
Predecessor Queries in Dynamic Integer SetsGerth St�lting Brodal?BRICS??, Department of Computer Science, University of AarhusNy Munkegade, DK-8000 �Arhus C, Denmarkgerth@brics.dkAbstract. We consider the problem of maintaining a set of n integersin the range 0::2w � 1 under the operations of insertion, deletion, pre-decessor queries, minimum queries and maximum queries on a unit costRAM with word size w bits. Let f(n) be an arbitrary nondecreasingsmooth function satisfying log log n � f(n) � plog n. A data structureis presented supporting insertions and deletions in worst case O(f(n))time, predecessor queries in worst case O((log n)=f(n)) time and mini-mum and maximum queries in worst case constant time. The requiredspace is O(n2�w) for an arbitrary constant � > 0. The RAM operationsused are addition, arbitrary left and right bit shifts and bit-wise booleanoperations. The data structure is the �rst supporting predecessor queriesin worst case O(log n= log log n) time while having worst case O(log log n)update time.1 IntroductionWe consider the problem of maintaining a set S of size n under the operations:Insert(e) inserts element e into S,Delete(e) deletes element e from S,Pred(e) returns the largest element � e in S, andFindMin/FindMax returns the minimum/maximum element in S.In the comparison model Insert, Delete and Pred can be supported inworst case O(logn) time and FindMin and FindMax in worst case constanttime by a balanced search tree, say an (a; b)-tree [8]. For the comparison model atradeo� between the operations has been shown by Brodal et al. [6]. The tradeo�shown in [6] is that if Insert and Delete take worst case O(t(n)) time thenFindMin (and FindMax) requires at least worst case n=2O(t(n)) time. Becausepredecessor queries can be used to answer member queries, minimum queriesand maximumqueries, Pred requires worst case maxf
(logn); n=2O(t(n))g time.For the sake of completeness we mention that matching upper bounds can be? Supported by the Danish Natural Science Research Council (Grant No. 9400044).Partially supported by the ESPRIT Long Term Research Program of the EU undercontract #20244 (ALCOM-IT).?? Basic Research in Computer Science, a Centre of the Danish National ResearchFoundation.



achieved by a (2; 4)-tree of depth at most t(n) where each leaf stores �(n=2t(n))elements, provided Delete takes a pointer to the element to be deleted.In the following we consider the problem on a unit cost RAM with word sizew bits allowing addition, arbitrary left and right bit shifts and bit-wise booleanoperations on words in constant time. Miltersen [10] refers to this model as aPractical RAM. We assume the elements are integers in the range 0::2w � 1.A tradeo� similar to the one for the comparison model [6] is not known for aPractical RAM.A data structure of van Emde Boas et al. [15, 16] supports the operationsInsert, Delete, Pred, FindMin and FindMax on a Practical RAM in worstcase O(logw) time. For word size logO(1) n this implies an O(log logn) timeimplementation.Thorup [14] recently presented a priority queue supporting Insert and Ex-tractMin in worst case O(log logn) time independently of the word size w.Thorup notes that by tabulating the multiplicity of each of the inserted elementsthe construction supports Delete in amortized O(log logn) time by skippingextracted integers of multiplicity zero. The data structure of Thorup does notsupport predecessor queries but Thorup mentions that an 
(log1=3�o(1) n) lowerbound for Pred can be extracted from [9, 11]. The space requirement of Tho-rup's data structure is O(n2�w) (if the time bounds are amortized the spacerequirement is O(n+ 2�w)).Andersson [2] has presented a Practical RAM implementation supporting in-sertions, deletions and predecessor queries in worst case O(plogn) time andminimumand maximum queries in worst case constant time. The space require-ment of Andersson's data structure is O(n + 2�w). Several data structures canachieve the same time bounds as Andersson [2], but they all require constanttime multiplication [3, 7, 13].The main result of this paper is Theorem 1 stated below. The theorem re-quires the notion of smooth functions. Overmars [12] de�nes a nondecreasingfunction f to be smooth if and only if f(O(n)) = O(f(n)).Theorem1. Let f(n) be a nondecreasing smooth function satisfying log logn �f(n) � plogn. On a Practical RAM a data structure exists supporting Insertand Delete in worst case O(f(n)) time, Pred in worst case O((logn)=f(n))time and FindMin and FindMax in worst case constant time, where n is thenumber of integers stored. The space required is O(n2�w) for any constant � > 0.If f(n) = log logn we achieve the result of Thorup but in the worst case sense,i.e. we can support Insert,ExtractMin andDelete in worst case O(log logn)time. We can support Pred queries in worst case O(logn= log logn) time. Thedata structure is the �rst allowing predecessor queries in O(logn= log logn) timewhile having O(log logn) update time. If f(n) = plogn, we achieve time boundsmatching those of Andersson [2].The basic idea of our construction is to apply the data structure of van EmdeBoas et al. [15, 16] for O(f(n)) levels and then switch to a packed search tree ofheight O(logn=f(n)). This is very similar to the data structure of Andersson [2].



