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search and depth-�rst search remain open. In this paper we develop I/O-e�cientalgorithms for the minimum spanning tree (MST) and single source shortestpaths (SSSP) problems, as well as for multi-way planar graph separation.1.1 Problem StatementMST and SSSP are well-known problems on a weighted graph G = (V;E): MSTis the problem of �nding a spanning tree for G of minimum weight and SSSP isthe problem of �nding the shortest paths from a given source vertex in G to allother vertices in G (the length of a path is the sum of the weights of the edgeson the path).Consider an undirected graph G = (V;E).1 An f(V )-separator of G is asubset S of the vertices ofG of size f(V ) such that the removal of S disconnects Ginto two subgraphs G1 and G2, each of size at most 2V3 . Lipton and Tarjan [23]proved that any planar graph has an O(pV )-separator and gave a linear timealgorithm for �nding such a separator. Using this result recursively, a planargraph can be decomposed into �(VR ) subgraphs Gi with O(R) vertices each andO( VpR ) separator vertices, such that there is no edge between a vertex in Giand a vertex in Gj for i 6= j. We call such a decomposition a multi-way planargraph separation of G. Graph separation is often used in the design of divide-and-conquer algorithms.Throughout this paper we assume that the input graph G is given in edge-listrepresentation. If G is planar we assume it is embedded in the plane. We alsoassume without loss of generality that G is connected and that no two edgeshave the same weight. In some of our algorithms we will assume that a breadth-�rst-search tree T of G is given. In such cases we assume that T is representedimplicitly by storing with each vertex u in G its parent in T and marking everyedge of G as either a tree or a non-tree edge.1.2 Previous Results on I/O-e�cient Graph AlgorithmsWe work in the standard two-level I/O model with one (logical) disk [3, 20]. Themodel de�nes the following parameters:N = V +E;M = number of vertices=edges that can �t into internal memory;B = number of vertices=edges per disk block;where M < N and 1 � B � M1=(2+"), for some " > 0.2 An Input/Output (orsimply I/O) involves reading (or writing) a block from disk into (from) internalmemory. Our measure of performance of an algorithm is the number of I/Osit performs. The number of I/Os needed to read N contiguous items from diskis scan(N) = �(NB ) (the scanning bound), and the number of I/Os required to1 For convenience we will use the name of a set to denote both the actual set and itscardinality.2 Often it is only assumed that B � M=2 but sometimes, as in this paper, the veryrealistic assumption that the main memory is capable of holding B2 elements ismade (or as here, B2+" for some " > 0).



sort N items is sort(N) = �(NB logM=B NB ) [3] (the sorting bound). In practicethe di�erence between an algorithm doing N I/Os and one doing scan(N) orsort(N) I/Os can be signi�cant [7].Table 1. Best known upper bounds for basic graph theoretic problems.Problem General undirected graphsDFS O � VM EB + V � [12]O �(V + scan(E)) � log VB + sort(E)� [22]BFS O(V + EV � sort(V )) [25]CC O �sort(E) � log log V BE � [25]MST O �sort(E) � log VM � [12]O (sort(E) � logB + scan(E) � log V ) [22]SSSP O �V + EB � log VB � [22]I/O-e�cient graph algorithms have been considered by a number of au-thors [1, 2, 5, 6, 10, 12, 16, 19, 22, 24{26, 29]. Table 1 reviews the best known al-gorithms for basic graph theoretic problems on general undirected graphs. Fordirected graphs the best known algorithm for breadth-�rst search (BFS) anddepth-�rst search (DFS) useO �(V + scan(E)) � log VB + sort(E)� I/Os [10]. Lowerbound results were proved in [6, 12, 25]. Note that no O(sort(E)) (deterministic)algorithm is known for any of the problems, and that the best known algorithmsfor DFS, BFS and SSSP require 
