
Finger Search Trees with Constant Insertion TimeGerth St�lting Brodal�Max-Planck-Institut f�ur InformatikIm Stadtwald, D-66123 Saarbr�ucken, GermanyAbstractWe consider the problem of implementing �nger searchtrees on the pointer machine, i.e., how to maintain asorted list such that searching for an element x, startingthe search at any arbitrary element f in the list, onlyrequires logarithmic time in the distance between x andf in the list.We present the �rst pointer-based implementationof �nger search trees allowing new elements to beinserted at any arbitrary position in the list in worstcase constant time. Previously, the best known insertiontime on the pointer machine was O(log� n), where n isthe total length of the list. On a unit-cost RAM, aconstant insertion time has been achieved by Dietz andRaman by using standard techniques of packing smallproblem sizes into a constant number of machine words.Deletion of a list element is supported in O(log� n)time, which matches the previous best bounds. Ourdata structure requires linear space.1 IntroductionA �nger search tree is a data structure which stores asorted list of elements in such a way that searches arefast in the vicinity of a �nger, where a �nger is a pointerto an arbitrary element of the list.The list operations supported are the following. Welet n denote the length of the involved list.� CreateList creates a new list only containing oneelement, say, �1. A �nger to the single element isreturned.� Search(f; x) searches for element x, starting thesearch at the element of the list given by the �ngerf . Returns a �nger to x if x is contained in the list,otherwise a �nger to the largest element less thanx in the list.� Insert(f; x) inserts element x immediately to theright of the �nger f . Returns a �nger to x.�Supported by the Carlsberg foundation (Grant No. 96-0302/20). Partially supported by the ESPRIT Long Term Re-search Program of the EU under contract No. 20244 (ALCOM-IT). Email: brodal@mpi-sb.mpg.de.

� Delete(f) deletes the element pointed to by the�nger f .Brown and Tarjan [2] observed that by level-linking(2; 4){trees, �nger searches can be done in worst caseO(log �) time, where � is the distance between the �ngerand the search element. The distance between twoelements is the di�erence between their ranks in thelist. In the following, we denote a data structure havingO(log �) search time a �nger search tree. Huddlestonand Mehlhorn [10] showed that (2; 4){trees supportinsertions and deletions in amortized constant time,assuming that the position of the element to be insertedor deleted is known.The question we consider is, if it is possible toremove the amortization from the result of Huddlestonand Mehlhorn [10], i.e., if �nger search trees exist whichsupport insertions and deletions in worst case constanttime.By assuming a unit-cost RAM, Dietz and Raman [3]have presented a �nger search tree implementation sup-porting insertions and deletions in worst case constanttime. The data structure of Dietz and Raman is basedon standard RAM techniques of packing small problemsizes into a constant number of machine words. Forthe weaker pointer machine model no similar result isknown. The results obtained for the pointer machineare as follows.Search trees with constant insertion and deletiontime on the pointer machine have been presented byLevcopoulos and Overmars [13] and Fleischer [6], butneither of them support �nger searches.Finger search trees with worst case constant inser-tion and deletion time for the restricted case where thereare only a constant number of �xed �ngers have beengiven by Guibas et al. [7], Kosaraju [12] and Tsaka-lidis [17].Finger search trees which allow any element of thelist to be a �nger and which obtain worst case O(log� n)insertion and deletion time have been given by Harel andLueker [8, 9].In this paper we present the �rst �nger search treeimplementation for the pointer machine which supportsarbitrary �nger searches and which supports insertions1



2in worst case constant time. The data structure can beextended to support deletions in worst case O(log� n)time which matches the previous best bounds of Hareland Lueker [8, 9]. The space requirement for the datastructure is O(n).The technical contribution of this paper is a new ap-proach to select the nodes to split in a search tree. Theprevious approaches by Levcopoulos and Overmars [13]and Dietz and Raman [3] were based on a global split-ting lemma which guaranteed that each of the recursivesubstructures would have polylogarithmic size. For adetailed discussion and applications of this lemma werefer to the thesis of Raman [16]. Our approach is, incontrast, a local bottom-up approach based on a func-tional implementation of binary counting to select thenodes to split in a search tree. A weakly related bottom-up approach has been presented by Brodal [1] to removethe amortization from the partial persistence techniqueof Driscoll et al. [5].The structure of this paper is as follows. Section 2describes the basic idea of the construction, Section 3describes how to maintain ancestor pointers in a tree byusing a functional stack implementation, and Section 4describes how to achieve constant time splitting of nodesof arbitrary degree. How to support �nger searches isdescribed in Section 5. In Section 6 the data structureis extended to support deletions in worst case O(log� n)time. In Section 7 we describe how to make the spacerequirement linear. Finally some concluding remarksare given in Section 8.2 A new splitting algorithmIn this section we present a new algorithm for splittingnodes in a search tree when new leaves are created.The trees generated by this algorithm do not havelogarithmic height and do not support insertions inworst case constant time, but the algorithm presentedis the essential new idea required to obtain the claimedresult.Throughout this paper we implicitly assume thateach node in a search tree has associated the intervalof elements spanned by the node. This is standard forall search tree implementations and we therefore takethis as an implicit assumption for the remaining of thispaper.In this section we assume that the ancestor of heightd of a leaf can be found in worst case constant time, andthat a node of arbitrary degree can be split in worstcase constant time. In Section 3 and Section 4 we showhow to avoid these assumptions, and in Section 5 weshow how to extend the data structure to support �ngersearches.In the following, T is a tree where all leaves have

