
Dynami Planar Convex Hull with OptimalQuery Time and O(log n � log log n) Update TimeGerth St�lting Brodal? and Riko Jaob?BRICS??, Department of Computer Siene, University of Aarhusfgerth,rjaobg�bris.dkAbstrat. The dynami maintenane of the onvex hull of a set ofpoints in the plane is one of the most important problems in ompu-tational geometry. We present a data struture supporting point inser-tions in amortized O(log n � log log log n) time, point deletions in amor-tized O(log n � log log n) time, and various queries about the onvex hullin optimal O(log n) worst-ase time. The data struture requires O(n)spae. Appliations of the new dynami onvex hull data struture areimproved deterministi algorithms for the k-level problem and the red{blue segment intersetion problem where all red and all blue segmentsare onneted.1 IntrodutionThe problem of maintaining the onvex hull of a set of points in the plane underthe insertion and deletion of points is one of the foremost important problems inomputational geometry [6, 10℄. A dynami data struture for maintaining theonvex hull of a point set has numerous appliations, e.g. in algorithms solvingthe k-level problem [7℄ and the red{blue segment intersetion problem where allred and all blue segments are onneted [1℄. For further appliations see [4℄.Overmars and van Leeuwen in 1981 gave a solution for the fully dynamionvex hull problem supporting point insertions and deletions in O(log2 n) time,where n is the maximum number of points in the set [12℄. The data strutureof Overmars and van Leeuwen stores the onvex hull in a searh tree and typ-ial queries on the onvex hull are supported in O(logn) time. Preparata andVitter gave a simpler approah ahieving the same bounds as Overmars andvan Leeuwen in [14℄. Until reently there was made no progress on improv-ing the update bounds for the general ase. First in 1999, Chan presented adata struture that ahieves amortized O(log1+" n) update time, where " > 0is any arbitrary onstant, and O(logn) query time for various types of queries,e.g. membership and tangent-�nding [4℄.For speial ases better update bounds are known. For the semi-dynamiase where only insertions are allowed, it is easy to ahieve O(logn) insertion? Partially supported by the IST Programme of the EU under ontrat number IST-1999-14186 (ALCOM-FT).?? Basi Researh in Computer Siene, Centre of the Danish National Researh Foun-dation.

time [13℄. For the other semi-dynami ase where only deletions are allowed afterpreproessing, Hershberger and Suri ahieved O(n logn) preproessing time andamortized O(logn) deletion time [9℄. For the o�-line ase where the sequene ofupdates is given in advane, a data struture using O(n logn) time for proessinga sequene of n updates was given in [10℄. The ase where the sequene of updatesis random was onsidered in [11, 15℄, where it was shown how to ahieve expetedO(logn) update time.In this paper, we �rst give a new data struture for the semi-dynami problemwhere only deletions are allowed after preproessing, by extending the onstru-tion of Hershberger and Suri [9℄. Provided that the initial point set is givenlexiographially sorted, we ahieve amortized O(n) preproessing time, andamortized O(logn � log logn) deletion time. The data struture requires O(n)spae. Our main result for the fully dynami ase is a transformation strat-egy that ombines a fully dynami data struture with a semi-dynami datastruture for the deletions only ase, and generates a new fully dynami datastruture. The onstrution is based on the onstrution of Chan [4℄ ombinedwith several new ideas. Let U(n) and D(n) be two nondereasing positive fun-tions, where U(n) � logn and D(n) � logn. If there exists a fully dynamidata struture with amortized O(U(n)) update time and worst-ase O(logn)query time, and a semi-dynami data struture with O(n) preproessing timeand amortized O(D(n)) deletion time, then the transformation yields a datastruture with amortized O(U(log4 n) � logn= log logn) insertion time, amortizedO(D(n)) deletion time, and worst-aseO(logn) query time. The queries that anbe supported are: �nd the extreme point on the onvex hull in a given diretion;report whether a given line intersets the onvex hull; report if a given point isontained in the interior of the onvex hull; �nd the two points adjaent to apoint on the onvex hull; and given an exterior point �nd the two tangent pointson the onvex hull from the point.Combining our semi-dynami data struture with the fully dynami datastruture of Overmars and van Leeuwen [12℄, we immediately get amortizedO(logn � log logn) deletion and insertion time. By bootstrapping, we an use theresulting data struture as the fully dynami data struture in the onstrutionand the insertion time redues to amortized O(logn � log log logn) time, whilethe deletion time remains amortized O(logn � log logn).We note that a semi-dynami data struture with O(n) preproessing timeand O(logn) deletion time, would for any onstant k imply a fully dynamidata struture with amortized O(logn � log(k) n) insertion time and amortizedO(logn) deletion and worst-ase O(logn) query time, by k � 1 appliationsof our transformation strategy and using the data struture of Overmars andvan Leeuwen as the initial fully dynami data struture.1The paper is organized as follows. Setion 2 ontains a desription of the semi-dynami data struture for the deletions only ase, and Set. 3 and 4 ontainthe results for the fully dynami ase. Setion 5 gives appliations of the fullydynami data struture.1 We let log(1) n = log n, and log(i+1) n = log log(i) n for i � 1.

