
External Memory Fully Persistent Search Trees∗

Gerth Stølting Brodal

Aarhus University

Department of Computer Science

Denmark

gerth@cs.au.dk

Casper Moldrup Rysgaard

Aarhus University

Department of Computer Science

Denmark

rysgaard@cs.au.dk

Rolf Svenning

Aarhus University

Department of Computer Science

Denmark

rolfsvenning@cs.au.dk

ABSTRACT

We present the first fully-persistent external-memory search tree

achieving amortized I/O bounds matching those of the classic

(ephemeral) B-tree by Bayer and McCreight. The insertion and dele-

tion of a value in any version requires amortized O
(
log𝐵 𝑁𝑣

)
I/Os

and a range reporting query in any version requires worst-case

O
(
log𝐵 𝑁𝑣 + 𝐾/𝐵

)
I/Os, where 𝐾 is the number of values reported,

𝑁𝑣 is the number of values in the version 𝑣 of the tree queried or

updated, and 𝐵 is the external-memory block size. The data struc-

ture requires space linear in the total number of updates. Compared

to the previous best bounds for fully persistent B-trees [Brodal,

Sioutas, Tsakalidis, and Tsichlas, SODA 2012], this paper eliminates

from the update bound an additive term of O
(
log

2
𝐵
)
I/Os. This

result matches the previous best bounds for the restricted case of

partial persistent B-trees [Arge, Danner and Teh, JEA 2003]. Cen-

tral to our approach is to consider the problem as a dynamic set of

two-dimensional rectangles that can be merged and split.

CCS CONCEPTS

• Theory of computation → Data structures design and anal-

ysis.

KEYWORDS

B-trees, range queries, external memory, full persistence, semi-

dynamic ray shooting.

ACM Reference Format:

Gerth Stølting Brodal, Casper Moldrup Rysgaard, and Rolf Svenning. 2023.

External Memory Fully Persistent Search Trees. In Proceedings of the 55th
Annual ACM Symposium on Theory of Computing (STOC ’23), June 20–
23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 14 pages. https:

//doi.org/10.1145/3564246.3585140

1 INTRODUCTION

The B-tree of Bayer and McCreight [6] is the classic external-

memory data structure for storing a dynamic set S of 𝑁 totally

ordered values. It supports the insertion and deletion of values in

O
(
log𝐵 𝑁

)
I/Os and range reporting queries in O

(
log𝐵 𝑁 + 𝐾/𝐵

)
∗
Work supported by Independent Research Fund Denmark, grant 9131-00113B.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’23, June 20–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9913-5/23/06. . . $15.00

https://doi.org/10.1145/3564246.3585140

I/Os, i.e., reporting all values contained in a value range [𝑥,𝑦],
where 𝐾 is the number of values reported and 𝐵 is the external-

memory block size.

In this paper, we consider the problem of storing a dynamic

set in external memory fully persistently, i.e., all versions of the
set are emembered, any previous version can be queried, and any

previous version can be updated resulting in a new version of the

set. We present the first fully persistent search trees matching the

asymptotic I/O bounds of the classic ephemeral (i.e., non-persistent)
B-trees in the amortized sense.

Throughout this paper, we will assume the I/O model of Aggar-

wal and Vitter [2] consisting of an internal memory being able to

hold𝑀 values, and an infinite external memory. One I/O can trans-

fer 𝐵 consecutive values between internal and external memory,

and the I/O complexity of an algorithm is the number of I/Os per-

formed. Computation can only be performed in internal memory,

and the only allowed operations on values are comparisons.

1.1 Interface of a Fully Persistent Search Tree

The interface to a fully persistent search tree consists of the below

operations. Each version is identified by a unique version identifier 𝑣

(a positive integer). We let S𝑣 denote the set of values at version 𝑣 .

The versions form a version tree 𝑇 , where the root (version 1) stores

the initial set, and a new version𝑤 becomes a child of an existing

version 𝑣 in𝑇 , if S𝑤 is derived as a clone of S𝑣 . Updates (insertions

and deletions) can only be applied at leaves of the version tree 𝑇 ,

i.e., versions that have not been cloned yet. These versions are said

to be unlocked. A version that has been cloned cannot be updated

further and is said to be locked. All versions can be queried and

cloned. If one needs to update a locked version (an internal node of

the version tree), one has to clone the version and apply the update

to the new unlocked version (leaf of the version tree).

Clone(𝑣) Creates a new version𝑤 , where S𝑤 = S𝑣 . Returns

the new version identifier𝑤 . Version𝑤 becomes a child of 𝑣

in the version tree 𝑇 , i.e., after the operation version 𝑣 is

locked and version𝑤 is unlocked.

Insert(𝑣, 𝑥) Adds 𝑥 to S𝑣 . Requires version 𝑣 is unlocked.

Delete(𝑣, 𝑥) Removes 𝑥 from S𝑣 . Requires version 𝑣 is un-

locked. If 𝑥 is not contained in S𝑣 , nothing is changed.

Range(𝑣, 𝑥,𝑦) Returns all values in S𝑣 ∩ [𝑥,𝑦] in increasing

order.

Search(𝑣, 𝑥) Returns the predecessor of 𝑥 in S𝑣 .

We let 𝑁𝑣 denote the number of values in S𝑣 , and 𝑁 the total

number of updates done to all versions. Figure 1 (top) illustrates

a version tree. In the following examples, we illustrate values as

integers, but our construction works for any comparison based

values.

https://orcid.org/0000-0001-9054-915X
https://orcid.org/0000-0002-3989-123X
https://orcid.org/0000-0002-9903-4651
https://doi.org/10.1145/3564246.3585140
https://doi.org/10.1145/3564246.3585140
https://doi.org/10.1145/3564246.3585140

STOC ’23, June 20–23, 2023, Orlando, FL, USA Gerth Stølting Brodal, Casper Moldrup Rysgaard, and Rolf Svenning

1.2 Previous Work

For the non-persistent setting in internal memory, a set can be

stored using a standard balanced binary search tree, e.g., AVL-

trees [1], red-black trees [20], and (𝑎, 𝑏)-trees [21]. These all support
insertions and deletions in O

(
log

2
𝑁
)
time, and range reporting

queries in O
(
log

2
𝑁 + 𝐾

)
time. In external memory, the B-tree [6]

is the classic data structure of choice and supports updates in

O
(
log𝐵 𝑁

)
I/Os and range reporting queries in O

(
log𝐵 𝑁 + 𝐾/𝐵

)
I/Os. A number of papers have since explored the update-query

trade-off starting with [10] giving a structure known as the 𝐵𝜀 -tree

for any 0 < 𝜀 < 1 with amortized O
(

1

𝜀𝐵1−𝜀 log𝐵 𝑁

)
I/Os for updates

and O
(
1

𝜀 log𝐵 𝑁

)
I/Os for queries. The 𝐵𝜀 -tree operates similarly to

a B-tree but with fanout 𝐵𝜀 and updates are flushed down the tree

using buffers, leading to the amortized bound. In [8, 9] the amor-

tized bound was improved to high probability and finally in [15] to

worst-case.

The notion of (data structural) full persistence for internal mem-

ory data structures was coined by Driscoll, Sarnak, Sleator and

Tarjan in [18], where they also described how to achieve a fully

persistent version of red-black trees. Previous to this Sarnak and

Tarjan [25] had presented partially persistent red-black trees, where

partial refers to the limitation that only the most recent version of

the red-black tree can be updated, i.e., all versions of the red-black

tree form a version tree consisting of a single path with the most

recent version of the red-black tree being the single leaf. Demaine,

Iacono and Langerman [16] considered the notion of retroactive
data structures, where updates can be applied to any version in the

version tree, and updates are automatically recursively applied to

all derived version.

Adopting the notions of partial and full persistence to external-

memory search trees has been done in a sequence of papers. See

Table 1. The results of Arge, Danner and Teh 2003 [4] and Brodal,

Sioutas, Tsakalidis and Tsichlas [11, 12] achieve the best bounds for

partial and full persistence, respectively. Both results achieve opti-

mal bounds for range reporting, i.e., O
(
log𝐵 𝑁𝑣 + 𝐾/𝐵

)
I/Os (the 𝑁

in the bounds of [4] for partial persistence can be reduced to 𝑁𝑣 by

applying global rebuilding after a linear number of updates). The

update I/O bound of [4] matches the O
(
log𝐵 𝑁

)
I/Os for B-trees,

whereas the full persistence result of [11] has an additive O
(
log

2
𝐵
)

I/Os overhead per update. This paper eliminates this additive term

and achieves update bounds matching those of (ephemeral) B-trees

and [4] for partial persistence.

1.3 Contribution

The main contribution of this paper are fully-persistent external-

memory search trees, achieving the following bounds, matching

those of (ephemeral) external-memory B-trees.

Theorem 1.1. There exist external-memory fully-persistent search
trees supporting Insert and Delete in amortized O

(
log𝐵 𝑁𝑣

)
I/Os,

Clone in worst-case O(1) I/Os, Search in worst-case O
(
log𝐵 𝑁𝑣

)
I/Os, and Range in worst-case O

(
log𝐵 𝑁𝑣 + 𝐾/𝐵

)
I/Os. The space

usage is linear in the number of updates.

It should be noted that for the case where𝑁𝑣 = 𝐵
O(1)

, the update

bounds are O
(
log𝐵 𝑁𝑣

)
= O(1) I/Os, whereas the best previous

update bound was O
(
log

2
𝐵
)
= O

(
log

2
𝑁𝑣

)
I/Os [11]. Our range

reporting queries can be extended to support an argument 𝑘 , and

to only report in sorted order the first 𝑘 (or last 𝑘) values in a value

range [𝑥,𝑦] using O
(
log𝐵 𝑁𝑣 + 𝑘/𝐵

)
I/Os, by simply truncating the

reporting when 𝑘 values have been found.

The basic ideas of the construction are the following. As in [18],

we use a linearization of the version tree into a version list obtained

by a pre-order traversal of the version tree. Values are associated

with half-open liveness intervals of the version list. See Figure 1

(bottom). To adapt this to external memory setting, we consider

these (value, liveness interval) pairs as vertical segments in a two-

dimensional plane, and partition the plane into rectangles, possible

splitting segments into multiple smaller disjoint segments. See Fig-

ure 2. During insertions and deletions the partition into rectangles

is dynamically updated by splitting rectangles in either the ver-

sion dimension (corresponding to the node splitting idea in [18])

or value dimension (corresponding to splitting a leaf in a B-tree),

or by joining two horizontally adjacent rectangles (corresponding

to joining two adjacent leaves in a B-tree). See Figure 3. A range

reporting query Range(𝑣, 𝑥,𝑦) simply identifies all rectangles inter-

sected by the horizontal query segment [𝑥,𝑦] × {𝑣}, and reports the
values of all vertical segments in these rectangles intersecting the

horizontal query segment. Invariants ensure that for all rectangles

intersected, except for two, a constant fraction of the values are

part of the answer to the query. This is inspired by the filtering

search of Chazelle [13].

Essential to our result is the application of a two-dimensional

orthogonal point location (vertical ray shooting) structure to iden-

tify the rectangle containing a (value, version) point. Point location

queries must be supported in worst-case O
(
log𝐵 𝑁

)
I/Os, whereas

segment insertions are allowed to be significantly slower, as high as

amortized O(𝐵 log2
𝐵
𝑁) I/Os. The best external-memory bounds for

dynamic orthogonal point location are by Munro and Nekrich [24],

who support updates and queries with O
(
log𝐵 𝑁 log log𝐵 𝑁

)
I/Os,

and by Arge, Brodal and Rao [3], who support queries with

O(log2
𝐵
𝑁) I/Os and updates with O

(
log𝐵 𝑁

)
I/Os (in internal mem-

ory O(log𝑛) time updates and queries were achieved by Giora and

Kaplan [19]). To achieve queries with O
(
log𝐵 𝑁

)
I/Os, we describe

a specialized insertion-only external-memory point location struc-

ture, that also crucially avoids the comparison of version identifiers.

The internal-memory [18] and external-memory [11] persistent

search trees make essential use of the dynamic data structure by

Dietz and Sleator [17] to answer order queries among two version

identifiers in the version list inO(1) time and I/Os. This is in fact the

bottleneck causing the additive O
(
log

2
𝐵
)
I/Os on updates in [11].

We avoid the use of [17] by using an external-memory colored pre-

decessor data structure, that essentially stores multiple predecessor

data structures in a single B-tree.

1.4 Outline of Paper

In Section 2 we present our geometric interpretation of the fully

persistence search tree problem and describe our data structure for

the static case. In Sections 3–5 we present a simplified dynamic

result, Theorem 1.2 below, where we assume an upper bound 𝑁

of the total number of updates to be performed and use 𝑁 as a

parameter in our construction, and Clone uses O(log𝐵 𝑁) I/Os. In

External Memory Fully Persistent Search Trees STOC ’23, June 20–23, 2023, Orlando, FL, USA

Table 1: I/O bounds for previous and new results for partial and full persistent search trees in external memory. All structures

use linear space.