equal depth. We de�ne leaves to have height zero, theparents of the leaves to have height one, and so on. Toeach leaf ` 2 T we associate a counter c` � 0. Initiallythe tree consists only of a single leaf storing the element�1 and having a counter equal to zero, and the parentnode of the leaf.Let �1;�2; : : : be a list of integers satisfying �d �22d�1. Theorem 2.1 gives the resulting relation between�d and the degrees of the nodes of height d.The implementation of the insertion of an element einto the list next to a �nger f is as follows. Let ` denotethe leaf given by the �nger f , and p the parent of `.First we create a new leaf `0 storing the new element ebelow p and to the right of `. Next we increment c` byone and assign the resulting value to c`0 too. Let d bethe unique value satisfyingc` mod 2d = 2d�1;i.e., d is the position of the rightmost bit equal to one inthe binary representation of c`. Let v be the ancestor of` and `0 of height d. The third and last step we performis to split v, provided the degree of v is at least 2�d. Weassume v is split into two nodes v0 and v00, each havinga degree of at least �d. If we split the root, we increasethe height of the tree by creating a new root of degreetwo.Theorem 2.1. The above algorithm guarantees thatall nodes of height d have degree at most 22�2d�d andat least �d, except for the root which only has degree atleast two.Proof. Essential to the proof is the following notionof potential. We de�ne the potential of a leaf ` withrespect to height d as:�d̀ = 22d�1�((c`+2d�1)mod2d):Notice that 1 � �d̀ � 22d�1. If v is an internal node ofT of height d, we let T dv denote the subtree rooted atv and jT dv j the number of leaves in T dv . We de�ne thepotential of T dv to be the sum of the potentials of theleaves in T dv with respect to height d, i.e.,�dv = X`2Tdv �d̀:We now consider how an insert operation in thesubtree T dv a�ects �dv. Let d0 denote the height of thenode to be split. If d0 6= d, then c` mod 2d 6= 2d�1and by increasing c` by one the value of �d̀ is halved.We conclude that the new value of �d̀ + �d̀0 equals theold value of �d̀, and �dv remains unchanged. Otherwised0 = d, then the old value of �d̀ is one and the newvalues of �d̀ and �d̀0 are 22d�1. We conclude that �dv



3increases by 2 � 22d�1 � 1 = 22d � 1 before we try tosplit v.By induction we now prove that for all heights dand nodes v of height d,�dv � 22�2d dYi=1�i:(2.1)Initially the tree consists only of a single leaf with acounter equal to zero and the parent of the leaf as thesingle internal node. The potential of the single internalnode is two and it follows that (2.1) is true for the initialtree.As argued above, the only node which increases itspotential when creating a new leaf is the node v of heightd which is the candidate to be split. Recall that �dvincreases by 22d � 1. If v is split into two nodes, v0 andv00, then each of the two nodes have a degree of at least�d � 22d � 1, and therefore also potential of at least22d � 1. We conclude that�dv0 � �dv + 22d � 1� �dv00 � �dv � 22�2d dYi=1�i;and similarly for �dv00 , and (2.1) is satis�ed.If v is not split we �rst consider the case d = 1.Then the degree of v is at most 2�1 � 1, implying�1v � 4�1�2 � 22�21�1 and (2.1) is satis�ed. Otherwised > 1 and we have�dv � 2�d22�2d�1 d�1Yi=1�i22d�1 � 22�2d dYi=1�i;because v has a degree of less than 2�d, and eachchild of v spans at most 22�2d�1Qd�1i=1 �i leaves (by theinduction hypothesis (2.1) and each leaf has a potentialof at least one with respect to height d�1), and each leafhas a potential of at most 22d�1 with respect to heightd. We conclude that (2.1) is satis�ed, and is indeed aninvariant.Because a node at level d is �rst split when thenode has degree 2�d it follows that all nodes of heightd have a degree of at least �d (except for the root),implying that all nodes v (except for the root) satisfyjT dv j �Qdi=1�i.Together with (2.1) we get the result that the degreeof a node v of height d is at most �dv=Qd�1i=1 �i �22�2d�d, and the theorem follows.Corollary 2.1. If �d = 22d the algorithm main-tains a tree of height log logn�O(1) where all nodes ofheight d have degree O(23�2d).

3 Maintaining pointers to ancestorsOne of the main di�culties in giving an e�cient im-plementation of the algorithm described in Section 2 isthat we cannot �nd the level d ancestor of leaf ` thatshould be split in worst case constant time. In this sec-tion we describe how to solve this problem so that wecan �nd the ancestor in constant time while still hav-ing constant insertion time, assuming that we can splita node of arbitrary degree in constant time. How toremove the assumption about splitting is postponed toSection 4.The basic idea is to extend the information storedat each leaf so that in addition to the counter c` we alsostore a pointer to each of the log logn ancestors of `. Infact we only store a relevant subset of the pointers. Thedetails are as follows.With leaf ` we store a stack S` of triples (i; j; uj)where i � j are positions in the binary representationof c` and uj is a pointer to the ancestor of ` of heightj + 1,1 so that the triples on S` represents the intervals[i; j] of positions in the binary representation of c` allcontaining a one. If c` = 0011100110102 then S` =(1; 1; �); (3; 4; �); (7;9; �). To clarify this, we require allintervals to be disjoint, nonadjacent, sorted with respectto i, and their union to be exactly the set of positionsin the binary representation of c` which equals one.Because S` implicitly represents the value of c` wedo not need to store c`. In the following we let c` referto the value implicitly represented by S`.An important detail of the algorithm described inthe previous section is that when creating leaf `0, weassign c`0 the new value of c`. Similarly we now assignS`0 the stack S`. To avoid copying the whole stack(which would require �(log logn) time), we implementthe stacks S` as purely functional stacks. A purelyfunctional stack is just a standard LISP list. This allowsus to assign S`0 the value of S` in worst case constanttime. Recent work on functional data structures can befound in [11, 14].We now describe how to update S` correspondingto incrementing c` and how to determine the node v atlevel d that should be split. In the following, px denotesthe parent of the leaf or internal node x. If S` is empty,we just push (0; 0; p`) onto S`. Otherwise let (i; j; uj)denote the triple at the top of S`. If i � 1 we push(0; 0; p`) onto S`, otherwise i = 0 and we replace thetop triple of S` by (j+1; j+1; puj ). The node v to splitis now the last �eld in the top triple of S`. Finally wecheck if the two top triples of S` have become adjacent,1Due to the splitting of ancestors of `, uj can also point to anode of height j + 1 which is not an ancestor of `, but this turnsout to be a minor problem.



