
Dynami
 Planar Convex Hull with OptimalQuery Time and O(log n � log log n) Update TimeGerth St�lting Brodal? and Riko Ja
ob?BRICS??, Department of Computer S
ien
e, University of Aarhusfgerth,rja
obg�bri
s.dkAbstra
t. The dynami
 maintenan
e of the 
onvex hull of a set ofpoints in the plane is one of the most important problems in 
ompu-tational geometry. We present a data stru
ture supporting point inser-tions in amortized O(log n � log log log n) time, point deletions in amor-tized O(log n � log log n) time, and various queries about the 
onvex hullin optimal O(log n) worst-
ase time. The data stru
ture requires O(n)spa
e. Appli
ations of the new dynami
 
onvex hull data stru
ture areimproved deterministi
 algorithms for the k-level problem and the red{blue segment interse
tion problem where all red and all blue segmentsare 
onne
ted.1 Introdu
tionThe problem of maintaining the 
onvex hull of a set of points in the plane underthe insertion and deletion of points is one of the foremost important problems in
omputational geometry [6, 10℄. A dynami
 data stru
ture for maintaining the
onvex hull of a point set has numerous appli
ations, e.g. in algorithms solvingthe k-level problem [7℄ and the red{blue segment interse
tion problem where allred and all blue segments are 
onne
ted [1℄. For further appli
ations see [4℄.Overmars and van Leeuwen in 1981 gave a solution for the fully dynami

onvex hull problem supporting point insertions and deletions in O(log2 n) time,where n is the maximum number of points in the set [12℄. The data stru
tureof Overmars and van Leeuwen stores the 
onvex hull in a sear
h tree and typ-i
al queries on the 
onvex hull are supported in O(logn) time. Preparata andVitter gave a simpler approa
h a
hieving the same bounds as Overmars andvan Leeuwen in [14℄. Until re
ently there was made no progress on improv-ing the update bounds for the general 
ase. First in 1999, Chan presented adata stru
ture that a
hieves amortized O(log1+" n) update time, where " > 0is any arbitrary 
onstant, and O(logn) query time for various types of queries,e.g. membership and tangent-�nding [4℄.For spe
ial 
ases better update bounds are known. For the semi-dynami

ase where only insertions are allowed, it is easy to a
hieve O(logn) insertion? Partially supported by the IST Programme of the EU under 
ontra
t number IST-1999-14186 (ALCOM-FT).?? Basi
 Resear
h in Computer S
ien
e, Centre of the Danish National Resear
h Foun-dation.



time [13℄. For the other semi-dynami
 
ase where only deletions are allowed afterprepro
essing, Hershberger and Suri a
hieved O(n logn) prepro
essing time andamortized O(logn) deletion time [9℄. For the o�-line 
ase where the sequen
e ofupdates is given in advan
e, a data stru
ture using O(n logn) time for pro
essinga sequen
e of n updates was given in [10℄. The 
ase where the sequen
e of updatesis random was 
onsidered in [11, 15℄, where it was shown how to a
hieve expe
tedO(logn) update time.In this paper, we �rst give a new data stru
ture for the semi-dynami
 problemwhere only deletions are allowed after prepro
essing, by extending the 
onstru
-tion of Hershberger and Suri [9℄. Provided that the initial point set is givenlexi
ographi
ally sorted, we a
hieve amortized O(n) prepro
essing time, andamortized O(logn � log logn) deletion time. The data stru
ture requires O(n)spa
e. Our main result for the fully dynami
 
ase is a transformation strat-egy that 
ombines a fully dynami
 data stru
ture with a semi-dynami
 datastru
ture for the deletions only 
ase, and generates a new fully dynami
 datastru
ture. The 
onstru
tion is based on the 
onstru
tion of Chan [4℄ 
ombinedwith several new ideas. Let U(n) and D(n) be two nonde
reasing positive fun
-tions, where U(n) � logn and D(n) � logn. If there exists a fully dynami
data stru
ture with amortized O(U(n)) update time and worst-
ase O(logn)query time, and a semi-dynami
 data stru
ture with O(n) prepro
essing timeand amortized O(D(n)) deletion time, then the transformation yields a datastru
ture with amortized O(U(log4 n) � logn= log logn) insertion time, amortizedO(D(n)) deletion time, and worst-
aseO(logn) query time. The queries that 
anbe supported are: �nd the extreme point on the 
onvex hull in a given dire
tion;report whether a given line interse
ts the 
onvex hull; report if a given point is
ontained in the interior of the 
onvex hull; �nd the two points adja
ent to apoint on the 
onvex hull; and given an exterior point �nd the two tangent pointson the 
onvex hull from the point.Combining our semi-dynami
 data stru
ture with the fully dynami
 datastru
ture of Overmars and van Leeuwen [12℄, we immediately get amortizedO(logn � log logn) deletion and insertion time. By bootstrapping, we 
an use theresulting data stru
ture as the fully dynami
 data stru
ture in the 
onstru
tionand the insertion time redu
es to amortized O(logn � log log logn) time, whilethe deletion time remains amortized O(logn � log logn).We note that a semi-dynami
 data stru
ture with O(n) prepro
essing timeand O(logn) deletion time, would for any 
onstant k imply a fully dynami
data stru
ture with amortized O(logn � log(k) n) insertion time and amortizedO(logn) deletion and worst-
ase O(logn) query time, by k � 1 appli
ationsof our transformation strategy and using the data stru
ture of Overmars andvan Leeuwen as the initial fully dynami
 data stru
ture.1The paper is organized as follows. Se
tion 2 
ontains a des
ription of the semi-dynami
 data stru
ture for the deletions only 
ase, and Se
t. 3 and 4 
ontainthe results for the fully dynami
 