But where Andersson uses O(logn=f(n)) time to update his packed B-tree, weonly need O(f(n)) time. The idea we apply to achieve this speedup is to addbu�ers of delayed insertions and deletions to the search tree, such that we canwork on several insertions concurrently by using the word parallelism of thePractical RAM. The idea of adding bu�ers to a search tree has in the contextof designing I/O e�cient data structures been applied by Arge [4].Throughout this paper we w.l.o.g. assume Delete only deletes integers ac-tually contained in the set and Insert never inserts an already inserted integer.This can be satis�ed by tabulating the multiplicity of each inserted integer.In the description of our data structure we in the following assume n is aconstant such that the current number of integers in the set is �(n). This canbe satis�ed by using the general dynamization technique described by Over-mars [12], which requires f(n) to be smooth. In Sect. 2 if we write log5 n � k,we actually mean that k is a function of n, but because we assume n to be aconstant k is also assumed to be a constant.In Sect. 2 we describe our packed search trees with bu�ers. In Sect. 3 wedescribe how to perform queries in a packed search tree and in Sect. 4 how toupdate a packed search tree. In Sect. 5 we combine the packed search trees witha range reduction based on the data structure of van Emde Boas et al. [15, 16]to achieve the result stated in Theorem 1. Section 6 contains some concludingremarks and lists some open problems.2 Packed search trees with bu�ersIn this and the following two sections we describe how to maintain a set ofintegers of w=k bits each, for k satisfying log5 n � k � w= logn. The bounds weachieve are:Lemma2. Let k satisfy log5 n � k � w= logn. If the integers to be stored are ofw=k bits each then on a Practical RAM Insert and Delete can be supportedin worst case O(log k) time, Pred in worst case O(log k + logn= logk) timeand FindMin and FindMax in worst case constant time. The space requiredis O(n).The basic idea is to store O(k) integers in each word and to use the wordparallelism of the Practical RAM to work on O(k) integers in parallel in constanttime. In the following we w.l.o.g. assume that we can apply Practical RAMoperations to a list of O(k) integers stored in O(1) words in worst cast constanttime. Together with each integer we store a test bit, as in [1, 2, 14]. An integertogether with the associated test bit is denoted a �eld. Figure 1 illustrates thestructure of a list of maximum capacity k containing ` � k integers x1; : : : ; x`.A �eld containing the integer xi has a test bit equal to zero. The remaining k�`empty �elds store the integer zero and a test bit equal to one.Essential to the data structure to be described is the following lemma due toAlbers and Hagerup [1].



