
Priority Queues on Parallel MachinesGerth St�lting Brodal?BRICS??, Computer Science Department, Aarhus University,Ny Munkegade, DK-8000 �Arhus C, Denmark.Abstract. We present time and work optimal priority queues for theCREW PRAM, supporting FindMin in constant time with one proces-sor and MakeQueue, Insert,Meld, FindMin, ExtractMin, Deleteand DecreaseKey in constant time with O(log n) processors. A prior-ity queue can be build in time O(log n) with O(n= log n) processors andk elements can be inserted into a priority queue in time O(log k) withO((log n+k)= log k) processors. With a slowdown of O(log log n) in timethe priority queues adopt to the EREW PRAM by only increasing therequired work by a constant factor. A pipelined version of the priorityqueues adopt to a processor array of size O(log n), supporting the oper-ations MakeQueue, Insert, Meld, FindMin, ExtractMin, Deleteand DecreaseKey in constant time.1 IntroductionThe construction of priority queues is a classical topic in data structures. Somereferences are [1, 2, 6, 7, 8, 9, 19, 20]. A historical overview of implementationscan be found in [13]. Recently several papers have also considered how to im-plement priority queues on parallel machines [3, 4, 5, 11, 15, 16, 17, 18]. In thispaper we focus on how to achieve optimal speedup for the individual priorityqueue operations known from the sequential setting [16, 17]. The operations wesupport are all the commonly needed priority queue operations from the se-quential setting [13] and the parallel insertion of several elements at the sametime [3, 15].MakeQueue Creates and returns a new empty priority queue.Insert(Q; e) Inserts element e into priority queue Q.Meld(Q1; Q2) Melds priority queues Q1 and Q2. The resulting priority queueis stored in Q1.FindMin(Q) Returns the minimum element in priority queue Q.ExtractMin(Q) Deletes and returns the minimum element in priority queueQ.? Supported by the Danish Natural Science Research Council (Grant No. 9400044).This research was done while visiting the Max-Planck Institut f�ur Informatik,Saarbr�ucken, Germany. E-mail: gerth@daimi.aau.dk.?? Basic Research in Computer Science, a Centre of the Danish National ResearchFoundation.

Delete(Q; e) Deletes element e from priority queue Q provided a pointer to eis given.DecreaseKey(Q; e; e0) Replaces element e by e0 in priority queue Q providede0 � e and a pointer to e is given.Build(e1; : : : ; en) Creates a new priority queue containing elements e1; : : : ; en.MultiInsert(Q; e1; : : : ; ek) Inserts elements x1; : : : ; xk into priority queue Q.We assume that elements are taken from a totally ordered universe and thatthe only operation allowed on elements is the comparison of two elements thatcan be done in constant time. Throughout this paper n denotes the maximumallowed number of elements in a priority queue. We assume w.l.o.g. that n is ofthe form 2k. This guarantees that logn is an integer.1 Our main result is:Theorem1. On a CREW PRAM priority queues exist supporting FindMinin constant time with one processor, and MakeQueue, Insert, Meld, Ex-tractMin, Delete and DecreaseKey in constant time with O(logn) pro-cessors. Build is supported in time O(logn) with O(n= logn) processors andMultiInsert in time O(logk) with O((logn+ k)= logk) processors.Table 1 lists the performance of di�erent implementations adopting paral-lelism to priority queues. Several papers consider how to build heaps [7] optimallyin parallel [4, 5, 11, 18]. On an EREW PRAM an optimal construction time ofO(logn) is achieved in [18] and on a CRCW PRAM an optimal constructiontime of O(log logn) is achieved in [5].An immediate consequence of the CREW PRAM priority queues we presentis that on an EREW PRAM we achieve the bounds stated in Corollary 2, be-cause the only bottleneck in the construction requiring concurrent read is thebroadcasting of information of constant size, that on an O(logn= log logn) pro-cessor EREW PRAM requires timeO(log logn). The bounds we achieve matchesthose of [3] for k equal one and those of [14]. See Table 1.Corollary 2. On an EREW PRAM priority queues exist supporting FindMinin constant time with one processor, and supporting MakeQueue, Insert,Meld, ExtractMin, Delete and DecreaseKey in time O(log logn) withO(logn= log logn) processors. With O(n= logn) processors Build can be per-formed in time O(logn) and with O((k + logn)=(logk + log logn)) processorsMultiInsert can be performed in time O(log k + log logn).That a systolic processor array with �(n) processors can implement a pri-ority queue supporting the operations Insert and ExtractMin in constanttime is parallel computing folklore, see Exercise 1.119 in [12]. Recently Ranadeet al. [17] showed how to achieve the same bounds on a processor array withonly O(logn) processors. In Sect. 5 we describe how the priority queues canbe modi�ed to allow operations to be performed via pipelining. As a result weget an implementation of priority queues on a processor array with O(logn)1 All logarithms in this paper are to the base two.