(V ) I/Os. MST and connected components(CC) can be solved in O(sort(E)) I/Os with randomized algorithms [12, 1].Improved algorithms have been developed for several special classes of graphs.For trees, O(sort(N)) algorithms are known for BFS and DFS numbering, Eu-ler tour computation, expression tree evaluation, topological sorting, as well asseveral other problems [10, 12]. For planar graphs, O(sort(N)) algorithms areknown for CC and MST [12]. For grid graphs O(sort(N)) algorithms are knownfor BFS and SSSP, and an O(scan(N)) algorithm for CC [7]. See [30] for acomplete reference.Given that even very basic graph problems seem hard to externalize, it isnatural to try to reduce the problems to one another. A �rst step in this directionwas taken by Hutchinson et al. [19] who considered the problem of computingan O(pN)-separator of a planar graph I/O-e�ciently. Given a BFS tree theyshowed how to compute a separator in O(sort(N)) I/Os. Given this algorithm,it is straightforward to solve the multi-way planar graph separation problem inO(log NR � sort(N))) I/Os, simply by applying the algorithm recursively.1.3 Our resultsIn Section 2, we give an O(sort(E) � log log V BE ) = O(sort(E) � log logB) algo-rithm for the MST problem on general undirected weighted graphs, improvingthe previous bound of O (sort(E) � logB + scan(E) � logV ) [22]. The algorithmuses the same general idea as the CC algorithm by Munagala and Ranade [25]and consists of two phases: �rst a vertex contraction algorithm is used to reduce



the number of vertices to O(EB ), and then an O(V + sort(E)) MST algorithmis used on the reduced graph. The new contraction algorithm uses ideas sim-ilar to the ones used in [8, 14, 25], as well as a simpli�ed version of the basiccontraction step used in previous MST algorithms [8, 12{14,22, 25, 28]. The newO(V + sort(E)) MST algorithm is a modi�ed version of Prim's algorithm. Itremains a challenging open problem to develop an O(sort(E)) MST algorithm.In Section 3 and 4, we show that the multi-way planar graph separation prob-lem and the SSSP problem can be reduced to the BFS problem in O(sort(N))I/Os: In Section 3, we give an O(sort(N)) algorithm for the multi-way pla-nar graph separation problem given a BFS tree. The algorithm improves thestraightforward bound of O(log NR � sort(N)) I/Os and uses a divide-and-conqueralgorithm based on ideas from [18]. In Section 4, we show how to use this resultto solve the SSSP problem in O(sort(N)) I/Os. The algorithm is a generaliza-tion of our SSSP algorithm on grid graphs [7] and uses ideas similar to the onesutilized by Frederickson [17]. We believe that our O(sort(N)) graph separationalgorithm might prove helpful in reducing other problems on planar graphs tothe BFS problem. It remains a challenging problem to develop an O(sort(E))BFS algorithm. Another interesting open problem is if it is possible to developan O(sort(E)) BFS algorithm for a planar graph given a multi-way separationof the graph.2 Minimum Spanning Tree on General GraphsIn this section we describe our MST algorithm on general undirected weightedgraphs. The basic idea is to reduce the number of vertices to EB using anO(sort(E)) vertex reduction algorithm O(log log V BE ) times, and then use anO(V + sort(E)) MST algorithm on the resulting graph. The overall I/O com-plexity will thus be O(sort(E)�log log V BE +EB+sort(E)) = O(sort(E)�log log V BE )I/Os. In Section 2.1 we �rst describe the O(V + sort(E)) MST algorithm, andin Section 2.2 we then describe the reduction algorithm. The MST result issummarized in the following theorem.Theorem 1. The MST of an undirected weighted graph can be found inO(sort(E) � log log V BE ) I/Os.2.1 An O(V + sort(E)) MST AlgorithmOur algorithm is a modi�ed version of Prim's internal memory algorithm [15].The idea of Prim's algorithm is to grow the MST iteratively from a source nodewhile maintaining a priority queue on the vertices not included in the MST sofar; the priority of a vertex is the weight of the minimum edge connecting itto the current MST. The algorithm repeatedly extracts the minimum priorityvertex v, adds it to the MST, and updates the priority of the vertices u adjacentto v. Speci�cally, the weight w of edge (v; u) is compared with the priority ofvertex u in the priority queue, and an update is performed if w is smaller than thecurrent priority. Prim's algorithm cannot be implemented e�ciently in externalmemory, the main reason being that the current priority of a given vertex cannot