ase. Se
tion 5 gives appli
ations of the fullydynami
 data stru
ture.1 We let log(1) n = log n, and log(i+1) n = log log(i) n for i � 1.



LH(P )
UH(P ) pL p pRp1 p2 p3

Fig. 1. The 
onvex hull CH(P ) of a set ofpoints P 
an be partitioned into an up-per hull UH(P ), a lower hull LH(P ), andpossibly two verti
al lines. Fig. 2. Deletion of the point p from theupper hull implies that p is repla
ed bythe sequen
e of points p1; p2; p3.NotationGiven a set of points P in the Eu
lidean plane, we let CH(P ) � P denote theset of points on the 
onvex hull of P , and UH(P ) and LH(P ) denote respe
tivelythe upper and lower hull of CH(P ). Figure 1 shows the upper and lower hullsof a set of points. In the following we restri
t our attention to the upper hullsof the sets of points, and assume for the sake of simpli
ity that points are ingeneral position, i.e. all points have distin
t x-
oordinates and no three pointsare on a line. The results for the 
onvex hull problems immediately follow fromthe results on the upper hulls.2 Semi-Dynami
 Data Stru
tureIn this se
tion we give a data stru
ture for the semi-dynami
 problem with amor-tized O(n) prepro
essing time, and whi
h supports point deletions in amortizedO(logn � log logn) time. To a
hieve linear prepro
essing time we require pointsto be given lexi
ographi
ally sorted. The data stru
ture supports the operations:Build Given a lexi
ographi
ally sorted set P 
ontaining n points, builds a datastru
ture for P and returns the points on UH(P ) from left-to-right.Delete Deletes a point p from P , and returns the 
hanges to UH(P ), i.e. if pwas 
ontained in UH(P ) before the deletion then the sequen
e of new pointson UH(P ) are returned from left-to-right (see Fig. 2).Our result for the semi-dynami
 problem is the following.Theorem 1. There exists a data stru
ture supporting Build in amortized O(n)time and Delete in amortized O(logn�log logn) time. The data stru
ture requiresO(n) spa
e.In the following we without loss of generality assume n � 4, su
h thatlog logn � 1. Let P = fp1; p2; : : : ; png be the initial set of points, where pi < pi+1for 1 � i < n, and let B = dlogne and N = dn=Be. We partition P intoa sequen
e of blo
ks P1; : : : ; PN , ea
h of size B ex
ept for PN , where Pi =



fp1+(i�1)B ; p2+(i�1)B ; : : : ; pmin(iB;n)g, for 1 � i � N . After a sequen
e of Deleteoperations we let �P � P denote the set of points whi
h have not been deletedso far, and similarly we for P1; : : : ; PN de�ne �P1; : : : ; �PN .For ea
h blo
k Pi, the points �Pi are stored in sorted order in a linked list,UH( �Pi) is stored as a perfe
t balan
ed binary tree, and furthermore the pointsfrom left-to-right on UH( �Pi) are kept in a doubly linked list.Sin
e j �Pij � B, the upper hull UH( �Pi) 
an be 
onstru
ted by a linear sweepof UH( �Pi) in O(B) time, see e.g. [2, Se
t. 1.1℄. The balan
ed tree and the doublelinked list storing UH( �Pi) 
an therefore be re
omputed in O(B) time, when apoint is deleted from blo
k Pi.The blo
ks P1; : : : ; PN are stored from left-to-right at the leaves of a perfe
tbalan
ed binary tree T with height dlogNe. For ea
h node v in T , we let Tvdenote the subtree of T rooted at v, and let �Pv denote the union of the sets �Pistored at the leaves of Tv. It is easy to see that UH( �Pv) \ UH( �Pi) is eitherempty or a 
onse
utive subsequen
e of UH( �Pi). At ea
h node v of T we storeUH( �Pv) as a doubly linked list Lv of blo
k-re
ords, su
h that for ea
h blo
k Pi
ontributing to UH( �Pv), i.e. UH( �Pv) \UH( �Pi) 6= ;, we have a blo
k-re
ord rv;i.For ea
h blo
k-re
ord rv;i we store pointers to the leftmost and rightmost pointsin UH( �Pi) whi
h are also in UH( �Pv). For a blo
k Pi, let v0; v1; : : : ; vk be thepre�x of the nodes in T on the path from the leaf v0 storing �Pi to the root,where UH( �Pi) \UH( �Pvj ) 6= ;, i.e. rvj ;i 2 Lvj . For 0 � j < k, we with rvj ;i storean up-pointer to rvj+1 ;i. This representation allows us to eÆ
iently navigateUH( �Pv) in both dire
tions from point-to-point and blo
k-to-blo
k in 
onstanttime. Note that UH( �P ) is stored at the root of T .Sin
e ea
h blo
k requires O(B) spa
e the total spa
e for the N blo
ks isO(N � B). Sin
e P is partitioned into N blo
ks, the total spa
e for the lists ofblo
k-re
ords at ea
h level of T is at most O(N). The total spa
e required isO(N � B +N � logN) = O(n).We now turn to the implementation of the operations. For Build the inputset P is �rst partitioned into N blo
ks, and for ea
h blo
k the upper hull is
omputed by a sweep line algorithm in O(B) time and ea
h blo
k stru
ture isinitialized in O(B) time. The 
onstru
tion time for all blo
ks is O(n+N �B) =O(n). The tree T is then pro
essed bottom-up level by level. Assume a node vhas two 
hildren w1 and w2, and Lw1 and Lw2 have already been 
omputed (for aleaf `, we de�ne L` to only 
ontain one blo
k-re
ord with pointers to the �rst andlast node of UH( �P`)). First we let Lv be the 
on
atenation of Lw1 and Lw2 . Theresulting list of blo
k-re
ords represents a sequen
e of points forming a 
onvex
urve ex
ept for possible at one point, namely the last point from CH( �Pw1) orthe �rst point from CH( �Pw2), i.e. there is a pointer to p in one of the blo
kre
ords in Lv.To �x this problem we apply the standard method used in 
onvex hull 
on-stru
tion algorithms: while we have a non-
onvex point p in the list of points,i.e. p together with its prede
essor and su