1 0 � � � 0 � � � 1 0 � � � 0 0 x` � � � 0 x1| {z }�eld k | {z }�eld `+ 1| {z }�eld ` | {z }�eld 1Fig. 1. The structure of a list of maximum capacity k, containing integers x1; : : : ; x`.Lemma3 Albers and Hagerup. On a Practical RAM two sorted lists eachof at most O(k) integers stored in O(1) words can be merged into a single sortedlist stored in O(1) words in O(logk) time.Albers and Hagerup's proof of Lemma 3 is a description of how to implementthe bitonic merging algorithm of Batcher [5] in a constant number of words onthe Practical RAM. The algorithmof Albers and Hagerup does not handle partialfull lists as de�ned (all test bits are assumed to be zero), but it is straightforwardto modify their algorithm to do so, by considering an integer's test bit as theinteger's most signi�cant bit. A related lemma we need for our construction isthe following:Lemma4. Let k satisfy k � w= logn. Let A and B be two sorted and repetitionfree lists each of at most O(k) integers stored in O(1) words on a Practical RAM.Then the sorted list AnB can be computed and stored in O(1) words in O(logk)time.Proof. Let C be the list consisting of A merged with B twice. By Lemma 3the merging can be done in worst case O(logk) time. By removing all integersappearing at least twice from C we get AnB. In the following we outline how toeliminate these repetitions from C. Tedious implementation details are omitted.First a mask is constructed corresponding to the integers only appearing oncein C. This can be done in worst case constant time by performing the compar-isons between neighbor integers in C by subtraction like the mask constructiondescribed in [1]. The integers appearing only once in C are compressed to forma single list as follows. First a pre�x sum computation is performed to calculatehow many �elds each integer has to be shifted to the right. This can be done inO(log k) time by using the constructed mask. Notice that each of the calculatedvalues is an integer in the range 0; : : : ; jAj + 2jBj, implying that each �eld isrequired to contain at least O(logk) bits. Finally we perform O(log k) iterationswhere we in the i'th iteration move all integers xj, 2i �elds to the right if thebinary representation of the number of �elds xj has to be shifted has the i'thbit set. A similar approach has been applied in [1] to reverse a list of integers.utThe main component of our data structure is a search tree T where all leaveshave equal depth and all internal nodes have degree at least one and at most� � k= log4 n. Each leaf v stores a sorted list Iv of between k=2 and k integers.With each internal node v of degree d(v) we store d(v)�1 keys to guide searches.The d(v) pointers to the children of v can be packed into a single word because



they require at most d(v) logn � w bits, provided that the number of nodes isless than n.This part of the data structure is quite similar to the packed B-tree describedby Andersson [2]. To achieve faster update times for Insert and Delete thanAndersson, we add bu�ers of delayed Insert and Delete operations to eachinternal node of the tree.With each internal node v we maintain a bu�er Iv containing a sorted list ofintegers to be inserted into the leaves of the subtree Tv rooted at v, and a bu�erDv containing a sorted list of integers to be deleted from Tv. We maintain theinvariants that Iv and Dv are disjoint and repetition free, and thatmaxfjIvj; jDvjg < � logn : (1)The set Sv of integers stored in a subtree Tv can recursively be de�ned asSv = � Iv if v is a leaf,Iv [ ((Sw a child of v Sw) nDv) otherwise. (2)Finally we maintain two nonempty global bu�ers of integers L and R eachof size O(k) to be able to answer minimum and maximum queries in constanttime. The integers in L are less than all other integers stored, and the integersin R are greater than all other integers stored.Let h denote the height of T . In Sect. 4 we show how to guarantee thath = O(logn= log k), implying that the number of nodes is O(hn=k) = O(n).3 Queries in packed search treesBy explicitly remembering the minimum integer in L and the maximum integerin R it is trivial to implement FindMin and FindMax in worst case constanttime. A Pred(e) query can be answered as follows. If e � max(L) then thepredecessor of e is contained in L and can be found in worst case O(logk) timeby standard techniques. If min(R) � e then the predecessor of e is contained inR. Otherwise we have to search for the predecessor of e in T .We �rst perform a search for e in the search tree T . The implementationof the search for e in T is identical to how Andersson searches in a packed B-tree [2]. We refer to [2] for details. Let � be the leaf reached and w1; : : : ; wh�1be the internal nodes on the path from the root to �. De�ne wh = �. Becausewe have introduced bu�ers at each internal node of T the predecessor of e doesnot necessarily have to be stored in I� but can also be contained in one of theinsert bu�ers Iwi . An integer a 2 Iwi can only be a predecessor of e if it has notbeen deleted by a delayed delete operation, i.e. a =2 Dwj for 1 � j < i. It seemsnecessary to ush all bu�ers Iwi and Dwi for integers which should be insertedin or deleted from I� to be able to �nd the predecessor of e. If dom� denotesthe interval of integers spanned by the leaf �, the bu�ers Iwi and Dwi can be