4i.e., if they are of the form (i; k; �) and (k + 1; j; uj) inwhich case the two triples are replaced by (i; j; uj).The correctness of the implementation with respectto i and j is obvious, because it is just binary counting.The interesting property is how we handle the pointersto the nodes uj. If after updating S`, c` mod 2 = 1then the node returned is the correct node p` and theonly pointer which can be added to the stack is p`. Ifc` mod 2d = 2d�1 for d > 1, then the returned andonly new node on the stack is pud�1 which is exactlythe ancestor of ` of height d+1 | provided that beforeupdating S`, ud�1 is in fact the ancestor of ` of height d.If no nodes were ever split, the above argumentcould be used to give an inductive argument that a ujstored in a stack S` would always be the ancestor of` of height j + 1. Unfortunately we split nodes, andcannot guarantee that this property is satis�ed (at leastnot without doing a nontrivial update of a nonconstantnumber of purely functional S` stacks when doing asplit). In the following we argue that we do not need tocare about \wrong" pointers, provided that splitting anode does not introduce too many wrong pointers.The insertion algorithm is now the following. Firstwe update in constant time the set S` as describedabove. Let v be the node of height d which is returnedto be split. We then create the new leaf `0 and assignS` to S`0 in constant time. If the degree of v is � 2�dwe split v into two nodes as follows. First we createa new node v0 to the right of v with pv0 = pv, andthen we move the rightmost �d children of v to v0.It is essential to the algorithm that splittings are donenonsymmetrically. The details of how to perform a splitin worst case constant time is described in Section 4.In the following we prove that this modi�ed algo-rithm basically achieves the same bounds on the degreesof the nodes as the algorithm in Section 2.Theorem 3.1. The above algorithm guarantees thatall nodes of height d have a degree of at most 23�2d�dand at least �d, except for the root.Proof. The proof is basically the same as for The-orem 2.1, except that we now have to incorporate the\wrong" pointers into the potentials.Let ` be a leaf, d a �xed height, and v the ancestorof ` of height d. If 1 � c` mod 2d < 2d�1, let uj be givenby j = maxfj0 < dj(�; j0; �) 2 S`g and (�; j; uj) 2 S`.We now de�ne the potential �d̀ of ` with respect toheight d. The potential is basically equal to two raisedto the number of times we have to increment c` beforewe split v.

�d̀ = 8>>>>>>>>>>><>>>>>>>>>>>: 22d+2d�1�1�(c`mod2d)if (1 � c` mod 2d < 2d�1) ^ (uj =2 T dv ),22d+2d�1�1�(c`mod2d)if 2d�1 � c` mod 2d,22d�1�1if c` mod 2d = 0,22d�1�1�(c`mod2d)if (1 � c` mod 2d < 2d�1) ^ (uj 2 T dv ).(3.2)Notice that 1 � �d̀ � 22d+2d�1�2. We similarly de�nethe potential of T dv to be�dv = X`2Tdv �d̀:We now show that incrementing c` by updating S`we either are allowed to split v or �d̀ is halved. We dothis by considering each of the cases in (3.2).First we consider the case where 1 � c` mod 2d <2d�1 and uj =2 T dv . We split this into two cases. Ifc` mod 2d = 2d�1�1, then the new value of c` mod 2d =2d�1 and �d̀ is halved. If c` mod 2d < 2d�1� 1, then c`is increased by one and uj remains on the stack S` or isreplaced by puj =2 T dv implying that �d̀ is halved.If 2d�1 � c` mod 2d, then we consider two cases. Ifc` mod 2d < 2d � 1, then �d̀ is halved. If c` mod 2d =2d � 1, then the new value of c` mod 2d = 0 and again�d̀ is halved.If c` mod 2d = 0, then the new value of c` mod 2d =1 and uj = p` 2 T dv and the value of �d̀ is halved.The last case to be considered is where 1 � c` mod2d < 2d�1 and uj 2 T dv . If c` mod 2d = 2d�1 � 1 thenthe new value of c` mod 2d = 2d�1 and the node we splitis puj = pud�2 = v. The new potential of �d̀ = 22d�1.Finally if 1 � c` mod 2d < 2d�1�1, then c` is increasedby one and uj remains on the stack S` or is replaced bypuj 2 T dv implying that �d̀ is halved.We conclude that incrementing c` either halves�d̀ and a node di�erent from v is to be split, or �d̀changes from one to 22d�1 and v is the node to besplit. This is exactly the same statement as in theproof of Theorem 2.1, except that we now use di�erentpotentials.We now make the observation that when an inser-tion creates a new leaf `0 next to ` after having incre-mented c`, then �d̀0 = �d̀ and �dv does not change forany d and node v at level d, except for the node to besplit which increases its potential by at most 22d � 1.We now give an inductive argument that�dv � 23�2d dYi=1�i:(3.3)