in general be obtained without doing one I/O. A direct implementation wouldthus lead to an O(E) I/O bound. Previously known algorithms [12, 22] relyinstead on vertex contraction methods [8, 13, 14].Our modi�cation of Prim's algorithm consists of storing edges in the priorityqueue instead of vertices. During the algorithm the priority queue contains (atleast) all edges connecting vertices in the current MST with vertices not in thetree. The queue can also contain edges between two vertices in the MST. Thealgorithm works as follows: Repeatedly perform extract min to extract the min-imum weight edge (u; v) from the priority queue. If v is already in the MST theedge is discarded. Otherwise v is included in the MST and all edges incident tov, except (v; u), are inserted in the priority queue. The key to the I/O-e�ciencyof the algorithm is that because we store edges in the priority queue we have asimple way of checking whether a vertex is already included in MST | as alledges incident to v are inserted in the priority queue when v is included in theMST, it follows that if both u and v are in the MST when processing an edgee = (u; v), the edge e must appear in the priority queue twice. Thus we can checkif v is already included in the MST simply by performing one more extract minand checking if it returns the same edge e (recall that we assume that no twoedges have the same weight).The algorithm performs at least one I/O for each vertex which is included inthe MST in order to read its adjacent vertices (traverse its adjacency lists). Thusprocessing all vertices and edges takes V +EB I/Os. It also performs O(E) insert 'sand extract min's on the priority queue. Using an external priority queue [5, 9]supporting these operations in O( 1B logM=B NB ) I/Os amortized we obtain:Lemma 1. The MST of an undirected weighted graph can be computed in O(V +sort(E)) I/Os.2.2 MST Vertex-Reduction AlgorithmOur MST vertex reduction algorithm is obtained using ideas from the connected-component algorithm of Munagala and Ranade [25] and the notion of \blockingvalues". The standard MST algorithm based on vertex contraction proceeds indlogV e phases [12, 22]. In each phase the minimum cost edge adjacent to everyvertex v is selected and output as part of the MST and the vertices connected bythe selected edges are contracted to supervertices. Let the size of a supervertexbe the number of vertices it contains from the original graph. After the ith phasethe size of every supervertex is at least 2i. Since one contraction phase can beperformed in O(sort(E)) I/Os [12] this results in an O(sort(E) � log V ) algorithm.The algorithm in [22] utilizes that a contraction step can be performed moree�ciently after O(logB) phases and obtains an O(sort(E)�logB+scan(E)�logV )algorithm.Our algorithm runs for dlog V BE e phases after which the number of super-vertices is at most EB . Furthermore we reduce the number of I/Os used in theprocess by dividing the dlog V BE e phases into superphases requiring O(sort(E))I/Os each: Let Ni = 2(3=2)i , i.e. Ni+1 = NipNi. Superphase i, for i � 0, consistsof dlogpNie phases. In a preprocessing step we run the basic vertex contrac-



tion algorithm once to insure that the number of vertices before superphase 0is V0 � VN0 = V2 . We will maintain the invariant that before superphase i thenumber of supervertices is at most VNi . To reduce the number of vertices to atmost EB it is therefore su�cient to perform 3+dlog3=2dlog V BE ee superphases andwe obtain the O(sort(E) � log log V BE ) algorithm.The phases in each superphase only work on a subset of the (remaining)edges. The edge subsets are chosen in order to allow each supervertex to growby a factor of pNi in superphase i. Let Gi = (Vi; Ei) be the graph just prior tosuperphase i. We construct a graph G0i = (Vi; E0i), where E0i is a subset of Ei.For each vertex v, E0i contains the dpNie lightest edges adjacent to v. Heavieredges e = (v; u) adjacent to v are only included in E0i if e is among the dpNielightest edges adjacent to u. We de�ne the blocking value of v to be the weightof the (dpNie + 1)-th lightest edge adjacent to v. The set E0i and blockingvalues can be computed using O(sort(Ei)) I/Os. If we guarantee that Vi � VNias stated above, it follows that E0i � 2VidpNie < 4 VpNi . As each contractionphase in superphase i can be performed in O(sort(E0i)) I/Os, it follows thatsuperphase i requires O(sort(Ei)+sort(E0i)�log(pNi)) = O(sort(E)+sort( VpNi )�log(pNi)) = O(sort(E)) I/Os. After performing all the phases of superphase ithe edges Ei � E0i, i.e. the heavy edges which were not included in the sample,need to be re-incorporated in Ei+1. This can be easily be done as in [25] usingO(sort(E)) I/Os in total. Details will appear in the full paper.The only thing that remains to be described is how the individual phasesin superphase i are performed