
Fully Persistent B-Trees

Gerth Stølting Brodal
MADALGO∗

Department of Computer Science
Aarhus University, Denmark

gerth@madalgo.au.dk

Spyros Sioutas
Department of Informatics

Ionian University
Corfu, Greece

sioutas@ionio.gr

Konstantinos Tsakalidis
MADALGO∗

Department of Computer Science
Aarhus University, Denmark
tsakalid@madalgo.au.dk

Kostas Tsichlas
Department of Informatics

Aristotle University
of Thessaloniki, Greece
tsichlas@csd.auth.gr

Abstract
We present I/O-efficient fully persistent B-Trees that sup-
port range searches at any version in O(logB n + t/B) I/Os
and updates at any version in O(logB n + log2 B) amor-
tized I/Os, using space O(m/B) disk blocks. By n we denote
the number of elements in the accessed version, by m the to-
tal number of updates, by t the size of the query’s output,
and by B the disk block size. The result improves the previ-
ous fully persistent B-Trees of Lanka and Mays by a factor
of O(logB m) for the range query complexity and O(logB n)
for the update complexity. To achieve the result, we first
present a new B-Tree implementation that supports searches
and updates in O(logB n) I/Os, using O(n/B) blocks of
space. Moreover, every update makes in the worst case a
constant number of modifications to the data structure. We
make these B-Trees fully persistent using an I/O-efficient
method for full persistence that is inspired by the node-
splitting method of Driscoll et al. The method we present
is interesting in its own right and can be applied to any ex-
ternal memory pointer based data structure with maximum
in-degree din bounded by a constant and out-degree bounded
by O(B), where every node occupies a constant number of
blocks on disk. The I/O-overhead per modification to the
ephemeral structure is O(din log2 B) amortized I/Os, and
the space overhead is O(din/B) amortized blocks. Access
to a field of an ephemeral block is supported in O(log2 din)
worst case I/Os.

1 Introduction
B-Trees are the most common dynamic dictionary data
structures used for external memory [4, 7, 14]. We
study the problem of making B-Trees fully persistent
in the I/O model [1]. This problem finds applications
in the fields of databases [19] and computational geom-
etry [23].

∗Center for Massive Data Algorithmics - a Center of the Danish
National Research Foundation

Ordinary dynamic data structures, such as B-Trees,
are ephemeral, meaning that updates create a new ver-
sion of the data structure without maintaining previ-
ous versions. A persistent data structure remembers all
versions of the ephemeral data structure as updates are
performed to it. Depending on the operations we are al-
lowed to do on previous versions, we get several notions
of persistence. If we can only update the version pro-
duced last and the other versions are read-only, the data
structure is partially persistent. In this case the versions
form a list (version list). A more general case, full per-
sistence, allows any version to be updated, yielding a
version tree instead. In turn, this is a special case of
confluent persistence, where the additional operation of
merging different versions together is allowed. Here, the
versions form a directed acyclic graph (version DAG).
A survey on persistence can be found in [15].

Previous Results The currently most efficient
partially persistent B-Trees [2] achieve O(1) I/O-
overhead per operation. The currently most effi-
cient fully persistent B-Trees [16] achieve multiplicative
O(logB m) I/O-overhead per query operation and multi-
plicative O(logB n) I/O-overhead per update operation,
where n is the number of elements in the accessed ver-
sion, m is the total number of updates performed to all
versions, and B is the size of the block in the I/O model.

In particular, the most efficient fully persistent B-
Trees, which can also be used for confluent persis-
tence, are the fully persistent B+-Trees (FPBT) of
Lanka and Mays [16]. They support range queries in
O((logB n+t/B)logBm) I/Os and updates in O(log2

B n)
amortized I/Os, using O(m/B) disk blocks of space,
where t is the size of the range query’s output. Mul-
tiple variants of B-Trees have been made partially per-

Update I/Os Range Query I/Os
P
ar

ti
al

TSB [17] logB n logB m† n/B
MVBT [5] log2

B n logB m+t/B
MVAS [22] log2

B n logB m+t/B
ADT [2] logB m logB m+t/B

F
u
ll FPBT [16] log2

B n (logBn+t/B) logB m
New logB n+log2B logB n+t/B

Table 1: I/O-Bounds for persistent B-Trees used in an
online setting. The number of operations is m, the size
of the accessed version is n, the size of the block is B and
the size of the range query’s output is t. All structures
occupy O(m/B) space. † The update time of the TSB
is worst case. All other update bounds are amortized.