5But �rst we have to observe that a uj pointer atleaf ` either points to the ancestor v of ` of height j +1or is a node of height j + 1 to the left of v. This is truebecause whenever a node is split the new internal nodeis created to the right of the old node.The above observation implies that when splittingnode v, no leaf in T dv points to a node in T dv0 andtherefore no leaf in T dv changes its potential with respectto height d when splitting v, but for the leaves in T dv0this is not true. No potential with respect to heightsdi�erent from d changes due to the splitting.That (3.3) is true for the initial tree is obvious. Weknow from the above arguments that the only potentialthat can change due to incrementing c` and adding anew leaf `0 is the node v of height d that is to be split.If v has degree less than 2�d then we do not splitv, and�dv � 2�d23�2d�1 d�1Yi=1�i22d+2d�1�2 � 23�2d dYi=1�i;because v has at most 2�d children each spanning23�2d�1Qd�1i=1 �i leaves (by the induction hypothesis),and each leaf has a potential of at most 22d+2d�1�2 withrespect to height d.If v is split, then the increase of �dv due to theincrease of c` and the leaf `0 is canceled out by thepotential moved to v0 of at least �d, because eachsubtree has a potential of at least one. For the newvertex v0 we have�dv0 � �d23�2d�1 d�1Yi=1�i22d+2d�1�2 � 23�2d dYi=1�i:(3.4)We conclude that (3.3) is satis�ed, and is indeed aninvariant. From (3.3) and that jT dv j � Qdi=1�i, for vdi�erent from the root, the theorem follows.4 Incremental node splittingThe basic assumption in the previous section was thatwe could split a node v of arbitrary degree in constanttime. In this section we show how to achieve this bybasically maintaining the parent pointers as trees ofheight two.We let all children of node v be maintained ina double linked list. Instead of letting all childrenhave parent pointers directly to v, we introduce anintermediate level of indirection. We partition thechildren of v into blocks of size at least �d and at most2�d�1, such that there is one node in the intermediatelevel for each of the blocks. In the following the nodes inthe intermediate level are denoted intermediate nodes.

The information maintained at each of the abovementioned nodes is the following. At v we just maintaina pointer to the leftmost and rightmost intermediatenode below v. The children maintain pointers to theirleft and right sibling and a pointer to the intermediatenode corresponding to the block the child belongs to.An intermediate node maintains a pointer to v, andpointers to the leftmost and rightmost child of v in theblock spanned by the intermediate node.Whenever a child u of v is split, we add the newchild u0 next to u in the double link list of childrenof v and let it belong to the same block as u. Toavoid having too many children belong to the sameblock, which would imply that the block should besplit, we do the splitting of the block incrementally asfollows. Whenever an intermediate node w spans morethan �d children, we instead represent w by a pair ofnodes w0 and w00 such that w0 spans the leftmost �dchildren and w00 spans the remaining at most �d � 1children. The additional information we associate witheach intermediate node to achieve this is the numberof children spanned by each intermediate node, andif a node is part of a pair, a pointer to the othernode in the pair. The number of children spanned byan intermediate node immediately reveals whether thenode is the left or right node in the pair. See Figure 1.Whenever a new leaf is added to the block spannedby w we check if w is part of a pair. If w is not part of apair, then w now has degree �d+1. To satisfy the aboveconstraints, we create a new intermediate node w0 that,together with w, make a pair, and move the rightmostchild of w to w0 by appropriately updating the pointers.If w is part of a pair we check if w is the left node ofthe pair. If w is the left node, then w now spans �d+1children and we move the rightmost child of w to theother node of the pair to satisfy the condition that w hasdegree �d. If both nodes of the pair now have degree�d (the initial degree bound of 2�d � 1 is violated) wesplit the pair by simply setting the two pair pointers tonil. The above updating when v gets a new child canclearly be done in worst case constant time.We now describe how the above substructure canbe used to solve the splitting problem of the algorithmin Section 3. The algorithm is exactly the same as inSection 3, except for the constraints on how to splitnode v. The original constraint was that we split v if ithas a degree of at least 2�d and that the new node v0has a degree equal to �d.We replace this by the following. We split v if itspans at least two intermediate nodes not belonging tothe same pair (which is exactly the same as requiringthat v should have a degree of at least 2�d). We split vby �rst creating a new node v0 to the right of v (in worst