[16] [14] [15] [3] [17] This paperModel EREW EREW2 CREW EREW Array CREWFindMin 1 log log n 1 1 1 1Insert log log n log log n { { 1 1ExtractMin log log n log log n { { 1 1Meld { log log n log nk + log log k log log nk + log k { 1Delete { log log n { { { 1DecreaseKey { log log n { { { 1Build log n { nk log k log nk log k { log nMultiInsert { { log nk + log k log log nk + log k { log kMultiDelete { { log nk + log log k log log nk + log k { {Table 1. Performance of di�erent parallel implementations of priority queues.processors, supporting the operations MakeQueue, Insert, Meld, FindMin,ExtractMin, Delete and DecreaseKey in constant time. This extends theresult of [17].The priority queues we present in this paper do not support the operationMultiDelete, that deletes the k smallest elements from a priority queue (wherek is �xed [3, 15]). However, a possible solution is to apply the k-bandwidth ideaused in [3, 15], by letting each node contain k elements instead of one. If we applythe idea to the data structure in Sect. 2 we get the time bounds in Theorem 3,improving upon the bounds achieved in [15], see Table 1. We omit the detailsand refer the reader to [15].Theorem3. On a CREW PRAM priority queues exist, supporting Multi-Insert in time O(logk), MultiDelete and Meld in time O(log log k), andBuild in time O(log k + log nk log logk).2 Meldable priority queuesIn this section we describe how to implement the priority queue operationsMakeQueue, Insert, Meld, FindMin and ExtractMin in constant timeon a CREW PRAM with O(logn) processors. In Sect. 3 we describe how toextend the repertoire of priority queue operations to include Delete and De-creaseKey.The priority queues in this section are based on heap ordered binomialtrees [19]. Throughout this paper we assume a one to one mapping betweentree nodes and priority queue elements.Binomial trees are de�ned as follows. A binomial tree of rank zero is a singlenode. A binomial tree of rank r > 0 is achieved from two binomial trees of rankr� 1 by making one of the roots a son of the other root. It follows by inductionthat a binomial tree of rank r contains exactly 2r nodes and that a node of rank2 The operations Delete and DecreaseKey require the CREW PRAM and requireamortized time O(log log n).

r has exactly one son of each of the ranks 0; : : : ; r � 1. Throughout this sectiona tree denotes a heap ordered binomial tree.A priority queue is represented by a forest of binomial trees. In the followingwe let the largest ranked tree be of rank r(Q), we let ni(Q) denote the numberof trees of rank i and we let nmax(Q) denote the value max0�i�r(Q) ni(Q). Werequire that a priority queue satis�es the constraints:A1 : ni(Q) 2 f1; 2; 3g for i = 0; : : : ; r(Q), andA2 : the minimum root of rank i is smaller than all roots of rank larger than i.It follows from A2 that the minimum root of rank zero is the minimum element.A priority queue is stored as follows. Each node v in a priority queue isrepresented by a record consisting of:e : the element associated to v,r : the rank of v, andL : a linked list of the sons of v in decreasing rank order.For each priority queue Q an array Q:L is maintained of size 1 + logn ofpointers to linked lists of roots of equal rank. By A1, jQ:L[i]j � 3 for all i. Noticethat the chosen representation for storing the sons of a node allows two nodes ofequal rank to be linked in constant time by one processor. The required spacefor a priority queue is O(n).Two essential procedures used by our algorithms are the procedures Par-Link and ParUnlink in Fig. 1. In parallel ParLink for each rank i links twotrees of rank i to one tree of rank i + 1, if possible. By requiring that the treesof rank i that are linked together are di�erent from min(Q:L[i]), A2 does notbecome violated. Let n0i(Q) denote the value of ni(Q) after performing Par-Link. If ni(Q) � 3 before performing ParLink then n0i(Q) � ni(Q) � 2 + 1,because processor i removes two trees of rank i and processor i�1 adds at mostone tree of rank i. Otherwise n0i(Q) � ni(Q) + 1. This implies that n0max(Q) �maxf3; nmax(Q)� 1g. The equality states that if the maximum number of treesof equal rank is larger than three, then an application of ParLink decreasesthis value by at least one. The procedure ParUnlink unlinks the minima ofall Q:L[i]. All ni(Q) at most increase by one except for n0(Q) that can increaseby two. Notice that the new minimum of Q:L[i] is less than or equal to the oldminimum of Q:L[i + 1]. This implies that if A2 is satis�ed before performingParUnlink then A2 is also satis�ed after the unlinking. Notice that ParLinkand ParUnlink can be performed on an EREW PRAM with O(logn) proces-sors in constant time if all processors know Q.The priority queue operations can now be implemented as:MakeQueue The list Q:L is allocated and in parallel all Q:L[i] are assignedthe empty set.Insert(Q; e) A new tree of rank zero containing e is created and added toQ:L[0]. To avoid nmax(Q) > 3, ParLink(Q) is performed once.