essor point in the list form a left-turn, we remove p from the list. Removing p is done as follows: if p is in blo
k Pi,and p is the only point from UH( �Pi) in the list, i.e. both pointers in rv;i point



to p, we remove rv;i from Lv. Otherwise we repla
e the pointer to p in rv;i bya pointer to the next point in UH( �Pi) in the dire
tion of the point given bythe other pointer in rv;i, where we utilize that the points in UH( �Pi) are keptin a double linked list. We 
an at most remove a point on
e in the bottom-upprepro
essing of T , and the time for prepro
essing one level of T is O(n) plusthe time used to eliminate left turns. The total time for 
onstru
ting all Lv listsbe
omes O(n+N � logN) = O(n). It follows that Build takes O(n) time.Before des
ribing the Delete operation, we observe that only upper hullsa
tually 
ontaining p need to be updated (see Fig. 2). To perform Delete �rst inO(logn) time make a binary sear
h lo
ating the blo
k Pi 
ontaining p, assumingthat P was given as an array of points or that we keep P in a balan
ed sear
htree. In O(B) time we 
he
k if p 2 UH( �Pi). If p =2 UH( �Pi) then no upper hullneeds to be updated and it is suÆ
ient to remove p from the list of points in �Piin O(B) time. Otherwise p 2 UH( �Pi), and let  p and !p be the prede
essor andsu

essor of p in UH( �Pi) (if present), and rebuild in O(B) time the data stru
turefor blo
k Pi after p has been deleted from the list of points in �Pi. What remainsis to update all the upper hulls whi
h 
ontained p. If p 2 UH( �Pv) for a node vthen rv;i 2 Lv. But then rv;i is rea
hable from �Pi using the stored up-pointers.The re
onstru
tion of upper hulls is done bottom-up in T . Consider a node vand the e�e
t of deleting p from UH( �Pv). Let pL and pR be the two points in �Pithat rv;i has pointers to, where pL � pR. If p < pL or p > pR then p =2 UH( �Pv)and we are done. If pL < p < pR then the 
hanges to UH( �Pv) 
an only bebetween pL and pR, i.e. the updates are done lo
ally in blo
k Pi and no 
hangesare required for Lv. The 
ompli
ated 
ase is when p = pL or p = pR. First weneed to delete p from the upper hull stored at v. If pL = pR then p was the onlypoint from blo
k Pi, and we delete rv;i from Lv. Otherwise we have two 
ases: ifp = pL then we repla
e the pointer to p in rv;i by a pointer to !p , and if p = pRthen we repla
e the pointer to p in rv;i by a pointer to  p .After having deleted p from UH( �Pv), we must insert new points onto UH( �Pv),as illustrated by Fig. 2. If p was not an endpoint of the bridge 
onne
ting twopoints on the two upper hulls stored at the 
hildren of v (see Fig. 3), then the
hanges to UH( �Pv) are exa
tly the 
hanges to UH( �Pw), where w is the 
hild of vwhere p 2 UH( �Pw) before the deletion. It follows that it is suÆ
ient to 
reateand update existing blo
k-re
ords in Lv with exa
tly the same pointers to pointsin blo
ks as done for Lw.The �nal 
ase is when p is an endpoint of the bridge 
onne
ting the upperhulls stored at the 
hildren of v, ad illustrated in Fig. 3. Assuming the new bridgehas been found, then updating Lv with respe
t to the new points on UH( �Pv)
onsists of inserting a subsequen
e of the points from ea
h of the upper hullsstored at the 
hildren of v, by 
reating a sequen
e of new blo
k-re
ords in Lvwith the same information as stored at the two 
hildren of v and 
hanging atmost four pointers in the blo
k-re
ords in Lv 
orresponding to the ends of thesubsequen
es 
opied.To �nd the new bridge we apply a standard bridge sear
hing algorithm,with minor modi�
ations. The standard bridge sear
hing pro
edure keeps for



