
The Randomized Complexity of Maintainingthe MinimumGerth St�lting Brodal,1? Shiva Chaudhuri,2?? Jaikumar Radhakrishnan3???1 BRICSy, Computer Science Department, Aarhus University,Ny Munkegade, DK-8000 �Arhus C, Denmark2 Max{Planck{Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany3 Tata Institute of Fundamental Research, Mumbai, IndiaAbstract. The complexity of maintaining a set under the operationsInsert, Delete and FindMin is considered. In the comparison model it isshown that any randomized algorithm with expected amortized cost tcomparisons per Insert and Delete has expected cost at least n=(e22t)� 1comparisons for FindMin. If FindMin is replaced by a weaker operation,FindAny, then it is shown that a randomized algorithm with constant ex-pected cost per operation exists, but no deterministic algorithm. Finally,a deterministic algorithm with constant amortized cost per operation foran o�ine version of the problem is given.1 IntroductionWe consider the complexity of maintaining a set S of elements from a totallyordered universe under the following operations: Insert(e): inserts the element einto S, Delete(e): removes from S the element e provided it is known where e isstored, and FindMin: returns the minimumelement in S without removing it. Werefer to this problem as the Insert-Delete-FindMin problem. We denote the size ofS by n. The analysis is done in the comparison model, i.e. the time required byan operation is the number of comparisons it makes. The input is a sequence ofoperations, given to the algorithm in an on-line manner, that is, the algorithmmust process the current operation before it receives the next operation in thesequence. The worst case time for an operation is the maximum, over all suchoperations in all sequences, of the time taken to process the operation. Theamortized time of an operation is the maximum, over all sequences, of the totalnumber of comparisons performed, while processing this type of operation in thesequence, divided by the length of the sequence.? Supported by the Danish Natural Science Research Council (Grant No. 9400044).This research was done while visiting the Max-Planck Institut f�ur Informatik,Saabr�ucken, Germany. Email: gerth@daimi.aau.dk.?? This work was partially supported by the EU ESPRIT LTR project No. 20244 (AL-COM IT). Email: shiva@mpi-sb.mpg.de.??? Email: jaikumar@tcs.tifr.res.in.y Basic Research in Computer Science, a Centre of the Danish National ResearchFoundation.

Worst case asymptotic time bounds for some existing data structures sup-porting the above operations are listed in Table 1. The table suggests a trade-o�between the worst case times of the two update operations Insert, Delete and thequery operation FindMin. We prove the following lower bound on this tradeo�:any randomized algorithm with expected amortized update time at most t re-quires expected time (n=e2t)�1 for FindMin. Thus, if the update operations haveexpected amortized constant cost, FindMin requires linear expected time. On theother hand if FindMin has constant expected time, then one of the update opera-tions requires logarithmic expected amortized time. This shows that all the datastructures in Fig. 1 are optimal in the sense of the trade-o�, and they cannot beimproved even by considering amortized cost and allowing randomization.For each n and t, the lower bound is tight. A simple data structure forthe Insert-Delete-FindMin problem is the following. Assume Insert and Delete areallowed to make at most t comparisons. We represent a set by dn=2te sortedlists. All lists except for the last contain exactly 2t elements. The minimum ofa set can be found among all the list minima by dn=2te � 1 comparisons. Newelements are added to the last list, requiring at most t comparisons by a binarysearch. To perform Delete we replace the element to be deleted by an arbitraryelement from the last list. This also requires at most t comparisons.The above lower bound shows that it is hard to maintain the minimum. Isit any easier to maintain the rank of some element, not necessarily the mini-mum? We consider a weaker problem called Insert-Delete-FindAny, which is de-�ned exactly as the previous problem, except that FindMin is replaced by theweaker operation FindAny: returns some element in S and its rank. FindAny isnot constrained to return the same element each time it is invoked or to returnthe element with the same rank. The only condition is that the rank returnedshould be the rank of the element returned. We give a randomized algorithm forthe Insert-Delete-FindAny problem with constant expected time per operation.Thus, this problem is strictly easier than Insert-Delete-FindMin, when random-ization is allowed. However, we show that for deterministic algorithms, the twoproblems are essentially equally hard. We show that any deterministic algorithmwith amortized update time at most t requires n=24t+3�1 comparisons for someFindAny operation. This lower bound is proved using an explicit adversary ar-gument. The adversary strategy is simple, yet surprisingly powerful. The samestrategy may be used to obtain the well known
(n logn) lower bound for sort-ing. An explicit adversary for sorting has previously been given by Atallah andKosaraju [1].The previous results show that maintaining any kind of rank information on-line is hard. However, if the sequence of instructions to be processed is knownin advance, then one can do better. We give a deterministic algorithm for theo�ine Insert-Delete-FindMin problem which has an amortized cost per operationof at most 3 comparisons.Our proofs use various averaging arguments which are used to derive generalcombinatorial properties of trees. These are presented in Sect. 2.2.