Reporting Update

Partial persistence

Lomet and Salzberg [23] O(𝑁𝑣/𝐵) O
(
log𝐵 𝑁𝑣 log𝐵 𝑁

)
Becker, Gschwind, Ohler, Seeger, Widmayer [7]

}
Varman and Verma [26]

O
(
log𝐵 𝑁 + 𝐾/𝐵

)
O
(
log

2

𝐵
𝑁𝑣

)
am.

Arge, Danner, Teh [4] O
(
log𝐵 𝑁 + 𝐾/𝐵

)
O
(
log𝐵 𝑁

)
am.

Full persistence

Lanka and Mays [22] O
(
(log𝐵 𝑁𝑣 + 𝐾/𝐵) log𝐵 𝑁

)
O
(
log

2

𝐵
𝑁𝑣

)
am.

Brodal, Sioutas, Tsakalidis, Tsichlas [11] O
(
log𝐵 𝑁𝑣 + 𝐾/𝐵

)
O
(
log𝐵 𝑁𝑣 + log

2
𝐵
)
am.

This paper O
(
log𝐵 𝑁𝑣 + 𝐾/𝐵

)
O
(
log𝐵 𝑁𝑣

)
am.

Table 2: I/O bounds of the operations for each improvement of the structure. All structures use linear space.

Clone Insert and Delete Search Range

Geometric Structure (Sections 2, 3, 4, 5) O
(
log𝐵 𝑁

)
O
(
log𝐵 𝑁

)
O
(
log𝐵 𝑁

)
O
(
log𝐵 𝑁 + 𝐾/𝐵

)
Partitioning the Version Tree (Section 6) O

(
log𝐵 𝑁𝑣

)
O
(
log𝐵 𝑁𝑣

)
O
(
log𝐵 𝑁𝑣

)
O
(
log𝐵 𝑁𝑣 + 𝐾/𝐵

)
Lazy Clones (Section 7) O(1) O

(
log𝐵 𝑁𝑣

)
O
(
log𝐵 𝑁𝑣

)
O
(
log𝐵 𝑁𝑣 + 𝐾/𝐵

)
Section 3 we describe the dynamic version of our data structure and

in Sections 4 and 5 we describe our colored predecessor and point

location structures, respectively. In Sections 6–7 we then show

how to improve these bounds to those of Theorem 1.1. In Section 6

we show how to make the I/O bounds depend on the size 𝑁𝑣 of

a version 𝑣 , instead of the upper bound parameter 𝑁 , by splitting

the version tree into multiple version trees, where all versions in a

version tree have approximately equal sizes. In Section 7 we show

how to reduce the cost of Clone from O
(
log𝐵 𝑁𝑣

)
I/Os to O(1)

I/Os by performing lazy clones, i.e., the actual cloning is postponed

until the first update is performed on a version. An overview of the

I/O bounds for each of these improvements is presented in Table 2.

Theorem 1.2. Let 𝑁 be a parameter giving an upper bound on
the total number of updates. Then there exist external-memory fully-
persistent search trees that support Insert, Delete and Clone in
amortized O(log𝐵 𝑁) I/Os, Search in worst-case O(log𝐵 𝑁) I/Os,
and Range in worst-case O(log𝐵 𝑁 + 𝐾/𝐵) I/Os. The space usage is
linear in the number of updates.

2 STATIC DATA STRUCTURE

Our implementation of a persistent search tree takes a geometric

approach. In Section 2.1 we introduce the version tree and version

list, concepts that we borrow from [18], and in Section 2.2 we give

a geometric interpretation of range reporting queries. In Section 2.3

we introduce our rectangular two-dimensional space partition in

the static setting, and in Section 2.4 we summarize the main prop-

erties of the rectangular partition that should be maintained by the

dynamic structure in Section 3. In Section 2.5 we describe how to

support queries at the high level.

2.1 Version Tree and Version List

Following [18], we define the version tree 𝑇 as follows. The root

is version 1. Whenever a new version 𝑤 is created, it is assigned

the smallest unused positive integer value so far. If 𝑤 is created

by cloning 𝑣 , then 𝑤 becomes the leftmost child of 𝑣 . This ap-

proach guarantees if 𝑇 contains 𝑠 versions, then these are versions

{1, 2, . . . , 𝑠}, that version identifiers are unique, the version identi-

fiers of the children of a node are increasing from right to left, and

the version identifiers along a root-to-leaf path are increasing.

Similarly to [18], we derive a version list 𝐿 from 𝑇 by a preorder

left-to-right traversal of 𝑇 . As version 1 is the root of the version

tree 𝑇 , it is also the first version in 𝐿. We assume that 𝐿 is termi-

nated by version 0. Given two versions 𝑣 and𝑤 , we in the following

let [𝑣,𝑤 [denote the versions in the version list from 𝑣 up to 𝑤 ,

but excluding 𝑤 . Note that in the version list [1, 0[includes all
nodes of the version list, except for the terminating version 0. With

each value 𝑥 inserted into version 𝑣 we store the liveness inter-
val [𝑣, succ(𝑣) [, where succ(𝑣) is the successor of 𝑣 in the version

list. If version 𝑤 is created by cloning version 𝑣 , then 𝑤 becomes

the leftmost child of 𝑣 in the version tree, i.e.,𝑤 should be inserted

immediately after 𝑣 in the version list. Crucial to the definition of

the liveness interval, which is also used in [18], is that the later ver-

sions𝑤 created below 𝑣 in the version tree are exactly the versions

that will be contained in the liveness interval of 𝑥 , if 𝑥 was inserted

in version 𝑣 .

In Figure 1 (bottom) the liveness intervals are shown for all values

inserted in the example in Figure 1 (top). E.g., the value 2 is inserted

into version 1 with liveness interval [1, 0[, since only version 1

exists when 2 is inserted. The value 5 is inserted into versions 2

and 8, with liveness intervals [2, 0[and [8, 6[, respectively (versions
3, 4 and 5 did not yet exist when 5 was inserted into version 2).

Finally, value 7 is inserted in version 1 with liveness interval [1, 0[
but again deleted in versions 3 and 7 for liveness intervals [3, 0[
and [7, 6[, respectively. The result is that value 7 only exists for the

remaining version intervals [1, 7[and [6, 3[, i.e., versions 1, 2 and 6
in the current version tree.

STOC ’23, June 20–23, 2023, Orlando, FL, USA Gerth Stølting Brodal, Casper Moldrup Rysgaard, and Rolf Svenning

1

Insert(2)

Insert(7)

7

Delete(7)

Insert(6)
6

Insert(4)

2 Insert(5)

8

Insert(5)

3 Delete(7)

5

Insert(3)

4

Insert(6)

1 2 3 4 5 6 7 8 9

value

1

7

8

6

2

3

5

4

0

v
e
r
s
i
o
n
l
i
s
t

Figure 1: (Top) Version tree illustrating 8 versions of a set

after 𝑁 = 10 updates. Versions 1, 2, 3, and 4 contain the sets

{2, 7}, {2, 5, 7}, {2, 5}, {2, 5, 6}, respectively. Updates to a version

are shown next to the node of the version tree. (Bottom) The

version list, consisting of a left-to-right preorder traversal of

the version tree terminated by 0, and the half-open liveness

intervals of versions containing a value. Note that the value

7 only is contained in versions 1, 6 and 2 of the set. The

topmost dashed line shows that version 4 of the set contains

{2, 5, 6}, the dashed line segment at version 6 shows that the

range reporting query Range(6, 3, 8) has result {4, 7}, and the

bottommost dashed arrow that the query Search(7, 9) has
result 6.

2.2 Geometry of Updates and Queries

Our problem has a natural geometric interpretation in a two-

dimensional space, see Figure 1 (bottom). Consider the plane where

𝑥-values correspond to values, and the 𝑦-value corresponds to the

order in the version list. Insert(𝑣, 𝑥) corresponds to inserting the

line segment {𝑥} × [𝑣, succ(𝑣) [, whereas Delete(𝑣, 𝑥) to deleting

the line segment {𝑥} × [𝑣, succ(𝑣) [, possibly splitting a longer line

segment into two disjoint segments. Crucial for the implementation

of deletions is that the length of the interval to be deleted (at the

time of deletion) is only between two adjacent versions in the ver-

sion list. The values in S𝑣 are exactly those vertical line segments

intersecting the horizontal line at version 𝑣 , and the answer to the

range reporting query Range(𝑣, 𝑥,𝑦) are exactly the vertical seg-

ments intersected by [𝑥,𝑦] × {𝑣}, and the answer to Search(𝑣, 𝑥)
is the rightmost vertical segment intersected by [−∞, 𝑥] × {𝑣}.

𝑟1

𝑟4 𝑟5

𝑟2 𝑟3

𝑥 𝑦𝑧

𝑣

𝑤

value

v
e
r
s
i
o
n

Figure 2: The partitioning of the plane into rectangles, a

query Range(𝑣, 𝑥,𝑦) represented by the dashed line between

two square endpoints spanning rectangles 𝑟1, 𝑟2, and 𝑟3, and

a query Search(𝑤, 𝑧) represented by the dashed arrow origi-

nating from a square endpoint, spanning rectangles 𝑟5 and 𝑟4.

Note that black dots on vertical segments correspond to the

upper endpoint of the segment in the rectangle below and

the lower endpoint of the segment in the rectangle above.

2.3 Static Rectangular Partitioning

Assume𝑁 updates have been performed on a fully persistent search

tree. In the following we present a static structure storing the re-

sulting versions using the geometric representation discussed in

Section 2.2 and supports queries in O
(
log𝐵 𝑁

)
I/Os. In Section 3

we extend this structure to support updates.

A key cornerstone of our structure is the parameter

𝑅 = Θ
(
𝐵 log𝐵 𝑁

)
.

A crucial property that we will make repeated use of is that, given

a list of 𝑅 segments in external memory stored in O(𝑅/𝐵) blocks,
the list can be scanned using O(𝑅/𝐵) = O

(
log𝐵 𝑁

)
I/Os.

We partition the value × version plane into disjoint rect-

angles 𝑟1, 𝑟2, . . . , 𝑟𝑘 , see Figure 2. We denote the full plane by

[−∞, +∞[×[1, 0[(by slight misuse of notation we let [−∞, +∞[
denote the whole value range), and each rectangle 𝑟 is of the form

[𝑥𝑟 , 𝑦𝑟 [×[𝑣𝑟 ,𝑤𝑟 [, where 𝑥𝑟 < 𝑦𝑟 are values in the value range,

possibly 𝑥𝑟 = −∞ and 𝑦𝑟 = ∞, and 𝑣𝑟 and𝑤𝑟
are versions, where

𝑤𝑟
is strictly after 𝑣𝑟 in the version list. The vertical segments corre-

sponding to liveness intervals of a value (Section 2.1) are split into

shorter segments such that segments never overlap with two rect-

angles, i.e., a segment {𝑥} × [𝑣,𝑤 [is repeatedly split into segments

{𝑥} × [𝑣, 𝑣𝑟 [and {𝑥} × [𝑣𝑟 ,𝑤 [, if a rectangle 𝑟 = [𝑥𝑟 , 𝑦𝑟 [×[𝑣𝑟 ,𝑤𝑟 [
is intersected by the segment, i.e., 𝑥𝑟 ≤ 𝑥 < 𝑦𝑟 and 𝑣𝑟 ∈]𝑣,𝑤 [.
For a rectangle 𝑟 , we let 𝑆𝑟 denote the set of vertical segments

{𝑥} × [𝑣,𝑤 [contained in 𝑟 .

If the rectangle partition is constructed such that each rectangle

contains O(𝑅) segments, each rectangle is stored in O(𝑅/𝐵) blocks
in external memory, and we have a point location structure that

can report the rectangle containing a given a query point using

O
(
log𝐵 𝑁

)
I/Os (e.g., the structure in Section 5), then all segments

in the rectangle containing a query point can be reported using

O
(
log𝐵 𝑁 + 𝑅/𝐵

)
= O

(
log𝐵 𝑁

)
I/Os.

External Memory Fully Persistent Search Trees STOC ’23, June 20–23, 2023, Orlando, FL, USA

As seen in Figure 2 a range reporting query may need to report

values from multiple rectangles. Assuming that we for each rectan-

gle can output Θ(𝑅) values, except for the at most two rectangles

containing the endpoints of the range reporting query, then each

rectangle can be found using O
(
log𝐵 𝑁

)
I/Os by the point location

structure, and the I/O cost for querying each of these rectangles

can be charged to the output. The total number of I/Os for a range

reporting query becomes O
(
log𝐵 𝑁 + 𝐾/𝐵

)
I/Os, where 𝐾 is the

total number of values reported by the range reporting query.

