The Randomized Complexity of Maintaining
the Minimum

Gerth Stglting Brodal,"™ Shiva Chaudhuri,>* Jaikumar Radhakrishnan®>*

' BRICST, Computer Science Nepartment, Aarhus University,
Ny Munkegade, DK-8000 Arhus €, Denmark
2 Max Planck Tnstitut fiir Informatik, Tm Stadtwald, 66123 Saarbriicken, Germany
* Tata Tnstitute of Fundamental Research, Mumbai, India

Abstract. The complexity of maintaining a set under the operations
Insert, Delete and FindMin is considered. In the comparison model it is
shown that any randomized algorithm with expected amortized cost ¢
comparisons per Insert and Delete has expected cost at least n/(e2°) — 1
comparisons for FindMin. If FindMin is replaced by a weaker operation,
FindAny, then it is shown that a randomized algorithm with constant ex-
pected cost per operation exists, but no deterministic algorithm. Finally,
a deterministic algorithm with constant amortized cost per operation for
an offline version of the problem is given.

1 Introduction

We consider the complexity of maintaining a set S of elements from a totally
ordered universe under the following operations: Insert(e): inserts the element e
into S, Delete(e): removes from S the element e provided it is known where e is
stored, and FindMin: returns the minimum element in S without removing it. We
refer to this problem as the Insert-Delete-FindMin problem. We denote the size of
S by n. The analysis is done in the comparison model, i.e. the time required by
an operation is the number of comparisons it makes. The input is a sequence of
operations, given to the algorithm in an on-line manner, that is, the algorithm
must process the current operation bhefore it receives the next operation in the
sequence. The worst case time for an operation is the maximum, over all such
operations in all sequences, of the time taken to process the operation. The
amortized time of an operation is the maximum, over all sequences, of the total
number of comparisons performed, while processing this type of operation in the
sequence, divided by the length of the sequence.

* Supported by the Danish Natural Science Research Council (Grant No. 9400044).
This research was done while visiting the Max-Planck Institut fir Informatik,
Saabriicken, (Germany. Email: gerth@daimi.aau.dk.

** This work was partially supported by the EU ESPRIT LTR project No. 20244 (AT
COM IT). Email: shiva@mpi-sb.mpg.de.

** FEmail: jaikumar@tcs.tifr.res.in.
! Basic Research in Computer Science, a Centre of the Danish National Research

Foundation.

Worst case asymptotic time bounds for some existing data structures sup-
porting the above operations are listed in Table 1. The table suggests a trade-off
between the worst case times of the two update operations Insert, Delete and the
query operation FindMin. We prove the following lower bound on this tradeoff:
any randomized algorithm with expected amortized update time at most ¢ re-
quires expected time (n/e2')—1 for FindMin. Thus, if the update operations have
expected amortized constant cost, FindMin requires linear expected time. On the
other hand if FindMin has constant expected time, then one of the update opera-
tions requires logarithmic expected amortized time. This shows that all the data
structures in Fig. 1 are optimal in the sense of the trade-off, and they cannot be
improved even by considering amortized cost and allowing randomization.

For each n and #, the lower bound is tight. A simple data structure for
the Insert-Delete-FindMin problem is the following. Assume Insert and Delete are
allowed to make at most ¢ comparisons. We represent, a set by [n/2"] sorted
lists. All lists except for the last contain exactly 2¢ elements. The minimum of
a set can be found among all the list minima by [n/2'] — 1 comparisons. New
elements are added to the last list, requiring at most # comparisons by a binary
search. To perform Delete we replace the element to be deleted by an arbitrary
element from the last list. This also requires at most f comparisons.

The above lower bound shows that it is hard to maintain the minimum. Is
it any easier to maintain the rank of some element, not necessarily the mini-
mum? We consider a weaker problem called Insert-Delete-FindAny, which is de-
fined exactly as the previous problem, except that FindMin is replaced by the
weaker operation FindAny: returns some element in S and its rank. FindAny is
not constrained to return the same element each time it is invoked or to return
the element with the same rank. The only condition is that the rank returned
should be the rank of the element returned. We give a randomized algorithm for
the Insert-Delete-FindAny problem with constant expected time per operation.
Thus, this problem is strictly easier than Insert-Delete-FindMin, when random-
ization is allowed. However, we show that for deterministic algorithms, the two
problems are essentially equally hard. We show that any deterministic algorithm

with amortized update time at most # requires n/2%+3

— 1 comparisons for some
FindAny operation. This lower bound is proved using an explicit adversary ar-
gument. The adversary strategy is simple, yet surprisingly powerful. The same
strategy may be used to obtain the well known £2(nlogn) lower bound for sort-
ing. An explicit adversary for sorting has previously been given by Atallah and

Kosaraju [1].