Implementation Insert Delete FindMinDoubly linked list 1 1 nHeap [8] log n log n 1Search tree [5, 7] log n 1 1Priority queue [2, 3, 4] 1 log n 1Fig. 1. Worst case asymptotic time bounds for di�erent set implementations.2 Preliminaries2.1 De�nitions and notationFor a rooted tree T , let leaves(T) be the set of leaves of T . For a vertex, v inT , de�ne deg(v) to be the number of children of v. De�ne, for l 2 leaves(T),depth(l) to be the distance of l from the root and path(l) to be the set of verticeson the path from the root to l, not including l.For a random variableX, let support[X] be the set of values that X assumeswith non-zero probability. For any non-negative real-valued function f , de�nedon support[X], de�neEX [f(X)] = Xx2support[X]Pr[X = x]f(x); GMX [f(X)] = Yx2support[X] f(x)Pr[X=x]:We will also use the notation E andGM to denote the arithmetic and geometricmeans of a set of values as follows: for a set R, and any non-negative real-valuedfunction f , de�ned on R, de�neEr2R[f(r)] = 1jRjXr2R f(r); GMr2R [f(r)] = Yr2R f(x)1=jRj:2.2 Some useful lemmasLet T be the in�nite complete binary tree. Suppose each element of [n] is assignedto a node of the tree (more than one element may be assigned to the same node).That is, we have a function f : [n]! V (T). For v 2 V (T), de�ne wtf (v) = jfi 2[n] : f(i) = vgj, df = Ei2[n][depth(f(i))], Df = maxfdepth(f(i)) : i 2 [n]g andmf = maxfwtf (v) : v 2 V (T)g.Lemma1. For every assignment f : [n] ! V (T), the maximum number ofelements on a path starting at the root of T is at least n2�df .Proof. Let P be a random in�nite path starting from the root. Then, for i 2 [n],Pr[f(i) 2 P] = 2�depth(f(i)). Then the expected number of elements of [n]

assigned to P isnXi=1 2�depth(f(i)) = n Ei2[n][2�depth(f(i))] � nGMi2[n] [2�depth(f(i))]= n2�Ei2[n] [depth(f(i))] = n2�dfSince the maximum is at least the expected value, the lemma follows.Lemma2. For every assignment f : [n]! V (T), mf � n=(2df+3).Proof. Let H = fh : mh = mfg. Let h be the assignment in H with minimumaverage depth dh (the minimum exists). Let m = mh = mf , and D = Dh. Weclaim that wth(v) = m; for each v 2 V (T) with depth(v) < D: (1)For suppose there is a vertex v with depth(v) < D and wt(v) < m (i.e. wt(v) �m � 1). First, consider the case when some node w at depth D has m elementsassigned to it. Consider the assignment h0 which is the same as h except thatit exchanges the elements assigned to v and w. Then h0 2 H and dh0 < dh,contradicting the choice of h. Next, suppose that every node at depth D has lessthan m elements assigned to it. Now, there exists i 2 [n] such that depth(h(i)) =D. Let h0 be the assignment that is identical to h everywhere except at i, andfor i, h0(i) = v. Then, h0 2 H and dh0 < dh, again contradicting the choice of h.Thus (1) holds.The number of elements assigned to nodes at depth at mostD�1 ism(2D�1),and the average depth of these elements is1m(2D � 1) D�1Xi=0 mi2i = (D � 2)2D + 22D � 1 � D � 2:Since all other elements are at depth D, we have dh � D � 2. The total numberof nodes in the tree with depth at most D is 2D+1 � 1. Hence, we havemf = m � n2D+1 � 1 � n2dh+3 � 1 � n2df+3 � 1 :For a rooted tree T , let Wl = Qv2path(l) deg(v). Then, it can be shown byinduction on the height of tree that Pl2leaves(T) 1=Wl = 1:Lemma3. For a rooted tree T with m leaves, GMl2leaves(T)[Wl] � m:Proof. Since the geometric mean is at most the arithmetic mean [6], we haveGMl [1Wl] � El [1Wl] = 1mXl 1Wl = 1m:Now, GMl[Wl] = 1=GMl [1=Wl] � m.