ushed for elements in dom� by the following sequence of operations:Iwi+1  Iwi+1 n (Dwi \ dom�) [ (Iwi \ dom�) nDwi+1 ;Dwi+1  Dwi+1 n (Iwi \ dom�) [ (Dwi \ dom�) n Iwi+1 ;Iwi  Iwi n dom� ;Dwi  Dwi n dom� :Let Î� denote the value of I� after ushing all bu�ers Iwi andDwi for integersin the range dom�. From (2) it follows that Î� can also be computed directly bythe expressionÎ� = dom� \ (((� � � ((I� nDwh�1 ) [ Iwh�1 ) � � �) nDw1 ) [ Iw1 ) : (3)Based on Lemmas 3 and 4 we can compute this expression in O(h logk) time.This is unfortunatelyO(logn) for the tree height h = logn= logk. In the followingwe outline how to �nd the predecessor of e in Î� without actually computing Î�in O(logk + logn= logk) time.Let I 0wi be Iwi \ dom�\]1; e] for i = 1; : : : ; h. An alternative expression tocompute the predecessor of e in Î� ismax [i=1;:::;h(I 0wi n [j=1;:::;i�1Dwj ) : (4)Because jSj=1;:::;h�1Dwj j < � log2 n we can w.l.o.g. assume jI 0wh j � � log2 nin (4) by restricting our attention to the � log2 n largest integers in I 0wh , i.e.all sets involved in (4) have size at most � log2 n. The steps we perform tocompute (4) are the following. All implementation details are omitted.{ First all bu�ers Iwi and Dwi for i < h are inserted into a single word Wwhere the contents of W is considered as 2h � 2 independent lists each ofmaximum capacity � log2 n. This can be done in O(h) = O(logn= logk)time.{ Using the word parallelism of the Practical RAM we now for all Iwi computeI0wi . This can be done in O(logk) time if min(dom�) is known. The integermin(dom�) can be computed in the search phase determining the leaf �. Wnow contains I 0wi and Dwi for i < h.{ The value of I 0wh is computed (satisfying jI 0wh j � � log2 n) and appended toW. This can be done in O(logk) time. The contents of W is nowI 0whDwh�1I 0wh�1 � � �Dw1I0w1 :{ Let WI = (I 0wh )h�1 � � � (I 0w1 )h�1 and WD = (Dwh�1 � � �Dw1 )h. See Fig. 2.The number of �elds required in each word is h(h�1)� log2 n � � log4 n � k.The two words can be constructed from W in O(log k) time.



WI I 0wh � � � I 0wh I 0wh � � � I 0w1 � � � I 0w1 I 0w1WD Dwh�1 � � � Dw2 Dw1 � � � Dwh�1 � � � Dw2 Dw1WM Mh;h�1 � � � Mh;2 Mh;1 � � � M1;h�1 � � � M1;2 M1;1Fig. 2. The structure of the words WI , WD and WM .{ From WI and WD we now construct h(h � 1) masks Mi;j such that Mi;j isa mask for the �elds of I 0wi which are not contained in Dwj . See Fig. 2. Theconstruction of a maskMi;j from the two list I 0wi and Dwj is very similar tothe proof of Lemma 4 and can be done as follows in O(log k) time.First I is merged with D twice (we omit the subscripts while outlining themask construction). Let C be the resulting list. From C construct in con-stant time a mask C 0 that contains ones in the �elds in which C stores aninteger only appearing once in C and zero in all other �elds. By remov-ing all �elds from C having exactly one identical neighbor we can recoverI from C. By removing the corresponding �elds from C 0 we get the re-quired mask M . As an example assume I = (7; 5; 4; 3; 1) and D = (6; 5; 2).Then C = (7; 6; 6; 5; 5; 5; 4; 3; 2; 2; 1), C 0 = (1; 0; 0; 0; 0; 0; 1; 1; 0; 0; 1) andM = (1; 0; 1; 1; 1) where underlined �elds are the �elds in C having exactlyone identical neighbor.{ We now compute masks Mi = Vj=1;:::;i�1Mi;j for all i. By applying Mi toI0wi we get I 0wi nSj=1;:::;i�1Dwj . This can be done in O(log k) time fromWMand WI .{ Finally we in O(logk) time compute (4) as the maximumover all the integersin the sets computed in the previous step. Notice that it can easily be checkedif e has a predecessor in Î� by checking if all the sets computed in the previousstep are empty.We conclude that the predecessor of e in Î� can be found in O(log k + h) =O(logk + logn= logk) time.If e does not have a predecessor in Î� there are two cases to consider. The �rstis if there exists a leaf �� to the left of �. Then the predecessor of e is the largestinteger in Î��. Notice that Î�� is nonempty because jSj=1;:::;h�1D �wj j < jI��j. If �is the leftmost leaf the predecessor of e is the largest integer in L. We concludethat Pred queries can be answered in worst case O(logk+ logn= logk) time ona Practical RAM.4 Updating packed search treesIn the following we describe how to perform Insert and Delete updates. We�rst give a solution achieving the claimed time bounds in the amortized sense.The amortized solution is then converted into a worst case solution by standardtechniques.