sistent [4, 7, 18, 13, 14]. Salzberg and Tsotras’ [19]
survey on persistent access methods and other tech-
niques for time-evolving data provides a comparison
among partially persistent B+-Trees used to process
databases on disks. They include the Multiversion
B-Trees (MVBT) developed by Becker et al. [5], the
Multiversion Access Structure (MVAS) of Varman and
Verma [22] and the Time-Split B-Trees (TSB) of Lomet
and Salzberg [17]. Moreover, the authors in [12] acquire
partially persistent hysterical B-Trees [18] optimized for
offline batched problems. The most efficient implemen-
tation of partially persistent B-Trees (ADT) was pre-
sented by Arge et al. [2] in order to solve efficiently the
static point location problem in the I/O model. They
support range queries in O(logB m+ t/B) I/Os and up-
dates in O(logB m) amortized I/Os, using O(m/B) disk
blocks. In Table 1 we summarize the partially and fully
persistent B-Trees that can be used in an online setting.

All the previous persistent B-Trees follow an ap-
proach similar to those of Driscoll et al. [10] who present
several generic and efficient techniques to make an
ephemeral data structure partially or fully persistent
in the pointer machine model. In particular, Driscoll
et al. presented two methods in order to achieve full
persistence. The fat node method that achieves O(1)
amortized space whenever an update changes O(1) ele-
ments in a node (update step), and O(log n) worst case
time overhead whenever O(1) elements in a node are
accessed (access step) or updated. Lanka and Mays [16]
follow a similar method for their FPBT that also yields
a logarithmic I/O-overhead per update step. The sec-
ond method proposed by Driscoll et al. is called node-
splitting and achieves O(1) amortized space and time
overhead per update step and O(1) worst case time over-
head per access step. However, it can only be applied
to data structures whose underlying graph has its in-

degree and out-degree bounded by a constant.
In the pointer machine model, a direct application

of the node-splitting method to B-Trees with constant
degree is efficient since the in-degree of every node is
one. However, applying this method directly to the I/O
model will not yield an I/O-efficient fully persistent data
structure. The persistent nodes of Driscoll et al. have
constant size and thus correspond to at most a constant
number of updated elements of the ephemeral structure.
However, a persistent node of size Θ(B) can correspond
to Θ(B) versions of an ephemeral node. In order to
find the appropriate version during navigation in the
persistent node, as many version-ids must be compared
in the version list, using the data structure of [8]. This
causes Θ(B) I/Os in the worst case, since the version
list is too large to fit in internal memory. By simple
modifications an O(log2 B) I/O-overhead per update
and access step can be achieved.

Our Results We obtain fully persistent B-Trees
with O(1) I/O-overhead per query operation and addi-
tive O(log2 B) I/O-overhead per update operation. In
particular, we present an implementation of fully persis-
tent B-Trees that supports range queries at any version
in O(logB n + t/B) I/Os and updates at any version in
O(logB n+ log2 B) amortized I/Os, using O(m/B) disk
blocks. In Section 2 we present a method for making
an external data structure fully persistent, inspired by
the node-splitting method of Driscoll et al. [10]. We
require that the ephemeral external data structure is
pointer-based, and every node of its underlying graph
occupies at most a constant number of blocks on disk.
This implies that the out-degree of any node is O(B).
We moreover require that the maximum in-degree of any
node is din=O(1). Access to a block of the ephemeral
data structure (access step for the I/O model) causes in
the worst case an overhead of O(log2 din) I/Os. The up-
date overhead is O(din log2 B) amortized I/Os and the
space overhead is O(din/B) amortized blocks, whenever
an update operation makes a constant number of mod-
ifications to a node (update step for the I/O model).
The gist of our method lies on the fact that whenever a
node of the structure is accessed by a pointer traversal,
the contents of the node for a particular version can be
retrieved by at most a predefined number of version-id
comparisons. In this way we manage to minimize the
I/O-cost of an access step. To manage the persistent
nodes of small size, we use a packed memory layout.