3 Deterministic o�ine algorithmWe now consider an o�ine version of the Insert-Delete-FindMin problem. Thesequence of operations to be performed is given in advance, however, the orderingof the set elements is unknown. The ith operation is performed at time i. Weassume that an element is inserted and deleted at most once. If an element isinserted and deleted more than once, it can be treated as a distinct element eachtime it is inserted.From the given operation sequence, the o�ine algorithm can compute, foreach element e, the time, t(e), at which e is deleted from the data structure (t(e)is 1 if e is never deleted).The data structure maintained by the o�ine algorithm is a sorted (in increas-ing order) list L = (e1; : : : ; ek) of the set elements that can become minimumelements in the data structure. The list satis�es that t(ei) < t(ej) for i < j,because otherwise ej could never become a minimum element.FindMin returns the �rst element in L and Delete(e) deletes e from L, if Lcontains e. To process Insert(e), the algorithm computes two values, l and r,where r = minfi : t(ei) > t(e)g and l = maxfi : ei < eg. Notice that once e isin the data structure, none of el+1; : : : ; er�1 can ever be the minimum element.Hence, all these elements are deleted and e is inserted into the list between el ander. No comparisons are required to �nd r. Thus, Insert(e) may be implementedas follows: starting at er , step backwards through the list, deleting elements untilthe �rst element smaller than e is encountered.The number of comparisons for an insertion is two plus the number of ele-ments deleted from L. By letting the potential of L be jLj the amortized costof Insert is jL0j � jLj+ # of element removed during the Insert + 2 which is atmost 3 because the number of elements removed is at most jLj � jL0j+1. Deleteonly decreases the potential, and the initial potential is zero. It follows thatTheorem4. For the o�ine Insert-Delete-FindMin problem the amortized cost ofInsert is three comparisons. No comparisons are required for Delete and FindMin.4 Deterministic lower bound for FindAnyIn this section we show that it is di�cult for a deterministic algorithm to main-tain any rank information at all. We proveTheorem5. Let A be a deterministic algorithm for Insert-Delete-FindAny withamortized time at most t = t(n) per update. Then, there exists an input, toprocess which A takes at least n=24t+3 � 1 comparisons for one FindAny.The Adversary. We describe an adversary strategy for answering comparisonsbetween a set of elements.The adversary maintains an in�nite binary tree and the elements currentlyin the data structure are distributed among the nodes of this tree. New elementsinserted into the data structure are placed at the root. For x 2 S let v(x)

denote the node of the tree at which x is. The adversary maintains the followinginvariants (A) and (B). For any distribution of the elements among the nodes ofthe in�nite tree, de�ne the occupancy tree to be the �nite tree given by the unionof the paths from every non-empty node to the root. The invariants are (A) Ifneither of v(x) or v(y) is a descendant of the other then x < y is consistent withthe responses given so far if v(x) appears before v(y) in an preorder traversalof the occupancy tree and (B) If v(x) = v(y) or v(x) is a descendant of v(y),the responses given so far yield no information on the order of x and y. Moreprecisely, in this case, x and y are incomparable in the partial order induced onthe elements by the responses so far.The comparisons made by any algorithm can be classi�ed into three types,and the adversary responds to each type of the comparison as described below.Let the elements compared be x and y. Three cases arise. (i) v(x) = v(y): Thenx is moved to the left child of v(x) and y to the right child and the adversaryanswers x < y. (ii) v(x) is a descendant of v(y): Then y is moved to the uniquechild of v(y) that is not an ancestor of v(x). If this child is a left child then theadversary answers y < x and if it is a right child then the adversary answersx < y. (iii) v(x) 6= v(y) and neither is a descendant of the other: If v(x) is visitedbefore v(y) in a preorder traversal of the occupancy tree, the adversary answersx < y and otherwise the adversary answers y < x.The key observation is that each comparison pushes two elements down onelevel each, in the worst case.Maintaining ranks. We