The previous results show that maintaining any kind of rank information on-
line is hard. However, if the sequence of instructions to be processed is known
in advance, then one can do better. We give a deterministic algorithm for the
offline Insert-Delete-FindMin problem which has an amortized cost per operation
of at most 3 comparisons.

Our proofs use various averaging arguments which are used to derive general
combinatorial properties of trees. These are presented in Sect. 2.2.

Implementation ||nsert Delete FindMin

Doubly linked list 1 1 n
Heap [8] logn logn 1
Search tree [5, 7] logn 1 1
Priority queue [2, 3, 4]| 1 logn 1

Fig. 1. Worst case asymptotic time bounds for different set implementations.

2 Preliminaries

2.1 Definitions and notation

For a rooted tree T, let leaves(T) be the set of leaves of T. For a vertex, v in
T, define deg(v) to be the number of children of v. Define, for I € leaves(T),
depth(/) to be the distance of I from the root and path(l) to be the set of vertices
on the path from the root to I, not including [.

For a random variable X, let support[X] be the set of values that X assumes
with non-zero probability. For any non-negative real-valued function f, defined
on support[X], define

Ef(X)]= > PrX =2]f(2), GM/(X)] = T)=,
resupport[X] resupport[X]

We will also use the notation E and GM to denote the arithmetic and geometric
means of a set of values as follows: for a set R, and any non-negative real-valued

function f, defined on R, define

Bl = ﬁ >) GMIFe) =TT fa) /7.

2.2 Some useful lemmas

et T be the infinite complete binary tree. Suppose each element of [n] is assigned
to a node of the tree (more than one element may be assigned to the same node).
That is, we have a function f: [n] = V(T). For v € V(T), define wt(v) = [{i €

[n]: J(i) = v}, dy = Eiepn[depth(f(7))], Dy = max{depth(f(i)) : 7 € [n]} and
my = max{wts(v) : 0 € V(T)}.

Lemmal. For every assignment [: [n] — V(T), the marimum number of
elements on a path starting at the root of T is at least n2~ % .

Proof. Tet P be a random infinite path starting from the root. Then, for i € [n],
Pr[f(i) € P] = 9-depth(/()) . Then the expected number of elements of [n]

assigned to P is

kel

Z 9-depth(7()) — ;, g [o-dePth(r())] >, gMm[2-dePth(7())]
i€fn] T ieln]

— n9~ Eicpmlderth(F6N] _ po—d;

i=1

Since the maximum is at least the expected value, the lemma follows.
Lemma 2. For every assignment f : [n] — V(T), m; > n/(24+3).

Proof. T.et H = {h : mj = my}. Let h be the assignment in H with minimum
average depth dj (the minimum exists). Tet m = mj, = my, and D = Dj,. We
claim that

wty, (v) = m, for each v € V(T) with depth(v) < D. (1)

For suppose there is a vertex v with depth(v) < D and wt(v) < m (i.e. wt(v) <
m — 1). First, consider the case when some node w at depth D has m elements
assigned to it. Consider the assignment A’ which is the same as h except that
it exchanges the elements assigned to v and w. Then b’ € H and dj: < dj,
contradicting the choice of h. Next, suppose that every node at depth D has less
than m elements assigned to it. Now, there exists i € [n] such that depth(h(7)) =
D. Let b’ be the assignment that is identical to h everywhere except at 7, and
for i, h'(i) = v. Then, b’ € H and dj, < dj,, again contradicting the choice of h.
Thus (1) holds.