p
Fig. 3. The bridge between two horizontally separated upper hulls. The dashed linesshow the 
hanges to the left upper hull and the new bridge when deleting point p.the upper hulls two 
andidate intervals for ea
h of endpoints of the bridge, andperforms a \simulations binary sear
h" on both hulls, always halving at leastone of the intervals. See e.g. [13, Lemma 3.1℄ for further details. We repla
e thebinary sear
h by a linear blo
k sear
h on ea
h of the two upper hulls. The linearblo
k sear
h at the left 
hild pro
eeds left-to-right, always trying to advan
e oneblo
k, whereas the linear blo
k sear
h at the right 
hild pro
eeds right-to-left.Whenever a sear
h is advan
ed to the next blo
k a blo
k-re
ord is added to Lvin O(1) time.The sear
h pro
ess for ea
h upper hull �rst tries to advan
e a 
omplete blo
kat a time, using the information stored at the blo
k-re
ords at the 
hildren of vto always pi
k the last point in the next blo
k Pi 
ontributing to UH( �Pi). Afterhaving lo
alized the blo
k Pi 
ontaining one endpoint of the new bridge thesear
h then pro
eeds in a binary fashion using the sear
h tree storing UH( �Pi).The total time for �nding a bridge be
omes linear in the number of blo
k-re
ords
reated plus O(logB). The output of Delete 
an be generated immediately fromthe 
hanges to Lroot(T ).The total time for a deletion be
omes O(B + x + logN � logB), where x isthe total number of new blo
k-re
ords 
reated. Sin
e a deletion at most removesone blo
k-re
ord from ea
h level of T , it follows that D deletions at most deleteD � logN blo
k-re
ords. Sin
e there 
an at most be O(N � logN) blo
k-re
ords,it follows that the total time for D deletions is at most O(D �B+N � logN +D �logN +D � logN � logB) = O(n+D � logn � log logn). Sin
e the O(n) term 
anbe 
harged to Build, it follows that Build takes amortized O(n) time and ea
hDelete operation amortized O(logn log logn) time.3 Fully Dynami
 Data Stru
tureFor this part of the paper we 
hange the point of view of the exposition to thedual problem and 
onsider upper envelopes instead of upper hulls. This duality,as explained e.g. in [2, p. 167℄, maps points to lines and vi
e versa in a way,that preserves above/on/below relations. In this setting a set of points be
omesa 
olle
tion of lines L, and the upper hull transforms to the upper envelope ofthese lines, i.e. the 
olle
tion of line segments su
h that points on a segment



are not below any other line. An extreme point query, i.e. given a slope q �ndthe point of the upper hull that has a tangent of slope q, turns into a verti
alline query, i.e. given a verti
al line with x-
oordinate q, report the segment ofthe upper envelope 
rossing this line. Note that this is really only a 
hange inpoint of view. There is no need to perform a 
omputation to go from the originalsetting to the dual and ba
k.We apply a standard dynamization te
hnique that divides the 
urrent pointsinto sets and keeps one deletion only data stru
ture per set. Additionally there isa more expli
it representation of the 
urrent upper envelope, namely an intervaltree, that allows fast queries without requiring too mu
h work for updates. Insidethe interval tree have at ea
h internal node a fully dynami
 upper envelope datastru
ture, a so 
alled se
ondary stru
ture. The running time improvement relieson a polylogarithmi
 bound on the size of the se
ondary stru
tures.The des
ription so far �ts as well to the data stru
ture proposed in Chan [4℄.Compared to that data stru
ture we apply improved deletion only data stru
-tures. We also do some expli
it grouping of the subenvelopes stemming from thedynamization, su
h that the number of se
ondary stru
ture storing segmentsfrom one subenvelope is redu
ed.The remaining of this se
tion is devoted to proving the following theorem.Theorem 2. Let U(n) and D(n) be two nonde
reasing positive fun
tions, whereU(n) � logn and D(n) � logn. Assume there exists a data stru
ture for the dy-nami
 upper envelope problem supporting Insert and Delete in amortized O(U(s))time, and Verti
al Line Query in worst-
ase O(log s) time, where s is the totalnumber of lines inserted. Assume further that there exists a data stru
ture forsemi-dynami
 upper envelope problem supporting Build on a lexi
ographi
allysorted list of n points in amortized O(n) time and Delete in amortized O(D(n))time, where n is the number of lines in the stru
ture.Then there exists a data stru
ture for the dynami
 upper envelope problemsupporting Insert in amortized O(logn � U(log4 n)= log logn) time and Delete inamortized O(D(n) + logn �U(log4 n)= log logn) time, and Verti
al Line Query inworst-
ase O(logn) time, where n is the total number of lines inserted.Applying this theorem to the data stru
ture of Overmars and van Leeuwenwith U(s) = log2 s and the result from Se
t. 2 with D(n) = logn � log logn,we get Insert in O(logn � log2(log4 n)= log logn) = O(logn � log logn), and Deletein O(logn � log logn). Applying the theorem again on this new data stru
tureimproves Insert to O(logn � log log logn). The performan
e of the deletion onlydata stru
ture is the bottlene
k, that renders further appli
ations of the theoremuseless.For the purpose of des
ribing our data stru
ture, we separate it into sev-eral layers. We �rst des
ribe the layers in a top down fashion, we start with adata stru
ture that solves the fully dynami
 upper envelope problem using someauxiliary data stru
tures. For the analysis we pro
eed in a bottom up fashion,i.e. we always analyze the auxiliary data stru
ture �rst. This avoids any forwardreferen
es.