now give a proof of Theorem 5.Consider the behaviour of the algorithm when responses to its compar-isons are given according to the adversary strategy above. De�ne the sequencesS1 : : : Sn+1 as follows. S1 = Insert(a1) : : : Insert(an)FindAny. Let b1 be the ele-ment returned in response to the FindAny instruction in S1. For i = 2; 3; : : :n,de�ne Si = Insert(a1) : : : Insert(an)Delete(b1) : : :Delete(bi�1)FindAny and let bibe the element returned in response to the FindAny instruction in Si. Finally,let Sn+1 = Insert(a1) : : : Insert(an)Delete(b1) : : :Delete(bn). For 1 � i � n, bi iswell de�ned and for 1 � i < j � n, bi 6= bj. The latter point follows from thefact that at the time bi is returned by a FindAny, b1; : : : ; bi�1 have already beendeleted from the data structure.Let T be the in�nite binary tree maintained by the adversary. Then thesequence Sn+1 de�nes a function f : [n] ! V (T), given by f(i) = v if bi is innode v just before the Delete(bi) instruction during the processing of Sn+1. Sincethe amortized cost of an update is at most t, the total number of comparisonsperformed while processing Sn+1 is at most 2tn. A comparison pushes at mosttwo elements down one level each. Then, writing di for the distance of f(i) fromthe root, we have Pni=1 di � 4tn. By Lemma 2 we know that there is a setR � [n] with at least n=24t+3 elements and a vertex v of T such that for eachi 2 R, f(bi) = v.Let j = minR. Then, while processing Sj , just before the FindAny instruction,each element bi, i 2 R is in some node on the path from the root to f(i) = v.Since the element returned by the FindAny is bj, it must be the case that after the

comparisons for the FindAny are performed, bj is the only element on the pathfrom the root to the vertex in which bj is. This is because invariant (B) impliesthat any other element that is on this path is incomparable with bj. Hence, thesecomparisons move all the elements bi, i 2 Rnj, out of the path from the root tof(j). A comparison can move at most one element out of this path, hence, thenumber of comparisons performed is at least jRj � 1, which proves the theorem.4.1 SortingThe same adversary can be used to give a lower bound for sorting. We note thatthis argument is fundamentally di�erent from the usual information theoreticargument in that it gives an explicit adversary against which sorting is hard.Consider an algorithm that sorts a set S, of n elements. The same adversarystrategy is used to respond to comparisons. Then, invariant (B) implies that atthe end of the algorithm, each element in the tree must be in a node by itself. Letthe function f : S ! V (T) indicate the node where each element is at the end ofthe algorithm, where T is the in�nite binary tree maintained by the adversary.Then, f assigns at most one element to each path starting at the root of T . ByLemma 1 we have 1 � n2�d, where d is average distance of an element from theroot. It follows that the sum of the distances from the root to the elements inthis tree is at least n logn, and this is equal to the sum of the number of levelseach element has been pushed down. Since each comparison contributes at mosttwo to this sum, the number of comparisons made is at least (n logn)=2.5 Randomized algorithm for FindAnyWe present a randomized algorithm supporting Insert, Delete and FindAny using,on an average, a constant number of comparisons per operation.5.1 The algorithmThe algorithm maintains three variables: S, e and rank . S is the set of elementscurrently in the data-structure, e is an element in S, and rank is the rank of e inS. Initially, S is the empty set, and e and rank are null. The algorithm respondsto instructions as follows.Insert(x): Set S S [fxg. With probability 1=jSj we set e to x and let rank bethe rank of e in S, that is the number of elements in S strictly less than e. Inthe other case, that is with probability 1� 1=jSj, we retain the old value ofe; that is, we compare e and x and update rank if necessary. In particular,if the set was empty before the instruction, then e is assigned x and rank isset to 1.Delete(x): Set S to S�fxg. If S is empty then set e and rank to null and return.Otherwise (i.e. if S 6= ;), if x � e then get the new value of e by pickingan element of S randomly; set rank to be the rank of e in S. On the otherhand, if x is di�erent from e, then decrement rank by one if x < e.FindAny: Return e and rank .