The number of elements assigned to nodes at depth at most D—1 is m(?n —1),
and the average depth of these elements is

D—1
1 (D227 42
- il =1 07 T2 s 9
m(?n—ﬂ;n” o0 1~

Since all other elements are at depth D, we have dy > D — 2. The total number
of nodes in the tree with depth at most 1 is 27+ — 1. Hence, we have

),), n
MEEZ 5P 7 2 ghas _] 2 9 1

For a rooted tree T, let W, = Hwepath(l) deg(v). Then, it can be shown by
induction on the height of tree that Zleleaves(’r) 1/W, = 1.

Lemma 3. For a rooted tree T with m leaves, GM [W;] > m.
leleaves(T)

Proof. Since the geometric mean is at most the arithmetic mean [6], we have

1 1. 1 1
GM[—] < E[]=—Y — = —.
M) < Bl mz,:I/V, m

Now, GMi[Wi] = 1/GMI[1/Wi] > m.

3 Deterministic offline algorithm

We now consider an offline version of the Insert-Delete-FindMin problem. The
sequence of operations to be performed is given in advance, however, the ordering
of the set elements is unknown. The ith operation is performed at time 1. We
assume that an element is inserted and deleted at most once. Tf an element is
inserted and deleted more than once, it can be treated as a distinct element each
time it is inserted.

From the given operation sequence, the offline algorithm can compute, for
each element e, the time, t(e), at which e is deleted from the data structure (#(e)
is 0o if e is never deleted).

The data structure maintained by the offline algorithm is a sorted (in increas-
ing order) list I = (eq,...,ex) of the set elements that can become minimum
elements in the data structure. The list satisfies that t(e;) < #(e;) for i < j,
because otherwise e; could never become a minimum element.

FindMin returns the first element in I and Delete(e) deletes e from L, if L
contains e. To process Insert(e), the algorithm computes two values, | and r,
where » = min{i : i(e;) > t(e)} and | = max{i : e; < e}. Notice that once e is
in the data structure, none of e;41,...,e,._1 can ever be the minimum element.
Hence, all these elements are deleted and e is inserted into the list between e; and
e-. No comparisons are required to find r. Thus, Insert(e) may be implemented
as follows: starting at e,., step backwards through the list, deleting elements until
the first element smaller than e is encountered.

The number of comparisons for an insertion is two plus the number of ele-
ments deleted from . By letting the potential of I be |I,
I/ Ll 4+ # of element removed during the Insert + 2 which is at
most 3 because the number of elements removed is at most | I/| + 1. Delete
only decreases the potential, and the initial potential is zero. Tt follows that

the amortized cost

of Insert is

Theorem 4. For the offline Insert-Delete-FindMin problem the amortized cost of
Insert is three comparisons. No comparisons are required for Delete and FindMin.

4 Deterministic lower bound for FindAny

In this section we show that it is difficult for a deterministic algorithm to main-
tain any rank information at all. We prove

Theorem 5. Let A be a deterministic algorithm for Insert-Delete-FindAny with
amortized time at most 1 = t(n) per update. Then, there exists an inpul, to

2%+3 1 comparisons for one FindAny.

process which A takes at least n/
The Adversary. We describe an adversary strategy for answering comparisons
between a set, of elements.

The adversary maintains an infinite binary tree and the elements currently
in the data structure are distributed among the nodes of this tree. New elements
inserted into the data structure are placed at the root. For x € § let v(x)

denote the node of the tree at which z is. The adversary maintains the following
invariants (A) and (B). For any distribution of the elements among the nodes of
the infinite tree, define the occupancy tree to be the finite tree given by the union
of the paths from every non-empty node to the root. The invariants are (A) If
neither of v(x) or v(y) is a descendant of the other then & < y is consistent with
the responses given so far if v(z) appears before v(y) in an preorder iraversal
of the occupancy tree and (B) If v(x) = v(y) or v(x) is a descendant of v(y),
the responses given so far yield no information on the order of x and y. More
precisely, in this case, # and y are incomparable in the partial order induced on
the elements by the responses so far.