LH(P)
UH(P) pL p pRp1 p2 p3

Fig. 1. The onvex hull CH(P) of a set ofpoints P an be partitioned into an up-per hull UH(P), a lower hull LH(P), andpossibly two vertial lines. Fig. 2. Deletion of the point p from theupper hull implies that p is replaed bythe sequene of points p1; p2; p3.NotationGiven a set of points P in the Eulidean plane, we let CH(P) � P denote theset of points on the onvex hull of P , and UH(P) and LH(P) denote respetivelythe upper and lower hull of CH(P). Figure 1 shows the upper and lower hullsof a set of points. In the following we restrit our attention to the upper hullsof the sets of points, and assume for the sake of simpliity that points are ingeneral position, i.e. all points have distint x-oordinates and no three pointsare on a line. The results for the onvex hull problems immediately follow fromthe results on the upper hulls.2 Semi-Dynami Data StrutureIn this setion we give a data struture for the semi-dynami problem with amor-tized O(n) preproessing time, and whih supports point deletions in amortizedO(logn � log logn) time. To ahieve linear preproessing time we require pointsto be given lexiographially sorted. The data struture supports the operations:Build Given a lexiographially sorted set P ontaining n points, builds a datastruture for P and returns the points on UH(P) from left-to-right.Delete Deletes a point p from P , and returns the hanges to UH(P), i.e. if pwas ontained in UH(P) before the deletion then the sequene of new pointson UH(P) are returned from left-to-right (see Fig. 2).Our result for the semi-dynami problem is the following.Theorem 1. There exists a data struture supporting Build in amortized O(n)time and Delete in amortized O(logn�log logn) time. The data struture requiresO(n) spae.In the following we without loss of generality assume n � 4, suh thatlog logn � 1. Let P = fp1; p2; : : : ; png be the initial set of points, where pi < pi+1for 1 � i < n, and let B = dlogne and N = dn=Be. We partition P intoa sequene of bloks P1; : : : ; PN , eah of size B exept for PN , where Pi =

fp1+(i�1)B ; p2+(i�1)B ; : : : ; pmin(iB;n)g, for 1 � i � N . After a sequene of Deleteoperations we let �P � P denote the set of points whih have not been deletedso far, and similarly we for P1; : : : ; PN de�ne �P1; : : : ; �PN .For eah blok Pi, the points �Pi are stored in sorted order in a linked list,UH(�Pi) is stored as a perfet balaned binary tree, and furthermore the pointsfrom left-to-right on UH(�Pi) are kept in a doubly linked list.Sine j �Pij � B, the upper hull UH(�Pi) an be onstruted by a linear sweepof UH(�Pi) in O(B) time, see e.g. [2, Set. 1.1℄. The balaned tree and the doublelinked list storing UH(�Pi) an therefore be reomputed in O(B) time, when apoint is deleted from blok Pi.The bloks P1; : : : ; PN are stored from left-to-right at the leaves of a perfetbalaned binary tree T with height dlogNe. For eah node v in T , we let Tvdenote the subtree of T rooted at v, and let �Pv denote the union of the sets �Pistored at the leaves of Tv. It is easy to see that UH(�Pv) \ UH(�Pi) is eitherempty or a onseutive subsequene of UH(�Pi). At eah node v of T we storeUH(�Pv) as a doubly linked list Lv of blok-reords, suh that for eah blok Piontributing to UH(�Pv), i.e. UH(�Pv) \UH(�Pi) 6= ;, we have a blok-reord rv;i.For eah blok-reord rv;i we store pointers to the leftmost and rightmost pointsin UH(�Pi) whih are also in UH(�Pv). For a blok Pi, let v0; v1; : : : ; vk be thepre�x of the nodes in T on the path from the leaf v0 storing �Pi to the root,where UH(�Pi) \UH(�Pvj) 6= ;, i.e. rvj ;i 2 Lvj . For 0 � j < k, we with rvj ;i storean up-pointer to rvj+1 ;i. This representation allows us to eÆiently navigateUH(�Pv) in both diretions from point-to-point and blok-to-blok in onstanttime. Note that UH(�P) is stored at the root of T .Sine eah blok requires O(B) spae the total spae for the N bloks isO(N � B). Sine P is partitioned into N bloks, the total spae for the lists ofblok-reords at eah level of T is at most O(N). The total spae required isO(N � B +N � logN) = O(n).We now turn to the implementation of the operations. For Build the inputset P is �rst partitioned into N bloks, and for eah blok the upper hull isomputed by a sweep line algorithm in O(B) time and eah blok struture isinitialized in O(B) time. The onstrution time for all bloks is O(n+N �B) =O(n). The tree T is then proessed bottom-up level by level. Assume a node vhas two hildren w1 and w2, and Lw1 and Lw2 have already been omputed (for aleaf `, we de�ne L` to only ontain one blok-reord with pointers to the �rst andlast node of UH(�P`)). First we let Lv be the onatenation of Lw1 and Lw2 . Theresulting list of blok-reords represents a sequene of points forming a onvexurve exept for possible at one point, namely the last point from CH(�Pw1) orthe �rst point from CH(�Pw2), i.e. there is a pointer to p in one of the blokreords in Lv.To �x this problem we apply the standard method used in onvex hull on-strution algorithms: while we have a non-onvex point p in the list of points,i.e. p together with its predeessor and suessor point in the list form a left-turn, we remove p from the list. Removing p is done as follows: if p is in blok Pi,and p is the only point from UH(�Pi) in the list, i.e. both pointers in rv;i point