Proc ParLink(Q)for p := 0 to log n� 1 pardoif np(Q) � 3 thenLink two trees from Q:L[p] nmin(Q:L[p]) andadd the resulting tree to Q:L[p+ 1]Proc ParUnlink(Q)for p := 1 to log n pardoif np(Q) � 1 thenUnlink min(Q:L[p]) and add the resulting two trees to Q:L[p� 1]Fig. 1. Parallel linking and unlinking binomial trees.Proc FindMin(Q)return min(Q:L[0])Proc Insert(Q; e)Q:L[0] := Q:L[0] [fnew-node(e)gParLink(Q)Proc Meld(Q1;Q2)for p := 0 to log n pardoQ1:L[p] := Q1:L[p] [Q2:L[p]do 3 times ParLink(Q1) Proc MakeQueueQ :=new-queuefor p := 0 to log n pardo Q:L[p] := ;return QProc ExtractMin(Q)e := min(Q:L[0])Q:L[0] := Q:L[0] n fegParUnlink(Q)ParLink(Q)return eFig. 2. CREW PRAM priority queue operations.Meld(Q1; Q2) First Q2:L is merged into Q1:L by letting processor p set Q1:L[p]to Q1:L[p][Q2:L[p]. The resulting forest satis�es nmax(Q1) � 6. PerformingParLink(Q1) three times reestablishes A1.FindMin(Q) The minimum element in priority queue Q is min(Q:L[0]).ExtractMin(Q) First the minimumelement min(Q:L[0]) is removed. Perform-ing ParUnlink once guarantees that A2 is satis�ed, especially that the newminimum element is contained in Q:L[0], because the new minimum ele-ment was either already contained in Q:L[0] or it was the minimum elementin Q:L[1]. Finally ParLink performed once reestablishes A1.A pseudo code implementation for a CREW PRAM based on the previousdiscussion is shown in Fig. 2. Notice that the only part of the code requiringconcurrent read is to \broadcast" the values ofQ;Q1 andQ2 to all the processors.Otherwise the code only requires an EREWPRAM. From the fact that ParLinkand ParUnlink can be performed in constant time with O(logn) processors weget:Theorem4. On a CREW PRAM priority queues exist supporting FindMinin constant time with one processor, and MakeQueue, Insert, Meld andExtractMin in constant time with O(logn) processors.