such that after superphase i the number of su-pervertices is at most VNi+1 and such that only edges that actually belong tothe MST are included. A phase is performed as in the basic vertex reductionalgorithm: For each vertex v consider the adjacent edge e with minimum weightin E0i. If the weight of e is smaller than the blocking value of v, then we select efor contraction. If the weight of e is larger than the blocking value, no edges isselected for v, since there might be a lighter edge adjacent to v in Ei �E0i. Theselected edges are contracted in O(sort(E0i)) I/Os (using the algorithm in [12, 22,25] or a simpler algorithm which we will include in the full version). After thecontraction, the blocking value of a supervertex is set to be the minimum of theblocking values of the contracted vertices. The algorithm is correct as a simpleinduction argument can be be used to show that for every supervertex v the(contracted) edge sample contains all edges adjacent to v with weight smallerthan the blocking value of v (i.e. the edges selected in the next phase belongto the MST). If in superphase i the blocking value of a supervertex v preventsus from selecting an edge for v to be included in the MST, then v must be thecontraction of at least pNi vertices from Vi. This follows from the fact that theblocking value of v corresponds to the blocking value of some vertex u in Vi andv must span the dpNie vertices adjacent to u in E0i. If no blocking value preventsus from selecting an edges for v, then after dlogpNie phases v must have size atleast 2logpNi = pNi. It follows that superphase i reduces the number of vertices



by a factor of at least pNi, i.e. the number of vertices after superphase i is atmost VipNi � VNipNi = VNi+1 as claimed by the invariant.Lemma 2. Let G = (V;E) be an undirected weighted graph. The MST problemon G can be reduced to the MST problem on a graph with at most EB vertices inO(sort(E) � log log V BE ) I/Os.3 Multi-way Planar Graph SeparationIn this section, we show how to separate a planar graph G into �(NR ) sub-graphs with O(R) vertices each and a set of O(sort(N)) separator vertices usingO(sort(N)) I/Os.Given a BFS tree T of G, Hutchinson et al. [19] showed how to compute aO(pN)-separator for G in O(sort(N)) I/Os. Their algorithm closely follows thealgorithm by Lipton and Tarjan [23]: The BFS tree T has the property that noedge crosses two or more levels, and hence every level in T is a separator in G.The basic idea is to use the \middle" level `1 in T (the level containing thevertex with number N=2 in the BFS numbering) as the separator. Level `1 hasthe property that the total number of vertices on levels above `1, as well as inlevels below `1, is less than N=2. The problem is that `1 might contain more thanO(pN) vertices. However, there exists a level `0 above `1 and a level `2 below`1 with O(pN) vertices each, such that `2� `0 � pN (that is, `0 and `2 are nottoo far away from `1). Levels `0 and `2 divide G into three subgraphs G0; G1 andG2 consisting of the vertices on the levels above `0, between `0 and `2 and below`2 respectively, with the property that G0 and G2 contain less than N=2 verticesand G1 has a spanning tree of bounded height pN . Refer to Fig. 1 (a). It is easyto see that in order to �nd a separator for G it is enough to �nd a separatorin G1 [23]. Such a separator can be found using properties of the dual graphof G1. The dual graph G? = (V ?; E?) of a planar graph G is a planar graph witha vertex for each face of G whose edges are in one-to-one correspondence withthe edges of G. The dual graph G? is obtained by placing a vertex in each faceof G and connecting two faces fi and fj adjacent to a common edge e = (u; v)of G with an edge (fi; fj) in E?. The edge (fi; fj) in G? is called the dual edgeof (u; v) in G. Let E0 � E be a subset of edges in G. It is well known that(V;E0) is a spanning tree of G if and only if (V ?; (E � E0)?) is a spanning treein G? [21]. Thus the edges in (E � T )? form a spanning tree in G? which wedenote T y. An example is shown in Fig. 2(a). If T has bounded height pNthen every edge in (E � T ) (and therefore the corresponding edge in (E � T )?)determines a cycle in T with at most 2pN vertices. Assuming (without lossof generality) that G is triangulated, Lipton and Tarjan [23] proved that thereexists an edge e 2 (E � T ) such that the number of vertices inside and outsidethe cycle de�ned by e is � 2N=3, and showed how it can be computed e�cientlyusing a bottom-up traversal of the dual tree T y. Hutchinson et al. [19] showedhow to perform all these operations using O(sort(N)) I/Os.As discussed in the introduction, the O(sort(N)) separator algorithm [19] canbe used to develop a recursive O(log NR � sort(N)) multi-way separator algorithm