3.1 The interfa
esFully dynami
 upper envelopes.Insert Insert a line, given by the parameters a and b in the representation y =ax+ b. Return a pointer to a new line data stru
ture.Delete Given a pointer to a line data stru
ture, delete that stru
ture and theline it represents.Query Given a value v, report the highest interse
tion of a line with the verti
alline given by x = v.Query stru
ture Q. This data stru
ture 
ombines several independent upperenvelopes. It is asserted (and 
ould be easily 
he
ked), that the list of line seg-ments in fa
t form envelopes. It is also asserted, that a line is present in at mostone set and has therefore at most one segment.There is an a
tive set of segments that is 
onsidered for queries. For all lists ofsegments it is asserted, that the segments from this list form an upper envelope.A segment is given by a line and an interval on the x-axis.Init set with a
tive envelope Given a lexi
ographi
ally sorted list L of linesand a list K � L of segments. Initialize a set data stru
ture that 
an holdupper envelopes stemming from lines in L and insert K into the a
tive set.It is asserted that K forms a 
omplete upper envelope. Return a pointer toa new data stru
ture representing the set.Delete set Delete a set given by a pointer, removing all segments from the a
tiveset.Repla
e inside an envelope Given a pointer to a set, pointers to (up to) threesegments `�; `; `!, and a lexi
ographi
ally sorted list of segments K withK = `0�; : : : ; `0!. Here `! and `0! are the same segment with a 
hanged leftboundary, and `� and l0� di�er only in the right boundary. It is expli
itlyallowed that `� and `! are void, with the meaning that ` is unbounded tothe left and respe
tively to the right. Repla
e the three segments by K inthe a
tive set. It is asserted that the a
tive set forms an upper envelope afterthe repla
ement.Query Given a value v, report the highest interse
tion of an a
tive segment withthe verti
al line given by x = v.Subenvelope stru
ture T . This stru
ture allows queries on a generalizationof segments, namely subenvelopes. A subenvelope is an lexi
ographi
ally sortedlist of line segments where neighbors have pre
isely one point in 
ommon. Wewill maintain a small upper bound on the size of an subenvelope. Again it isasserted that the segments in fa
t are segments from upper envelopes.Insert Given a list L of segments, insert the subenvelope formed by L. Returna pointer to the newly 
reated data stru
ture of the subenvelope.



Delete Given a pointer to a subenvelope, delete that subenvelope. Return thesegments of the subenvelope.Query Given a value v, report the highest interse
tion of an inserted subenvelopewith the verti
al line given by x = v.3.2 DynamizationThroughout the following we assume that we know the value of n, the totalnumber of insert operations, in advan
e. Standard doubling te
hniques justifythis assumption.Starting from the monotoni
 data stru
ture presented in Se
t. 2, we apply ageneral dynamization te
hnique for de
omposable sear
h problems attributedto Bentley and Saxe [3℄. The idea is that we divide the set of lines L intoa partition C based on the order the lines are inserted. More pre
isely everyset C 2 C has a rank. If there are d sets of the same rank i, we merge them intoone new set of rank i + 1. Sets of rank 0 have size 1. We 
hoose the parameterd = dlogne, leading to at most r = O(logd n) = O(logn= log logn) di�erentranks. This is also an upper bound on the number of times a spe
i�
 line 
anparti
ipate in the merge of d sets. Furthermore the number e = jCj of sets isbounded by e = O(rd) = O(log2 n= log logn). Every set has a deletion onlystru
ture and a set in the query stru
ture atta
hed.The merge operation �rst deletes all the involved sets from the Query stru
-ture Q. Then it orders the lines (dual) a

ording to their slopes, whi
h 
orre-sponds to sorting the 
orresponding (primal) points a