to p, we remove rv;i from Lv. Otherwise we replae the pointer to p in rv;i bya pointer to the next point in UH(�Pi) in the diretion of the point given bythe other pointer in rv;i, where we utilize that the points in UH(�Pi) are keptin a double linked list. We an at most remove a point one in the bottom-uppreproessing of T , and the time for preproessing one level of T is O(n) plusthe time used to eliminate left turns. The total time for onstruting all Lv listsbeomes O(n+N � logN) = O(n). It follows that Build takes O(n) time.Before desribing the Delete operation, we observe that only upper hullsatually ontaining p need to be updated (see Fig. 2). To perform Delete �rst inO(logn) time make a binary searh loating the blok Pi ontaining p, assumingthat P was given as an array of points or that we keep P in a balaned searhtree. In O(B) time we hek if p 2 UH(�Pi). If p =2 UH(�Pi) then no upper hullneeds to be updated and it is suÆient to remove p from the list of points in �Piin O(B) time. Otherwise p 2 UH(�Pi), and let p and !p be the predeessor andsuessor of p in UH(�Pi) (if present), and rebuild in O(B) time the data struturefor blok Pi after p has been deleted from the list of points in �Pi. What remainsis to update all the upper hulls whih ontained p. If p 2 UH(�Pv) for a node vthen rv;i 2 Lv. But then rv;i is reahable from �Pi using the stored up-pointers.The reonstrution of upper hulls is done bottom-up in T . Consider a node vand the e�et of deleting p from UH(�Pv). Let pL and pR be the two points in �Pithat rv;i has pointers to, where pL � pR. If p < pL or p > pR then p =2 UH(�Pv)and we are done. If pL < p < pR then the hanges to UH(�Pv) an only bebetween pL and pR, i.e. the updates are done loally in blok Pi and no hangesare required for Lv. The ompliated ase is when p = pL or p = pR. First weneed to delete p from the upper hull stored at v. If pL = pR then p was the onlypoint from blok Pi, and we delete rv;i from Lv. Otherwise we have two ases: ifp = pL then we replae the pointer to p in rv;i by a pointer to !p , and if p = pRthen we replae the pointer to p in rv;i by a pointer to p .After having deleted p from UH(�Pv), we must insert new points onto UH(�Pv),as illustrated by Fig. 2. If p was not an endpoint of the bridge onneting twopoints on the two upper hulls stored at the hildren of v (see Fig. 3), then thehanges to UH(�Pv) are exatly the hanges to UH(�Pw), where w is the hild of vwhere p 2 UH(�Pw) before the deletion. It follows that it is suÆient to reateand update existing blok-reords in Lv with exatly the same pointers to pointsin bloks as done for Lw.The �nal ase is when p is an endpoint of the bridge onneting the upperhulls stored at the hildren of v, ad illustrated in Fig. 3. Assuming the new bridgehas been found, then updating Lv with respet to the new points on UH(�Pv)onsists of inserting a subsequene of the points from eah of the upper hullsstored at the hildren of v, by reating a sequene of new blok-reords in Lvwith the same information as stored at the two hildren of v and hanging atmost four pointers in the blok-reords in Lv orresponding to the ends of thesubsequenes opied.To �nd the new bridge we apply a standard bridge searhing algorithm,with minor modi�ations. The standard bridge searhing proedure keeps for

p
Fig. 3. The bridge between two horizontally separated upper hulls. The dashed linesshow the hanges to the left upper hull and the new bridge when deleting point p.the upper hulls two andidate intervals for eah of endpoints of the bridge, andperforms a \simulations binary searh" on both hulls, always halving at leastone of the intervals. See e.g. [13, Lemma 3.1℄ for further details. We replae thebinary searh by a linear blok searh on eah of the two upper hulls. The linearblok searh at the left hild proeeds left-to-right, always trying to advane oneblok, whereas the linear blok searh at the right hild proeeds right-to-left.Whenever a searh is advaned to the next blok a blok-reord is added to Lvin O(1) time.The searh proess for eah upper hull �rst tries to advane a omplete blokat a time, using the information stored at the blok-reords at the hildren of vto always pik the last point in the next blok Pi ontributing to UH(�Pi). Afterhaving loalized the blok Pi ontaining one endpoint of the new bridge thesearh then proeeds in a binary fashion using the searh tree storing UH(�Pi).The total time for �nding a bridge beomes linear in the number of blok-reordsreated plus O(logB). The output of Delete an be generated immediately fromthe hanges to Lroot(T).The total time for a deletion beomes O(B + x + logN � logB), where x isthe total number of new blok-reords reated. Sine a deletion at most removesone blok-reord from eah level of T , it follows that D deletions at most deleteD � logN blok-reords. Sine there an at most be O(N � logN) blok-reords,it follows that the total time for D deletions is at most O(D �B+N � logN +D �logN +D � logN � logB) = O(n+D � logn � log logn). Sine the O(n) term anbe harged to Build, it follows that Build takes amortized O(n) time and eahDelete operation amortized O(logn log logn) time.3 Fully Dynami Data StrutureFor this part of the paper we hange the point of view of the exposition to thedual problem and onsider upper envelopes instead of upper hulls. This duality,as explained e.g. in [2, p. 167℄, maps points to lines and vie versa in a way,that preserves above/on/below relations. In this setting a set of points beomesa olletion of lines L, and the upper hull transforms to the upper envelope ofthese lines, i.e. the olletion of line segments suh that points on a segment

are not below any other line. An extreme point query, i.e. given a slope q �ndthe point of the upper hull that has a tangent of slope q, turns into a vertialline query, i.e. given a vertial line with x-oordinate q, report the segment ofthe upper envelope rossing this line. Note that this is really only a hange inpoint of view. There is no need to perform a omputation to go from the originalsetting to the dual and bak.We apply a standard dynamization tehnique that divides the urrent pointsinto sets and keeps one deletion only data struture per set. Additionally there isa more expliit representation of the urrent upper envelope, namely an intervaltree, that allows fast queries without requiring too muh work for updates. Insidethe interval tree have at eah internal node a fully dynami upper envelope datastruture, a so alled seondary struture. The running time improvement relieson a polylogarithmi bound on the size of the seondary strutures.The desription so far �ts as well to the data struture proposed in Chan [4℄.Compared to that data struture we apply improved deletion only data stru-tures. We also do some expliit grouping of the subenvelopes stemming from thedynamization, suh that the number of seondary struture storing segmentsfrom one subenvelope is redued.The remaining of this setion is devoted to proving the following theorem.Theorem 2. Let U(n) and D(n) be two nondereasing positive funtions, whereU(n) � logn and D(n) � logn. Assume there exists a data struture for the dy-nami upper envelope problem supporting Insert and Delete in amortized O(U(s))time, and Vertial Line Query in worst-ase O(log s) time, where s is the totalnumber of lines inserted. Assume further that there exists a data struture forsemi-dynami upper envelope problem supporting Build on a lexiographiallysorted list of n points in amortized O(n) time and Delete in amortized O(D(n))time, where n is the number of lines in the struture.Then there exists a data struture for the dynami upper envelope problemsupporting Insert in amortized O(logn � U(log4 n)= log logn) time and Delete inamortized O(D(n) + logn �U(log4 n)= log logn) time, and Vertial Line Query inworst-ase O(logn) time, where n is the total number of lines inserted.Applying this theorem to the data struture of Overmars and van Leeuwenwith U(s) = log2 s and the result from Set. 2 with D(n) = logn � log logn,we get Insert in O(logn � log2(log4 n)= log logn) = O(logn � log logn), and Deletein O(logn � log logn). Applying the theorem again on this new data strutureimproves Insert to O(logn � log log logn). The performane of the deletion onlydata struture is the bottlenek, that renders further appliations of the theoremuseless.For the purpose of desribing our data struture, we separate it into sev-eral layers. We �rst desribe the layers in a top down fashion, we start with adata struture that solves the fully dynami upper envelope problem using someauxiliary data strutures. For the analysis we proeed in a bottom up fashion,i.e. we always analyze the auxiliary data struture �rst. This avoids any forwardreferenes.