in a straightforward way. The idea in our new O(sort(N)) algorithm is to obtainO(logM=B NR ) recursion depth by increasing the fan-out of the separation from 2to MB and implement each step in O(NB ) I/Os. In order to divide the graph in MBsubgraphs we use ideas similar to the ones used by Goodrich [18]. The generalidea is the following: Instead of �nding only one level cutting the graph in twohalves, we �nd (roughly) MB levels which cut the graph in O( NM=B )-sized chunks.We then use these levels to �nd a set of levels with few vertices which divideG into subgraphs such that each subgraph is either of size O( NM=B ) or has aspanning tree of bounded height O(pR). We then subdivide the subgraphs withbounded height into graphs of size O(R) using properties of the dual graph. InSection 3.2 we show how this can be done I/O-e�ciently and prove the followinglemma:Lemma 3. A graph G with a spanning tree T of height H can be divided into�(NR ) subgraphs of size O(R) each and O(NRH) separator vertices in total usingO(sort(N)) I/Os.After subdividing the bounded height subgraphs we recursively subdivide thesubgraphs of size O( NM=B ). In Section 3.1 we give the details in our algorithmand prove the following:Theorem 2. Let G = (V;E) be a planar graph and T a breadth-�rst search treefor G. Furthermore assume 9 " > 0 such that M > B2+". For any R = 
(M),G can be partitioned into �(NR ) subgraphs Gi of size O(R) each and a set ofseparator vertices S of size O(sort(N)) using O(sort(N)) I/Os.3.1 Separating Planar GraphsIn this section we prove Theorem 2 using Lemma 3. Let L(i) be the total numberof vertices on levels 0 through i of T and de�ne the starter levels to be the levelsi such that the interval (L(i); L(i + 1)] contains a multiple of dNX e, for some0 < X < N . There are at most X starter levels and the number of verticesbetween consecutive starter levels is smaller than dNX e. Just like the `1 level instarter levels
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Fig. 1. (a) Illustration of the planar separator al-gorithm [23]; (b) Starter and cutter levels in T
Lipton and Tarjan's algo-rithm [23], the starter lev-els divide G in subgraphsof \small" size. However,as previously, the starterlevels can contain too manyvertices. Therefore we con-sider the �rst level aboveeach starter level, as wellas the �rst level below eachstarter level containing atmost Y vertices, for some 0 < Y < N . We call these levels the cutter levels.The cutter levels divide G into O(X) subgraphs Gi, consisting of the vertices



between two consecutive cutter levels, with the property that if the two cut-ter levels de�ning Gi are within two (consecutive) starter levels then Gi has sizeO(NX ). If the two cutters de�ning Gi are not within two consecutive starter levelsthen Gi has a spanning tree of depth O(NY ). Refer to Fig. 1 (b).As mentioned, the idea in our algorithm is to apply Lemma 3 to the sub-graphs of bounded height O(NY ) and recursively separate the subgraphs of sizeO(NX ). By choosing Y = NpR each bounded height subgraph Gi of size Ni hasheight pR, and it can thus be separated into �(NiR ) subgraphs of size O(R) andO(NiR � pR) = O( NpR ) separator vertices using O(sort(Ni)) I/Os. Note that aswe are not recursing on Gi (that is, we are not touching Gi again), the totalcost of separating all such subgraphs over all levels of the recursion adds up toO(sort(N)) in total. The separator vertices are the vertices of the O(X) cutterlevels (each cutter level has at most Y = NpR vertices), the separator verticesresulting from applying Lemma 3 to the subgraphs of bounded height and theseparator vertices resulted from the recursive calls. Thus the total number ofseparator vertices is given by S(N) � X NpR + NpR + X � S(NX ). If we chooseX = ( MB2 )1=4 and assume M > B2+", for some " > 0, it can be shown thatX NpR = O(NB ) and logX NR = O(logM=B NB ), so that S(N) = O(sort(N)).The only thing remaining to discuss is how to represent a subgraph Gi be-tween two cutter levels ci and ci+1 in the format needed in order to applyLemma 3 