5.2 AnalysisClaim6. The expected number of comparisons made by the algorithm for a �xedinstruction in any sequence of instructions is constant.Proof. FindAny takes no comparisons. Consider an Insert instruction. Supposethe number of elements in S just before the instruction was s. Then, the expectednumber of comparisons made by the algorithm is s�(1=(s+1))+1�(s=(s+1)) < 2.We now consider the expected number of comparisons performed for a Deleteinstruction. Fix a sequence of instructions. Let Si and ei be the values of S ande just before the ith instruction. Note that Si depends only on the sequence ofinstructions and not on the coin tosses of the algorithm; on the other hand, eimight vary depending on the coin tosses of the algorithm.The following invariantcan be proved by a straightforward induction on i.jSij 6= ; =) Pr[ei = x] = 1jSij for all x 2 Si: (2)Now, suppose the ith instruction is Delete(x). Then, the probability that ei = xis precisely 1=jSij. Thus, the expected number of comparisons performed by thealgorithm is (jSij � 2) � (1=jSij) < 1.6 Randomized lower bounds for FindMinOne may view the problem of maintaining the minimum as a game between twoplayers: the algorithm and the adversary. The adversary gives instructions andsupplies answers for the comparisons made by the algorithm. The objective ofthe algorithm is to respond to the instructions by making as few comparisons aspossible, whereas the objective of the adversary is to force the algorithm to usea large number of comparisons.Similarly, if randomization is permitted while maintaining the minimum, onemay consider the randomized variants of this game. We have two cases based onwhether or not the adversary is adaptive. An adaptive adversary constructs theinput as the game progresses; its actions depend on the moves the algorithm hasmade so far. On the other hand, a non-adaptive adversary �xes the instructionsequence and the ordering of the elements before the game begins. The inputit constructs can depend on the algorithm's strategy but not on its coin tosssequence.It can be shown that against the adaptive adversary randomization doesnot help. In fact, if there is a randomized strategy for the algorithm against anadaptive adversary then there is a deterministic strategy against the adversary.Thus, the complexity of maintaining the minimum in this case is the same as inthe deterministic case. In this section, we show lower bounds with a non-adaptiveadversary.The input to the algorithm is speci�ed by �xing a sequence of Insert, Deleteand FindMin instructions, and an ordering for the set fa1; a2; : : : ; ang, based onwhich the comparisons of the algorithm are answered.

Distributions. We will use two distributions on inputs. For the �rst distribution,we construct a random input I by �rst picking a random permutation � of [n];we associate with � the sequence of instructionsInsert(a1); : : : ; Insert(an);Delete(a�(1));Delete(a�(2)); : : : ;Delete(a�(n)),and the ordering a�(1) < a�(2) < : : : < a�(n).For the second distribution, we construct the random input J by pickingi 2 [n] at random and a random permutation � of [n]; the instruction sequenceassociated with i and � isInsert(a1); : : : ; Insert(an);Delete(a�(1)); : : : ;Delete(a�(i�1));FindMin,and the ordering is given, as before, by a�(1) < a�(2) < : : : < a�(n).For an algorithm A and an input I, let CU (A; I) be the number of compar-isons made by the algorithm while responding to the Insert and Delete instruc-tions corresponding to I; let CF (A; I) be the number of comparisons made bythe algorithm while responding to the FindMin instructions.Theorem7. Let A be a deterministic algorithm for maintaining the minimum.Suppose EI [CU(A; I)] � tn. Then GMJ [CF (A; J) + 1] � n=e2t.Before we discuss the proof of this result, we derive from it the lower boundson the randomized and average case complexities of maintaining the minimum.Yao showed that a randomized algorithm can be viewed as a random variableassuming values in some set of deterministic algorithms according to some prob-ability distribution over the set [9]. The randomized lower bound follows fromthis fact and Theorem 7.Corollary8 Randomized complexity. Let R be a randomized algorithm forInsert-Delete-FindMin with expected amortized time per update at most t = t(n).Then the expected time for FindMin is at least n=(e22t)� 1.Proof. We view R as a random variable taking values in a set of deterministicalgorithms with some distribution. For every deterministic algorithm A in thisset, let t(A) def= EI [CU(A; I)]=n. Then by Theorem 7 we haveGMJ [CF (A; J)+1] ��ne � � 2�t(A): Hence,GMR [GMJ [CF (R; J) + 1] � GMR [�ne � � 2�t(R)] = �ne� � 2�ER[t(R)]:Since the expected amortized time per update is at most t, we have ER[t(R)] �2t. Hence,ER;J [CF (R; J)] + 1 = ER;J [CF (R; J) + 1] �GMR;J [CF (R; J) + 1] � ne22t :Thus, there exists an instance of J for which the expected number of comparisonsperformed by A in response to the last FindMin instruction is at least n=(e22t)�1.