We require that each non-rightmost rectangle contains Θ(𝑅)
segments spanning all versions of the rectangle. We denote these

spanning segments, i.e., segments {𝑥} × [𝑣𝑟 ,𝑤𝑟 [contained in a

rectangle 𝑟 = [𝑥𝑟 , 𝑦𝑟 [×[𝑣𝑟 ,𝑤𝑟 [, where 𝑥𝑟 ≤ 𝑥 < 𝑦𝑟 . This ensures

that all rectangles considered by a Search and Range query for a

given version containΘ(𝑅) values, except for possibly the rightmost

rectangle. Note that for Search queries, the predecessor must be

reported, and by the spanning requirement, if the predecessor does

not exist in the current rectangle, then it must either exist in the left

neighboring rectangle for this version, or no predecessor exists. For

each rectangle the segments are stored in increasing value order, so

that range reporting queries can report values in increasing order.

To be able to efficiently compare versions within a rectangle

𝑟 = [𝑥𝑟 , 𝑦𝑟 [×[𝑣𝑟 ,𝑤𝑟 [, we maintain the local version list 𝐿𝑟 ⊆ 𝐿 ∩
[𝑣𝑟 ,𝑤𝑟] for 𝑟 , that contains the two versions 𝑣𝑟 and 𝑤𝑟

and all

versions that define endpoints of segments in 𝑆𝑟 . Since |𝑆𝑟 | = O(𝑅),
we also have |𝐿𝑟 | = O(𝑅). The versions in 𝐿𝑟 are stored in the same

order as in the global version list 𝐿. With each version 𝑣 ∈ 𝐿𝑟 we
store the local version 𝜋𝑟 (𝑣) of 𝑣 in 𝐿𝑟 , that just is the position of 𝑣

in 𝐿𝑟 , i.e., an integer in the range 1..|𝐿𝑟 |. The important property

is that 𝑣 is before𝑤 in 𝐿𝑟 if and only if 𝜋𝑟 (𝑣) < 𝜋𝑟 (𝑤), where the
later is a simple comparison between two integers.

We store the segments in 𝑆𝑟 only using the local versions. Seg-

ment {𝑥} × [𝑣,𝑤 [in 𝑆𝑟 is stored as the triple (𝑥, 𝜋𝑟 (𝑣), 𝜋𝑟 (𝑤)), and
𝑆𝑟 is stored in increasing value order in O(|𝑆𝑟 |/𝐵) blocks in exter-

nal memory. When a new version 𝑣 is added to 𝐿𝑟 , all versions𝑤

after 𝑣 in 𝐿𝑟 get their local version 𝜋𝑟 (𝑤) increased by one, and

similarly all segments in 𝑆𝑟 need to be checked if the local version

of their endpoints must be increased by one.

If the version 𝑣 of a query point (𝑥, 𝑣) is not the endpoint of any of
the segments in the rectangle 𝑟 containing (𝑥, 𝑣), i.e., 𝑣 ∉ 𝐿𝑟 , let𝑢 be

the predecessor of 𝑣 and𝑤 the successor of 𝑣 in the local version list.

Since no version between 𝑢 and𝑤 are endpoints of any segments

and all segments are inclusive in the first version and exclusive in

the second version, all versions between 𝑢 and 𝑤 must have the

same values in the value range of 𝑟 . Since 𝑢 ∈ 𝐿𝑟 , we can use 𝜋𝑟 (𝑢)
to compare against the local versions of the segment endpoints in

𝑆𝑟 during a query. In Section 4 we describe a structure that can find

the predecessor version in a local version list using O
(
log𝐵 𝑁

)
I/Os,

which thus does not increase the I/O cost of queries.

2.4 Structural Requirements

The below list summarizes the main properties required by our

rectangular partition from the previous sections. In Section 3 we

explain how to maintain them dynamically.

• A rectangle stores O(𝑅) segments.

• The number of spanning segments in a rectangle is Θ(𝑅),
except for rightmost rectangles.

• The segments are stored in increasing value order.

• For each rectangle and segment in a rectangle we store the

local versions.

Additionally, we need two more structures. The first structure

we call a colored predecessor structure which relates global and local

versions. The second structure is a point location structure which

allows us to navigate the rectangular partitioning. Crucial to both

structures is that they should avoid comparing the relative order

of versions in the global version list, as we also do internally in

the rectangles by using local version lists. That is, we need data

structures for the following two problems:

• Colored predecessor problem (Section 4): Given a version 𝑣

and a rectangle 𝑟 find the predecessor version 𝑢 of 𝑣 in the

local version list 𝐿𝑟 using O
(
log𝐵 𝑁

)
I/Os. For this problem,

we think of each rectangle as a unique color.

• Point location (Section 5): Given a query point (𝑥, 𝑣) find the
rectangle containing the query point using O

(
log𝐵 𝑁

)
I/Os.

2.5 Queries

To perform Range(𝑣, 𝑥,𝑦) we first perform a point location query

to find the rectangle 𝑟 containing the point (𝑥, 𝑣) and perform a

colored predecessor query to find the predecessor 𝑢 of 𝑣 in 𝐿𝑟 .

We find the vertical segments in 𝑟 intersected by the horizontal

segment [𝑥,𝑦] × {𝑢} by scanning through all triples (𝑧, 𝑖, 𝑗) in 𝑆𝑟
and report those 𝑧 where 𝑥 ≤ 𝑧 ≤ 𝑦 and 𝑖 ≤ 𝜋𝑟 (𝑢) < 𝑗 , i.e., the

local version interval contains 𝜋𝑟 (𝑢). If 𝑦𝑟 < 𝑦 we recursively call

Range(𝑣,𝑦𝑟 , 𝑦). The properties of the partitioning ensure that for
each rectangle visited, we will report Θ(𝑅) values, except possibly
the leftmost and rightmost rectangles considered.

To perform Search(𝑣, 𝑥), similarly to Range(𝑣, 𝑥,𝑦) we first

locate the rectangle containing the point (𝑥, 𝑣), but now we instead

traverse left until the first segment intersection with [−∞, 𝑥] × {𝑣}
is identified, which will be the predecessor of 𝑥 in S𝑣 (how to

move to the rectangle to the left of another rectangle is described

in Section 3.2). It is guaranteed that at most two rectangles are

required to be scanned due to spanning segments requirement.

Assuming the I/O bounds for the colored predecessor struc-

ture in Section 4 and the point location structure in Section 5 are

O
(
log𝐵 𝑁

)
, we from the discussion in this section get that Range

and Search queries can be performed in O
(
log𝐵 𝑁 + 𝐾/𝐵

)
and

O
(
log𝐵 𝑁

)
I/Os, respectively.

3 UPDATES

In Section 2.3 we described how to efficiently perform queries given

a rectangular partition of the plane, assuming some structures exist

to report rectangles and version predecessors, where each rectangle

had to meet a list of requirements as summarized in Section 2.4.

In this section, we discuss how to turn these requirements into

invariants, such that the structure can be made dynamic, i.e., allow

for cloning versions and performing insertions and deletions of

values in the different versions. We assume, that on initialization

we are given a constant 𝑁 , which is an upper bound on the total

STOC ’23, June 20–23, 2023, Orlando, FL, USA Gerth Stølting Brodal, Casper Moldrup Rysgaard, and Rolf Svenning

number of updates to be performed on the structure, and let

𝑅 = 𝐵 log𝐵 𝑁 .

When performing a Clone operation, the geometric view re-

mains the same, apart from a horizontal part being “stretched” to

make room for the new version. All information stored in the rect-

angles remains the same, as the new version is not contained in

any segment endpoints. The new version must therefore only be

inserted in the global version list 𝐿 and the colored predecessor

structure from Section 4. Assuming that a direct pointer to the

version cloned in 𝐿 is provided, the new version can be inserted

into 𝐿 using worst-case O(1) I/Os. A new version can be inserted

in the colored predecessor structure using amortized O(log𝐵 𝑁)
I/Os. In total the Clone operation requires amortized O(log𝐵 𝑁)
I/Os.

The Insert operation is performed as discussed in Section 2.2

by inserting a value 𝑥 into the structure at version 𝑣 is equivalent

to adding the segment {𝑥} × [𝑣, succ(𝑣) [. Similarly, to perform

a Delete operation of a value 𝑥 at version 𝑣 , then the segment

{𝑥}× [𝑣, succ(𝑣) [is to be removed. Note that this potentially means

partitioning an already present segment {𝑥} × [𝑢,𝑤 [, where 𝑢 ≤
𝑣 < 𝑤 , into two new segments, where the piece of the segment

between versions 𝑣 and succ(𝑣) is removed.

As succ(𝑣) is the version immediately after 𝑣 in the version list,

and all rectangles are exclusive the top version, then the segment

{𝑥} × [𝑣, succ(𝑣) [exists entirely within one rectangle. This rec-

tangle 𝑟 can be found as the rectangle containing the point (𝑥, 𝑣)
using the point location structure of Section 5 with O(log𝐵 𝑁) I/Os.
𝐿𝑟 can then be updated with versions 𝑣 and succ(𝑣), which are

either inserted or deleted to make 𝐿𝑟 reflect the current segment

endpoints. The locations in 𝐿𝑟 can be found using the colored prede-

cessor structure in Section 4 with O(log𝐵 𝑁) I/Os. As new versions

are inserted into 𝐿𝑟 , this may require the colored predecessor struc-

ture to be updated using O(log𝐵 𝑁) I/Os for each newly inserted

version. Next, the segments of 𝑆𝑟 must be updated for the segment

{𝑥} × [𝑣, succ(𝑣) [, as well as the local version of all segments in 𝑆𝑟 .

Note that the local version of all versions present after 𝑣 in 𝐿𝑟 is

incremented or decremented by either 0, 1 or 2, depending on how

many versions were inserted or deleted from 𝐿𝑟 . The segments of

𝑆𝑟 can thus be updated in a single scan using O(log𝐵 𝑁) I/Os by
the requirement on the size of 𝑆𝑟 .

Updates can thus be performed using O(log𝐵 𝑁) I/Os. They may

however break the requirements that were placed on the rectangles

to ensure that queries are efficient. In order to make sure that these

requirements are met, they are listed in Section 3.1 as invariants,

where the asymptotic bounds are replaced by defined constants.

3.1 Invariants

For a rectangle 𝑟 = [𝑥𝑟 , 𝑦𝑟 [×[𝑣𝑟 ,𝑤𝑟 [we define a spanning segment
to be a segment {𝑥} × [𝑣𝑟 ,𝑤𝑟 [∈ 𝑆𝑟 , i.e., the segment represents a

value 𝑥 , which is presented in all versions 𝑟 spans. The following

invariants are then placed on the rectangle:

𝐼1: |𝑆𝑟 | ≤ 2𝑅, i.e., a rectangle stores at most 2𝑅 segments.

𝐼2: The number of spanning segments in 𝑟 is at least 𝑅
4
, except

if 𝑦𝑟 = +∞, i.e., 𝑟 is a rightmost rectangle, where there is no

lower bound on the number of spanning segments.

𝐼3: The segments in 𝑆𝑟 are stored in sorted order by the values

the segments represent.

𝐼4: The list 𝐿
𝑟
contains precisely the two versions 𝑣𝑟 and 𝑤𝑟

,

and the versions of all endpoints of segments in 𝑆𝑟 .

Invariants 𝐼3 and 𝐼4 can easily be maintained upon an update

(see Section 3.7). Invariants 𝐼1 and 𝐼2 may however be broken by

an update. For insertions, only invariant 𝐼1 may break, and for

deletions, both invariants may break. Note that deletions can break

both invariants at once.

In order to handle invariant 𝐼1, the issue is the rectangle now

contains too many segments. This can be fixed by repeatably split-

ting the rectangle into two smaller rectangles, until they all do

not contain too many segments. These splits may be done either

vertically or horizontally, as illustrated in Figure 3.

The invariant 𝐼2 ensures that each rectangle contains sufficiently

many spanning segments. If there are too few spanning segments,

denoted as an underflowing rectangle, and the rectangle is not a

rightmost rectangle, then there must exist some rectangles, which

are the right neighbors of the underflowing rectangle. These rectan-

gles must then either contain sufficiently many spanning segments

or be rightmost rectangles themselves. By performing horizontal

splits to align the rectangles, then the underflowing rectangle can

be joined with the right neighbors in order to become a rightmost

rectangles or to then contain sufficiently many spanning segments.

See Figure 4 for an illustration of how this works. This figure only

covers the basic idea of merging, and it later turns out, that more

cases for merging is needed, which can be seen in Figure 5. Note

that merge is performed by making multiple primitive rectangle

transformations.