3 Priority queues with deletionsIn this section we extend the repertoire of supported priority queue operations toinclude Delete and DecreaseKey. Notice that DecreaseKey(Q; e; e0) canbe implemented as Delete(Q; e) followed by Insert(Q; e0).The priority queues in this section are based on heap ordered trees de�nedas follows. A rank zero tree is a single node. A rank r tree is a tree where theroot has exactly �ve sons of each of the ranks 0; 1; : : : ; r � 1. A tree of rank rcan be created by linking six trees of rank r � 1 by making the �ve larger rootssons of the smallest root.The e�ciency we achieve for Delete and DecreaseKey is due to the con-cept of holes. A hole of rank r in a tree is a location in the tree where a son ofrank r is missing.We represent a priority queue by a forest of trees with holes. Let r(Q); ni(Q)and nmax(Q) be de�ned as in Sect. 2. We require that:B1 : ni(Q) 2 f1; 2; : : :; 7g, for i = 1; : : : ; r(Q),B2 : the minimum root of rank i is smaller than all roots of rank larger than i,B3 : at most two holes have equal rank.Temporary while performing Meld we allow the number of holes of equalrank to be at most four. The requirement that a node of rank r has �ve sons ofeach of the ranks 0; : : : ; r � 1 implies that at least one son of each rank is notreplaced by a hole. This implies that the subtree rooted at a node has at leastsize 2r and therefore the largest possible rank is at most logn.A priority queue is stored as follows. Each node v of a tree is represented bya record consisting of:e : the element associated to v,r : the rank of v,f : a pointer to the father of v, andL : an array of size logn of pointers to linked lists of sons of equal rank.For each priority queue Q two arrays Q:L and Q:H are maintained of size1 + logn. Q:L contains pointers to linked lists of trees of equal rank and Q:Hcontains pointers to linked lists of \holes" of equal rank. More precisely Q:H[i]is a linked list of nodes such that for each missing son of rank i of node v, vappears once in Q:H[i]. By B1 and B3, jQ:L[i]j � 7 and jQ:H[i]j � 2 for all i.Notice that the space required is O(n logn). By using worst case constant timeextendible arrays to store the required arrays such that jv:Lj = v:r, the spacerequirement can be reduced to O(n). For simplicity we in the following assumethat jv:Lj = logn for all v.The procedures ParLink and ParUnlink have to be modi�ed such thatlinking and unlinking involves six trees and such that ParUnlink catches holesto be removed from Q:H. ParLink now satis�es n0max(Q) � maxf7; nmax(Q)�5g, and ParUnlink n0i(Q) � ni(Q) + 5 for i > 0 and n00(Q) � n0(Q) + 6.

We now describe a procedure FixHoles that reduces the number of holessimilar to how ParLink reduces the number of trees. The procedure is con-structed such that processor p takes care of holes of rank p. The work done byprocessor p is the following. If jQ:H[p]j < 2 the processor does nothing. Other-wise it considers two holes in Q:H[p]. Recall that all holes have at least one realtree node of rank p as a brother. If the two holes have di�erent fathers, we swapone of the holes with a brother of the other hole. This makes both holes havethe same father f . By choosing the largest node among the two holes' brothersas the swap node we are guaranteed to satisfy heap order after the swap.There are now two cases to consider. The �rst case is when the two holes havea brother b of rank p+1. Notice that b has at least three sons of rank p becausewe allowed at most four holes of rank p. We can now cut o� b and all sons of bof rank p. By assigning b the rank p we only create one hole of rank p + 1. Wecan now eliminate the two original holes by replacing them with two previoussons of b. At most four trees remain to be added to Q:L[p]. The second case iswhen f has rank p + 1. Assume �rst that f 6= min(Q:L[p+ 1]). In this case thesubtree rooted at f can be cut o� without violating B2. This creates a new holeof rank p+1. We can now cut o� all sons of f that have rank p and assign f therank p. This eliminates the two holes. At most four trees now need to be addedto Q:L[p]. Finally there is the case where f = min(Q:L[p + 1]). By performingParUnlink and ParLink once the two holes disappear. To compensate for thecreated new trees we �nally perform ParLink once.The priority queue operations can now be implemented as follows.MakeQueue Allocate a new priority queue Q and assign the empty set to allQ:L[i] and Q:H[i].Insert(Q; e) Create a tree of rank zero containing e and add this tree to Q:L[0].Perform ParLink(Q) once to reestablish B1. Notice that Insert does nota�ect the number of holes in Q.Meld(Q1; Q2) Merge Q2:L into Q1:L, and Q2:H into Q1:H. We now havejQ1:Lj � 14 and jQ1:H[i]j � 4 for all i. That B2 is satis�ed follows fromthat Q1 and Q2 satis�ed B2. Performing ParLink(Q1) twice followed byFixHoles(Q2) twice reestablishes B1 and B3.FindMin(Q) Return min(Q:L[0]).ExtractMin(Q) First perform FindMin and then perform Delete on thefound minimum.Delete(Q; e) Let v be the node containing e. Remove the subtree with root v. Ifthis creates a hole then add the hole to Q:H. Merge v:L into Q:L and removeall appearances of v from Q:H. Notice that only for i = v:r, min(Q:L[i]) canchange and this only happens if e was min(Q:L[i]). Unlinking min(Q:L[i])for i = v:r+1; : : : ; r(Q) reestablishes B2. Finally perform ParLink twice toreestablish B1 and FixHoles once to reestablish B3.DecreaseKey(Q; e; e0) Perform Delete(Q; e) followed by Insert(Q; e0).A pseudo code implementation for a CREW PRAM based on the previousdiscussion is shown in Fig. 3. Notice that the only part of the code that requires