We �rst consider Insert(e). If e < max(L) we insert e into L in log k time,remove the maximum from L such that jLj remains unchanged, and let e becomethe removed integer. If min(R) < e we insert e in R, remove the minimum fromR, and let e become the removed integer.Let r denote the root of T . If e 2 Dr, remove e fromDr in worst case O(logk)time, i.e. Insert(e) cancels a delayed Delete(e) operation. Otherwise insert einto Ir.If jIrj < � logn this concludes the Insert operation. Otherwise there mustexist a child w of r such that logn integers can be moved from Ir to the subtreerooted at w. The child w and the logn integers X to be moved can be found bya binary search using the search keys stored at r in worst case O(log k) time. Weomit the details of the binary search in Ir. We �rst remove the set of integers Xfrom Ir such that jIrj < � logn. We next remove all integers in X \Dw fromX and from Dw in O(logk) time by Lemma 4, i.e. we let delayed deletions becancel out by delayed insertions. The remaining integers in X are merged intoIw in O(log k) time. Notice that Iw and Dw are disjoint after the merging andthat if w is an internal node then jIwj < (�+ 1) logn.If jIwj � � logn and w is not a leaf we recursively apply the above to Iw.If w is a leaf and jIwj � k we are done. The only problem remaining is if w isa leaf and k < jIwj � k + logn � 2k. In this case we split the leaf w into twoleaves each containing between k=2 and k integers, and update the search keysand child pointers stored at the parent of w. If the parent p of w now has �+ 1children we split p into two nodes of degree � �=2 while distributing the bu�ersIp and Dp among the two nodes w.r.t. the new search key. The details of how tosplit a node is described in [2]. If the parent of p gets degree �+1 we recursivelysplit the parent of p.The implementation of inserting e in T takes worst case O(h log k) time.Because the number of leaves is O(n) and that T is similar to a B-tree if weonly consider insertions we get that the height of T is h = O(logn= log�) =O(logn= log(k= log4 n)) = O(logn= logk) because k � log5 n. It follows that theworst case insertion time in T is O(logn). But because we remove logn integersfrom Ir every time jIr j = � logn we spend at most worst case O(logn) timeonce for every logn insertion. All other insertions require worst case O(logk)time. We conclude that the amortized insertion time is O(log k).We now describe how to implement Delete(e) in amortized O(log k) time.If e is contained in L we remove e from L. If L is nonempty after having removede we are done. If L becomes empty we proceed as follows. Let � be the leftmostleaf of T . The basic idea is to let L become Î�. We do this as follows. Firstwe ush all bu�ers along the leftmost path in the tree for integers contained indom�. Based on (3) this can be done in O(h logk) time. We can now assume(Iw [Dw) \ dom� = ; for all nodes w on the leftmost path and that I� = Î�.We can now assign L the set I� and remove the leaf �. If the parent p of � getsdegree zero we recursively remove p. Notice that if p gets degree zero then Ipand Dp are both empty. Because the total size of the of insertion and deletionbu�ers on the leftmost path is bounded by h� logn � k= log2 n it follows that



logn � k=2 � k= log2 n � jLj � k + k= log2 n. It follows that L cannot becomeempty throughout the next logn Delete operations. The case e 2 R is handledsymmetrically by letting � be the rightmost leaf.If e =2 L[R we insert e in Dr provided e =2 Ir. If e 2 Ir we remove e from Irin O(logk) time and are done. If jDrj � � logn we can move logn integers Xfrom Dr to a child w of r. If w is an internal node we �rst remove X \ Iw fromX and Iw, i.e. delayed insertions cancels delayed insertions, and then inserts theremaining elements in X into Dw. If jDwj � � logn we recursively move lognintegers from Dw to a child of w. If w is a leaf � we just remove the integersX from I�. If jI�j � k=2 we are done. Otherwise let �� denote the leaf to theright or left of � (If �� does not exist the set only contains O(k) integers and theproblem is easy to handle. In the following we w.l.o.g. assume �� exists). We �rstush all bu�ers on the paths from the root r to � and �� such that the bu�ers donot contain elements from dom�[ dom��. This can be done in O(h logn) time aspreviously described. Fromk=2 + k=2� logn� 2h� logn � jI� [ I��j � k=2 + k � 1 + 2h� lognit follows that k=2 � jI�[I��j � 2k. There are two cases to consider. If j�+��j � kwe redistribute I� and I�� such that they