A merge operation takes time proportional to its number of

neighbors. Therefore, we place an upper bound 𝑡𝑁 on the number

of right neighbors, for some integer constant 𝑡𝑁 ≥ 2. When making

a merge operation, the top and bottom right neighbors are split,

which if they are close to underflowing will not be an issue, as

only one of the two rectangles they are split into will remain close

to underflowing. If however there only is one right neighbor, and

it is close to underflowing, it may be split twice, and make two

rectangles, which are close to underflow. In this case, one of the

resulting rectangles may be merged with all of its left neighbors,

which is symmetrical to merging to the right, see Figure 5b. Note

that there must then also be an upper bound 𝑡𝑁 on the number of

left neighbors.

This thus adds an extra invariant for each rectangle 𝑟 , with 𝑁𝑅
𝑟

and 𝑁𝐿
𝑟 denoting the number of neighbors to the right and left of

rectangle 𝑟 respectively.

𝐼5: 𝑁
𝑅
𝑟 ≤ 𝑡𝑁 and 𝑁𝐿

𝑟 ≤ 𝑡𝑁 , i.e., the number of neighboring

rectangles to rectangle 𝑟 is at most 𝑡𝑁 on both sides.

Note that horizontal splits may increase the number of neigh-

bors in some rectangles. However, if some rectangle has too many

neighbors, then it can be split horizontally, to distribute the number

of neighbors between two rectangles, and thus decrease the number

of neighbors each rectangle has.

3.2 Finding the Neighbors

For the construction, we must be able to find the neighbors of a

given rectangle for merging and detecting neighbor overflow. To

External Memory Fully Persistent Search Trees STOC ’23, June 20–23, 2023, Orlando, FL, USA

𝑟 𝑟1 𝑟2

𝑥
𝑣1

𝑣2

𝑥

join

split

vertical

𝑟 𝑟1

𝑟2
𝑣

split

horizontal

Figure 3: Primitive rectangle transformations: Vertical split

and join at value 𝑥 , and horizontal split at version 𝑣 .

𝑟

merge

Figure 4: Merging of a rectangle 𝑟 with its right neighboring

rectangles. The dashed lines represent the location that the

rectangles are horizontally split, before they are vertically

joined.

find the neighbors to the right of a rectangle, we use that the rect-

angles are exclusive in the top and right coordinates. By repeatedly

querying the endpoints using the point location structure from Sec-

tion 5, all right rectangles can be found from the bottom up. To find

the left rectangles, we need a point inside the left neighbor. Such a

point can be found by maintaining a search tree over all rectangle

start points and searching for the predecessor of the current left

side of the rectangle. Each query uses O(log𝐵 𝑁) I/Os, and as the

number of neighbors is bounded by the constant 𝑡𝑁 , the total to

find all neighbors is O(log𝐵 𝑁) I/Os.

3.3 Potential Functions

Updates to the persistent structure, when ignoring the potential

cost of updating the partition of rectangles to restore the rectangle

invariants, can be done with O(log𝐵 𝑁) I/Os. Splitting and merging

rectangles, in order to maintain the invariants, then uses further

I/Os, which affect the update time. We amortize the cost of this

rebalancing over the updates. In this section, we state the potential

function Φ driving the analysis of our structure.

Horizontal and vertical splits are triggered by the rectangle hav-

ing too many segments. Vertical splits are performed if there are

many spanning segments and horizontal splits if there are many

non-spanning segments. There must thus be a large potential when

there are many spanning and non-spanning segments. The merge

is triggered by an underflow in the number of spanning segments.

The potential must therefore be large when there are few spanning

segments. Finally, rectangles are split when there are too many

neighbors on one side, so the potential must be large when there

are many neighbors on the same side.

This leads to the following potential function Φ, which is the

weighted sum of four potential functions, with 𝑆𝑟 denoting the

number of spanning segments in rectangle 𝑟 , and 𝐼𝑟 denoting the

number of internal endpoints of segments in 𝑟 , i.e., endpoints of

segments, which are not equal to the bottom or top version of 𝑟 .

The constants 𝑐𝑂 , 𝑐𝑈 , 𝑐𝐼 , and 𝑐𝑁 are determined in Section 3.6.

Φ = (𝑐𝑂 · Φ𝑂 + 𝑐𝑈 · Φ𝑈 + 𝑐𝐼 · Φ𝐼 + 𝑐𝑁 · Φ𝑁) · 𝑅 · log𝐵 𝑁

The four subpotential functions are again defined as Φ𝑂 =
∑
𝑟 Φ

𝑟
𝑂
,

Φ𝑈 =
∑
𝑟 Φ

𝑟
𝑈
, Φ𝐼 =

∑
𝑟 Φ

𝑟
𝐼
, and Φ𝑁 =

∑
𝑟 Φ

𝑟
𝑁
, where

Φ𝑟𝑂 = max {0, 𝑆𝑟/𝑅 − 1/2}

Φ𝑟𝑈 =

{
0 if 𝑦𝑟 = +∞
max {0, 1/2 − 𝑆𝑟/𝑅} otherwise

Φ𝑟𝐼 =

{
max {0, 𝐼𝑟/𝑅 − 1/2} if 𝑦𝑟 = +∞
max {0, (𝐼𝑟/𝑅 − 1/2) (9 − 16 ·min {𝑆𝑟/𝑅, 1/2})} otherwise

Φ𝑟𝑁 = max

{
0, 𝑁𝐿

𝑟 − 𝑡𝑁/2
}
+max

{
0, 𝑁𝑅

𝑟 − 𝑡𝑁/2
}

For a rectangle 𝑟 , we denote the four potentials Φ𝑟
𝑂
, Φ𝑟

𝑈
, Φ𝑟

𝐼
and Φ𝑟

𝑁
for overflow, underflow, internal endpoint and neighbor potentials,
respectively.

The max functions ensure that the potential is never negative.

E.g., for spanning segments, subtracting 𝑅/2 from 𝑆𝑟 insures that

each rectangle does not have any potential for the first 𝑅/2 spanning
segments, and then linear potential on the rest. Similarly for the

rest of the potential functions.

The potential function Φ𝑟
𝐼
for internal points contains the same

base function on the internal point count, but then depending on if

the rectangle can contain underflow potential, this base function

is multiplied by a function dependent on the amount of underflow.

This leads to the value of the function being scaled larger when

there is more underflow. As for all non-rightmost rectangles, it

must hold that 𝑆𝑟 ≥ 𝑅/4, then the scale value 9 − 16 ·min {𝑆𝑟/𝑅, 1/2}
is in the interval [1, 5].

Note that cloning and queries do not alter the potential. The

potential must therefore be analyzed only for Insert and Delete

updates. Any update can be split into two parts: updating a segment

in some rectangle and a potential re-partitioning of the rectangles.

For each of the rebalancing operations, the colored predecessor

structure and point location query structure need to be updated for

the new rectangles. In Section 4 we describe that inserting a new

rectangle into the colored predecessor structure requires amortized

O(𝑅 log𝐵 𝑁) I/Os, as each rectangle contains Θ(𝑅) versions, and
each version can be inserted in amortized O(log𝐵 𝑁) I/Os. Further,
we describe in Section 5 that inserting new rectangles into the point

location query structure requires amortized O(𝑅 log𝐵 𝑁) I/Os. As
both operations must be performed with the released potential,

then a rebalancing operation needs to release 𝑅 log𝐵 𝑁 potential

to pay for the work. In Section 3.5 and 3.6 we show that the factor

preceding𝑅 log𝐵 𝑁 inΦ decreases by at least 1 for every rebalancing

operation.

STOC ’23, June 20–23, 2023, Orlando, FL, USA Gerth Stølting Brodal, Casper Moldrup Rysgaard, and Rolf Svenning

For each update operation without rebalancing, Φ may in-

crease by no more than O(log𝐵 𝑁) for updates to use amortized

O(log𝐵 𝑁) I/Os. We achieve this by showing in Section 3.4 that the

factor preceding 𝑅 log𝐵 𝑁 in Φ increases by O(1/𝑅). Table 3 sum-

marizes how the potential changes with and without rebalancing.

3.4 Update without Rebalancing

When performing update operations without rebalancing the rect-

angles, the partitioning of the rectangles remains unaltered, and

thus the neighbors of all rectangles are unchanged. This results in

ΔΦ𝑁 = 0 for both update operations.

Insert. For an insert operation, a segment {𝑥} × [𝑣, succ(𝑣) [is
inserted into a rectangle 𝑟 = [𝑥𝑟 , 𝑦𝑟 [×[𝑣𝑟 ,𝑤𝑟 [. This may create a

spanning segment if the rectangle only spans a single version, or

the inserted value is inserted into the only version in the rectan-

gle, where it was non-present, e.g., 𝑟 already contains segments

{𝑥} × [𝑣𝑟 , 𝑣 [and {𝑥} × [succ(𝑣),𝑤𝑟 [. This leads to ΔΦ𝑂 ≤ 1/𝑅. By
creating a spanning segment, the underflow of spanning segments

may decrease but not increase, resulting in ΔΦ𝑈 ≤ 0. The inserted

segment may also create at most two new internal points in the

rectangle. As the scale value is at most 5, then ΔΦ𝐼 ≤ 10/𝑅.

Delete. For a delete operation, a segment {𝑥} × [𝑣, succ(𝑣) [is
removed from a rectangle 𝑟 = [𝑥𝑟 , 𝑦𝑟 [×[𝑣𝑟 ,𝑤𝑟 [. This can then

break or delete a spanning segment, which increases the underflow

of segments, leading to ΔΦ𝑈 ≤ 1/𝑅. As the number of spanning

segments can only decrease, then ΔΦ𝑂 ≤ 0. By breaking a segment,

up to two new internal endpoints may be created in the rectangle.

The two new internal points then increase the potential function

by at most 10/𝑅. The decrease of spanning segments in the internal

point potential function then leads to a further increase, since the

scale value of Φ𝑟
𝐼
can increase. As the number of segments is at

most 2𝑅, and at least 𝑅/4 are spanning, then the number of internal

points is at most 7/2 ·𝑅, leading to an increase of at most (7/2 − 1/2) ·
16/𝑅 = 48/𝑅. In total ΔΦ𝐼 ≤ 58/𝑅.

3.5 Rebalancing Rectangles

If an update in rectangle 𝑟 causes the invariants to be violated, we

perform three phases of rebalancing operations to restore them.

First, if the update is a deletion that causes the number of spanning

segments to fall below 𝑅/4 then we perform a single merge to restore

invariant 𝐼2. The resulting rectangles contain up to 6𝑅 + 1 segments

as at most 3 rectangles are joined. Second, invariant 𝐼1 is restored

in all rectangles containing more than 2𝑅 segments by performing

O(𝑡𝑁) vertical and horizontal splits as described in Section 3.1. The

first two phases may cause rectangles to have many neighbors. In

phase three, we fix this by making neighbor splits until all rectan-

gles have fewer than 𝑡𝑁 neighbors, which restores invariant 𝐼5. If

the update is an insertion or deletion that causes the rectangle to

contain more than 2𝑅 segments but not too few spanning segments,

rebalancing starts from the second phase. In the remainder of this

section, we show how the different subpotential functions change

for every rebalancing operation.

Vertical split. We perform a vertical split only if the number of

segments is |𝑆𝑟 | > 2𝑅, and the number of spanning segments is

𝑆𝑟 ≥ 𝑅. The split is performed at the median value of the span-

ning segments. This evenly partitions the spanning segments, such

that both new rectangles contain ≥ 𝑅/2 spanning segments. Thus,

ΔΦ𝑈 = 0. For Φ𝑂 , due to the max function and that there now are

two rectangles, the potential is released from the threshold in both

the new rectangles, i.e., ΔΦ𝑂 = −1/2.
For the internal points, there is no guarantee as to how they are

distributed, but in any case, then ΔΦ𝐼 ≤ 0, since the number of

internal points is unchanged.

When splitting the rectangle, all left neighbors become left neigh-

bors of the left rectangle, and all right neighbors become right

neighbors of the right rectangle, thus not altering the neighbor

potential. Since 𝑡𝑁 ≥ 2, the two new rectangles being neighbors

do not yield any increase in potential, and thus ΔΦ𝑁 = 0.

Horizontal split. We perform a horizontal split only if the number

of segments is |𝑆𝑟 | > 2𝑅, and the number of spanning segments

is 𝑆𝑟 < 𝑅. Since each of the at least 𝑅 non-spanning segments

contributes at least one internal endpoint, then 𝐼𝑟 ≥ 𝑅. The median

version among the internal endpoints is then found using the local

versions, at which the split will occur. This evenly partitions the

internal points into the new top and bottom rectangles, with some

endpoints landing on the split line, which will no longer be internal

points. If the rectangle has no underflow potential, a similar analysis

as for vertical splits leads to ΔΦ𝐼 = −1/2 and ΔΦ𝑈 = 0.

If the rectangle has some underflow potential, then the scale

value of the internal point potential function is larger than one.