3.1 The interfaesFully dynami upper envelopes.Insert Insert a line, given by the parameters a and b in the representation y =ax+ b. Return a pointer to a new line data struture.Delete Given a pointer to a line data struture, delete that struture and theline it represents.Query Given a value v, report the highest intersetion of a line with the vertialline given by x = v.Query struture Q. This data struture ombines several independent upperenvelopes. It is asserted (and ould be easily heked), that the list of line seg-ments in fat form envelopes. It is also asserted, that a line is present in at mostone set and has therefore at most one segment.There is an ative set of segments that is onsidered for queries. For all lists ofsegments it is asserted, that the segments from this list form an upper envelope.A segment is given by a line and an interval on the x-axis.Init set with ative envelope Given a lexiographially sorted list L of linesand a list K � L of segments. Initialize a set data struture that an holdupper envelopes stemming from lines in L and insert K into the ative set.It is asserted that K forms a omplete upper envelope. Return a pointer toa new data struture representing the set.Delete set Delete a set given by a pointer, removing all segments from the ativeset.Replae inside an envelope Given a pointer to a set, pointers to (up to) threesegments `�; `; `!, and a lexiographially sorted list of segments K withK = `0�; : : : ; `0!. Here `! and `0! are the same segment with a hanged leftboundary, and `� and l0� di�er only in the right boundary. It is expliitlyallowed that `� and `! are void, with the meaning that ` is unbounded tothe left and respetively to the right. Replae the three segments by K inthe ative set. It is asserted that the ative set forms an upper envelope afterthe replaement.Query Given a value v, report the highest intersetion of an ative segment withthe vertial line given by x = v.Subenvelope struture T . This struture allows queries on a generalizationof segments, namely subenvelopes. A subenvelope is an lexiographially sortedlist of line segments where neighbors have preisely one point in ommon. Wewill maintain a small upper bound on the size of an subenvelope. Again it isasserted that the segments in fat are segments from upper envelopes.Insert Given a list L of segments, insert the subenvelope formed by L. Returna pointer to the newly reated data struture of the subenvelope.

Delete Given a pointer to a subenvelope, delete that subenvelope. Return thesegments of the subenvelope.Query Given a value v, report the highest intersetion of an inserted subenvelopewith the vertial line given by x = v.3.2 DynamizationThroughout the following we assume that we know the value of n, the totalnumber of insert operations, in advane. Standard doubling tehniques justifythis assumption.Starting from the monotoni data struture presented in Set. 2, we apply ageneral dynamization tehnique for deomposable searh problems attributedto Bentley and Saxe [3℄. The idea is that we divide the set of lines L intoa partition C based on the order the lines are inserted. More preisely everyset C 2 C has a rank. If there are d sets of the same rank i, we merge them intoone new set of rank i + 1. Sets of rank 0 have size 1. We hoose the parameterd = dlogne, leading to at most r = O(logd n) = O(logn= log logn) di�erentranks. This is also an upper bound on the number of times a spei� line anpartiipate in the merge of d sets. Furthermore the number e = jCj of sets isbounded by e = O(rd) = O(log2 n= log logn). Every set has a deletion onlystruture and a set in the query struture attahed.The merge operation �rst deletes all the involved sets from the Query stru-ture Q. Then it orders the lines (dual) aording to their slopes, whih orre-sponds to sorting the orresponding (primal) points aording to their x o-ordinates. Here we exploit that the sets we are merging are already sorted inthat order. We use a heap of size d to iteratively �nd the remaining line withsmallest slope. Then we invoke the Build operation of the deletion only datastruture, and use the reported upper envelope in an Init set operation of thequery struture Q. We attah the returned pointer to the new set.For an Insert(`) we reate a new reord for ` that keeps the oordinates (slopeand o�set) and also a pointer p` to the set of C that urrently ontains `. Thenwe reate a new set of size 1 and rank 0 and perform neessary merge operations.During the merge operations we update the pointers p` for all lines we move.If we want to delete a line ` we look up the set C 2 C that ontains `, andthen we invoke the Delete(`) operation of the deletion only data struture fromSet. 2. This returns a list of new segments, whih impliitly gives also the twoneighbors of `. With this information we all the Replae inside set operationof Q.3.3 GroupingNow we implement the query struture using only a Subenvelope struture. Wehoose a blok size parameter b = dlogn= log logne.The Init set with ative envelope operation �rst deletes all pointers to blokson the lines of the set. Then it groups the segments of K equally into as few as