ording to their x 
o-ordinates. Here we exploit that the sets we are merging are already sorted inthat order. We use a heap of size d to iteratively �nd the remaining line withsmallest slope. Then we invoke the Build operation of the deletion only datastru
ture, and use the reported upper envelope in an Init set operation of thequery stru
ture Q. We atta
h the returned pointer to the new set.For an Insert(`) we 
reate a new re
ord for ` that keeps the 
oordinates (slopeand o�set) and also a pointer p` to the set of C that 
urrently 
ontains `. Thenwe 
reate a new set of size 1 and rank 0 and perform ne
essary merge operations.During the merge operations we update the pointers p` for all lines we move.If we want to delete a line ` we look up the set C 2 C that 
ontains `, andthen we invoke the Delete(`) operation of the deletion only data stru
ture fromSe
t. 2. This returns a list of new segments, whi
h impli
itly gives also the twoneighbors of `. With this information we 
all the Repla
e inside set operationof Q.3.3 GroupingNow we implement the query stru
ture using only a Subenvelope stru
ture. We
hoose a blo
k size parameter b = dlogn= log logne.The Init set with a
tive envelope operation �rst deletes all pointers to blo
kson the lines of the set. Then it groups the segments of K equally into as few as



possible blo
ks of size at most b. It inserts the resulting subenvelopes and storesthe subenvelope pointer at every line.The Delete set operation walks along the set, deleting blo
ks pointed to bythe lines and deleting the pointers as well.The Repla
e inside an envelope operation looks up the blo
ks where the threelines are stored. Then it deletes the pointed to subenvelopes, building a list Lof segments that got deleted. In this list we repla
e `�; `; `! by K. Then wegroup L optimally into blo
ks of size b. We insert the blo
ks and update theblo
k pointers.The query gets dire
tly handed over. This is 
orre
t, as all a
tive segmentsare in some blo
k.3.4 The interval tree T for subenvelopesWe implement the subenvelope stru
ture as an interval tree. The interval tree Tis a rooted tree. We assume to know the number M of leaves of T . We 
hoosethe degree parameter B = dlogne. We keep T balan
ed by maintaining theinvariants that the degree of a node is at most 2B� 1 and at least 2 at the rootand at least B for all the other internal nodes. All leaves have the same distan
eto the root. A leaf ` of T stores a (possibly unbounded) interval I`, its range.Every internal node v of T stores its range Iv , the interval that is the (disjoint)union of the ranges of its 
hildren. To deal with a non 
onstant degree of a nodewe maintain a di
tionary (balan
ed tree) of the endpoints of the ranges of its
hildren. For an arbitrary interval I we say that the node u of T 
orrespondsto I if the range of u 
ontains the interval, i.e. I � Iu, and for none of the
hildren v of u it is the 
ase that I is 
ontained in the range Iv of v. Note thatthere is always a unique node of T 
orresponding to an interval. We 
an �ndall the intervals 
ontaining a 
ertain point p on the path from the root node tothe leaf that 
ontains p. We assert that the range of every leaf node 
ontains atmost one endpoint of the stored intervals.We store subenvelopes at the node in T that 
orresponds to their interval,i.e. the extent along the x-axis. We store the segments of the subenvelope in these
ondary stru
ture at that node, i.e. as lines in a fully dynami
 upper envelopestru
ture.The Insert operation 
reates a re
ord that has a list of the lines forming thesubenvelope, the interval, and a pointer to the node of T . A pointer to this re
ordis returned. It inserts the interval into T and �nds the node u in T 
orrespondingto the interval and inserts all the lines into the se
ondary stru
ture Su. It storesthe returned identi�ers in a list in the newly 
reated re
ord.As we have the strong restri
tion that the range of a leaf should 
ontain atmost one endpoint of an interval stored in the tree, we might be for
ed to splitnodes of T in a bottom up fashion. Assume that node u of T has too many
hildren. Then we 
reate a new right sibling v of u (
reating a new root if u wasthe root) and move the right half of the 
hildren of u to v. We walk through thelist of blo
ks being stored at u. For a blo
k w we take Iw to de
ide if they shouldstay at u, get moved to v or moved up to the parent p of u and v. If ne
essary



we delete all the lines of w from the se
ondary stru
ture Su of u. If the blo
kmoves to v we insert the lines into Sv. If it moves up to p, we keep the blo
kw \on hold", in 
ase that p also gets split. During this we update the pointersbetween the nodes of T and the re
ords of blo
ks.If a subenvelope has the interval ℄ �1;1[, it gets stored at the root of T ,and it 
annot 
ause any splits. We 
all su
h a subenvelope trivial. M a

ountsonly for non-trivial subenvelopes.For the Delete operation we remove all the lines from the se
ondary stru
ture.For a Query operation with value x, we determine the path p in T from theroot to the leaf v of T whose range 
ontains x. For all nodes u on p we performan upper envelope query for x on the se
ondary stru
ture Su. We report thetopmost of the answers.This answer is 
orre
t, be
ause the blo
k of the topmost segment at x isstored in one of the parents of the leaf v that 
ontains x.3.5 AnalysisBound on the number M of nontrivial subenvelope inserts. We haveto bound the number of operations on blo
ks performed within the query stru
-ture Q.At the init operation we give every line a fra
tional 
oin that allows it toparti
ipate as a fra
tion 2=b in a non-trivial insert operation, i.e. we need b=2su
h 
oins to pay for a non-trivial insert. Then the init operation on a set ofsize m 
osts us d2m=be non-trivial subenvelope insert operations. If the initoperation gives rise to a nontrivial insert, it is paid for.A repla
e operation is going to pay for 3 subenvelope deletions and 4 suben-velope insertions. If there are more blo
ks to be inserted, the blo
ks are de�nitelyhalf full, and only 2 blo
ks on ea
h end 
ontain any lines that have already usedtheir 
oins. The remaining blo
k insertions 
an therefore be paid with 
oins.Knowing that one line 
an only 
ause one repla
e operation and parti
ipatein r init operations, we get a total a