In Section 3 we present the Incremental B-Trees,
an implementation of B-Trees where rebalancing opera-
tions due to insertions and deletions are performed in-
crementally over the sequence of succeeding updates.
They use O(n/B) blocks of space and support range
searches in O(logB n + t/B) I/Os. They support in-

sertions and deletions in O(logB n) I/Os, and each up-
date operation performs in the worst case O(1) modifi-
cations to the tree. In a similar manner, Driscoll et al.
applied the lazy recoloring technique [21] on red-black
trees [3] in order to obtain fully persistent red-black
trees with O(log n) amortized time per insertion and
deletion, O(log n) worst case time per access, and O(m)
space. Our Incremental B-Trees can be seen as a gener-
alization of this technique to B-Trees. The desired fully
persistent B-Trees are achieved by applying to the Incre-
mental B-Trees our method for I/O-efficient full persis-
tence. Since Incremental B-Trees have din=1 and an up-
date operation makes O(1) modifications, it follows that
updating the fully persistent Incremental B-Trees takes
O(logB n + log2 B) amortized I/Os. Fleischer [11] also
presents (a, b)-Trees that make O(1) modifications per
update operation, however they have din=ω(1). Thus,
applying our method to them yields less efficient fully
persistent B-Trees.

2 Fully Persistent Data Structures in External
Memory

In this section we present a generic method that makes a
pointer based ephemeral data structure fully persistent
in the I/O model, provided that every node of the
underlying graph occupies at most a constant number of
disk blocks, and the maximum in-degree din of any node
is bounded by a constant. The overhead for accessing
an ephemeral node is O(log2 din) I/Os in the worst case.
The overhead for updating a field in an ephemeral node
is O(din log2 B) amortized I/Os and the space overhead
is O(din/B) amortized blocks.

In particular, we require an ephemeral data struc-
ture D to be represented by a graph where every
ephemeral node u contains at most cfB fields for
some constant cf . Each field stores either an ele-
ment, or a pointer to another ephemeral node. One
ephemeral entry node provides access to the graph. An
ephemeral node is empty if none of its fields contains
elements or pointers.

The following interface provides the necessary oper-
ations to navigate and to update any version of the fully
persistent data structure D̄. The interface assumes that
the user has only knowledge of the ephemeral structure.
The i-th version of D̄ is an ephemeral data structure
Di where all nodes, elements and pointers are associ-
ated with version i. A field is an identifier of a field
of a node of Di. The value of the field is either the
element in the field at version i, or a pointer pi to
another node of Di. Since the pointer resides in and
points to nodes of the same version, we associate this
version with the pointer. The version i is the unique
identifier of Di.

pointer pi = Access(version i) returns a pointer
pi to the entry node of version i.

value x = Read(pointer pi, field f) returns the
value x of the field f in the node at version i pointed
by pointer pi. If x is a pointer, it points to a node
also at version i.

Write(pointer pi, field f, value x) writes the
value x in the field f of the node at version i pointed
by pointer pi. If x is a pointer to a node, we require
the pointer to be also at version i.

pointer pi = NewNode(version i) creates a new
empty node at version i and returns a pointer pi to it.

version j = NewVersion(version i) creates a new
version Dj that is a copy of the current version Di,
and returns a new version identifier for Dj .

By definition of full persistence, the outcome of
updating Di is a new ephemeral structure Dj , where
the new version j !=i becomes a leaf of the version tree.
The above interface allows the outcome of updating Di

to be Di itself. In other words, it provides the extra
capability of updating an internal node of the version
tree. The user has to explicitly create a new version Dj

before every update operation.

2.1 The Structure Our method is inspired by the
node-splitting method [10] to which we make non-
trivial modifications, such that whenever a node of the
structure is accessed by a pointer traversal, the contents
of the node for a particular version can be retrieved by
at most a predefined number of version comparisons.

As defined by full persistence, all the versions of
the ephemeral data structure can be represented by
a directed rooted version tree T . If version j is
obtained by modifying version i, version i is the parent
of j in T . Similarly to [10] we store the preorder
layout of T in a dynamic list that supports order
maintenance queries [9, 20, 8, 6], called the global
version list (GVL). Given two versions i and j, an
order maintenance query returns true if i lies before j
in the list, and it returns false otherwise. To preserve
the preorder layout of T whenever a new version is
created, it is inserted in the GVL immediately to the
right of its parent version. In this way, the descendants
of every version occur consecutively in the GVL. By
implementing the GVL as in [8], order maintenance
queries are supported in O(1) worst case time and I/Os.
The insertion of a version is supported in O(1) worst
case time and I/Os, given a pointer to its parent version.