or perform the recursive call. Both these steps require that a BFS treeis given along with the subgraph. The part of T included in Gi is not connectedand thus it is not a BFS tree for Gi. However, we can easily produce such atree by introducing a \fake" root vi and connecting it with \fake" edges to allvertices on level ci+1. Note that if T is given level-by-level this can easily be donefor all the subgraphs in O(NB ) I/Os. The fake vertices and edges are marked sothat they can be removed at the end of the algorithm. Details will appear in thefull paper.That our algorithm uses O(sort(N)) I/Os can be seen as follows. The pre-processing step of computing the BFS level for each vertex in T and sorting theedges of G by level can easily be performed in O(sort(N)) I/Os using standardtechniques (such as list ranking and Euler tours) [12]. If we do not count theI/Os used to separate the subgraphs with bounded height, one recursion stepcan be performed in O(NB ) I/Os, and the recurrence for the number of I/Os usedbecomes T (N) � NB +X �T (NX ). Thus T (N) = O(sort(N)). As the total numberof I/Os used to separate the subgraphs of bounded height is O(sort(N)), wehave shown that our algorithm uses O(sort(N)) I/Os in total. This concludesthe proof of Theorem 2.So far we have only discussed the case R = 
(M). If R is o(M) then wecan use Theorem 2 to separate G in subgraphs of size O(M), then load eachsubgraph into main memory one at a time and apply Lipton and Tarjan pla-nar separator algorithm [23] until all subgraphs have size O(R). This resultsin O( NpR ) separator vertices. In some applications of the graph separation itis necessary to bound not only the total number of separators S, but also the



number of separator vertices adjacent to any subgraph. This can be done asfollows: For each subgraph which has 
( SN=R ) adjacent separator vertices markthe inner vertices as inactive and apply Theorem 2 until the resulting subgraphshave O( SN=R ) (active) vertices. Fredrickson [17] proves that this maintains thesame bounds for the number of subgraphs and separators given that the graphhas bounded degree. Details will appear in the full paper.Corollary 1. Let G = (V;E) be a planar graph and T a breadth-�rst search treefor G. Furthermore assume 9 " > 0 such that M > B2+". Then G can be sepa-rated in �(NR ) subgraphs of O(R) vertices each and a set S of O(sort(N) + NpR )separator vertices using O(sort(N)) I/Os.If G has bounded degree then the separation can be constructed such that eachsubgraph Gi is adjacent to O(SRN ) separator vertices.3.2 Separating Planar Graphs of Bounded Height Spanning TreeIn this section describe how we can separate in O(sort(N)) I/Os a planar graphG = (V;E) with a spanning tree T of height H into �(NR ) subgraphs of sizeO(R) each and O(NRH) separator vertices.Assume for simplicity that G is triangulated. (If this is not the case, we cantriangulate it using O(sort(N)) I/Os [19] and mark the added edges so that theycan be removed at the end of the separation. Note that T remains a spanningtree after the triangulation). Let G? be the dual of G and let T y = (E � T )? bethe spanning tree in G?. The spanning tree T y can be computed from G and Tin O(sort(N)) I/Os using a face �nding algorithm as in [19] and a few sortingsteps. Each edge in T y is the dual of an edge e = (u; v) in (E � T ) and thereexists a unique path from u to v in T ; this path and e forms a cycle in G, andsince T has bounded height H , the cycle contains at most 2H � 1 vertices. Thuseach edge in T y determines a cycle of size O(H) in G which separates G intothe vertices inside the cycle and vertices outside the cycle. Refer to Fig. 2 (a).It can be shown that if e is the centroid edge of T y, then the number of verticesinside and outside the cycle is roughly the same [18].The main idea in our algorithm is to �nd O(NR ) cycles which partition Ginto subgraphs of roughly equal size O(R). In order to do so, we �rst discusshow to �nd O(NR ) edges in T y such that their removal divides T y into subtreesof roughly equal size O(R). Then we show that the duals of these edges de�neO(NR ) cycles in G with the desired properties.The decomposition of a tree into independent subtrees of approximately equalsize was studied by Gazit et al. [27] in the context of parallel R-contractions.We review briey their notations and results. Let D = (V;E) be a tree withN vertices. The weight W (v) of a vertex v in D is the number of vertices inthe subtree rooted at v. A vertex v is called R-critical if v is not a leaf anddW (v)R e > dW (v0)R e for all children v0 of v. Let C � V . Two edges e and e0 of Gare C-equivalent if there exists a path from e to e0 that avoids the vertices C. Thegraphs induced by the equivalence classes of the C-equivalent edges are called thebridges of C. The attachments of a bridge I are the vertices of I that are also inC. The R-bridges of a treeD are the bridges of C, where C is the set of R-critical