ount of M = O(n + n � r=b) = O(n + n �logn= log logn � log logn= logn) = O(n).Bound s on the size of se
ondary stru
tures in T . For every set in C wehave at most B subenvelopes stored at a node v. With the bounds on the sizeof subenvelope and on jCj we get s = O(B � b � e) = O(log4 n).A query takes O(logM + Q(s) � h) = O(logn + log logn � logn= log logn) =O(logn) time.Work in the split operations. Every split operation 
reates at least one newnode. We will a

ount on that node for all the insertions and deletions thathappened during this single split.We 
harge the work of moving a blo
k during a split operation entirely tothe newly 
reated node of T . For this we de�ne the level of a node u of T bystating that leaves have level 0, and that the parent of nodes on level i has



level i + 1. Now we observe that an interval stored at u has both endpointsat some leaf below u. Hen
e the 
ondition of having at most one endpoint ofan interval per leaf implies that we have at most Ni = (2B)i intervals storedat a node of level i. Now let u be a node on level i. Then u was 
reated by asplit operation performed on one of its siblings v. So we know that v is also onlevel i and the split operation involved at most Ni intervals. Additionally weknow e = O(rd) = O(log2 n= log logn) whi
h means for large n we have e < B2and that any node in T stores at most e � B < B3 intervals.Adding these 
osts level by level in the tree, we get that the total numberof intervals moved be
ause of split operations is bounded by O((M=B)2B +(M=B2)4B2 + (M=B3)B3 + (M=B4)B3 + (M=B5)B3 + � � �) = O(M) = O(n).We 
on
lude that every subenvelope insertion 
auses in average 
onstantly manymoves of a subenvelope during split operations.Running time of the update operations in T . Given the previous para-graph, we 
on
lude that an update operation of a nontrivial blo
k in T takesamortized O(logM+b�U(s)) time for �nding the 
orre
t node in T and to pay forthe insertions and deletions of the segments, in
luding during split operations.Sin
e U(s) � log s, we have b�U(s) = 
(logn= log logn�log logn) = 
(logn),so the amortized time of a non-trivial blo
k insert operation be
omes O(b �U(s)).For trivial blo
ks it takes amortized O(U(s)) time per segment. Note thateven so the root node of T is spe
ial, the upper bound s on the number ofsegments stored there applies as well.Running time of the Query stru
ture / Fully dynami
 stru
ture. In theinit operation of the query stru
ture we a

ount for 2=b nontrivial blo
k insertoperations for every line in the set. We already argued that this is suÆ
ient topay for the initial insert operation of that line (i.e. when the line appears on theupper envelope of the set we just initialized). A

ounting also for the possibilityof being inserted as part of a trivial blo
k, we get a per line amortized time ofO(U(s) + b � U(s)=b) = O(U(s)).Knowing that every line gets initialized at the worst r times, we get anamortized insert time for the fully dynami
 data stru
ture of O(r � U(s)) =O(logn= log logn � U(s)) as 
laimed in Theorem 2.For the delete operation of the fully dynami
 data stru
ture we have toa

ount for the delete operation in the deletion only stru
ture, and for the repla
eoperation in the query stru
ture. As already argued, the repla
e operation has toa

ount for a 
onstant number of blo
k update operations, yielding an amortizedtime of O(D(n)+b �U(s)) = O(D(n)+logn �U(s)= log logn), the bound 
laimedin Theorem 2.4 Other QueriesWith the so far explained data stru
ture for verti
al line queries we 
an eÆ
ientlyanswer a whole 
lass of other queries on the upper envelopes. Assume the query