possible bloks of size at most b. It inserts the resulting subenvelopes and storesthe subenvelope pointer at every line.The Delete set operation walks along the set, deleting bloks pointed to bythe lines and deleting the pointers as well.The Replae inside an envelope operation looks up the bloks where the threelines are stored. Then it deletes the pointed to subenvelopes, building a list Lof segments that got deleted. In this list we replae `�; `; `! by K. Then wegroup L optimally into bloks of size b. We insert the bloks and update theblok pointers.The query gets diretly handed over. This is orret, as all ative segmentsare in some blok.3.4 The interval tree T for subenvelopesWe implement the subenvelope struture as an interval tree. The interval tree Tis a rooted tree. We assume to know the number M of leaves of T . We hoosethe degree parameter B = dlogne. We keep T balaned by maintaining theinvariants that the degree of a node is at most 2B� 1 and at least 2 at the rootand at least B for all the other internal nodes. All leaves have the same distaneto the root. A leaf ` of T stores a (possibly unbounded) interval I`, its range.Every internal node v of T stores its range Iv , the interval that is the (disjoint)union of the ranges of its hildren. To deal with a non onstant degree of a nodewe maintain a ditionary (balaned tree) of the endpoints of the ranges of itshildren. For an arbitrary interval I we say that the node u of T orrespondsto I if the range of u ontains the interval, i.e. I � Iu, and for none of thehildren v of u it is the ase that I is ontained in the range Iv of v. Note thatthere is always a unique node of T orresponding to an interval. We an �ndall the intervals ontaining a ertain point p on the path from the root node tothe leaf that ontains p. We assert that the range of every leaf node ontains atmost one endpoint of the stored intervals.We store subenvelopes at the node in T that orresponds to their interval,i.e. the extent along the x-axis. We store the segments of the subenvelope in theseondary struture at that node, i.e. as lines in a fully dynami upper envelopestruture.The Insert operation reates a reord that has a list of the lines forming thesubenvelope, the interval, and a pointer to the node of T . A pointer to this reordis returned. It inserts the interval into T and �nds the node u in T orrespondingto the interval and inserts all the lines into the seondary struture Su. It storesthe returned identi�ers in a list in the newly reated reord.As we have the strong restrition that the range of a leaf should ontain atmost one endpoint of an interval stored in the tree, we might be fored to splitnodes of T in a bottom up fashion. Assume that node u of T has too manyhildren. Then we reate a new right sibling v of u (reating a new root if u wasthe root) and move the right half of the hildren of u to v. We walk through thelist of bloks being stored at u. For a blok w we take Iw to deide if they shouldstay at u, get moved to v or moved up to the parent p of u and v. If neessary

we delete all the lines of w from the seondary struture Su of u. If the blokmoves to v we insert the lines into Sv. If it moves up to p, we keep the blokw \on hold", in ase that p also gets split. During this we update the pointersbetween the nodes of T and the reords of bloks.If a subenvelope has the interval ℄ �1;1[, it gets stored at the root of T ,and it annot ause any splits. We all suh a subenvelope trivial. M aountsonly for non-trivial subenvelopes.For the Delete operation we remove all the lines from the seondary struture.For a Query operation with value x, we determine the path p in T from theroot to the leaf v of T whose range ontains x. For all nodes u on p we performan upper envelope query for x on the seondary struture Su. We report thetopmost of the answers.This answer is orret, beause the blok of the topmost segment at x isstored in one of the parents of the leaf v that ontains x.3.5 AnalysisBound on the number M of nontrivial subenvelope inserts. We haveto bound the number of operations on bloks performed within the query stru-ture Q.At the init operation we give every line a frational oin that allows it topartiipate as a fration 2=b in a non-trivial insert operation, i.e. we need b=2suh oins to pay for a non-trivial insert. Then the init operation on a set ofsize m osts us d2m=be non-trivial