Proc MakeQueueQ :=new-queuefor p := 0 to log n pardoQ:L[p];Q:H[p] := ;return QProc FindMin(Q)return min(Q:L[0])Proc Insert(Q; e)Q:L[0] := Q:L[0] [fnew-node(e)gParLink(Q)Proc Meld(Q1;Q2)for p := 0 to log n pardoQ1:L[p] := Q1:L[p] [Q2:L[p]Q1:H[p] := Q1:H[p][Q2:H[p]do 2 times ParLink(Q1)do 2 times FixHoles(Q1)Proc DecreaseKey(Q; e; e0)Delete(Q; e)Insert(Q; e0)
Proc ExtractMin(Q)e := FindMin(Q)Delete(Q; e)return eProc Delete(Q; e)v := the node containing eif v:f 6= nil thenQ:H[v:r] := Q:H[v:r] [fv:fgv:f:L[v:r] := v:f:L[v:r] n fvgfor p := 0 to log n pardofor u 2 v:L[p] do u:f := nilQ:L[p] := Q:L[p] [v:L[p]Q:H[p] := Q:H[p] n fvgfor p := 0 to log n pardoif np(Q) � 1 and p > v:r thenQ:H[p� 1] := Q:H[p� 1] nmin(Q:L[p])Unlink min(Q:L[p]) andadd the resulting trees to Q:L[p� 1]do 2 times ParLink(Q)FixHoles(Q)Fig. 3. CREW PRAM priority queue operations.concurrent read is the \broadcasting" of the parameters of the procedures andv:r in Delete. The rest of the code does very local computing, in fact processorp only accesses entries p and p� 1 of arrays, and that these local computationscan be done in constant time with O(logn) processors on an EREW PRAM.Theorem5. On a CREW PRAM priority queues exist supporting FindMin inconstant time with one processor, andMakeQueue, Insert, Meld, Extract-Min, Delete and DecreaseKey in constant time with O(logn) processors.4 Building priority queuesIn this section we describe how to perform Build(x1; : : : ; xn) for the priorityqueues in Sect. 3. Because our priority queues can report a minimum element inconstant time and that there is lower bound of
(logn) for �nding the minimumof a set of elements on a CREW PRAM [10] we have an
(logn) lower boundon the construction time on a CREW PRAM. We now give a matching upperbound on an EREW PRAM.First a collection of trees is constructed satisfying B1 and B3 but not B2.We partition the elements into b(n � 1)=6c blocks of size six. In parallel wenow construct a rank one tree from each block. The remaining 1{6 elements arestored in Q:L[0]. The same block partitioning and linking is now done for the

rank one trees. The remaining rank one trees are stored in Q:L[1]. This processcontinues until no tree remains. There are at most O(logn) iterations becauseeach iteration reduces the number of trees by a factor six. The resulting forestsatis�es B1 and B3. It is easy to see that the above construction can be done intime O(logn) with O(n= logn) processors on an EREW PRAM.To establish B2 we logn times perform ParUnlink followed by ParLink.By induction it follows that in the ith iteration all Q:L[j] where j � logn � isatisfy B2. This �nishes the construction of the priority queue. The last step ofthe construction requires time O(logn) with O(logn) processors. We concludethat:Theorem6. On an EREW PRAM a priority queue containing n elements canbe constructed optimally with O(n= logn) processors in time O(logn).Because Meld(Q;Build(x1; : : : ; xk)) implements the priority queue oper-ation MultiInsert(Q; x1; : : : ; xk) we have the corollary below. Notice that kdoes not have to be �xed as in [3, 15].Corollary7. On a CREW PRAM MultiInsert can be performed in timeO(logk) with O((logn+ k)= logk) processors.5 Pipelined priority queue operationsThe priority queues in Sect. 2, 3 and 4 require the CREW PRAM to achieveconstant time per operation. In this section we address how to perform priorityqueue operations in a pipelined fashion. As a consequence we get an implemen-tation of priority queues on a processor array of size O(logn) supporting priorityqueue operations in constant time. On a processor array we assume that all re-quests are entered at processor zero and that output is generated at processorzero too [17].The basic idea is to represent a priority queue by a forest of heap orderedbinomial trees as in Sect. 2, and to perform the operations sequentially in a loopthat does constant work for each rank in increasing rank order. This approachthen allows us to pipeline the operations. We require that a forest of binomialtrees representing a priority queue satis�es:C1 : ni(Q) 2 f1; 2g, for i = 1; : : : ; r(Q),C2 : the minimum root of rank i is smaller than all roots of rank larger than i.Notice that C1 is stronger than A1 in Sect. 2. Sequential implementations ofthe priority queue operations are shown in Fig. 4. We assume a similar represen-tation as in Sect. 3. The pseudo code uses the following two procedures similarto those used in Sect. 2.Link(Q; i) Links two trees from Q:L[i] nmin(Q:L[i]) to one tree of rank i + 1that is added to Q:L[i+ 1], provided i � 0 and jQ:L[i]j � 3.

