 5. On a CREW PRAM priority queues erist supporting FINDMIN in
constant time with one processor, and MAKEQUEUE, INSERT, MELD, EXTRACT-
MiN, DELETE and DRCREASEKEY in constant time with O(logn) processors.

4 Building priority queues

Tn this section we describe how to perform BuUtLD(24,...,2,) for the priority
queues in Sect. 3. Because our priority queues can report a minimum element in
constant time and that there is lower bound of £2(log n) for finding the minimum
of a set of elements on a CREW PRAM [10] we have an £2(logn) lower bound
on the construction time on a CREW PRAM. We now give a matching upper
bound on an EREW PRAM.

First a collection of trees is constructed satisfying By and B3 but not Bs.
We partition the elements into |(n — 1)/6] blocks of size six. Tn parallel we
now construct a rank one tree from each block. The remaining 1 6 elements are
stored in Q.L[0]. The same block partitioning and linking is now done for the

rank one trees. The remaining rank one trees are stored in Q.L[1]. This process
continues until no tree remains. There are at most O(logn) iterations because
each iteration reduces the number of trees by a factor six. The resulting forest
satisfies By and Bs. It is easy to see that the above construction can be done in
time O(logn) with O(n/logn) processors on an EREW PRAM.

To establish By we logn times perform ParRUNLINK followed by ParLINK.
By induction it follows that in the ith iteration all Q.L[j] where j > logn — i
satisfy Ba. This finishes the construction of the priority queue. The last step of
the construction requires time O(logn) with O(logn) processors. We conclude
that:

Theorem 6. On an EREW PRAM a priority queue containing n elements can
be constructed optimally with O(n/logn) processors in time O(logn).

Because MELD(Q, BUILD (21, ..., 2)) implements the priority queue oper-
ation MULTIINSERT(Q, 21, - ..,) we have the corollary below. Notice that k
does not have to be fixed as in [3, 15].

Corollary 7. On a CREW PRAM MULTIINSERT can be performed in time
O(logk) with O((logn + k)/logk) processors.

5 Pipelined priority queue operations

The priority queues in Sect. 2, 3 and 4 require the CREW PRAM to achieve
constant time per operation. In this section we address how to perform priority
queue operations in a pipelined fashion. As a consequence we get an implemen-
tation of priority queues on a processor array of size O(log n) supporting priority
queue operations in constant time. On a processor array we assume that all re-
quests are entered at processor zero and that output is generated at processor
zero too [17].

The basic idea is to represent a priority queue by a forest of heap ordered
binomial trees as in Sect. 2, and to perform the operations sequentially in a loop
that does constant work for each rank in increasing rank order. This approach
then allows us to pipeline the operations. We require that a forest of binomial
trees representing a priority queue satisfies:

Cy: n;(Q) € {1,2}, fori=1,...,7(Q),

C5 : the minimum root of rank 7 is smaller than all roots of rank larger than 1.

Notice that Cq is stronger than Ay in Sect. 2. Sequential implementations of
the priority queue operations are shown in Fig. 4. We assume a similar represen-
tation as in Sect. 3. The pseudo code uses the following two procedures similar
to those used in Sect. 2.

LINK(Q, i) Links two trees from Q.L[{] \ min(Q.L[i]) to one tree of rank i + 1
that is added to @Q.L[i 4+ 1], provided i > 0 and |Q.L[{]| > 3.

Proc MAKEQURUR Proc DELETE(Q, €)

() :=new-queune v := the node containing e
for p:= 0 to logn do Q./.[p] :== 0 for i :=0towv.r —1do
return () Move v.1[i] to Q.L[7]
TINK(Q, 7)
Proc FINDMIN(Q) v fi=vr v f

return min(Q.L[0])

Remove node v

while f # nm. do

Proc INSERT(Q, €) if fr—r41 then

Q.L[0] := Q.L[0] U {new-node(e) }

- . for:=fr—1
for i := 0 to logn do T.INK(Q, 7) Move f to Q.F[r] and
Proc MELD(Q1, (Q)2) f=17rf
for 7 := 0 to logn do else
Q1. L1 :=h.L[IUQ@s. L1 Unlink f.L[r 4+ 1] and add
do 2 times T.INK(Q1, 1) one free to f.L[r] and
one tree to Q.L[r]
Proc DECREASEKEY(Q, €,€”) LINK(Q, 1)
DELETE(Q, €) ro=r 41
INSERT(Q, €’) for 7 :=r to logn do

UNLINK(Q, 1+ 1)

Proc FXTRACTMIN(Q) do 2 times T.INK((Q, 1)

e := FINDMIN(Q)
DELETE(Q, €)
return e

Fig. 4. A sequential implementation allowing pipelining.

UNLINK(@, 7) Unlinks the tree min(@.L[i]) and adds the resulting two trees to
Q.L[i — 1], provided 7 > 1 and |Q.L[/]| > 1.

Fach of the priority queue operations can be viewed as running in steps
1= 0,...,logn. Step i only accesses, creates and destroys nodes of rank 7 and
7+ 1. Notice that requirement Cy implies that MELD only has to perform TLINK
two times for each rank, whereas the implementation of MELD in Fig. 2 has to do
the corresponding linking three times. Otherwise the only interesting procedure
is DELETE. Procedure DELETE proceeds in three phases. First all sons of the
node to be removed are cut off and moved to Q).1.. In the second phase the hole
created is eliminated by moving it up thru the tree by unlinking the brother node
of the hole’s current position or unlinking the father node of the hole. Finally
the third phase reestablishes Cs in case phase two removed min(Q.L[i]) for some
1. This phase is similar to the last for loop in the implementation of DELETE in
Fig. 3.