both have size at least k=2 and at mostk. Because all bu�ers on the path from � (��) to the root intersect empty withdom� [ dom�� we in addition only need to update the search key stored at thenearest common ancestor of � and �� in T which separates dom� and dom��. Thiscan be done in O(h + log k) time. The second case is if j� + ��j < k. We thenmove the integers in I� to I�� and remove the leaf � as described previously.The total worst case time for a deletion becomes O(h logk) = O(logn). Butagain the amortized time is O(log k) because L and R become empty for atmost every logn'th Delete operation, and because Dr becomes full for at mostevery logn'th Delete operation.In the previous description of Delete we assumed the height of T is h =O(logn= logk). We argued that this was true if only Insert operations wereperformed because then our search tree is similar to a B-tree. It is easy tosee that if only O(n) leaves have been remove, then the height of T is stillh = O(logn= logk). One way to see this is by assuming that all removed nodesstill resist in T . Then T has at mostO(n) leaves and each internal node has degreeat least �=2, which implies the claimed height. By rebuilding T completely suchthat all internal nodes have degree �(�) for every n'th Delete operation wecan guarantee that at most n leaves have been removed since T was rebuild thelast time. The rebuilding of T can easily be done in O(n log k) time implyingthat the amortized time for Delete only increases by O(logk).We conclude that Insert and Delete can be implemented in amortizedO(logk) time. The space required is O(n) because each node can be stored inO(1) words.To convert the amortized time bounds into worst case time bounds we ap-ply the standard technique of incrementally performing a worst case expensiveoperation over the following sequence of operations by moving the expensive



operation into a shadow process that is executed in a quasi-parallel fashion withthe main algorithm. The rebuilding of T when O(n) Delete operations havebeen performed can be handled by the general dynamization technique of Over-mars [12] in worst case O(log k) time per operation. For details refer to [12].What remains to be described is how to handle the cases when L or R becomesempty and when Ir or Dr becomes full. The basic idea is to handle these cases bysimply avoiding them. Below we outline the necessary changes to the amortizedsolution.The idea is to allow Ir andDr to have size � logn+O(logn) and to divide thesequence of Insert and Delete operations into phases of logn=4 operations.In each phase we perform one of the transformations below to T incrementallyover the logn=4 operations of the phase by performing worst case O(1) work perInsert orDelete operation. We cyclic choose which transformation to perform,such that for each logn'th operation each transformation has been performedat least once. Each of the transformations can be implemented in worst caseO(logn) time as described in the amortized solution.{ If jLj < k at the start of the phase and � denotes the leftmost leaf of Twe incrementally merge L with Î� and remove the leaf �. It follows that Lalways has size at least k � O(logn) > 0.{ The second transformation similarly guarantees that jRj > 0 by merging Rwith Î� where � is rightmost leaf of T if jRj < k.{ If jIrj � � logn at the start of the phase we incrementally remove logn inte-gers from Ir. It follows that the size of Ir is bounded by � logn+O(logn) =O(k).{ The last transformation similarly guarantees that the size of Dr is boundedby � logn+O(logn) by removing logn integers from Dr if jDrj � � logn.This �nishes our description of how to achieve the bounds stated in Lemma 2.5 Range reductionTo prove Theorem 1 we combine Lemma 2 with a range reduction based ona data structure of van Emde Boas et al. [15, 16]. This is similar to the datastructure of Andersson [2], and for details we refer to [2]. We w.l.o.g. assumew � 2f(n) logn.The idea is to use the topmost f(n) levels of the data structure of van EmdeBoas et al. and then switch to our packed search trees. If f(n) � 5 log logn theintegers we need to store are of w=2f(n) � w= log5 n bits each and Lemma 2applies for k = 2f(n). By explicitly remembering the minimum and maximuminteger stored FindMin and FindMax are trivial to support in worst case con-stant time. The remaining time bounds follow from Lemma 2. The space boundof O(n2�w) follows from storing the arrays at each of the O(n) nodes in the datastructure of van Emde Boas et al. as a trie of degree 2�w.