6 j j j j j j j j jj j jjv jj j j������ QQQAAK��� ��� QQQ �� AA���� ZZZ}��������� XXXXXXXXX 6@@��: : : : : :Figure 1: The implementation of the children of v.Undirected edges represent pointers in both directions.The dashed edge is the pair pointers of two intermediatenodes.case constant time as described above), and then bymoving the rightmost intermediate node of v to v0. If theintermediate node is part of a pair we move both nodesof the pair to v0. The degree of v0 after the splitting isat least �d and at most 2�d � 1.That the behavior of the algorithm remains thesame is captured by the following theorem.Theorem 4.1. The above algorithm guarantees thatall nodes of height d have degree at most 23�2d�d and atleast �d, except for the root. New leaves can be createdin worst case constant time.Proof. The proof is exactly the same as for Theo-rem 3.1, except for (3.4) which is replaced by (4.5) be-low. Because v0 after splitting has a degree of at most2�d � 1, we get�dv0 � (2�d � 1)23�2d�1 d�1Yi=1�i22d+2d�1�2 � 23�2d dYi=1�i:(4.5)The time bound for updating the tree follows im-mediately from the previous discussions, and the timefor updating the S` stacks only increases by a constantfactor due to the introduced level of indirection.5 A semi-dynamic �nger search treeWe now describe how the data structure of Section 4 canbe extended to support �nger searches. In this sectionwe assume �d = 22d . The basic idea is to replace eachnode of the tree in Section 4 by a balanced tree allowingconstant time updates. By appropriately level linkingthe resulting data structure we get a �nger search treethat supports insertions in worst case constant time.By level linking [10] the search tree of Section 2a �nger search for element x starting at leaf ` can bedone as follows, which is basically the same as in [10].We without loss of generality assume x is contained inthe tree. Notice that level linking does not introduceany new data �elds in the nodes, because each nodealready stores a pointer to its right and left sibling. We

just have to maintain the corresponding pointers for theleftmost and rightmost child of a node too.If x is contained in a neighbor leaf of ` we are done.Otherwise we look at the parent p of `. If x is containedin the subtree rooted at p or one of the neighbors of pwe search for x in the corresponding subtree, otherwisewe recursively consider the parent of p.Before giving the details of how to search for x ina subtree of height d we give a lower bound for thedistance between x and `. If we are going to search forx in a subtree rooted at node v of height d, we know thatx is not contained in the subtree below v containing ` orthe neighbor subtrees. By Theorem 4.1 we have that thedistance between ` and x is at least 22d�1 . We concludethat we can use O(2d) time for the search for x.If we could search for which subtree rooted at achild of v contained x in time logarithmic in the degreeof v, we could recursively �nd x in timedXi=1 log 23�2i+2i = dXi=1 2i+2 � 2d+3 = O(2d):To achieve the logarithmic search time we add thefollowing structure to the data structure of Section 4.With v we associate a search tree which stores each ofv's intermediate nodes, and with each of the interme-diate nodes we associate a search tree which stores thechildren of v. By choosing the search trees of Levcopou-los and Overmars [13] or Fleischer [6] we can add andremove new leaves to these search trees in worst caseconstant time, implying that the overhead introducedfor splitting a node as described in Section 4 is only aconstant.To summarize we get the following theorem.Theorem 5.1. There exists a pointer-based imple-mentation of �nger search trees which supports arbitrary�nger searches in O(log �) time and neighbor insertionsin worst case constant time.6 DeletionsIn the following we describe how to extend the datastructure of the previous sections to support deletionsin worst case O(log� n) time. We basically implementdelete as for (a; b){trees by performing a sequence offusion and sharing steps [10]. Due to the ancestorpointers introduced in Section 3, fusion and sharingsteps need to be implemented carefully to guaranteethat the potentials �dv remain bounded.The �rst step towards achieving O(log� n) deletiontime is to decrease the height of the tree to O(log� n).Let 2(d) recursively be given by 2(1) = 2 and 2(d+1) =22(d) . By letting �d = 2(d), it follows by Theorem 4.1that the resulting tree of Section 4 has a height of



7O(log� n) and that new leaves can be added in worstcase constant time. In the following we �rst describehow to support deletions in worst case O(log� n) timeand then how to support �nger searches in worst caseO(log �) time (for the �nger search implementationpresented in Section 5 it is crucial that �d = 22d).The basic idea of how to delete a leaf ` is as follows.First the leaf ` is deleted. If the parent v of the leaf `has at least �1 children left we are done. Otherwise wefuse v with the left or right sibling v0 of v, by movingthe children of v to v0 and removing the node v. If v0now has too large a degree we split v0 by creating a newnode v00 to the right of v and moving a fraction of thechildren of v0 to v00.2 We postpone the exact thresholdsto the discussion below. Otherwise pv has lost one childand we recursively fuse pv if it has obtained too low adegree.There are two problems which should be consideredwhen implementing deletions as outlined above.The �rst involves the ancestor stacks stored at theleaves. Assume v is fused with v0, and v is removed fromthe child list of pv. Unfortunately many leaves can haveancestor pointers stored in their S` stacks pointing to v,and we cannot a�ord to update all these pointers. Andit is even more complicated because a pointer to v froma leaf ` can be the essential uj pointer in the potentialde�nition (3.2) of ` with respect to a height larger thanthe height of v.Our solution is very simple. We just let v becomea dead child of pv. For a dead child of height d weonly maintain a pointer from the child to its parent ofheight d + 1. No pointer from the parent to the childis required. A dead child is never moved to anothernode, and a node can have an arbitrary number of deadchildren. The parent of a dead child can also be dead(due to a fusion step).Because of the parent pointers of the dead nodes, adead node uj of height j + 1 in a natural way belongsto a subtree T dv if and only if there is an ancestor pathfrom uj to v. This allows us to de�ne the potential ofa leaf ` with respect to height d as given by (3.2) inTheorem 3.1 and to replace uj by puj on a S` stackwhen incrementing c`.The second problem to be considered is the changein the potential of �dv0 when we fuse v with v0. We fusev with v0 if the degree of v becomes �d � 1, implyingthat the potential �dv0 increases. If v0 now has toolarge a degree, we split v0 to insure that the childrenmoved from v0 to the new node v00 cancel out theincrease in potential. Unfortunately it is not su�cient2Intuitively we should move one child of v0 to v, but this doesnot work due to the ancestor pointers introduced in Section 3.