The pseudo code given in Fig. 4 assumes the same representation for nodes
as in Sect. 3. To implement the priority queues on a processors array a repre-
sentation is required that is distributed among the processors. The canonical
distribution is to let processor p store nodes of rank p.

The representation we distribute is the following. Assume that the sons of

a node are ordered from right-to-left in increasing rank order (this allows us to
talk about the leftmost and rightmost sons of a node). A node v is represented
by a record with the fields:

e : the element associated to v,

r ¢ the rank of v,

left, right :+ pointers to the left and right brothers of »,

leftmost-son : a pointer to the leftmost son of v,

f ¢+ a pointer to the father of v, if v is the leftmost son. Otherwise NII..

The array Q.I is replaced by linked lists. Finally an array rightmosi-son is
maintained that for each node stores a pointer to the rank zero son of the node
or to the node itself if it has rank zero. Notice that this representation only has
pointers between nodes with rank difference at most one.

Tt is straightforward to modify the code given in Fig. 4 to this new represen-
tation. The only essential difference is when performing DELETE. The first rank
zero son of v to be moved to Q.1 is found by using the array rightmost-son. The
succeeding sons are found by using the left pointers.

On a processor array we let processor p store all nodes of rank p. In addition
processor p stores Q.L[p] for all priority queues Q. The array rightmost-son
is stored at processor zero. The “locations” that DELETE and DECREASEKEY
refer to are now not the nodes but the corresponding entries in the rightmost-son
array.

With the above described representation step ¢ of an operation only involves
information stored at processors {i — 1,4,i+ 1,74 2} (processor i — 1 and i + 2
because back pointers have to be updated in the involved linked lists) that can he
accessed in constant time. This immediately allows us to pipeline the operations,
such that we for each new operation perform exactly four steps of each of the
previous operations. Notice that no latency is involved in performing the queries:
The answer to a FINDMIN query is known immediately.

Theorem 8. On a processor array of size O(logn) each of the operations MAKE-
QUEUE, INSERT, MELD, FINDMIN, EXTRACTMIN, DELETE and DECREASE-
KEY can be supported in constant time.

References

1. Gerth Stglting Brodal. Fast meldable priority queues. In Proc. 4th Workshop on
Algorithms and Data Structures (WADS), volume 955 of Lecture Notes in Com-
puter Science, pages 282 290. Springer Verlag, Berlin, 1995.

2. Gerth Stglting Brodal. Worst-case efficient priority queues. In Proc. 7th ACM-
STAM Symposium on Discrete Algorithms (SODA), pages 52 58, 1996.

3. Danny 7. Chen and Xiaobo Hu. Fast and efficient operations on parallel priority

Symposium, ISAAC ’93, volume 834 of Lecture Notes in Computer Science, pages
279 287. Springer Verlag, Berlin, 1994.

10.
11.

12.

13.

14.

16.

17.

18.

19.

20.

Paul F. Dietz. Heap construction in the parallel comparison tree model. In Proc.
3rd Scandinavian Workshop on Algorithm Theory (SWAT), volume 621 of Lecture
Notes in Computer Science, pages 140 150. Springer Verlag, Berlin, 1992.

. Paul F. Dietz and Rajeev Raman. Very fast optimal parallel algorithms for heap

construction. In Proc. 6th Symposium on Parallel and Distributed Processing,
pages H14 521, 1994.

James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E. Tarjan. Re-
laxed heaps: An alternative to fibonacci heaps with applications to parallel com-
putation. Communications of the ACM, 31(11):1343 1354, 1988.

Robert W. Floyd. Algorithm 245: Treesort3. Communications of the ACM,
7(12):701, 1964.

Michael T.. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert E. Tarjan.
The pairing heap: A new form of self adjusting heap. Algorithmica, 1:111 129,
1986.

Michael T.. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. In Proc. 25rd Ann. Symp. on Founda-
tions of Computer Science (FOCS), pages 338 346, 1984.

Joseph JaJa. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

C. M. Khoong. Optimal parallel construction of heaps. Imformation Processing
Letters, 48:159 161, 1993.

F. Thomson lLeighton. Introduction to Parallel Algorithms and Architectures: Ar-
rays, Trees, Hypercubes. Morgan Kaufmann, 1992.

Kurt Mehlhorn and Athanasios K. Tsakalidis. Data structures. In .J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, Volume A: Algorithms and
Complexity. MTT Press/Flsevier, 1990.

Maria Cristina Pinotti, Sajal K. Das, and Vincenzo A. Crupi. Parallel and dis-
tributed meldable priority queues based on binomial heaps. In Int. Conference on
Parallel Processing, 1996.

Maria Cristina Pinotti and Geppino Pucci. Parallel priority queues. Information
Processing Letters, 40:33 40, 1991.

Maria Cristina Pinotti and Geppino Pucci. Parallel algorithms for priority queue
operations. In Proc. 3rd Scandinavian Workshop on Algorithm Theory (SWAT),
volume 621 of Lecture Notes in Computer Science, pages 130 139. Springer Verlag,
Berlin, 1992.

A. Ranade, S. Cheng, F. Deprit, J. Jones, and S. Shih. Parallelism and locality in
priority queues. In Proc. 6th Symposium on Parallel and Distributed Processing,
pages 490 496, 1994.

Nageswara S. V. Rao and Weixiong Zhang. Building heaps in parallel. Information
Processing Letters, 37:355 358, 1991.

Jean Vuillemin. A data structure for manipulating priority queues. Communica-
tions of the ACM, 21(4):309 315, 1978.

J. W_J. Williams. Algorithm 232: Heapsort. Communications of the ACM,
7(6):347 348, 1964.

This article was processed using the IATEX macro package with LLNCS style