During the split, new spanning segments may be created, but worst-

case no new spanning segments are created, and the underflow

potential is transferred to both new rectangles. This results in

ΔΦ𝑈 ≤ 1/2 − 𝑆𝑟/𝑅 and ΔΦ𝐼 ≤ −1/2 (9 − 16𝑆𝑟/𝑅). As the rectangle, in
this case, has underflow potential, then it must be a non-rightmost

rectangle, and thus 𝑅/4 ≤ 𝑆𝑟 < 𝑅/2.
When splitting horizontally, all spanning segments in the origi-

nal rectangle become spanning in both new rectangles. Any other

segment may become spanning in at most one of the two rectan-

gles. In total, each segment may yield one extra spanning segment

compared to before the split. As there are at most 6𝑅 + 1 segments,

and there is no potential for the first 𝑅/2 new spanning segments,

then ΔΦ𝑂 ≤ (6𝑅 + 1 − 𝑅/2)/𝑅 ≤ 6, assuming that 𝑅/2 ≥ 1.

Consider one side of neighbors. The split distributes these neigh-

bors among the top and bottom rectangle, with at most one becom-

ing the neighbor of both. None of the two new rectangles can have

more neighbors than the original rectangle. If one rectangle has the

same number of neighbors as the original rectangle, then the other

has one neighbor. The neighbor potential thus does not increase

internally among the rectangles. However, the split leads to the

one neighboring rectangle at the split point, getting an additional

neighbor. Considering both sides, this leads to ΔΦ𝑁 ≤ 2.

Neighbor split. A neighbor split occurs when the number of

neighbors on one side of a rectangle is strictly larger than 𝑡𝑁 , the

number of segments is ≤ 2𝑅 and the number of spanning segments

is 𝑆𝑟 ≥ 𝑅/4 if the rectangle is non-rightmost. The median version is

selected among the versions where the neighbor changes and a hor-

izontal split is made at this version. This distributes the neighbors

evenly among the new top and bottom rectangle, thus decreasing

the potential. However, for the other side, one split is made, leading

External Memory Fully Persistent Search Trees STOC ’23, June 20–23, 2023, Orlando, FL, USA

𝑟

𝑟 ′

𝑟

(a) Two neighbors to one side. (b) One neighbor 𝑟 ′ with under-

flow potential to one side.

𝑟

𝑟𝑙
𝑟𝑟

𝑟

(c) Multiple neighbors to both

sides, with no overlap.

(d) Multiple neighbors to both

sides, with overlap.

Figure 5: The different merge cases, with the underflowing

rectangle being 𝑟 , apart from when 𝑟 is a leftmost rectangle.

The dashed lines represent the location where the rectangles

are horizontally split. The grayed areas indicate the newly

joined rectangles.

to a potential increase of at most one neighbor. In total, this results

in ΔΦ𝑁 ≤ −𝑡𝑁/2 + 1.

By similar arguments as for horizontal splits, the at most 2𝑅

segments lead to ΔΦ𝑂 ≤ 2𝑅/𝑅−1/2 = 3/2 and ΔΦ𝑈 ≤ 1/2−𝑅/4/𝑅 = 1/4.
Note, however, that they cannot both increase. Since the internal

points are distributed among the top and bottom rectangle and the

scale value can only decrease, then ΔΦ𝐼 ≤ 0.

Merge. A merge occurs, when a rectangle 𝑟 is underflowing, i.e.,

when 𝑆𝑟 < 𝑅/4 and the rectangle is not a rightmost rectangle. Note

that the number of segments in the rectangle is at most 2𝑅 + 1 and

that all neighbors that are non-rightmost rectangles contain at least

𝑅/4 spanning segments, and at most 2𝑅 segments. There are then

multiple cases for how the merge is performed, in order to make

sure not too many new neighbors are created. These cases can be

seen in Figures 4 and 5.

Two neighbors on some side. This case is seen on Figure 5a. If one

side of 𝑟 contains exactly two neighbors, the neighbors on this side

can be split, as well as 𝑟 itself, to align the rectangles for joining.

The three splits result in ΔΦ𝑁 ≤ 3. One half of the split neighbors

are not joined, and using similar arguments as earlier, they cannot

increase the potential of the internal points or underflow. The

joined rectangles must contain at least 𝑅/2 spanning segments and

thus have no underflow potential. This removes the underflow of 𝑟 ,

resulting in ΔΦ𝑈 ≤ −1/4.
There are at most 𝑅/2 internal points in 𝑟 with no internal end-

point potential, which now potentially get potential. However, as

they are placed into rectangles with at least 𝑅/2 spanning segments,

the scale value is 1. The potential on the already existing internal

points may decrease, due to the increase in spanning segments

and implied decrease in scale value, however, it cannot increase.

Therefore ΔΦ𝐼 ≤ 1/2.
The neighbor rectangles contain at most 2𝑅 spanning segments,

and their overflow potential each increase by at most 2/3. Rectangle
𝑟 contains at most 2𝑅+1 segments. As these segments are distributed

into two rectangles, each of which may contain ≥ 𝑅/2 spanning
segments, then all distributed segments may be spanning. The

spanning segments of 𝑟 , of which there are < 𝑅/4, may then become

spanning in both new rectangles. The rest of the segments can only

be spanning in one of the new rectangles. The extra +1 segment

arrives from some old spanning segment that was broken and has

a gap of at least one version. Therefore at most 2𝑅 − 𝑅/4 of the
remaining non-spanning segments may become new spanning

segments. This results in ΔΦ𝑂 ≤ 5 + 1/4.
Note that this case is a special case of the basic merge seen in

Figure 4.

One neighbor on some side. This case is shown in Figure 5b. If

some side has one neighbor 𝑟 ′, and the other does not have two

neighbors, then it is favorable to join with 𝑟 ′, as this limits the

neighbor increase in 𝑟 ′. To join 𝑟 with 𝑟 ′, 𝑟 ′ may need to be split

twice (at the top and bottom of 𝑟), leaving two additional rectangles

with the same underflow as 𝑟 ′. If 𝑟 ′ has no underflow, this is not

a problem, and the merge can stop by simply joining 𝑟 into the

split middle section of 𝑟 ′. For the following, assume that 𝑟 ′ has
underflow potential.

In this case, one of the two created rectangles from 𝑟 ′ must have

its underflow potential removed to release the potential needed

for the operation. Consider the same side of 𝑟 ′ as the side 𝑟 is on.
This side must contain some neighbors above and below 𝑟 . Choose

the half, which contains the least number of neighbors, and split

the part of 𝑟 ′ to this half, and join all of the rectangles, which then

must remove the underflow. It must hold that this half has at most

𝑡𝑁/2 neighbors, leading to at most 𝑡𝑁/2 + 2 splits when factoring in

the extra splits to align the neighbors with 𝑟 ′ and the split from 𝑟 .

By a similar argument as above, it must hold that ΔΦ𝑈 ≤ −1/4, as
the underflow potential of 𝑟 is released.

The at most 2𝑅 segments of 𝑟 ′ are split into at most 𝑡𝑁/2 + 2

rectangles, where theymay be new spanning segments in all but one

of them, increasing the overflow potential by ≤ 𝑡𝑁 + 2. Rectangle 𝑟

was underflowing and had less than 𝑅/4 spanning segments, and

therefore the first 𝑅/4 spanning segments added to 𝑟 from 𝑟 ′ do
not increase the potential. The last split rectangle increases the

STOC ’23, June 20–23, 2023, Orlando, FL, USA Gerth Stølting Brodal, Casper Moldrup Rysgaard, and Rolf Svenning

potential by 3/2 by a similar argument as above. In total resulting

in ΔΦ𝑂 ≤ 𝑡𝑁 + 2 − 1/4 + 3/2 = 𝑡𝑁 + 3 + 1/4.
Consider the internal points of 𝑟 ′, where some are added to 𝑟 and

the rectangles below or above 𝑟 . By a similar argument as above, it

also holds that ΔΦ𝐼 ≤ 1/2.
Assume that 𝑟 ′ has 𝑘 neighbors on the side 𝑟 is on, and only

consider the change in the neighbor potential for these rectangles.

Then at most ⌈𝑘/2⌉ neighbors will change from being a neighbor of

𝑟 ′ into being a neighbor of other rectangles. The rounding is when

𝑘 is odd, as there may be ⌊𝑘/2⌋ neighbors on either side of 𝑟 , and 𝑟 is

one of the rectangles which no longer is a neighbor of 𝑟 ′. Worst case,

they all become neighbors of the same rectangle, increasing the

neighbor potential in this rectangle by at most ⌈𝑘/2⌉. The difference
in potential of 𝑟 ′ is at most max{0, ⌊𝑘/2⌋ − 𝑡𝑁/2} −max{0, 𝑘 − 𝑡𝑁/2}.
Lastly, an aligning split increases the neighbor potential by at most

1. In total, the potential increase is maximized for 𝑘 = 𝑡𝑁/2 resulting
in ΔΦ𝑁 ≤ 𝑡𝑁/4 + 2.

Note that this case uses the basic merge seen in Figure 4 twice,

once for merging 𝑟 into 𝑟 ′, and once to merge the top or bottom

rectangle of 𝑟 ′ into its neighbors.

Multiple neighbors on both sides. In this case, many splits must

be made. If 𝑟 is joined with the neighbors to the left, this may

increase the number of neighbors for the rectangles on the right side.

If, however, all of these right neighbors only originally have 𝑟 as a

left neighbor, then the neighboring potential for these rectangles

cannot increase in total, as the neighbor potential 𝑟 has on the right

is released.

This holds for all right neighbors, except for the top and bottom.

If 𝑟 is split to align with these, it can then freely be split in between.

To not increase the number of neighbors of the top and bottom

rectangle on the left, the splits are made to align with the side,

which covers most of 𝑟 . This can be seen in Figure 5c, where 𝑟 is

split at the top of 𝑟𝑙 instead of at the top of 𝑟𝑟 , as 𝑟𝑙 covers most of

𝑟 . The top of both rectangles cannot however be directly compared,

apart from checking if they are identical, but by making a point

query at (𝑥𝑟𝑟 ,𝑤𝑟𝑙), i.e., at the top value of 𝑟𝑙 , but at the left side

of 𝑟𝑟 , then this point will be inside 𝑟𝑟 only if the top of 𝑟𝑙 is below

the top of 𝑟𝑟 . Similarly for the top neighbors.

The selected top and bottom neighbors may overlap with the

part of 𝑟 they cover, as seen in Figure 5d, further creating two cases.

This happens only when the selected neighbors are from each side.

If they do not overlap but exactly cover 𝑟 , then this reduces to the

case with two neighbors. Note that overlapping can be checked with

a point query, like above. For both cases, it holds that ΔΦ𝑈 ≤ −1/4,
as the underflow potential of 𝑟 is removed, and no new underflow

potential is introduced, and ΔΦ𝐼 ≤ 1/2 by similar arguments as

above, as the internal points of 𝑟 are distributed into rectangles

with no underflow potential.

No overlap. This is the case illustrated in Figure 5c.In this case, four
splits are initially made, two on the selected neighbors and two in 𝑟 ,

and potentially a fifth split to align the space between the top and

bottom split. All joined rectangles in between become neighbors of

rectangles that previously only had 𝑟 as a neighbor, therefore not

increasing the potential. In total, the neighbor potential may only

increase for the 3 splits outside of 𝑟 , resulting inΔΦ𝑁 ≤ 3. Rectangle

𝑟 is split at most 𝑡𝑁 − 1 times. The increase in overflow potential

for the other three split rectangles is at most 3/2 each, by a similar

argument as above. In 𝑟 there are at most 𝑅/4 spanning segments,

which may be spanning at most 𝑡𝑁 rectangles, and the remaining

segments may be spanning in at most 𝑡𝑁 − 1 rectangles, by similar

argument as above. In total resulting in ΔΦ𝑂 ≤ 2𝑡𝑁 + 3 + 3/4.
Overlap. This is the case illustrated in Figure 5d. In this case, the

selected neighbors overlap vertically. By further splitting these

neighbors, 𝑟 can be joined into three rectangles. The splits in the

neighbors result in ΔΦ𝑁 ≤ 4. By similar arguments as above, the

increase in overflow potential for 𝑟 is at most 4+1/4. In the neighbor-
ing rectangle, there are at most 2𝑅 segments, which all may become

spanning in two new rectangles. Each of the three rectangles does

not have potential for the first 𝑅/2 spanning segments, resulting in

total ΔΦ𝑂 ≤ 10 + 3/4.
Leftmost rectangles. Rectangles at the rightmost side do not have

underflow potential and thus cannot trigger a merge. Rectangles at

the leftmost side, however, only have neighbors on the right side. In

this case, 𝑟 must be merged with the right neighbors, however, as

it has no left neighbors, the neighbor potential on this side cannot

increase. This is done as seen in Figure 4. By similar arguments as

earlier, it can be shown that ΔΦ𝑈 ≤ −1/4, ΔΦ𝐼 ≤ 1/2, ΔΦ𝑁 ≤ 2 and

ΔΦ𝑂 ≤ 2𝑡𝑁 + 1 + 1/4.