We record all the changes that occur to an
ephemeral node u in a linked list of persistent nodes ū,
called the family φ(u). Each node of φ(u) stores the

LVL

B

F

v̄

ū

Figure 1: The persistent node ū. The versions stored in
the local version list of ū are represented by black dots.
The values stored in F(ū) and B(ū) are represented with
white dots. The values lie on the column that corresponds
to the version they are associated with. When the field in
F(ū) contains pointers, the values contain forward pointers
that are represented with thick arrows. The values in B(ū)
contain backward pointers that are represented with thin
arrows. They point to the persistent node v̄ that contains
the corresponding forward pointers. Forward pointers point
to their associated version in the local version list of ū.

versions of u for a subinterval of the global version
list GVL. To implement the linked list, the persistent
node ū contains a pointer c(ū) to the next persistent
node in φ(u). For every field f of the correspond-
ing ephemeral node u, the persistent node ū stores a
set Ff (ū). If field f stores elements, then Ff (ū) con-
tains pairs (version i, value x) where x is the element
stored in f at version i. Else, if field f stores pointers,
then Ff (ū) contains pairs (version i, pointer −→p) where
the forward pointer −→p corresponds to the ephemeral
pointer p that is stored in f at version i. If p points
to the node v at version i, then −→p points to the per-
sistent node v̄ in φ(v) that corresponds to node v at
version i. For every persistent node v̄ that contains
forward pointers pointing to ū, the persistent node ū
stores a set Bv̄(ū) of pairs (version i, pointer ←−p) where
the backward pointer ←−p points to v̄. Backward point-
ers do not correspond to ephemeral pointers and they
are only used by the persistent mechanism to accommo-
date updates. The pairs in the sets Ff (ū) and Bv̄(ū) are
sorted with respect to the order of their first component
(version i) in the GVL. We denote F(ū)=∪f∈ūFf (ū)
and B(ū)=∪v̄→ūBv̄(ū), where Ff (v̄) contains a forward
pointer to ū. Finally, the persistent node ū contains
a local version list LVL(ū) that stores all the versions
i in the pairs of F(ū) and B(ū), sorted with respect to
their order in the GVL. The first version in the LVL(ū)
is the version iū of the persistent node ū. Figure 1 il-
lustrates a persistent node ū.

To provide access to the structure we maintain
an access array whose i-th position store the pair
(version i, pointer −→p), where −→p is a forward pointer

to the persistent node that corresponds to the entry
node at version i, and i is a pointer to version i in
the GVL. We define the size of a persistent node ū
to be the number of pairs in F(ū) and B(ū). This
dominates the number of versions in the LVL(ū), since
there exists at least one pair per version. We call a
persistent node small if its size is at most cf

2 B. To
utilize space efficiently, we pack all families of small size
in an auxiliary linked list.

Our structure satisfies the following invariants:

Invariant 1. Every set in F(ū) and B(ū) contains a
pair with the version iū of the persistent node ū.

Invariant 2. The size of a persistent node ū that is not
stored in the auxiliary linked list is cf

2 B ≤ |ū| ≤ cmaxB

for cmax = Ω(cf (din + d2
in
B)).

Invariant 3. For every forward pointer −→p that points
to the persistent node v̄ and resides in a pair (i,−→p)
of Ff (ū) or in a pair of the access array, there exists
a pair (i,←−p) in Bū(v̄) where the backward pointer ←−p
points to the persistent node ū or to the i-th position of
the access array, respectively.

Invariant 1 ensures that an ephemeral node u can be
retrieved by accessing exactly one persistent node ū in
the family φ(u). Invariant 2 ensures that a persistent
node ū occupies at most a constant number of blocks.
Invariant 3 associates a forward pointer −→p with a
corresponding backward pointer←−p . It moreover ensures
that the version i of the forward pointer −→p belongs to
the LVL of the pointed persistent node v̄. A forward
pointer −→p at version i points to the version i in the
LVL(v̄). It suffices for backward pointer←−p to only point
to the persistent node ū.