subenvelope insert operations. If the initoperation gives rise to a nontrivial insert, it is paid for.A replae operation is going to pay for 3 subenvelope deletions and 4 suben-velope insertions. If there are more bloks to be inserted, the bloks are de�nitelyhalf full, and only 2 bloks on eah end ontain any lines that have already usedtheir oins. The remaining blok insertions an therefore be paid with oins.Knowing that one line an only ause one replae operation and partiipatein r init operations, we get a total aount of M = O(n + n � r=b) = O(n + n �logn= log logn � log logn= logn) = O(n).Bound s on the size of seondary strutures in T . For every set in C wehave at most B subenvelopes stored at a node v. With the bounds on the sizeof subenvelope and on jCj we get s = O(B � b � e) = O(log4 n).A query takes O(logM + Q(s) � h) = O(logn + log logn � logn= log logn) =O(logn) time.Work in the split operations. Every split operation reates at least one newnode. We will aount on that node for all the insertions and deletions thathappened during this single split.We harge the work of moving a blok during a split operation entirely tothe newly reated node of T . For this we de�ne the level of a node u of T bystating that leaves have level 0, and that the parent of nodes on level i has

level i + 1. Now we observe that an interval stored at u has both endpointsat some leaf below u. Hene the ondition of having at most one endpoint ofan interval per leaf implies that we have at most Ni = (2B)i intervals storedat a node of level i. Now let u be a node on level i. Then u was reated by asplit operation performed on one of its siblings v. So we know that v is also onlevel i and the split operation involved at most Ni intervals. Additionally weknow e = O(rd) = O(log2 n= log logn) whih means for large n we have e < B2and that any node in T stores at most e � B < B3 intervals.Adding these osts level by level in the tree, we get that the total numberof intervals moved beause of split operations is bounded by O((M=B)2B +(M=B2)4B2 + (M=B3)B3 + (M=B4)B3 + (M=B5)B3 + � � �) = O(M) = O(n).We onlude that every subenvelope insertion auses in average onstantly manymoves of a subenvelope during split operations.Running time of the update operations in T . Given the previous para-graph, we onlude that an update operation of a nontrivial blok in T takesamortized O(logM+b�U(s)) time for �nding the orret node in T and to pay forthe insertions and deletions of the segments, inluding during split operations.Sine U(s) � log s, we have b�U(s) =
(logn= log logn�log logn) =
(logn),so the amortized time of a non-trivial blok insert operation beomes O(b �U(s)).For trivial bloks it takes amortized O(U(s)) time per segment. Note thateven so the root node of T is speial, the upper bound s on the number ofsegments stored there applies as well.Running time of the Query struture / Fully dynami struture. In theinit operation of the query struture we aount for 2=b nontrivial blok insertoperations for every line in the set. We already argued that this is suÆient topay for the initial insert operation of that line (i.e. when the line appears on theupper envelope of the set we just initialized). Aounting also for the possibilityof being inserted as part of a trivial blok, we get a per line amortized time ofO(U(s) + b � U(s)=b) = O(U(s)).Knowing that every line gets initialized at the worst r times, we get anamortized insert time for the fully dynami data struture of O(r � U(s)) =O(logn= log logn � U(s)) as laimed in Theorem 2.For the delete operation of the fully dynami data struture we have toaount for the delete operation in the deletion only struture, and for the replaeoperation in the query struture. As already argued, the replae operation has toaount for a onstant number of blok update operations, yielding an amortizedtime of O(D(n)+b �U(s)) = O(D(n)+logn �U(s)= log logn), the bound laimedin Theorem 2.4 Other QueriesWith the so far explained data struture for vertial line queries we an eÆientlyanswer a whole lass of other queries on the upper envelopes. Assume the query