The comparisons made by any algorithm can be classified into three types,
and the adversary responds to each type of the comparison as described below.
et the elements compared be 2z and y. Three cases arise. (i} v(2) = v(y): Then
x is moved to the left child of v(z) and y to the right child and the adversary
answers & < y. (1) v(x) is a descendant of v(y): Then y is moved to the unique
child of »(y) that is not an ancestor of v(2). Tf this child is a left child then the
adversary answers y < x and if it is a right child then the adversary answers
x < y. (iii) v(x) # v(y) and neither is a descendant of the other: Tf v(z) is visited
before v(y) in a preorder traversal of the occupancy tree, the adversary answers
x < y and otherwise the adversary answers y < .

The key observation is that each comparison pushes two elements down one
level each, in the worst case.

Maintaining ranks. We now give a proof of Theorem 5.

Consider the behaviour of the algorithm when responses to its compar-
isons are given according to the adversary strategy above. Define the sequences
Sy ...S9 41 as follows. Sy = Insert(aq)...Insert(a,)FindAny. Tet by bhe the ele-
ment returned in response to the FindAny instruction in Sy. For ¢ = 2,3,...n,
define S; = Insert(aq)...Insert(a,)Delete(b) ... Delete(h;_1)FindAny and let b;
be the element returned in response to the FindAny instruction in S;. Finally,
let. 5,41 = Insert(ay)...Insert(a,)Delete(hy)...Delete(h,). For 1 < i < n, b; is
well defined and for 1 < i < j < n, b; # b;. The latter point follows from the
fact that at the time b; is returned by a FindAny, by, ..., b;_1 have already been
deleted from the data structure.

Let T be the infinite binary tree maintained by the adversary. Then the
sequence S,1q1 defines a function f : [n] — V(T), given by f(i) = » if b; is in
node v just hefore the Delete(b;) instruction during the processing of S, ;1. Since
the amortized cost of an update is at most ¢, the total number of comparisons
performed while processing S, 11 is at most 2in. A comparison pushes at most
two elements down one level each. Then, writing d; for the distance of f(i) from
the root, we have >°7_, d; < 4tn. By Lemma 2 we know that there is a sef
R C [n] with at least n/2**+3 elements and a vertex v of T such that for each
i€ R, f(b)=n.

Let j = min R. Then, while processing S, just before the FindAny instruction,
each element b;, i € R is in some node on the path from the root to f(7) = v.
Since the element returned by the FindAny is b;, it must be the case that after the

comparisons for the FindAny are performed, b; is the only element on the path
from the root to the vertex in which b; is. This is because invariant (B) implies
that any other element that is on this path is incomparable with b;. Hence, these
comparisons move all the elements b;, 7 € R\j, out of the path from the root to
F(7)- A comparison can move at most one element out of this path, hence, the
number of comparisons performed is at least |R| — 1, which proves the theorem.

4.1 Sorting

The same adversary can be used to give a lower bound for sorting. We note that
this argument is fundamentally different from the usual information theoretic
argument in that it gives an explicit adversary against which sorting is hard.

Consider an algorithm that sorts a set 9, of n elements. The same adversary
strategy is used to respond to comparisons. Then, invariant (B) implies that at
the end of the algorithm, each element in the tree must be in a node by itself. Let
the function f: S — V(T) indicate the node where each element, is at the end of
the algorithm, where T is the infinite binary tree maintained by the adversary.
Then, f assigns at most one element to each path starting at the root of 7. By
Lemma 1 we have 1 > n2~% where d is average distance of an element from the
root. Tt follows that the sum of the distances from the root to the elements in
this tree is at least nlogn, and this is equal to the sum of the number of levels
each element has been pushed down. Since each comparison contributes at most
two to this sum, the number of comparisons made is at least (nlogn)/2.

5 Randomized algorithm for FindAny

We present a randomized algorithm supporting Insert, Delete and FindAny using,
on an average, a constant number of comparisons per operation.

5.1 The algorithm

The algorithm maintains three variables: S, e and rank. S is the set of elements
currently in the data-structure, e is an element in S, and rank is the rank of e in
S. Initially, S is the empty set, and e and rank are null. The algorithm responds
to instructions as follows.

Insert(x): Set S < SU{x}. With probability 1/]5
the rank of e in S, that is the number of elements in S strictly less than e. In
the other case, that is with probability 1 —1/|9
e; that is, we compare e and x and update rank if necessary. In particular,

we set, e to £ and let rank be

, we retain the old value of

if the set was empty before the instruction, then e is assigned x and rank is
set to 1.