satis�es a so 
alled lo
ality property, that is for a verti
al line q we 
an determineon whi
h side of q the answer lies by solely examine the highest line interse
ting q.Then we 
an use binary sear
h to give an answer with O(logn) verti
al linequeries, that is in O(log2 n) time. But this overhead is not always ne
essary. Inthe next se
tion we will give an important example where the already explaineddata stru
ture 
an be used to a
hieve a O(logn) query time for a more involvedquery.4.1 Arbitrary line queriesThe query we address is in the primal setting: given a point p in the plane reportthe two tangent lines through p tou
hing the 
onvex hull or state that the pointis inside the 
onvex hull. This 
orresponds in the dual to: given an arbitrary line,give the two interse
tion points of the line with the upper envelope, or \no" ifno su
h interse
tion exists. The exposition here adopts the dual point of view.The important observation is, that our data stru
ture has the same propertiesas the data stru
ture in [4℄, the argument given there applies here as well. Weonly sket
h the query algorithm in our setting.We use the following fa
t about arbitrary line queries to navigate in theinterval tree of our data stru
ture.Lemma 1. Let a and b be to walls and E0 � E a subset of lines s.t. the upperenvelope of E0 at a and b 
oin
ides with the upper envelope of E. Assume that anarbitrary line query for a line ` on E0 results in the right interse
tion point t. If tlies between a and b then also the right interse
tion T of ` with E lies between aand b.Let ` be the line query. The query algorithm starts at the root node of theinterval tree. It performs the right interse
tion query on the se
ondary stru
tureof the 
urrent node, updating the 
urrent answer. Then it des
ends to the 
hild
orresponding to the interval the 
urrent answer lies in. When it rea
hes a leaf,the 
urrent answer re
e
ts the right interse
tion of ` with the upper envelope ofall lines.Given that our se
ondary stru
tures support line queries in O(log s) time,we have an overall query time of O((logB + log s)h) = O(logB logn= logB) =O(logn).5 Appli
ationsAs a prominent example we 
onsider the k-level of n lines, whi
h is dually relatedto the k-set question on n points. For this problem Edelsbrunner and Welzl [7℄gave an algorithm using the data stru
ture of Overmars and van Leeuwen that
onstru
ts the k-level in O(n � logn+m � log2 n) time, where m is the size of thek-level. Applying Chan's data stru
ture this improves to O(n�logn+m�log1+" n)time, and using our data stru
ture this yields an improved O(n � logn+m � logn �log logn) time bound. A randomized algorithm using expe
ted O(�t+2(n+m) �



logn) time has been given by Har-Peled [8℄, where �t+2(n+m) is the maximumlength of a Davenport-S
hinzel sequen
e of order t+ 2 having n+m symbols.Bas
h, Guibas and Ramkumar [1℄ 
onsidered a version of the segment inter-se
tion problem: given a 
onne
ted family R of n red line segments and a 
on-ne
ted family B of n blue line segments in the plane, report all interse
ting pairsfrom R�B. Chan [4℄ reported an improvement from O((n+m)�log3 n) time usingOvermars and van Leeuwen's data stru
ture to O((n+m)�log2+" n) using Chan'sdata stru
ture. We get a further improvement to O((n +m) � log2 n � log logn).Referen
es1. J. Bas
h, L. J. Guibas, and G. Ramkumar. Reporting red-blue interse
tions be-tween two sets of 
onne
ted line segments. In Pro
. 4th European Symposium onAlgorithms, volume 1136 of Le
ture Notes in Computer S
ien
e, pages 302{319.Springer Verlag, Berlin, 1996.2. M. de Berg, M. van K., M. Overmars, and O. S
hwarzkopf. Computational Geom-etry. Springer-Verlag, Berlin, 1997. Algorithms and appli
ations.3. J. Bentley and J. Saxe. De
omposable sear
hing problems I: Stati
-to-dynami
transformation. Journal of Algorithms, 1:301{358, 1980.4. T. M. Chan. Dynami
 planar 
onvex hull operations in near-logarithmi
 amortizedtime. In Pro
. 40th Ann. Symp. on Foundations of Computer S
ien
e (FOCS),pages 92{99, 1999.5. B. Chazelle. On the 
onvex layers of a planar set. IEEE Trans. Inform. Theory,IT-31:509{517, 1985.6. Y.-J. Chiang and R. Tamassia. Dynami
 algorithms in 
omputational geometry.Pro
eedings of the IEEE, Spe
ial Issue on Computational Geometry, 80(9):1412{1434, 1992.7. H. Edelsbrunner and E. Welzl. Constru
ting belts in two-dimensional arrangementswith appli
ations. SIAM J. Comput., Vol. 15, No. 1, 1986.8. S. Har-Peled. Taking a walk in a planar arrangement. In Pro
. 40th Ann. Symp. onFoundations of Computer S
ien
e (FOCS), pages 100{110, 1999.9. J. Hershberger and S. Suri. Appli
ations of a semidynami
 
onvex hull algorithm.BIT, 32:249{267, 1992.10. J. Hershberger and S. Suri. O�-line maintenan
e of planar 
on�gurations. Journalof Algorithms, 21:453{475, 1996.11. K. Mulmuley. Randomized multidimensional sear
h trees: lazy balan
ing and dy-nami
 shu�ing. In Pro
. 32nd Ann. Symp. on Foundations of Computer S
ien
e(FOCS), pages 180{196, 1991.12. M. H. Overmars and J. van Leeuwen. Maintenan
e of 
on�gurations in the plane.Journal of Computer and System S
ien
es, 23:166{204, 1981.13. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introdu
tion.Springer Verlag, Berlin, 1985.14. F. P. Preparata and J. S. Vitter. A simpli�ed te
hnique for hidden-line eliminationin terrains. International Journal of Computational Geometry & Appli
ations,3(2):167{181, 1993.15. O. S
hwarzkopf. Dynami
 maintenan
e of geometri
 stru
tures made easy. In Pro
.32nd Ann. Symp. on Foundations of Computer S
ien
e (FOCS), pages 197{206,1991.