Proc MakeQueueQ :=new-queuefor p := 0 to log n do Q:L[p] := ;return QProc FindMin(Q)return min(Q:L[0])Proc Insert(Q; e)Q:L[0] := Q:L[0] [fnew-node(e)gfor i := 0 to log n do Link(Q; i)Proc Meld(Q1;Q2)for i := 0 to log n doQ1:L[i] := Q1:L[i][Q2:L[i]do 2 times Link(Q1; i)Proc DecreaseKey(Q; e; e0)Delete(Q; e)Insert(Q; e0)Proc ExtractMin(Q)e := FindMin(Q)Delete(Q; e)return e
Proc Delete(Q; e)v := the node containing efor i := 0 to v:r � 1 doMove v:L[i] to Q:L[i]Link(Q; i)r; f := v:r; v:fRemove node vwhile f 6= nil doif f:r = r + 1 thenf:r := f:r� 1Move f to Q:L[r] andf := f:felseUnlink f:L[r+ 1] and addone tree to f:L[r] andone tree to Q:L[r]Link(Q; i)r := r + 1for i := r to log n doUnlink(Q; i+ 1)do 2 times Link(Q; i)Fig. 4. A sequential implementation allowing pipelining.Unlink(Q; i) Unlinks the tree min(Q:L[i]) and adds the resulting two trees toQ:L[i� 1], provided i � 1 and jQ:L[i]j � 1.Each of the priority queue operations can be viewed as running in stepsi = 0; : : : ; logn. Step i only accesses, creates and destroys nodes of rank i andi+ 1. Notice that requirement C1 implies that Meld only has to perform Linktwo times for each rank, whereas the implementation ofMeld in Fig. 2 has to dothe corresponding linking three times. Otherwise the only interesting procedureis Delete. Procedure Delete proceeds in three phases. First all sons of thenode to be removed are cut o� and moved to Q:L. In the second phase the holecreated is eliminated by moving it up thru the tree by unlinking the brother nodeof the hole's current position or unlinking the father node of the hole. Finallythe third phase reestablishes C2 in case phase two removed min(Q:L[i]) for somei. This phase is similar to the last for loop in the implementation of Delete inFig. 3.The pseudo code given in Fig. 4 assumes the same representation for nodesas in Sect. 3. To implement the priority queues on a processors array a repre-sentation is required that is distributed among the processors. The canonicaldistribution is to let processor p store nodes of rank p.The representation we distribute is the following. Assume that the sons of

a node are ordered from right-to-left in increasing rank order (this allows us totalk about the leftmost and rightmost sons of a node). A node v is representedby a record with the �elds:e : the element associated to v,r : the rank of v,left, right : pointers to the left and right brothers of v,leftmost-son : a pointer to the leftmost son of v,f : a pointer to the father of v, if v is the leftmost son. Otherwise nil.The array Q:L is replaced by linked lists. Finally an array rightmost-son ismaintained that for each node stores a pointer to the rank zero son of the nodeor to the node itself if it has rank zero. Notice that this representation only haspointers between nodes with rank di�erence at most one.It is straightforward to modify the code given in Fig. 4 to this new represen-tation. The only essential di�erence is when performing Delete. The �rst rankzero son of v to be moved to Q:L is found by using the array rightmost-son. Thesucceeding sons are found by using the left pointers.On a processor array we let processor p store all nodes of rank p. In additionprocessor p stores Q:L[p] for all priority queues Q. The array rightmost-sonis stored at processor zero. The \locations" that Delete and DecreaseKeyrefer to are now not the nodes but the corresponding entries in the rightmost-sonarray.With the above described representation step i of an operation only involvesinformation stored at processors fi� 1; i; i+ 1; i+ 2g (processor i� 1 and i + 2because back pointers have to be updated in the involved linked lists) that can beaccessed in constant time. This immediately allows