to move �(�d) children to v00, because the childrenwe add below v0 can have high potential whereas thechildren we remove below v0 can have low potential.Let �d = 23(d�1)2d�1 � 22d+2d�1�2. It turns out that ifwe move at least �d ��d children to v00, the potential ofv0 is guaranteed not to increase.3To support the splitting of nodes in worst caseconstant time, we introduce an additional intermediatelevel at each node v, such that the intermediate nodesintroduced in Section 4 (of degree at least �d and atmost 2�d�1) are partitioned into blocks of size at least�d and at most 2�d�1 (provided that there are at least�d intermediate nodes). The additional intermediatelevel only increases the cost of �nding a parent nodepuj by a constant.Each node of the original intermediate level, in thefollowing referred to as intermediate level 1, points to anode in the new intermediate level, intermediate level 2.Nodes in intermediate level 2 point to v and the leftmostand rightmost node in the corresponding intermediatelevel 1 blocks. If a block at intermediate level 2 hasa size larger than �d we similarly to the intermediatelevel 1 represent the block by a pair of nodes to supportincremental splitting and fusion of intermediate level 2nodes.If a intermediate level 1 block is of size �d � 1we consider fusing the block with a neighbor block. Ifthe neighbor block has is larger than �d we just moveone child of the neighbor block to the block and aredone. Otherwise we fuse the two blocks to a pair ofsize 2�d � 1. If the corresponding intermediate level2 block now is of size �d � 1 we similarly fuse theintermediate level 2 block with a neighbor block (if alevel 2 neighbor block exists). The necessary pointerupdating is straightforward.The implementation of insert remains unchanged,except that nodes are �rst split when there are twolevel 2 blocks, implying that a node not split can havedegree (2�d � 1)(2�d � 1). Dead nodes are never split.When splitting a node v we now just move the rightmostintermediate level 2 block to the new node.We are now ready to give the remaining details ofhow to perform deletions in worst case O(log� n) time. Ifa node v di�erent from the root reaches degree �d�1 wemove all the children of v to one of its neighbor siblings.Let v0 denote this sibling. Because v is of degree �d�1all children of v belong to a single intermediate level 1block. So we just have to move this block to v0 andfuse it with a intermediate level 1 neighbor block as3�d is the maximum potential of a node of height d�1 dividedbyQd�1i=1 �i, times the maximum potential of a leaf with respectto to height d.



8described above. This can clearly be done in worst caseconstant time. The node v becomes a dead child ofpv. If v0 now has at least two level 2 blocks we split v0by creating a new node v00 to the right of v0 and movethe rightmost level 2 block of v0 to v00. Otherwise werecursively consider the parent pv of v which has lostone child.Because we always fuse a node when it has a degreeof less than �d and always split a node into two nodes ofa degree of at least �d, the above algorithm guaranteesthat all nodes of height d (except for the root) havea degree of at least �d, and therefore span at leastQdi=1�i leaves. Because delete spends only constanttime for each height we get the result that delete can beimplemented in worst case O(log� n) time.Theorem 6.1. The above algorithm guarantees thatall nodes of height d have degree at most 23d2d�d and atleast �d, except for the root. New leaves can be createdin worst case constant time and existing leaves can bedeleted in worst case O(log� n) time.Proof. The time bounds and the lower bound onthe degrees follow immediately from the previous dis-cussion. What remains to be shown is the upper boundon the degrees.Let �d̀ and �dv be de�ned as in Theorem 3.1. Weare going to prove that the potentials of the nodes arebounded by �dv � 23d2d dYi=1�i:(6.6)That the initial con�guration satis�es (6.6) is obvi-ous. We �rst consider inserting a new leaf `0 next to aleaf `. When incrementing the c` counter by updatinga S` stack and adding the new leaf `0 it follows as forTheorem 3.1 that no potentials change except for thenode at level d that is going to be split. This is truebecause if uj 6= v, then uj 2 Tv if and only if puj 2 Tv| also if uj refers to a dead node.If a node v cannot be split, then for d = 1 we have�1v � (2�1 � 1)(2�1 � 1)221+21�1�2� 2�1 � 3 � 2 � 23�1�21�1;(6.7)and for d � 2 we have�dv � (2�d � 1)(2�d � 1)23(d�1)2d�1 d�1Yi=1�i22d+2d�1�2� 23(d�1)2d�1+2d+2d�1�2+3(d�1)2d�1+2d+2d�1 dYi=1�i� 23d2d dYi=1�i:(6.8)