Delete(x): Set S to S—{x}. Tf S is empty then set e and rank to null and return.
Otherwise (i.e.if S # @), if x = e then gef the new value of e by picking
an element of S randomly; set rank to be the rank of e in S. On the other
hand, if x is different from e, then decrement rank by one if < e.

FindAny: Return e and rank.

5.2 Analysis

Claim 6. The expected number of comparisons made by the algorithm for a fired
instruction in any sequence of instructions is constant.

Proof. FindAny takes no comparisons. Consider an Insert instruction. Suppose
the number of elements in S just before the instruction was s. Then, the expected
number of comparisons made by the algorithmis s-(1/(s+1))+1-(s/(s+1)) < 2.

We now consider the expected number of comparisons performed for a Delete
instruction. Fix a sequence of instructions. Let S; and e; be the values of S and
e just before the ith instruction. Note that 5; depends only on the sequence of
instructions and not on the coin tosses of the algorithm; on the other hand, e;
might vary depending on the coin tosses of the algorithm. The following invariant
can be proved by a straightforward induction on 1.

1
Si| #0 —= Prle; = 2] = 5 for all z € S;. (2)

Now, suppose the ith instruction is Delete(z:). Then, the probability that ¢, = 2

S;]- Thus, the expected number of comparisons performed by the

S7|72)(1/S7|) < 1.

is precisely 1/

algorithm is (

6 Randomized lower bounds for FindMin

One may view the problem of maintaining the minimum as a game between two
players: the algorithm and the adversary. The adversary gives instructions and
supplies answers for the comparisons made by the algorithm. The objective of
the algorithm is to respond to the instructions by making as few comparisons as
possible, whereas the objective of the adversary is to force the algorithm to use
a large number of comparisons.

Similarly, if randomization is permitted while maintaining the minimum, one
may consider the randomized variants of this game. We have two cases based on
whether or not the adversary is adaptive. An adaptive adversary constructs the
input as the game progresses; its actions depend on the moves the algorithm has
made so far. On the other hand, a non-adaptive adversary fixes the instruction
sequence and the ordering of the elements before the game begins. The input
it constructs can depend on the algorithm’s strategy but not on its coin toss
sequence.

It can be shown that against the adaptive adversary randomization does
not help. In fact, if there is a randomized strategy for the algorithm against an
adaptive adversary then there is a deterministic strategy against the adversary.
Thus, the complexity of maintaining the minimum in this case is the same as in
the deterministic case. In this section, we show lower bounds with a non-adaptive
adversary.

The input to the algorithm is specified by fixing a sequence of Insert, Delete
and FindMin instructions, and an ordering for the set {a,as,...,a,}, based on
which the comparisons of the algorithm are answered.

Distributions. We will use two distributions on inputs. For the first distribution,
we construct a random inpuf, I by first picking a random permutation o of [n];
we associate with o the sequence of instructions

Insert(ay), ..., Insert(a,), Delete(a, (1)), Delete(a,(2)), - . ., Delete(as(n)),

and the ordering a,(1) < a2y < ... < g(n)-

For the second distribution, we construct the random input J by picking
i € [n] at random and a random permutation o of [n]; the instruction sequence
associated with ¢ and o is
Insert(ay), ..., Insert(a,), Delete(a, (1)), - - ., Delete(a,(i_1)), FindMin,
and the ordering is given, as before, by a,(1) < as(2) < ... < a5(n)-

For an algorithm A and an input I, let Cyy (A, T) be the number of compar-
isons made by the algorithm while responding to the Insert and Delete instruc-
tions corresponding to T; let C'p(A, T) be the number of comparisons made by
the algorithm while responding to the FindMin instructions.

Theorem 7. Let A be a deterministic algorithm for maintaining the minimum.

Suppose Ep[Crr (A, T)] <tn. Then GM j[Cr(A,J)+ 1] > n/e2".

Before we discuss the proof of this result, we derive from it the lower bounds
on the randomized and average case complexities of maintaining the minimum.
Yao showed that a randomized algorithm can be viewed as a random variable
assuming values in some set of deterministic algorithms according to some prob-
ability distribution over the set [9]. The randomized lower bound follows from
this fact and Theorem 7.