us to pipeline the operations,such that we for each new operation perform exactly four steps of each of theprevious operations. Notice that no latency is involved in performing the queries:The answer to a FindMin query is known immediately.Theorem8. On a processor array of size O(logn) each of the operationsMake-Queue, Insert, Meld, FindMin, ExtractMin, Delete and Decrease-Key can be supported in constant time.References1. Gerth St�lting Brodal. Fast meldable priority queues. In Proc. 4th Workshop onAlgorithms and Data Structures (WADS), volume 955 of Lecture Notes in Com-puter Science, pages 282{290. Springer Verlag, Berlin, 1995.2. Gerth St�lting Brodal. Worst-case e�cient priority queues. In Proc. 7th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 52{58, 1996.3. Danny Z. Chen and Xiaobo Hu. Fast and e�cient operations on parallel priorityqueues (preliminary version). In Algorithms and Computation: 5th InternationalSymposium, ISAAC '93, volume 834 of Lecture Notes in Computer Science, pages279{287. Springer Verlag, Berlin, 1994.

4. Paul F. Dietz. Heap construction in the parallel comparison tree model. In Proc.3rd Scandinavian Workshop on Algorithm Theory (SWAT), volume 621 of LectureNotes in Computer Science, pages 140{150. Springer Verlag, Berlin, 1992.5. Paul F. Dietz and Rajeev Raman. Very fast optimal parallel algorithms for heapconstruction. In Proc. 6th Symposium on Parallel and Distributed Processing,pages 514{521, 1994.6. James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E. Tarjan. Re-laxed heaps: An alternative to �bonacci heaps with applications to parallel com-putation. Communications of the ACM, 31(11):1343{1354, 1988.7. Robert W. Floyd. Algorithm 245: Treesort3. Communications of the ACM,7(12):701, 1964.8. Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert E. Tarjan.The pairing heap: A new form of self{adjusting heap. Algorithmica, 1:111{129,1986.9. Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses inimproved network optimization algorithms. In Proc. 25rd Ann. Symp. on Founda-tions of Computer Science (FOCS), pages 338{346, 1984.10. Joseph J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.11. C. M. Khoong. Optimal parallel construction of heaps. Information ProcessingLetters, 48:159{161, 1993.12. F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Ar-rays, Trees, Hypercubes. Morgan Kaufmann, 1992.13. Kurt Mehlhorn and Athanasios K. Tsakalidis. Data structures. In J. van Leeuwen,editor, Handbook of Theoretical Computer Science, Volume A: Algorithms andComplexity. MIT Press/Elsevier, 1990.14. Maria Cristina Pinotti, Sajal K. Das, and Vincenzo A. Crupi. Parallel and dis-tributed meldable priority queues based on binomial heaps. In Int. Conference onParallel Processing, 1996.15. Maria Cristina Pinotti and Geppino Pucci. Parallel priority queues. InformationProcessing Letters, 40:33{40, 1991.16. Maria Cristina Pinotti and Geppino Pucci. Parallel algorithms for priority queueoperations. In Proc. 3rd Scandinavian Workshop on Algorithm Theory (SWAT),volume 621 of Lecture Notes in Computer Science, pages 130{139. Springer Verlag,Berlin, 1992.17. A. Ranade, S. Cheng, E. Deprit, J. Jones, and S. Shih. Parallelism and locality inpriority queues. In Proc. 6th Symposium on Parallel and Distributed Processing,pages 490{496, 1994.18. Nageswara S. V. Rao and Weixiong Zhang. Building heaps in parallel. InformationProcessing Letters, 37:355{358, 1991.19. Jean Vuillemin. A data structure for manipulating priority queues. Communica-tions of the ACM, 21(4):309{315, 1978.20. J. W. J. Williams. Algorithm 232: Heapsort. Communications of the ACM,7(6):347{348, 1964.This article was processed using the LaTEX macro package with LLNCS style