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(b) (c)Fig. 2. (a) A triangulated graph G (solid lines), T (solid thick lines) and T y (dot-ted lines). (b) The decomposition of T y into its 10-bridges; square vertices are theattachments. (c) Subtree of T y and the induced cycle in G.vertices of D. An example of the decomposition of a tree into its R-bridges isshown in Fig. 2 (b). Gazit et al. [27] prove the following: (1) The number ofR-critical vertices in a tree of size N is at most 2NR � 1. (2) The number ofR-bridges in a tree with bounded degree d is at most d( 2NR �1). (3) The numberof vertices of an R-bridge is at most R + 1. (4) If I is an R-bridge, then I canhave at most two attachments.As the basic step in the computation of the R-bridges of D is the computa-tion of the weight of each vertex, it is easy to show how standard I/O-e�cientalgorithms can be used to compute the R-bridges in O(sort(N)) I/Os. If G is atriangulated graph, T y is a binary tree, and thus it has at most 4NR R-bridges.Each R-bridge de�nes two cycles in G determined by the two edges incidentto the two attachments. One of these cycles will be inside the other and thereare at most R + 1 faces inside the outer cycle but outside the inner cycle (thefaces corresponding to the vertices in the R-bridge). Thus the R-bridges of T ydetermine a separation of G into 4NR subgraphs of at most R vertices adjacentto O(NRH) separator vertices in total. Given the R-bridges, the decompositionof G can be easily computed in O(sort(N)) I/Os and Lemma 3 follows.4 Single Source Shortest Paths on Planar GraphsIn this section we show how to use our graph separation result to obtain ane�cient SSSP algorithm for planar graphs with bounded degree.3Consider separating a planar graph G into �(NR ) subgraphs Gi = (Vi; Ei) ofO(R) vertices each and a set S of separator vertices, such that each subgraph isadjacent to O(SRN ) separator vertices. We call the separator vertices adjacent toGi the boundary vertices of Gi. Our algorithm relies on the following observa-tion: Consider a shortest path �(s; t) between two vertices s and t in G and letfs0; s1; :::g denote its intersection with S. The portion of �(s; t) between si andsi+1 is completely within some subgraph Gj and it must be the shortest pathbetween si and si+1 within Gj .The main idea in our algorithm is to construct a new graph GR by re-placing each subgraph Gi with a complete graph on its boundary vertices. Ifthe source vertex s is not a separator vertex, we also include s in GR andconnect it to the boundary vertices of the subgraph containing it. The graph3 Note that any graph can be transformed into a graph with each vertex having degreeat most 3 using a simple transformation [17].



GR has S vertices and O(NR � (SRN )2) = O(S2RN ) edges. The weight of an edgein GR is the length of the shortest path in Gi between the correspondingtwo boundary vertices. If R = O(M) these weights can be computed as fol-lows: We load each subgraph Gi into main memory together with its boundaryvertices and use an internal memory all-pair-shortest-paths algorithm to com-pute the weights of the new edges between the boundary vertices of Gi, andwrite these edges to the disk. Since each separator vertex is a boundary vertexfor at most O(1) subgraphs (because of the bounded degree), we use at most(NB + S) I/Os to load all the subgraphs and their boundary vertices. As we useO(scan(S2RN )) I/Os to write the new edges, it follows that GR can be computedin O(S + scan(S2RN )) I/Os in total. Using S = O(sort(N) + NpR ) (Corollary 1)and choosing R = N2sort2(N) = B2log2M=B N=B < M , this is O(sort(N)) I/Os.Now assume we know how to com-
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�Fig. 3. (a) Separation of a graphinto subgraphs (boxed) and separators(black); (b) a subgraph in the partition,its boundary vertices and boundary sets.