The average case lower bound follows from the arithmetic-geometric meaninequality and Theorem 7.Corollary 9 Average case complexity. Let A be a deterministic algorithmfor Insert-Delete-FindMin with amortized time per update at most t = t(n). Thenthe expected time to �nd the minimum for inputs with distribution J is at leastn=(e22t) � 1.Proof. A takes amortized time at most t per update. Therefore, EI [CU(A; I)] �2tn. Then, by Theorem 7 we haveEJ [CF (A; J)] + 1 = EJ [CF (A; J) + 1] �GMJ [CF (A; J) + 1] � ne22t :6.1 Proof of Theorem 7The Decision Tree representation. Consider the set of sequences in support[I].The actions of a deterministic algorithm on this set of sequences can be repre-sented by a decision tree with comparison nodes and deletion nodes. (Normallya decision tree representing an algorithm would also have insertion nodes, butsince, in support[I], the elements are always inserted in the same order, wemay omit them.) Each comparison node is labelled by a comparison of the formai : aj, and has two children, corresponding to the two outcomes ai > aj andai � aj. Each deletion node has a certain number of children and each edge, e,to a child, is labelled by some element ae, denoting that element ae is deletedby this delete instruction.For a sequence corresponding to some permutation �, the algorithm behavesas follows. The �rst instruction it must process is Insert(a1). The root of the treeis labelled by the �rst comparison that the algorithm makes in order to processthis instruction. Depending on the outcome of this comparison, the algorithmmakes one of two comparisons, and these label the two children of the root. Thus,the processing of the �rst instruction can be viewed as following a path down thetree. Depending on the outcomes of the comparisons made to process the �rstinstruction, the algorithm is currently at some vertex in the tree, and this vertexis labelled by the �rst comparison that the algorithm makes in order to processthe second instruction. In this way, the processing of all the insert instructionscorresponds to following a path consisting of comparison nodes down the tree.When the last insert instruction has been processed, the algorithm is at a deletenode corresponding to the �rst delete instruction. Depending on the sequence,some element, a�(1) is deleted. The algorithm follows the edge labelled by a�(1)and the next vertex is labelled by the �rst comparison that the algorithmmakesin order to process the next delete instruction. In this manner, each sequencedetermines a path down the tree, terminating at a leaf.We make two simple observations. First, since, in di�erent sequences, theelements are deleted in di�erent orders, each sequence reaches a distinct leaf ofthe tree. Hence the number of leaves is exactly n!. Second, consider the ordering

information available to the algorithm when it reaches a delete node v. Thisinformation consists of the outcomes of all the comparisons on the comparisonnodes on the path from the root to v. This information can be represented asa poset, Pv, on the elements not deleted yet. For every sequence that causesthe algorithm to reach v, the algorithm has obtained only the information inPv. If a sequence corresponding to some permutation � causes the algorithm toreach v, and deletes ai, then ai is a minimal element in Pv, since, in �, ai is theminimum among the remaining elements. Hence each of the elements labellingan edge from v to a child is a minimal element of Pv. If this Delete instruction wasreplaced by a FindMin, then the comparisons done by the FindMin would haveto �nd the minimum among these minimal elements. A comparison between anytwo poset elements