Corollary 8 Randomized complexity. Let R be a randomized algorithm for
Insert-Delete-FindMin with expected amortized time per update at most t = t(n).
Then the expected time for FindMin is at least n/(e2?") — 1.

Proof. We view R as a random variable taking values in a set of deterministic
algorithms with some distribution. For every deterministic algorithm A in this

set, let 1(A) def E[Ci (A, T)]/n. Then by Theorem 7 we have G}\/I[CF(A, J)+1] >
I .

(ﬁ) .Q*t('A). Hence,

e
—E[t(R)]
GM[GM[CF(R,J) +1] > GM[(ﬁ) o HR)) = (ﬁ) 9
R J R ‘e €
Since the expected amortized time per update is at most 7, we have Ep [t(R)] <
2t. Hence,

n

E [Cr(R, D) +1= B [Cp(R.J)+1]> GM[CR(R,J) + 11> —=—.
R,J R,J R,J €22

Thus, there exists an instance of .J for which the expected number of comparisons
performed by A in response to the last FindMin instruction is at least n/(e2?")—1.

The average case lower bound follows from the arithmetic-geometric mean
inequality and Theorem 7.

Corollary 9 Average case complexity. Let A be a deterministic algorithm
Jor Insert-Delete-FindMin with amortized time per update at most t = t(n). Then
the erpected time to find the minimum for inputs with distribution .J is at least

n/(e2?) — 1.

Proof. A takes amortized time at most ¢ per update. Therefore, E[Cy (A, T)] <
I
2tn. Then, by Theorem 7 we have

n

e22t”

BICR (A,)] 41 = BICr (A,) 4+ 1] > GMICH (A,) 1] >

6.1 Proof of Theorem 7

The Decision Tree representation. Consider the set of sequences in support[7].
The actions of a deterministic algorithm on this set of sequences can be repre-
sented by a decision tree with comparison nodes and deletion nodes. (Normally
a decision tree representing an algorithm would also have insertion nodes, but
since, in support[/], the elements are always inserted in the same order, we
may omit them.) Each comparison node is labelled by a comparison of the form
a; : a;, and has two children, corresponding to the two outcomes a; > a; and
a; < a;. Fach deletion node has a certain number of children and each edge, e,
to a child, is labelled by some element a., denoting that element a. is deleted
by this delete instruction.

For a sequence corresponding to some permutation o, the algorithm behaves
as follows. The first instruction it must process is Insert(ay). The root of the tree
is labelled by the first comparison that the algorithm makes in order to process
this instruction. Depending on the outcome of this comparison, the algorithm
makes one of two comparisons, and these label the two children of the root. Thus,
the processing of the first instruction can be viewed as following a path down the
tree. Depending on the outcomes of the comparisons made to process the first
instruction, the algorithm is currently at some vertex in the tree, and this vertex
is labelled by the first comparison that the algorithm makes in order to process
the second instruction. In this way, the processing of all the insert instructions
corresponds to following a path consisting of comparison nodes down the tree.
When the last insert instruction has been processed, the algorithm is at a delete
node corresponding to the first delete instruction. Depending on the sequence,
some element, a,(q) is deleted. The algorithm follows the edge labelled by a, (1)
and the next vertex is labelled by the first comparison that the algorithm makes
in order to process the next delete instruction. In this manner, each sequence
determines a path down the tree, terminating at a leaf.

We make two simple observations. First, since, in different sequences, the
elements are deleted in different orders, each sequence reaches a distinct leaf of
the tree. Hence the number of leaves is exactly n!. Second, consider the ordering

information available to the algorithm when it reaches a delete node ». This
information consists of the outcomes of all the comparisons on the comparison
nodes on the path from the root to ». This information can be represented as
a poset, P,, on the elements not deleted yet. For every sequence that causes
the algorithm to reach v, the algorithm has obtained only the information in
P,. Tf a sequence corresponding to some permutation o causes the algorithm to
reach v, and deletes a;, then a; is a minimal element in P,, since, in o, a; is the
minimum among the remaining elements. Hence each of the elements labelling
an edge from » to a child is a minimal element of P,. If this Delete instruction was
replaced by a FindMin, then the comparisons done by the FindMin would have
to find the minimum among these minimal elements. A comparison between any
two poset, elements can cause at most one of these minimal elements to become
non-minimal. Hence, the FindMin instruction would cost the algorithm deg(») — 1
comparisons.