pute the shortest paths from s to allseparator vertices in O(sort(N)) I/Os.Using the observation mentioned above,we know that these paths are identi-cal to the shortest paths in the orig-inal graph G. We can then computethe shortest paths from s to all the re-maining vertices in G by loading eachsubgraph Gi and its boundary ver-tices in main memory, and using aninternal memory algorithm to com-pute the shortest path from s to each vertex t in Vi using the formula �(s; t) =minvf�(s; v) + �Gi(v; t)g, where v ranges over all boundary vertices of Gi. Thistakes O(S + scan(N)) I/Os, so the total number of I/Os used is O(sort(N)).All that remains is to show how to solve the SSSP problem on the graph GRwith S = O(sort(N)) vertices and O(S2RN ) = O(N) edges in O(sort(N)) I/Os.To do so we use a slightly modi�ed version of Dijkstra's algorithm which avoidsthe use of a decrease key priority queue operation. We want to avoid such anoperation since the I/O bound of the best known external data structure withthis operation is O( log2NB ) [22], while priority queues with O( logM=B N=BB ) I/Obound are known if this operation is not supported [5, 9]. During the algorithmwe maintain a list L of pairs of vertices of GR and their distances. Initially alldistances are 1. We maintain the invariant that the distance of a vertex inL is identical to the distances stored in the priority queue controlling the algo-rithm. The algorithm repeatedly performs a delete min operation on the priorityqueue to obtain the next vertex v to process; then the O(SRN ) = O( BlogM=B N=B )edges incident to v are loaded using O(1) I/Os and the O(SRN ) = O( BlogM=B N=B )boundary vertices adjacent to v are determined. These vertices (and their cur-rent distances) are loaded from L using O( BlogM=B N=B ) I/Os, and, without furtherI/Os we then compute which vertices need to have their distances updated. Fi-nally, the new distances are written back to L and the corresponding updates



are performed on the priority queue. Note that as we know the current distanceof a vertex which needs to have its distance updated, we can perform the updatein O( logM=B N=BB ) I/Os using a delete and an insert operation.Our algorithm performsO(N) operations on the priority queue usingO(sort(N))I/Os in total. It also uses O(S) = O(sort(N)) I/Os in total to load the neighborsof each vertex. Thus the I/O use is dominated by the O( BlogM=B N=B ) I/Os usedfor each vertex to load its adjacent vertices from L. Since there are O(sort(N))vertices, this sums up to O( BlogM=B N=B ) � O(sort(N)) = O(N) I/Os in total.In order to improve the I/O bound to O(sort(N)) we modify the algorithm,taking into account that there is some implicit adjacency between the boundaryvertices. Let a boundary set be a maximal subset of boundary vertices such thatall boundary vertices in the subset are adjacent to exactly the same subgraphs.An example is shown in Fig. 3 (b). Fredrickson [17] showed that the number ofboundary sets is equal to the number of subgraphs O(NR ). We therefore modifyour algorithm such that the vertices in the same boundary sets are stored con-secutively in L. Otherwise the algorithm remains unmodi�ed. When a vertex v isprocessed, the relevant boundary sets are determined and loaded from L as be-fore. However, now we can think of the accesses as involving full boundary sets,as opposed to boundary vertices. Each boundary set is accessed O( BlogM=B NB )times (once by each of its adjacent boundary vertices), and as there areO(NR ) boundary sets we use O( BlogM=B NB � NR ) = O(sort(N)) I/Os in total.Theorem 3. Let G be a bounded degree planar graph and T a BFS tree for G.Furthermore assume 9 " > 0 such that M > B2+". The SSSP problem on G canbe solved in O(sort(N)) I/Os.References1. J. Abello, A. L. Buchsbaum, and J. R. Westbrook. A functional approach toexternal graph algorithms. In Proc. Annual European Symposium on Algorithms,LNCS 1461, pages 332{343, 1998.2. P. K. Agarwal, L. Arge, T. M. Murali, K. Varadarajan, and J. S. Vitter. I/O-e�cient algorithms for contour line extraction and planar graph blocking. In Proc.ACM-SIAM Symp. on Discrete Algorithms, pages 117{126, 1998.3. A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and relatedproblems. Communications of the ACM, 31(9):1116{1127, 1988.4. ARC/INFO. Understanding GIS|the ARC/INFO method. ARC/INFO, 1993.Rev. 6 for workstations.5. L. Arge. The bu�er tree: A new technique for optimal I/O-algorithms. In Proc.Workshop on Algorithms and Data Structures, LNCS 955, pages 334{345, 1995.A complete version appears as BRICS technical report RS-96-28, University ofAarhus.6. L. Arge. The I/O-complexity of ordered binary-decision diagram manipulation.In Proc. Int. Symp. on Algorithms and Computation, LNCS 1004, pages 82{91,1995. A complete version appears as BRICS technical report RS-96-29, Universityof Aarhus.7. L. Arge, L. Toma, and J. S. Vitter. I/O-e�cient algorithms for problems on grid-based terrains. In Proc. Workshop on Algorithm Engineering and Experiments,2000.
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