can cause at most one of these minimal elements to becomenon-minimal. Hence, the FindMin instruction would cost the algorithm deg(v)�1comparisons.The proof. Let T be the decision tree corresponding to the deterministic algo-rithm A. Set m = n!. For l 2 leaves(T), let Dl be the set of delete nodes on thepath from the root to l, and Cl be the set of comparison nodes on the path fromthe root to l.Each input speci�ed by a permutation � and a value i 2 [n], in support[J]causes the algorithm to follow a path in T upto some delete node, v, where,instead of a Delete, the sequence issues a FindMin instruction. As argued pre-viously, the number of comparisons made to process this FindMin is at leastdeg(v)� 1. There are exactly n delete nodes on any path from the root to a leafand di�erent inputs cause the algorithm to arrive at a di�erent delete nodes.Hence GMJ [CF (A; J) + 1] � Yl2leaves(T) Yv2Dl(deg(v))1=nm: (3)Since T has m leaves, we have using Lemma 3 thatm � GMl2leaves(T)[Yv2path(l) deg(v)]= GMl2leaves(T)[Yv2Cl deg(v)] � GMl2leaves(T)[Yv2Dl deg(v)]: (4)Consider the �rst term on the right. Since every comparison node v has arity atmost two, we have Qv2Cl deg(v) = 2jClj. Also, by the supposition of Theorem 7,El2leaves(T)[jClj] = EI [CU(A; I)] � tn. ThusGMl2leaves(T)[Yv2Cl deg(v)] � GMl2leaves(T)[2jClj] � 2El[jClj] � 2tn:From this and (4), we have GMl2leaves(T)[Yv2Dl deg(v)] � m2�tn. Then using (3) and

the inequality n! � (n=e)n, we getGMJ [CF (A; J) + 1] � Yl2leaves(T) Yv2Dl(deg(v))1=nm= (GMl2leaves(T)[Yv2Dl deg(v)])1=n � ne2t :Remark. One may also consider the problem of maintaining the minimumwhenthe algorithm is allowed to use an operator that enables it to compute theminimumof somem values in one step. The casem = 2 corresponds to the binarycomparisons model considered in the proof above. Since an m-ary minimumoperation can be simulated by m � 1 binary minimum operations, the aboveproof yields a bound of n=e22t(m�1) � 1. However, by modifying the proof onecan show the better bound of (1=m� 1) � � nem2t � 1�.References1. Mikhail J. Atallah and S. Rao Kosaraju. An adversary-based lower bound for sort-ing. Information Processing Letters, 13:55{57, 1981.2. Gerth St�lting Brodal. Fast meldable priority queues. In Proc. 4th Workshop onAlgorithms and Data Structures (WADS), volume 955 of Lecture Notes in ComputerScience, pages 282{290. Springer Verlag, Berlin, 1995.3. Svante Carlsson, Patricio V. Poblete, and J. Ian Munro. An implicit binomial queuewith constant insertion time. In Proc. 1st Scandinavian Workshop on AlgorithmTheory (SWAT), volume 318 of Lecture Notes in Computer Science, pages 1{13.Springer Verlag, Berlin, 1988.4. James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E. Tarjan. Re-laxed heaps: An alternative to �bonacci heaps with applications to parallel compu-tation. Communications of the ACM, 31(11):1343{1354, 1988.5. Rudolf Fleischer. A simple balanced search tree with O(1) worst-case update time.In Algorithms and Computation: 4th International Symposium, ISAAC '93, volume762 of Lecture Notes in Computer Science, pages 138{146. Springer Verlag, Berlin,1993.6. G. H. Hardy, J. E. Littlewood, and G. Polya. Inequalities. Cambridge UniversityPress, Cambridge, 1952.7. Christos Levcopoulos and Mark H. Overmars. A balanced search tree with O(1)worst-case update time. ACTA Informatica, 26:269{277, 1988.8. J. W. J. Williams. Algorithm 232: Heapsort. Communications of the ACM,7(6):347{348, 1964.9. A. C-C. Yao. Probabilistic computations: Towards a uni�ed measure of complexity.In Proc. of the 17th Symp. on Found. of Comp. Sci., 222-227, 1977.This article was processed using the LaTEX macro package with LLNCS style