3.6 Potential Function Constants

The differences in the subpotential functions, as calculated in Sec-

tion 3.4 and Section 3.5 can be seen summarized in Table 3. For

the insert and delete rows at the top, the differences are without

rebalancing.

In Φ the subpotential functions are a linear combination. In the

table, each rebalancing operation row must decrease by 1 to release

𝑅 log𝐵 𝑁 potential. In order to find working constants 𝑐𝑁 , 𝑐𝑂 , 𝑐𝑈
and 𝑐𝐼 , the rows of the table can be viewed as constraint for a linear

program, where each row must be less than −1. Some values are

dependent on 𝑡𝑁 , which is a constant. In order to find a solution,

the linear program is tried solved for increasing values of 𝑡𝑁 , until

a solution is found. For the constraint from horizontal split with

underflow potential, ΔΦ𝑈 and ΔΦ𝐼 are not constants since the

scale value can change. However, they are linear bounds in 𝑆𝑟 .

By creating two constrains for the minimum and maximum value

of 𝑆𝑟 , which is 𝑅/4 and 𝑅/2 respectively as there must be underflow

potential in this case, the program may be solved.

The objective function to minimize in the linear program, is

chosen to be the sum of the constants. This yields the following

constants

𝑡𝑁 = 22 𝑐𝑁 = 573 𝑐𝑂 = 2 𝑐𝑈 = 22904 𝑐𝐼 = 2754 .

These constants can then be used to check if the constraint from

horizontal split with underflow potential is satisfied, by calculating

the left side of the constraint:

573 · 2 + 2 · 6 + 22904 · (1/2 − 𝑆𝑟/𝑅) + 2754 · (−1/2 · (9 − 16𝑆𝑟/𝑅))

= 217 − 872𝑆𝑟/𝑅 .
This value is large, when 𝑆𝑟 is small. The smallest value of 𝑆𝑟 is 𝑅/4,
resulting in the maximum value of the left side being −1. The
constraint is therefore satisfied, and the solution to the constants is

valid.

External Memory Fully Persistent Search Trees STOC ’23, June 20–23, 2023, Orlando, FL, USA

Table 3: Difference in the subpotential functions for the different update operations and rebalancing operations.

Operation ΔΦ𝑁 ΔΦ𝑂 ΔΦ𝑈 ΔΦ𝐼
Insert 0 ≤ 1/𝑅 ≤ 0 ≤ 10/𝑅
Delete 0 ≤ 0 ≤ 1/𝑅 ≤ 58/𝑅
Vertical split 0 −1/2 0 ≤ 0

Horizontal split (Φ𝑟
𝑈

= 0) ≤ 2 ≤ 6 0 −1/2
(Φ𝑟

𝑈
> 0) ≤ 2 ≤ 6 ≤ 1/2 − 𝑆𝑟/𝑅 ≤ −1/2 · (9 − 16𝑆𝑟/𝑅)

Neighbor split ≤ −𝑡𝑁/2 + 1 ≤ 3/2 ≤ 1/4 ≤ 0

Merge (Figure 5a, 𝑁𝐿
𝑟 = 2 ∨ 𝑁𝑅

𝑟 = 2) ≤ 3 ≤ 5 + 1/4 ≤ −1/4 ≤ 1/2
(Figure 5b, 𝑁𝐿

𝑟 = 1 ∨ 𝑁𝑅
𝑟 = 1) ≤ 𝑡𝑁/4 + 2 ≤ 𝑡𝑁 + 3 + 1/4 ≤ −1/4 ≤ 1/2

(Figure 5c, 𝑁𝐿
𝑟 ≥ 3 ∧ 𝑁𝑅

𝑟 ≥ 3, no overlap) ≤ 3 ≤ 2𝑡𝑁 + 3 + 3/4 ≤ −1/4 ≤ 1/2
(Figure 5d, 𝑁𝐿

𝑟 ≥ 3 ∧ 𝑁𝑅
𝑟 ≥ 3, overlap) ≤ 4 ≤ 10 + 3/4 ≤ −1/4 ≤ 1/2

(Figure 4, 𝑥𝑟 = −∞ ∧ 𝑁𝑅
𝑟 ≥ 3) ≤ 2 ≤ 2𝑡𝑁 + 1 + 1/4 ≤ −1/4 ≤ 1/2

3.7 Maintaining Structure inside a Rectangle

The remaining invariants to maintain are 𝐼3 and 𝐼4. For update op-

erations without rebalancing, the updated segments can be inserted

into 𝑆𝑟 to maintain the order. An update may only add new versions

to 𝑟 , and using the colored predecessor structure, the new versions

can be inserted into 𝐿𝑟 at the right position. The segments can then

be scanned, to update the local versions of the endpoints.

For the rebalancing operations, first note that 𝑆𝑟 can maintain

the value order during horizontal and vertical splits, as the segments

may be partitioned in order, and for vertical joins all segments in

one rectangle are before all rectangles in the other, and the lists can

then simply be concatenated.

For a horizontal split 𝐿𝑟 is split at some version, and the resulting

segments in the upper rectangle can be scanned to update the local

versions. For a vertical split, 𝐿𝑟1 and 𝐿𝑟2 must be reconstructed

from the endpoints of the segments in the rectangles. As binary

merge-sort on O(𝑅) elements uses O(𝑅/𝐵 log
2
𝑅) = O(𝑅 log𝐵 𝑁)

I/Os, then O(𝑅) elements can be sorted a constant number of times

using the released potential. This allow for constructing 𝐿𝑟1 and

𝐿𝑟2 for the resulting rectangles from the endpoints of the segments,

by sorting them by the local version in 𝐿𝑟 .

When vertically joining two rectangles, two version lists 𝐿𝑟1

and 𝐿𝑟2 needs to be merged into 𝐿𝑟 . Firstly, the start and end of

the two list must be equal, as the top and bottom version of the

rectangles are equal. Using the colored predecessor structure, before

it is updated, the versions may be merged, as the predecessor query

can be used to determine the ordering. As the list contains O(𝑅)
versions, and each predecessor uses O(log𝐵 𝑁) I/Os, the resulting
O(𝑅 log𝐵 𝑁) I/Os can be payed by the released potential. The local

ordering on the segments can then be done by a constant number

of sorts and scans.

3.8 Space Usage

Each update operation increases the value of the subpotential func-

tions by O(1/𝑅). Each rebalancing operation decreases the subpo-

tential functions by at least 1, and creates O(1) new rectangles.

There are at most 𝑁 updates performed on the structure, resulting

in O(𝑁 /𝑅) rectangles. Each rectangle uses O(𝑅/𝐵) blocks of space,
i.e., the total space usage is O(𝑁 /𝑅) · O(𝑅/𝐵) = O(𝑁 /𝐵) blocks.

4 COLORED PREDECESSOR QUERIES

In this section we sketch our solution to the colored predecessor

problem (details are available in the full version of the paper). That

is, given a version 𝑣 and a rectangle 𝑟 , find the predecessor version

of 𝑣 in the local version list 𝐿𝑟 . We consider each rectangle to

represent a unique color. The global version list 𝐿 is ordered from

left-to-right such that the predecessor of a version is to the left of

it. We overload the notation of 𝑟 such that it also defines the color

corresponding to the rectangle 𝑟 and let𝐶 = {1, 2, 3, . . .} be the set of
colors. In the point location structure in Section 5 we use the simple

case with only a single color (|𝐶 | = 1) to find the predecessor of a

version among the bottom versions of the rectangles. The following

theorem states our result for the colored predecessor problem.

Theorem 4.1. Let 𝑁 be a parameter giving an upper bound on
the total number of updates to the global version list 𝐿 and all local
version lists 𝐿𝑟 . Then there exists a data structure that given a version
𝑣 ∈ 𝐿 and a color 𝑟 , can find the predecessor 𝑢 of 𝑣 in 𝐿𝑟 in worst-case
O
(
log𝐵 𝑁

)
I/Os. The structure supports insertions of versions in both

𝐿 and 𝐿𝑟 and deletions from 𝐿𝑟 in amortized O
(
log𝐵 𝑁

)
I/Os. The

space usage is linear in the number of updates.

We store all versions from the global version list 𝐿 and all local

version lists 𝐿𝑟 at the leaves of a B-tree ordered by the global version

list, i.e., the same version can appear multiple times. For every local

version 𝑣𝑟 ∈ 𝐿𝑟 , we conceptually color the path from the leaf

containing 𝑣𝑟 to the root by the color 𝑟 , i.e., an internal node can

have up to |𝐶 | colors. The predecessor of a version 𝑣 among the

versions in 𝐿𝑟 can now be found by following the path from 𝑣

towards the root until a node of color 𝑟 is found that has child of

color 𝑟 that is to the left of the search path, from which the search

reverses towards the leaves following the rightmost nodes of color 𝑟

(starting with a child to the left of the path). To avoid storing a

color at every node on the path to the root we observe that when

considering the colored paths from the root towards the leaves it

suffices to only color the nodes where paths branch. The number

of branches is O(𝑁). To achieve query complexity O
(
log𝐵 𝑁

)
we

use the idea of down pointers [27] to avoid searching in every node

among its colors. Finally, we make the structure dynamic using a

weight-balanced B-tree [5].

STOC ’23, June 20–23, 2023, Orlando, FL, USA Gerth Stølting Brodal, Casper Moldrup Rysgaard, and Rolf Svenning

5 POINT LOCATION

In this section, we sketch how to find the unique rectangle con-

taining a query point (𝑣, 𝑥), where 𝑣 is a version and 𝑥 is a value

(details are available in the full version of the paper). Recall that we

consider a disjoint rectangular partition of the plane as described in

Section 2.3. At first, this appears to be an orthogonal planar point

location problem. However, a crucial difference in our setting is that

versions (corresponding to the vertical axis) are ordered according

to their position in the version list. Because of this, it is hard to sim-

ply apply existing algorithms. Instead, we formulate it as a dynamic
ray shooting problem on the bottom segments of each rectangle.

Throughout this section, we assume that given a version 𝑣 we can

quickly find the predecessor of 𝑣 among the versions represented by

bottom segments. This is a special case of the colored predecessor

problem we solve in Section 4 and allows us to assume that 𝑣 is a

version corresponding to a bottom segment of some rectangle and

that for insertions of new segments, we know its correct position

among the existing segments, with regards to the global ordering

of versions. The bounds we get are summarized in Theorem 5.1

Theorem 5.1. There exists a semi-dynamic ray shooting data
structure for non-overlapping horizontal segments, supporting ray
shooting queries in worst-case O

(
log𝐵 𝑆

)
I/Os and insertions in amor-

tized O(𝐵 log2
𝐵
𝑆) I/Os, where 𝑆 is the number of segments inserted.

The space usage is O
(
𝑆 log𝐵 𝑆

)
blocks. Furthermore, segments are

only compared on the vertical axis for equality, that is testing if they
are at the same height.

In Section 3.8 it was shown that 𝑆 = O(𝑁 /𝑅) resulting in the

promised bound for point location queries in Section 2.4, and the in-

sertions are within the potential released, as described in Section 3.3.

Note that the space usage is O(𝑁 /𝐵) blocks.
To see how this theorem applies to our problem we first observe

that it suffices to consider insertions in the structure. Each segment

corresponds to the bottom of a rectangle and thus the primitive

rectangle transformations (Figure 3) and consequently the merge

rectangle transformations (Figures 4 and 5) define how the set of

segments change. Crucially, in all cases any point covered by a

segment must still be covered, i.e., the area covered by segments

only increases. Thus, using only insertions we can make sure that a

given ray shooting query finds some segment at the correct version,

by only inserting the segments that cover previously uncovered ar-

eas. For every version we maintain the real set of segments created

by rectangle transformations in a B-tree, sorted on the horizontal

axis. Since there are at most 𝑆 segments we can now find the cor-

rect segment to report with an overhead of only O
(
log𝐵 𝑆

)
. The

overhead for insertions is similar.

Our approach is to store the segments in a segment tree 𝑇 . For

every node 𝑢 in 𝑇 , we have a secondary structure with a subset

of the versions corresponding (primarily) to segments that span

the horizontal interval defined by 𝑢. For a query (𝑣, 𝑥) we find the

predecessor of 𝑣 in all the secondary structures on the path down

to the leaf in 𝑇 which contains 𝑥 in its interval, as one of these pre-

decessors will be the segment we are looking for. To determine the

real predecessor among the candidate predecessors from the path

we perform consecutive predecessor queries efficiently using a vari-

ation of fractional cascading [14]. Finally, since we need a dynamic

version of the structure we use a weight-balanced B-tree [5].