satis�es a so alled loality property, that is for a vertial line q we an determineon whih side of q the answer lies by solely examine the highest line interseting q.Then we an use binary searh to give an answer with O(logn) vertial linequeries, that is in O(log2 n) time. But this overhead is not always neessary. Inthe next setion we will give an important example where the already explaineddata struture an be used to ahieve a O(logn) query time for a more involvedquery.4.1 Arbitrary line queriesThe query we address is in the primal setting: given a point p in the plane reportthe two tangent lines through p touhing the onvex hull or state that the pointis inside the onvex hull. This orresponds in the dual to: given an arbitrary line,give the two intersetion points of the line with the upper envelope, or \no" ifno suh intersetion exists. The exposition here adopts the dual point of view.The important observation is, that our data struture has the same propertiesas the data struture in [4℄, the argument given there applies here as well. Weonly sketh the query algorithm in our setting.We use the following fat about arbitrary line queries to navigate in theinterval tree of our data struture.Lemma 1. Let a and b be to walls and E0 � E a subset of lines s.t. the upperenvelope of E0 at a and b oinides with the upper envelope of E. Assume that anarbitrary line query for a line ` on E0 results in the right intersetion point t. If tlies between a and b then also the right intersetion T of ` with E lies between aand b.Let ` be the line query. The query algorithm starts at the root node of theinterval tree. It performs the right intersetion query on the seondary strutureof the urrent node, updating the urrent answer. Then it desends to the hildorresponding to the interval the urrent answer lies in. When it reahes a leaf,the urrent answer reets the right intersetion of ` with the upper envelope ofall lines.Given that our seondary strutures support line queries in O(log s) time,we have an overall query time of O((logB + log s)h) = O(logB logn= logB) =O(logn).5 AppliationsAs a prominent example we onsider the k-level of n lines, whih is dually relatedto the k-set question on n points. For this problem Edelsbrunner and Welzl [7℄gave an algorithm using the data struture of Overmars and van Leeuwen thatonstruts the k-level in O(n � logn+m � log2 n) time, where m is the size of thek-level. Applying Chan's data struture this improves to O(n�logn+m�log1+" n)time, and using our data struture this yields an improved O(n � logn+m � logn �log logn) time bound. A randomized algorithm using expeted O(�t+2(n+m) �

logn) time has been given by Har-Peled [8℄, where �t+2(n+m) is the maximumlength of a Davenport-Shinzel sequene of order t+ 2 having n+m symbols.Bash, Guibas and Ramkumar [1℄ onsidered a version of the segment inter-setion problem: given a onneted family R of n red line segments and a on-neted family B of n blue line segments in the plane, report all interseting pairsfrom R�B. Chan [4℄ reported an improvement from O((n+m)�log3 n) time usingOvermars and van Leeuwen's data struture to O((n+m)�log2+" n) using Chan'sdata struture. We get a further improvement to O((n +m) � log2 n � log logn).Referenes1. J. Bash, L. J. Guibas, and G. Ramkumar. Reporting red-blue intersetions be-tween two sets of onneted line segments. In Pro. 4th European Symposium onAlgorithms, volume 1136 of Leture Notes in Computer Siene, pages 302{319.Springer Verlag, Berlin, 1996.2. M. de Berg, M. van K., M. Overmars, and O. Shwarzkopf. Computational Geom-etry. Springer-Verlag, Berlin, 1997. Algorithms and appliations.3. J. Bentley and J. Saxe. Deomposable searhing problems I: Stati-to-dynamitransformation. Journal of Algorithms, 1:301{358, 1980.4. T. M. Chan. Dynami planar onvex hull operations in near-logarithmi amortizedtime. In Pro. 40th Ann. Symp. on Foundations of Computer Siene (FOCS),pages 92{99, 1999.5. B. Chazelle. On the onvex layers of a planar set. IEEE Trans. Inform. Theory,IT-31:509{517, 1985.6. Y.-J. Chiang and R. Tamassia. Dynami algorithms in omputational geometry.Proeedings of the IEEE, Speial Issue on Computational Geometry, 80(9):1412{1434, 1992.7. H. Edelsbrunner and E. Welzl. Construting belts in two-dimensional arrangementswith appliations. SIAM J. Comput., Vol. 15, No. 1, 1986.8. S. Har-Peled. Taking a walk in a planar arrangement. In Pro. 40th Ann. Symp. onFoundations of Computer Siene (FOCS), pages 100{110, 1999.9. J. Hershberger and S. Suri. Appliations of a semidynami onvex hull algorithm.BIT, 32:249{267, 1992.10. J. Hershberger and S. Suri. O�-line maintenane of planar on�gurations. Journalof Algorithms, 21:453{475, 1996.11. K. Mulmuley. Randomized multidimensional searh trees: lazy balaning and dy-nami shu�ing. In Pro. 32nd Ann. Symp. on Foundations of Computer Siene(FOCS), pages 180{196, 1991.12. M. H. Overmars and J. van Leeuwen. Maintenane of on�gurations in the plane.Journal of Computer and System Sienes, 23:166{204, 1981.13. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introdution.Springer Verlag, Berlin, 1985.14. F. P. Preparata and J. S. Vitter. A simpli�ed tehnique for hidden-line eliminationin terrains. International Journal of Computational Geometry & Appliations,3(2):167{181, 1993.15. O. Shwarzkopf. Dynami maintenane of geometri strutures made easy. In Pro.32nd Ann. Symp. on Foundations of Computer Siene (FOCS), pages 197{206,1991.