6 ConclusionWe have presented the �rst data structure for a Practical RAM allowing theupdate operations Insert and Delete in worst case O(log logn) time whileanswering Pred queries in worst case O(logn= log logn) time. An interestingopen problem is if it is possible to support Insert and Delete in worst caseO(log logn) time and Pred in worst case O(plogn) time. The general openproblem is to �nd a tradeo� between the update time and the time for prede-cessor queries on a Practical RAM.AcknowledgmentsThe author thanks Theis Rauhe, Thore Husfeldt and Peter Bro Miltersen forencouraging discussions, and the referees for comments.References1. Susanne Albers and Torben Hagerup. Improved parallel integer sorting withoutconcurrent writing. In Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms(SODA), pages 463{472, 1992.2. Arne Andersson. Sublogarithmic searching without multiplications. In Proc. 36thAnn. Symp. on Foundations of Computer Science (FOCS), pages 655{663, 1995.3. Arne Andersson. Faster deterministic sorting and searching in linear space. InProc. 37th Ann. Symp. on Foundations of Computer Science (FOCS), pages 135{141, 1996.4. Lars Arge. The bu�er tree: A new technique for optimal I/O-algorithms. In Proc.4th Workshop on Algorithms and Data Structures (WADS), volume 955 of LectureNotes in Computer Science, pages 334{345. Springer Verlag, Berlin, 1995.5. Kenneth E. Batcher. Sorting networks and their applications. In Proc. AFIPSSpring Joint Computer Conference, 32, pages 307{314, 1968.6. Gerth St�lting Brodal, Shiva Chaudhuri, and Jaikumar Radhakrishnan. The ran-domized complexity of maintaining the minimum. In Proc. 5th ScandinavianWorkshop on Algorithm Theory (SWAT), volume 1097 of Lecture Notes in Com-puter Science, pages 4{15. Springer Verlag, Berlin, 1996.7. Michael L. Fredman and Dan E. Willard. Surpassing the information theoreticbound with fusion trees. Journal of Computer and System Sciences, 47:424{436,1993.8. Scott Huddleston and Kurt Mehlhorn. A new data structure for representing sortedlists. Acta Informatica, 17:157{184, 1982.9. Peter Bro Miltersen. Lower bounds for Union-Split-Find related problems on ran-dom access machines. In Proc. 26th Ann. ACM Symp. on Theory of Computing(STOC), pages 625{634, 1994.10. Peter Bro Miltersen. Lower bounds for static dictionaries on RAMs with bit op-erations but no multiplications. In Proc. 23rd Int. Colloquium on Automata, Lan-guages and Programming (ICALP), volume 1099 of Lecture Notes in ComputerScience, pages 442{453. Springer Verlag, Berlin, 1996.



11. Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On datastructures and asymmetric communication complexity. In Proc. 27th Ann. ACMSymp. on Theory of Computing (STOC), pages 103{111, 1995.12. Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of LectureNotes in Computer Science. Springer Verlag, Berlin, 1983.13. Rajeev Raman. Priority queues: Small, monotone and trans-dichotomous. In ESA'96, Algorithms, volume 1136 of Lecture Notes in Computer Science, pages 121{137.Springer Verlag, Berlin, 1996.14. Mikkel Thorup. On RAM priority queues. In Proc. 7th ACM-SIAM Symposiumon Discrete Algorithms (SODA), pages 59{67, 1996.15. Peter van Emde Boas. Preserving order in a forest in less than logarithmic timeand linear space. Information Processing Letters, 6:80{82, 1977.16. Peter van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of ane�cient priority queue. Mathematical Systems Theory, 10:99{127, 1977.

This article was processed using the LaTEX macro package with LLNCS style