6 PARTITIONING THE VERSION TREE

In this section, we prove the following theorem which describes

how to improve the I/O bounds in Theorem 1.2, such that they

depend on the size 𝑁𝑣 of the accessed version 𝑣 instead of the upper

bound 𝑁 on the total number of updates.

Theorem 6.1. Assume we have a data structure for external-
memory fully-persistent search trees supporting a sequence of at most
𝑁 updates, for a constant𝑁 , that supports Insert,Delete and Clone
in amortized O(log𝐵 𝑁) I/Os, Search in worst-case O(log𝐵 𝑁) I/Os,
and Range in worst-case O(log𝐵 𝑁 + 𝐾/𝐵) I/Os, and uses space
linear in the number of updates. Then there exist external-memory
fully-persistent search trees supporting Insert,Delete and Clone in
amortized O

(
log𝐵 𝑁𝑣

)
I/Os, Search in worst-case O

(
log𝐵 𝑁𝑣

)
I/Os,

and Range in worst-case O
(
log𝐵 𝑁𝑣 + 𝐾/𝐵

)
I/Os, and uses space

linear in the number of updates.

The basic idea of our approach is to split the version tree into

smaller version trees by cutting out subtrees after a certain number

of updates, such that all versions in a version tree have approxi-

mately the same size.

To be more precise, let 𝑇 be a version tree rooted at version 𝑣0.

We let 𝑁0 (𝑇) be the initial number of insertions in version 𝑣0 before

other updates are performed at version 𝑣0. We let upd𝑇 (𝑣0) denote
the number of insertions, deletions and clones (i.e., |𝑇 | − 1) in 𝑇 ,

excluding the initial 𝑁0 (𝑇) insertions in version 𝑣0. For a subtree𝑇𝑣
rooted at a non-root node 𝑣 , we let upd𝑇 (𝑣) denote the number of

insertions, deletions and clones (i.e., |𝑇𝑣 |) in 𝑇𝑣 .
Let 𝑐 be a constant, where 0 < 𝑐 < 1. We maintain the invariant

upd𝑇 (𝑣0) ≤ 𝑐𝑁0 (𝑇). Crucially, this ensures that |𝑁𝑣 − 𝑁0 (𝑇) | ≤
𝑐𝑁0 (𝑇) for any version 𝑣 in 𝑇 . We split 𝑇 when upd𝑇 (𝑣0) =

⌊𝑐𝑁0 (𝑇)⌋. We say that a version 𝑣 is small if 𝑁𝑣 <
2(2−𝑐)
𝑐 (1−𝑐) . Small

versions can be maintained naively as a list of values. If a new ver-

sion tree arising from a split has a small version as the root, we get

rid of the tree and instead represent all small versions in the tree

naively. Each version in the tree that is not small becomes a version

tree by itself. As soon as a version that is maintained naively is not

small, it is converted into a version tree.

Choosing𝑁 = (1+𝑐)𝑁0 (𝑇) ensures𝑁 ≤ 1+𝑐
1−𝑐𝑁𝑣 for all versions 𝑣

in 𝑇 , i.e., O(log𝐵 𝑁) = O
(
log𝐵 𝑁𝑣

)
and the bounds in Theorem 6.1

follow, ignoring the cost for splitting version trees. The split of 𝑇

will result in four version trees 𝑇 ′
, 𝑇𝐻 , 𝑇𝐿 and 𝑇𝑅 , some of which

may be empty, and we rebuild each of them by simply performing

all the updates again to an initial empty version tree. We assume

that the version tree and the history of all insertions and deletions

for each version are maintained explicitly so that we can easily

repeat all operations. This introduces a constant space overhead

for each update.

To split𝑇 , we first find a heavy subtree𝑇𝑣 rooted at a node 𝑣 with
many updates, but where none of the subtrees at the children are

heavy. This ensures that by cutting 𝑇𝑣 from 𝑇 many updates must

be performed before the next split of 𝑇 . More formally, the node 𝑣

must satisfy the following,

External Memory Fully Persistent Search Trees STOC ’23, June 20–23, 2023, Orlando, FL, USA

(1) Node 𝑣 is heavy, that is upd𝑇 (𝑣) > 𝑐
2
𝑁0 (𝑇), and

(2) upd𝑇 (𝑤) ≤ 𝑐
2
𝑁0 (𝑇) for all children𝑤 of 𝑣 .

We can always find a node 𝑣 satisfying the conditions above

by following a path of heavy nodes from the root 𝑣0 towards the

leaves since the leaves always satisfy the second condition. We now

describe the four resulting trees and show that a linear number of

updates must be performed in each of them before they are split

again.

We construct the subtree 𝑇 ′ = 𝑇 \ 𝑇𝑣 only if 𝑣0 ≠ 𝑣 , where 𝑇𝑣
is the subtree of 𝑇 rooted at 𝑣 . In version 𝑣0 of 𝑇 , there might

be values that have been inserted but have been canceled again

by deletions. In 𝑇 ′
the initial insertions in version 𝑣0 are all the

insertions in version 𝑣0 of 𝑇 , including the initial insertions, that

have not been canceled by a deletion. Version 𝑣0 of 𝑇
′
contains no

deletions. For all other versions in 𝑇 ′
, the updates are the same

as in 𝑇 . The number of insertions left in 𝑣0 in 𝑇
′
defines the new

𝑁0 (𝑇 ′) ≥ 𝑁0 (𝑇) − (upd𝑇 (𝑣0) − upd𝑇 (𝑣)) > 𝑁0 (𝑇) − (𝑐𝑁0 (𝑇) −
𝑐
2
𝑁0 (𝑇)) = (1 − 𝑐

2
)𝑁0 (𝑇), as all updates, but the updates in 𝑣 may

be deletions in 𝑣0. Similarly, the number of updates in 𝑇 ′
is now

upd𝑇 ′ (𝑣0) = upd𝑇 (𝑣0) − upd𝑇 (𝑣) < 𝑐𝑁0 (𝑇) − 𝑐
2
𝑁0 (𝑇) = 𝑐

2
𝑁0 (𝑇).

Therefore

upd𝑇 ′ (𝑣0)
𝑁0 (𝑇 ′) <

𝑐
2
𝑁0 (𝑇)

(1 − 𝑐
2
)𝑁0 (𝑇)

=
𝑐

2 − 𝑐 ,

and a gap of at least ⌊𝑐𝑁0 (𝑇 ′)⌋ −upd𝑇 ′ (𝑣0) ≥
(
𝑐 − 𝑐

2−𝑐
)
𝑁0 (𝑇 ′) − 1

future updates must occur in 𝑇 ′
before we need to split 𝑇 ′

. Note

𝑐− 𝑐
2−𝑐 > 0 for all 0 < 𝑐 < 1. If 𝑣0 i s not small, i.e.,

2(2−𝑐)
𝑐 (1−𝑐) ≤ 𝑁0 (𝑇 ′),

we always have a gap of at least one update. For 𝑐 = 1

2
the gap is of

size
1

6
𝑁0 (𝑇 ′) − 1 and 12 ≤ 𝑁0 (𝑇 ′).

We split the subtree 𝑇𝑣 into at most three version trees 𝑇𝐻 , 𝑇𝐿 ,

and 𝑇𝑅 , depending on the number of children of 𝑣 . Version 𝑣 exists

in all three version trees, but when an operation subsequently refers

to version 𝑣 , we let it refer to version 𝑣 in 𝑇𝐻 . The version tree 𝑇𝐻
consists of 𝑣 and the subtree at the child of 𝑣 containing the most

updates. If 𝑣 has no children, 𝑇𝐻 is still created but only contains 𝑣 .

Next, we greedily partition the remaining children of 𝑣 into two

sets 𝐿 and 𝑅, such that the total number of updates in each is at

most
𝑐
2
𝑁0 (𝑇). We then create the two subtrees 𝑇𝐿 and 𝑇𝑅 , which

are rooted at 𝑣 with children 𝐿 and 𝑅, respectively. These version

trees are only created if they have at least one child. Similarly

to the case for the root 𝑣0 of 𝑇
′
, for the root 𝑣 of 𝑇𝐻 , 𝑇𝐿 , and 𝑇𝑅 ,

we examine all the insertions and deletions on the path from 𝑣0
to 𝑣 in 𝑇 and keep only the insertions that are not canceled by a

deletion on the path. The resulting set of insertions is the initial

set of insertions for 𝑣 of size 𝑁0 (𝑇𝐻) = 𝑁0 (𝑇𝐿) = 𝑁0 (𝑇𝑅). We

define 𝑑 to be the number of deletions on the path from 𝑣 to 𝑣0.

Since upd𝑇𝐻 (𝑣) ≤ 𝑐
2
𝑁0 (𝑇) by the second condition in the definition

of 𝑣 , and upd𝑇𝐿 (𝑣) =
∑

𝑤∈𝐿 upd𝑇 (𝑤) ≤ 𝑐
2
𝑁0 (𝑇) (similarly for 𝑇𝑅)

by the choice of 𝐿 and 𝑅, the analysis becomes the same for all three

version trees with root 𝑣 . Here we consider the analysis for 𝑇𝐿 and

note that 𝑑 ≤ upd𝑇 (𝑣0) −
∑

𝑤∈𝐿 upd𝑇 (𝑤). The number of initial

insertions in 𝑣 in 𝑇𝐿 is exactly the number of initial insertions in 𝑣0
in𝑇 , that are not deleted by the 𝑑 deletions on the path from 𝑣 to 𝑣0,

i.e., 𝑁0 (𝑇𝐿) = 𝑁0 (𝑇) − 𝑑 . Therefore

upd𝑇𝐿 (𝑣)
𝑁0 (𝑇𝐿)

≤
∑

𝑤∈𝐿 upd𝑇 (𝑤)
𝑁0 (𝑇) −

(
upd𝑇 (𝑣0) −

∑
𝑤∈𝐿 upd𝑇 (𝑤)

)
≤

𝑐
2
𝑁0 (𝑇)

(1 − 𝑐)𝑁0 (𝑇) + 𝑐
2
𝑁0 (𝑇)

=
𝑐

2 − 𝑐 .

Thus, we get the same gap as for 𝑇 ′
.

Finally, we argue about the resulting I/O and space bounds. Each

of the four resulting version trees created by a split contains at

most

(
1 + 𝑐

2

)
𝑁0 (𝑇) updates, i.e., by assumption can be constructed

using O
(
𝑁0 (𝑇) log𝐵 𝑁0 (𝑇)

)
I/Os. Since there have been performed

at least

(
𝑐 − 𝑐

2−𝑐
)
𝑁0 (𝑇) − 1 updates since 𝑇 was created, we can

charge the cost of splitting 𝑇 to these updates, yielding an addi-

tional amortized O
(
log𝐵 𝑁0 (𝑇)

)
cost per update. Since all versions

in 𝑇 have size at least

(
1 − 𝑐

2

)
𝑁0 (𝑇), we can restate the I/O cost

as amortized O
(
log𝐵 𝑁𝑣

)
. Similarly, the additional O(𝑁0 (𝑇𝐻)/𝐵)

blocks of space overhead when splitting 𝑇 for introducing 𝑣 and all

𝑁0 (𝑇𝐻) initial updates to 𝑣 in all three versions trees𝑇𝐻 ,𝑇𝐿 and𝑇𝐿 ,

can be charged to the at least

(
𝑐 − 𝑐

2−𝑐
)
𝑁0 (𝑇) − 1 updates to 𝑇

since 𝑇 was constructed, i.e., the space usage remains linear.

In the above analysis we showed that by setting 𝑐 = 1

2
, we are

guaranteed for each of the resulting trees, e.g.,𝑇 ′
, at least

1

6
𝑁0 (𝑇 ′)−

1 updates to 𝑇 ′
are required before 𝑇 ′

is required to be split. Any

choice of 0 < 𝑐 < 1 works, and at least

(
𝑐 − 𝑐

2−𝑐
)
𝑁0 (𝑇 ′)−1 updates

are required before a split. The best choice is 𝑐 = 2 −
√
2, where the

lower bound becomes (3−2

√
2)𝑁0 (𝑇 ′) −1 = 0.1715𝑁0 (𝑇 ′) −1, that

is slightly better than the
1

6
𝑁0 (𝑇 ′) − 1 = 0.1667𝑁0 (𝑇 ′) − 1 lower

bound achieved by setting 𝑐 = 1

2
.

7 LAZY CLONES

In this section we prove the following theorem which describes

how to improve the amortized I/O bound on Clone operations in

Theorem 6.1, such that Clone operations use worst-case constant

I/Os.