If v is split it similarly follows that the new node v0satis�es (6.6). Because nodes of height d have a degreeof at least �d, v0 spans at least �dQdi=1�i leaves.Finally we have to consider the potential of v whenv is split. We know that the potential of v can at mostincrease by 22d � 1 by the new leaf added, and that thepotential moved to v0 is at least �dQdi=1�i � 22d � 1.This guarantees that the potential �dv does not increasedue to the insertion | provided that splitting v doesnot increase the potential of any leaf of T dv with respectto height d.To guarantee this, we again need the observationthat uj stored at leaf ` points to the ancestor of ` ofheight j+1 or a node to the left of the ancestor of heightj + 1. This guarantees that no leaf in T dv maintains apointer into the new subtree T dv0 . Unfortunately a ujpointer can point to a dead node, and dead nodes donot belong to the tree. By de�ning the dead children ofa node to always be the leftmost children of the node(in any arbitrary order), the above constraint will besatis�ed. This is true because splitting a node alwaysmoves the children to a new node to the right of thenode. For deletions we only have to argue that whenwe fuse v with a sibling v0 to the right or left of v, theconstraint is also satis�ed. When we fuse v and v0 allleaves in T dv are moved to T dv0 . But because v becomes adead node we, by de�nition, let v (and its dead subtree)be a node to the left of v0, implying that uj pointers tov in T dv0 points to a node to the left of their level dancestor. We conclude that (6.6) is true for insertions.For deletions we have to argue that (6.6) is satis�ed.Let v be a node we consider to fuse with v0 because vgets degree �d � 1. This implies �dv0 increases by atmost(�d � 1)23(d�1)2d�1 d�1Yi=1�i22d+2d�1�2 � �d dYi=1�i:If v0 is not split we know from (6.7) and (6.8) that v0satis�es (6.6). If v0 is split we similarly know that v00satis�es (6.6), and because v00 spans at least �dQdi=1�ileaves v0 also satis�es (6.6).From (6.6) we conclude that all nodes at height dhave a degree of at most23d2dQdi=1�iQd�1i=1 �i � 23d2d�d;and the theorem follows.Unfortunately the modi�ed trees do not support�nger searches as described in Section 5, because thedegree of a node of height d is exponential in themaximum size of a child subtree root at height d � 1.



9Except for the searching at each of the ancestor nodesof the �nger f , the implementation of a �nger searchremains the same as described in Section 5.We need the following lemma to achieve O(log �)time for �nger searches.Lemma 6.1. There exists a pointer-based imple-mentation of �nger search trees which supports arbitrary�nger searches in O(log logn+log �) time, and neighborinsertions and deletions in worst case constant time.Proof. The lemma is obtained by combining the�nger search trees of Dietz and Raman [3] and the searchtrees of Levcopoulos and Overmars [15].The basic data structure of Dietz and Raman [3] isa (2; 3){tree where each leaf stores a bucket of �(log2 n)elements. By level-linking the (2; 3){tree a �nger searchcan easily be done on this part of the data structureas described by Brown and Tarjan [2]. Dietz andRaman [3] implement the buckets by using the RAMmodel. This is the only part of their constructionrequiring the RAM. They show that, if buckets of sizeO(log2 n) support insertions and deletions in worst caseconstant time and buckets can be split and joined inO(logn) time, it is possible to support leaf insertionsand deletions in worst case constant time and �ngersearches inO(log �) time plus the time for a �nger searchin a bucket. Whereas Dietz and Raman support �ngersearches in a bucket in timeO(log �) by using the RAM,we show how to obtain O(log logn) time by using theweaker pointer machine.Our bucket representation is quite similar to thatof [3, 4, 13]. We represent a bucket by a tree of heighttwo where all nodes of height one have a degree betweenlogn and 2 logn�1. If a node of height one has a degreeof at least logn + 1 we, as with the intermediate nodesin Section 4, represent the node by a pair of nodes (seeFigure 1). Adding or deleting a leaf is handled in asimilar way a as for the intermediate nodes. By usingthe search trees of Levcopoulos and Overmars [13] tostore the children of each node in a bucket, we can insertand delete leaves from a bucket of size O(log2 n) in worstcase constant time and support searches in worst caseO(log logn) time. A bucket can be split in worst caseO(logn) time by simply incrementally moving O(logn)nodes of height one to a new bucket.The lemma follows from [3].If we represent each intermediate level 1 node of ourdata structure by the search tree of Lemma 6.1, a �ngersearch can be implemented as follows.The �rst search at node v of height d is performedas follows. If x is spanned by the same or a neighboringintermediate level 1 block of the block spanning f , weperform a �nger search for the child of v spanning xin time at most O(log � + log log 2(d)) as described in

Lemma 6.1. Otherwise � � 2(d) and we sequentially �ndthe intermediate level 1 block spanning x and performa search in this block. Because there are at most 23d2dintermediate level 1 blocks this can be done in O(23d2d+log 2(d)) = O(log �) time. We conclude that the searchat height d can be performed in O(log � + log log 2(d))time. For each recursive search we �nd the intermediatelevel 1 block spanning x sequentially as described aboveand perform a search in the block to �nd the childspanning x. For level i this requires O(23i2i + log2(i))time.The total time for a �nger search therefore becomeslog � + log log 2(d) + d�1Xi=1 �23i2i + log2(i)�= O(log � + log log 2(d)) = O(log �);because � � 2(d�1).We are now ready to state our main theorem.Theorem 6.2. There exists a pointer-based imple-mentation of �nger search trees which supports arbitrary�nger searches in O(log �) time, neighbor insertions inworst case constant time, and deletions in worst caseO(log� n) time.7 Space requirementIn the previous sections we have not considered thespace requirement of our data structure. It immedi-ately follows that if only insertions are allowed, the datastructure only requires linear space because each inser-tion only requires additional constant space. If deletionsare allowed the space requirement can become nonlin-ear due to the dead nodes and the stacks stored at theleaves. Because deletions take O(log� n) time each dele-tion only increases the space requirement by O(log� n).In the following we describe how the space requirementof our data structure can be made linear by applyingthe global rebuilding technique of Overmars [15].The details are as follows. Assume the �nger searchtree T at some time stores N elements. Throughoutthe next �(N ) time (not operations) spent on updatingT we incrementally build a new �nger search tree T 0storing the same elements as T . For each element in Twe maintain a pointer to its position in both T and T 0.An element not yet inserted into T 0 stores a null pointer.Initially T 0 is an empty �nger search tree. We build T 0by incrementally scanning through the list stored byT from left-to-right by having a pointer to the nextelement in T to be scanned. Whenever a new elementis inserted into T we also insert the element into T 0 ifthe neighbor list elements have been inserted into T 0.For each insertion we scan two elements of T and insert