The proof. T.et T be the decision tree corresponding to the deterministic algo-
rithm A. Set m = nl. For [€ leaves(T), let. D; be the set of delete nodes on the
path from the root to I, and C} be the set of comparison nodes on the path from
the root to [.

Each input specified by a permutation o and a value i € [n], in support[.J]
causes the algorithm to follow a path in T upto some delete node, v, where,
instead of a Delete, the sequence issues a FindMin instruction. As argued pre-
viously, the number of comparisons made to process this FindMin is at least
deg(v) — 1. There are exactly n delete nodes on any path from the root to a leaf
and different inputs cause the algorithm to arrive at a different delete nodes.
Hence

MICr(A) +11> TT T (deg(e)/™. (3)

leleaves(T) V€D

Since T has m leaves, we have using Lemma 3 that

m< GM [J[deg(»)
[e|eaVes(T) 7,epath(l)

= H deg(v)

Ieleaves) vec,

H deg(v) (4)

Ieleaves) veD,

Consider the first term on the right. Since every comparison node v has arity at

most two, we have [[, o, deg(v) = 21€11. Also, by the supposition of Theorem 7,
E [1Ci]] = E[Cu (A, T)] < in. Thus

leleaves(T) T

[TI des(»)] < GM 219 < oBllall < o,

Ieleaves(leleaves(T)

7/€(Vl

From this and (4), we have ~GM | H deg(v)] > m2 ™. Then using (3) and

leleaves(T) veD,

the inequality n! > (n/e)”, we get

G}VI[CF‘(.A, J)+1]> H H (deg(v))'/™™

leleaves(T) V€D

= GM deg(0))V/" > —.
(leleaves(T)[“g)l g(+)) — e2?

Remark. One may also consider the problem of maintaining the minimum when

the algorithm is allowed to use an operator that enables it to compute the

minimum of some m values in one step. The case m = 2 corresponds to the binary

comparisons model considered in the proof above. Since an m-ary minimum

operation can be simulated by m — 1 binary minimum operations, the above

proof yields a bound of n/eQQt(m*” — 1. However, by modifying the proof one
can show the better bound of (1/m —1) - [25 — 1].

References

. Mikhail .J. Atallah and S. Rao Kosaraju. An adversary-based lower bound for sort-

ing. Information Processing Letters, 13:55 57, 1981.

. Gerth Stglting Brodal. Fast meldable priority queues. In Proc. 4th Workshop on

Algorithms and Data Structures (WADS), volume 955 of Lecture Notes in Computer
Science, pages 282 290. Springer Verlag, Berlin, 1995.

. Svante Carlsson, Patricio V. Poblete, and J. Tan Munro. An implicit binomial queue

with constant insertion time. In Proc. 1st Scandinavian Workshop on Algorithm
Theory (SWAT), volume 318 of Lecture Notes in Computer Science, pages 1 13.
Springer Verlag, Berlin, 1988.

. James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E. Tarjan. Re-

laxed heaps: An alternative to fibonacci heaps with applications to parallel compu-
tation. Communications of the ACM, 31(11):1343 1354, 1988.

Rudolf Fleischer. A simple balanced search tree with (1) worst-case update time.
In Algorithms and Computation: Jth International Symposium, ISAAC ’93, volume
762 of Lecture Notes in Computer Science, pages 138 146. Springer Verlag, Berlin,
1993.

G. H. Hardy, J. E. Littlewood, and . Polya. Inequalities. Cambridge University
Press, Cambridge, 1952.

. Christos Levcopoulos and Mark H. Overmars. A balanced search tree with O(1)

worst-case update time. ACTA Informatica, 26:269 277, 1988.

J. W_J. Williams. Algorithm 232: Heapsort. Communications of the ACM,
7(6):347 348, 1964.

A. C-C. Yao. Probabilistic computations: Towards a unified measure of complexity.

In Proc. of the 17th Symp. on Found. of Comp. Sci., 222-227, 1977.

This article was processed using the IATEX macro package with LLNCS style