Theorem 7.1. Assume we have a data structure for external-
memory fully-persistent search trees that supports Insert, Delete
and Clone in amortized O

(
log𝐵 𝑁𝑣

)
I/Os, Search in worst-case

O
(
log𝐵 𝑁𝑣

)
I/Os, and Range in worst-case O

(
log𝐵 𝑁𝑣 + 𝐾/𝐵

)
I/Os,

and uses space linear in the number of updates. Then there exist
external-memory fully-persistent search trees supporting Insert

and Delete in amortized O
(
log𝐵 𝑁𝑣

)
I/Os, Clone in worst-case

O(1) I/Os, Search in worst-case O
(
log𝐵 𝑁𝑣

)
I/Os, and Range in

worst-case O
(
log𝐵 𝑁𝑣 + 𝐾/𝐵

)
I/Os. The space usage is linear in the

number of updates.

The idea of the construction to reduce the I/O bound for Clone

operations, is to postpone the actual cloning to the first update

to the version and to charge the cost for the cloning to the later

update instead. Any version 𝑣 , which has not been the subject of

any updates, must contain the same values as the (locked) parent

version 𝑢 it has been cloned from. Therefore, any clone or query

performed on version 𝑣 can be performed on version 𝑢. Hence

version 𝑣 does not need to be explicitly created in the structure.

When version 𝑣 is cloned, it will become locked, and a new unlocked

version𝑤 is created that is identical to both 𝑣 and 𝑢. Thus, the same

result is obtained as if𝑤 was cloned from 𝑢.

STOC ’23, June 20–23, 2023, Orlando, FL, USA Gerth Stølting Brodal, Casper Moldrup Rysgaard, and Rolf Svenning

In this way, lazy clones can be implemented using a single layer

of references. Each version is either a real version existing in the

underlying structure or a lazy version pointing to a locked real

version containing the same values. When making a clone𝑤 of a

lazy version 𝑣 pointing to a real version 𝑢, version 𝑣 can no longer

receive updates and is locked. Version 𝑣 remains lazy and is never

explicitly constructed. The new version𝑤 becomes lazy, pointing

to the real version 𝑢. As a Clone operation always creates a lazy

version from some real version, and a real version can be found by

traversing at most 1 pointer, then Clone operations use worst-case

O(1) I/Os. Any Insert or Delete operation must first check if the

operation is performed on a real or lazy version, which uses O(1)
additive I/Os. If the version is lazy, it must first be made real, which

uses amortized O
(
log𝐵 𝑁𝑣

)
I/Os, by performing a Clone operation

on the underlying data structure given to the construction. After

this, the update can be performed in amortized O
(
log𝐵 𝑁𝑣

)
I/Os,

resulting in total amortized O
(
log𝐵 𝑁𝑣

)
I/Os. Similarly, Search

and Range operations on lazy versions are instead performed on

the equivalent real versions. The overhead is O(1) additive I/Os.
Finally, storing the single layer of references from lazy versions to

real versions requires only additive linear space. This concludes

Theorem 7.1.

8 CONCLUSION AND FUTUREWORK

This paper presents external-memory fully-persistent B-trees with

I/O bounds (Theorem 1.1) matching those of classical B-trees [6].

A natural open question is whether this result can be extended

to the update-query trade-off regime by buffering updates as was

done for classical B-trees. Adopting our solution seems plausible

but nontrivial since it likely requires buffering the point location

structure. In the 𝐵𝜀 tree, queries can be performed efficiently since

all the relevant buffered updates are on the path in the tree from

the root to the query position. However, that would not be the

case in the segment tree, which our point location structure is built

upon. Another direction is to improve the amortized bounds to

instead hold with high probability or worst-case. The main obstacle

here seems to be how to handle rectangle rebalancing. These open

questions are similar to the improvements to the classical B-tree

mentioned in Section 1.2, and likely some of those techniques can

also be deployed here.

REFERENCES

[1] Georgy M. Adelson-Velsky and Evgenii M. Landis. 1962. An algorithm for the

organization of information. Proceedings of the USSR Academy of Sciences (in
Russian) 146 (1962), 263–266. English translation by Myron J. Ricci in Soviet

Mathematics - Doklady, 3:1259–1263, 1962..

[2] Alok Aggarwal and Jeffrey Scott Vitter. 1988. The Input/Output Complexity of

Sorting and Related Problems. Commun. ACM 31, 9 (1988), 1116–1127. https:

//doi.org/10.1145/48529.48535

[3] Lars Arge, Gerth Stølting Brodal, and S. Srinivasa Rao. 2012. External Memory

Planar Point Location with Logarithmic Updates. Algorithmica 63, 1 (2012),

457–475. https://doi.org/10.1007/s00453-011-9541-2

[4] Lars Arge, Andrew Danner, and Sha-Mayn Teh. 2003. I/O-efficient point location

using persistent B-trees. ACM Journal of Experimental Algorithmics 8 (2003),

22 pages. https://doi.org/10.1145/996546.996549

[5] Lars Arge and Jeffrey Vitter. 2003. Optimal External Memory Interval Man-

agement. SIAM J. Comput. 32 (09 2003), 1488–1508. https://doi.org/10.1137/

S009753970240481X

[6] Rudolf Bayer and Edward M. McCreight. 1972. Organization and Maintenance of

Large Ordered Indices. Acta Informatica 1 (1972), 173–189. https://doi.org/10.

1007/BF00288683

[7] Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger, and Peter

Widmayer. 1996. An Asymptotically Optimal Multiversion B-Tree. The VLDB
Journal 5, 4 (1996), 264–275. https://doi.org/10.1007/s007780050028

[8] Michael A. Bender, Rathish Das, Martin Farach-Colton, Rob Johnson, andWilliam

Kuszmaul. 2020. Flushing Without Cascades. In Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, Shuchi Chawla (Ed.). SIAM, 650–669. https://doi.org/10.1137/

1.9781611975994.40

[9] Michael A. Bender, Martín Farach-Colton, Rob Johnson, Simon Mauras, Tyler

Mayer, Cynthia A. Phillips, and Helen Xu. 2017. Write-Optimized Skip Lists. In

Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (Chicago, Illinois, USA) (PODS ’17). Association for Computing

Machinery, New York, NY, USA, 69–78. https://doi.org/10.1145/3034786.3056117

[10] Gerth Stølting Brodal and Rolf Fagerberg. 2003. On the Limits of Cache-

Obliviousness. In Proceedings of the Thirty-Fifth Annual ACM Symposium on
Theory of Computing (SanDiego, CA, USA) (STOC ’03). Association for Computing

Machinery, New York, NY, USA, 307–315. https://doi.org/10.1145/780542.780589

[11] Gerth Stølting Brodal, Spyros Sioutas, Konstantinos Tsakalidis, and Kostas Tsich-

las. 2012. Fully Persistent B-trees. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January
17-19, 2012. SIAM, 602–614. https://doi.org/10.1137/1.9781611973099.51

[12] Gerth Stølting Brodal, Spyros Sioutas, Konstantinos Tsakalidis, and Kostas Tsich-

las. 2020. Fully persistent B-trees. Theoretical Computer Science 841 (2020), 10–26.
https://doi.org/10.1016/j.tcs.2020.06.027

[13] Bernard Chazelle. 1986. Filtering Search: A New Approach to Query-Answering.

SIAM J. Comput. 15, 3 (1986), 703–724. https://doi.org/10.1137/0215051

[14] Bernard Chazelle and Leonidas J. Guibas. 1986. Fractional Cascading: I. A Data

Structuring Technique. Algorithmica 1, 2 (1986), 133–162. https://doi.org/10.

1007/BF01840440

[15] Rathish Das, John Iacono, and YakovNekrich. 2022. External-memory dictionaries

with worst-case update cost. arXiv:2211.06044 [cs.DS]

[16] Erik D. Demaine, John Iacono, and Stefan Langerman. 2007. Retroactive Data

Structures. ACM Transactions on Algorithms 3, 2, Article 13 (May 2007), 20 pages.

https://doi.org/10.1145/1240233.1240236

[17] P. Dietz and D. Sleator. 1987. Two Algorithms for Maintaining Order in a List. In

Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing
(New York, New York, USA) (STOC ’87). ACM, New York, NY, USA, 365–372.

https://doi.org/10.1145/28395.28434

[18] James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan.

1989. Making Data Structures Persistent. J. Comput. System Sci. 38, 1 (1989),

86–124. https://doi.org/10.1016/0022-0000(89)90034-2

[19] Yoav Giora and Haim Kaplan. 2009. Optimal Dynamic Vertical Ray Shooting in

Rectilinear Planar Subdivisions. ACM Transactions on Algorithms 5, 3, Article 28
(July 2009), 51 pages. https://doi.org/10.1145/1541885.1541889

[20] Leonidas J. Guibas and Robert Sedgewick. 1978. A Dichromatic Framework for

Balanced Trees. In 19th Annual Symposium on Foundations of Computer Science,
Ann Arbor, Michigan, USA, 16-18 October 1978. IEEE Computer Society, 8–21.

https://doi.org/10.1109/SFCS.1978.3

[21] Scott Huddleston and Kurt Mehlhorn. 1982. A New Data Structure for Represent-

ing Sorted Lists. Acta Informatica 17 (1982), 157–184. https://doi.org/10.1007/

BF00288968

[22] Sitaram Lanka and Eric Mays. 1991. Fully Persistent B+-trees. SIGMOD Records
20, 2 (April 1991), 426–435. https://doi.org/10.1145/119995.115861

[23] David B. Lomet and Betty Salzberg. 1993. Exploiting A History Database for

Backup. In Proceedings of the 19th International Conference on Very Large Data
Bases (VLDB ’93). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

380–390. https://dl.acm.org/doi/10.5555/645919.672672

[24] J. IanMunro and Yakov Nekrich. 2019. Dynamic Planar Point Location in External

Memory. In 35th International Symposium on Computational Geometry, SoCG 2019,
June 18-21, 2019, Portland, Oregon, USA (LIPIcs, Vol. 129), Gill Barequet and Yusu

Wang (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 52:1–52:15.

https://doi.org/10.4230/LIPIcs.SoCG.2019.52

[25] Neil Sarnak and Robert Endre Tarjan. 1986. Planar Point Location Using Persistent

Search Trees. Commun. ACM 29, 7 (1986), 669–679. https://doi.org/10.1145/6138.

6151

[26] Peter J. Varman and Rakesh M. Verma. 1997. An Efficient Multiversion Access

Structure. IEEE Transactions on Knowledge and Data Engineering 9, 3 (1997),

391–409. https://doi.org/10.1109/69.599929

[27] Dan E. Willard. 1985. New Data Structures for Orthogonal Range Queries. SIAM
J. Comput. 14, 1 (1985), 232–253. https://doi.org/10.1137/0214019

Received 2022-11-07; accepted 2023-02-06

https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/48529.48535
https://doi.org/10.1007/s00453-011-9541-2
https://doi.org/10.1145/996546.996549
https://doi.org/10.1137/S009753970240481X
https://doi.org/10.1137/S009753970240481X
https://doi.org/10.1007/BF00288683
https://doi.org/10.1007/BF00288683
https://doi.org/10.1007/s007780050028
https://doi.org/10.1137/1.9781611975994.40
https://doi.org/10.1137/1.9781611975994.40
https://doi.org/10.1145/3034786.3056117
https://doi.org/10.1145/780542.780589
https://doi.org/10.1137/1.9781611973099.51
https://doi.org/10.1016/j.tcs.2020.06.027
https://doi.org/10.1137/0215051
https://doi.org/10.1007/BF01840440
https://doi.org/10.1007/BF01840440
https://arxiv.org/abs/2211.06044
https://doi.org/10.1145/1240233.1240236
https://doi.org/10.1145/28395.28434
https://doi.org/10.1016/0022-0000(89)90034-2
https://doi.org/10.1145/1541885.1541889
https://doi.org/10.1109/SFCS.1978.3
https://doi.org/10.1007/BF00288968
https://doi.org/10.1007/BF00288968
https://doi.org/10.1145/119995.115861
https://dl.acm.org/doi/10.5555/645919.672672
https://doi.org/10.4230/LIPIcs.SoCG.2019.52
https://doi.org/10.1145/6138.6151
https://doi.org/10.1145/6138.6151
https://doi.org/10.1109/69.599929
https://doi.org/10.1137/0214019

	Abstract
	1 Introduction
	1.1 Interface of a Fully Persistent Search Tree
	1.2 Previous Work
	1.3 Contribution
	1.4 Outline of Paper

	2 Static Data Structure
	2.1 Version Tree and Version List
	2.2 Geometry of Updates and Queries
	2.3 Static Rectangular Partitioning
	2.4 Structural Requirements
	2.5 Queries

	3 Updates
	3.1 Invariants
	3.2 Finding the Neighbors
	3.3 Potential Functions
	3.4 Update without Rebalancing
	3.5 Rebalancing Rectangles
	3.6 Potential Function Constants
	3.7 Maintaining Structure inside a Rectangle
	3.8 Space Usage

	4 Colored Predecessor Queries
	5 Point Location
	6 Partitioning the Version Tree
	7 Lazy clones
	8 Conclusion and Future Work
	References