10the elements into T 0 in constant time. For deletionswe similarly delete the element from T 0 if the elementalready has been inserted into T 0. For each deletionwe scan maxf2; log�Ng elements of T and insert theelements into T 0 in O(log�N ) time. The time requiredfor insertions and deletions only increases by a constant.After at most N insertions and N= log�N deletions, intotal requiring �(N ) time and space, T and T 0 storethe same set of elements, and we can discard the �ngersearch tree T and let T 0 play the role of T .The discarding of T can be done by applying stan-dard incremental garbage collecting techniques, pro-vided that no element in T 0 stores a pointer to its po-sition in T . We therefore, before discarding T , performa second scan through the elements in time �(N ) asdescribed above where we set all pointers into T to null.Throughout this scan updates and �nger searches areonly performed on T 0.Let N 0 denote the number of elements stored in T 0when we discard T . The number of neighbor insertionsdone during the two scans is at most 3N and thenumber of deletions is at most 2N= log�N . BecauseN (1�2= log�N ) � N 0 � 4N and there has been at most2N= log�N deletions done on T 0, T 0 requires O(N 0)space. By always starting a new rebuilding when theprevious rebuilding is �nished, it follows that the datastructure requires linear space.8 ConclusionWe have presented the �rst pointer-based �nger searchtree implementation allowing insertions to be done inworst case constant time. The previous best boundswere O(log� n) [6, 8, 9].It remains an open problem if our data structurecan be extended to support deletions in worst case con-stant time too. Our data structure can be extended tosupport deletions in worst case O(log� n) time, match-ing the bounds of Harel and Lueker [8, 9].An interesting and related question to consider isif some of the presented ideas can be used to removethe amortization from the node splitting techniqueof Driscoll et al. [5] to make data structures fullypersistent.AcknowledgmentsThanks goes to Leszek G�asieniec and Arne Anderssonfor patient listening, and Rudolf Fleischer for commentson the manuscript.References[1] Gerth St�lting Brodal. Partially persistent data struc-tures of bounded degree with constant update time.Nordic Journal of Computing, 3(3):238{255, 1996.

[2] Mark R. Brown and Robert Endre Tarjan. Design andanalysis of a data structure for representing sorted lists.SIAM Journal of Computing, 9:594{614, 1980.[3] Paul F. Dietz and Rajeev Raman. A constant updatetime �nger search tree. Information Processing Letters,52:147{154, 1994.[4] Paul F. Dietz and Daniel D. Sleator. Two algorithmsfor maintaining order in a list. In Proc. 19th Ann.ACM Symp. on Theory of Computing (STOC), pages365{372, 1987.[5] James R. Driscoll, Neil Sarnak, Daniel D. Sleator,and Robert Endre Tarjan. Making data structurespersistent. Journal of Computer and System Sciences,38:86{124, 1989.[6] Rudolf Fleischer. A simple balanced search tree withO(1) worst-case update time. International Journal ofFoundations of Computer Science, 7:137{149, 1996.[7] Leo J. Guibas, Edward M. McCreight, Michael F.Plass, and Janet R. Roberts. A new representation forlinear lists. In Proc. 9th Ann. ACM Symp. on Theoryof Computing (STOC), pages 49{60, 1977.[8] Dov Harel. Fast updates of balanced search trees witha guaranteed time bound per update. Technical Report154, University of California, Irvine, 1980.[9] Dov Harel and George S. Lueker. A data structurewith movable �ngers and deletions. Technical Report145, University of California, Irvine, 1979.[10] Scott Huddleston and Kurt Mehlhorn. A new datastructure for representing sorted lists. Acta Informat-ica, 17:157{184, 1982.[11] Haim Kaplan and Robert Endre Tarjan. Persistentlists with catenation via recursive slow-down. InProc. 27th Ann. ACM Symp. on Theory of Computing(STOC), pages 93{102, 1995.[12] S. Rao Kosaraju. Localized search in sorted lists. InProc. 13th Ann. ACM Symp. on Theory of Computing(STOC), pages 62{69, 1981.[13] Christos Levcopoulos and Mark H. Overmars. Abalanced search tree with O(1) worst-case update time.Acta Informatica, 26:269{277, 1988.[14] Chris Okasaki. Purely Functional Data Structures.PhD thesis, School of Computer Science, CarnegieMellon University, 1996. Tech report CMU-CS-96-177.[15] Mark H. Overmars. The Design of Dynamic DataStructures, volume 156 of Lecture Notes in ComputerScience. Springer Verlag, Berlin, 1983.[16] Rajeev Raman. Eliminating Amortization: On DataStructures with Guaranteed Response Time. PhD the-sis, University of Rochester, New York, 1992. Com-puter Science Dept., U. Rochester, tech report TR-439.[17] Athanasios K. Tsakalidis. AVL-trees for localizedsearch. Information and Computation, 67:173{194,1985.