We define the valid interval of a pair (i, x) in Ff (ū)
to be the set of versions in the GVL for which field f has
the particular value x. In particular, it is the interval
of versions in the GVL from version i up to but not
including version j. Version j is the version in the
next pair of Ff (ū), if this pair exists. Otherwise, j is
the version in the first pair of Ff (c(ū)), if c(ū) exists.
Otherwise, the valid interval is up to the last version in
the GVL. By Invariant 3 it follows that the valid interval
of a pair (i,−→p) in Ff (ū), where−→p is a forward pointer to
the persistent node v̄, is identical to the valid interval of
the pair (i,←−p) in Bū(v̄), where the backward pointer ←−p
corresponds to −→p . A pair (i,−→p) where the forward
pointer −→p points to the persistent node v̄, implements
the pointers pj that point to v at every version j that
belongs to the valid interval of the pair. All versions
occur in the access array, since NewVersion is called
for every version created. Thus, the valid interval of

a pair (i,−→p) in the access array is only version i. We
define the valid interval of a persistent node ū to be the
union of the valid intervals of the pairs in F(ū) and B(ū).
In particular, it is the interval of versions in the GVL
from version iū up to but not including version ic(ū), if
c(ū) exists. Otherwise, it is up to the last version in
the GVL.

We define the span of a forward pointer −→p that
points to the persistent node v̄ to be the versions in the
intersection of the valid interval of the pair that contains
−→p with the LVL(v̄). The backward pointer ←−p that cor-
responds to −→p has the same span as −→p . Invariant 4 be-
low ensures that whenever a persistent node is accessed
by traversing a forward pointer, the content of the per-
sistent node for a particular version can be retrieved by
comparing against at most d versions (or O(log d) by
binary searching).

Invariant 4. Let π ≥ din+9 be a constant. The size of
the span of every forward pointer is d∈N where 1≤d≤2π.

2.2 Algorithms Here we present the implementa-
tion of the user-interface. Operations Write, NewNode,
and NewVersion immediately restore Invariants 1 and 3.
This may cause at most din forward pointers to violate
Invariant 4 and some persistent nodes to violate Invari-
ant 2. The auxiliary subroutine Repair() restores those
invariants utilizing an auxiliary violation queue.

We say that a version j precedes version i in the
local version list LVL, if j is the rightmost version in
the LVL that is not to the right of version i in the
global version list GVL. Note that version i precedes
itself when it belongs to the set. We denote by i+ the
version immediately to the right of version i in the GVL.

pointer pi = Access(version i). We return the
forward pointer in the i-th position of the access array,
since it points to the entry node at version i.

value x = Read(pointer pi, field f). Let
pointer pi point to the ephemeral node u at version i.
Let ū be the persistent node in φ(u) whose valid inter-
val contains version i. To return the value x that field f
has in the ephemeral node u at version i, we locate the
pair in Ff (ū) whose valid interval contains version i.
Figure 2 illustrates the setting for the operation Read.

The pairs in F(ū) whose valid intervals contain
version i, also contain the version j that precedes
version i in the LVL(ū). We determine j by searching
in the LVL(ū) as following. Let the pair (i′,−→p) contain
the forward pointer that implements pointer pi. By
Invariant 3 version i′ belongs to the LVL(ū). Since
version i belongs to the valid interval of this pair,
version i′ lies to the left of version i in the GVL.
If i′ !=j, then version j lies to the right of version i′ in
the LVL(ū). Version j belongs to the span of −→p .

ji′ū

(i′,−→p)

x

LV L
Bv̄Ff

i′′

v̄

Figure 2: Operation Read(pi,f). The thick arrow repre-
sents the forward pointer −→p that implements pointer pi of
node v at version i. The white dot represents the backward
pointers that point to v̄. The thick horizontal line represents
the span of −→p . We assume that version i does not belong to
the LVL(ū).

We perform a binary search over the versions of
the span in −→p in the LVL(ū). Every comparison is
implemented by an order maintenance query between
the accessed version in the span and version i. In this
way, we locate the rightmost version j in the span for
which the order maintenance query returns true. At
least one order maintenance query returns true, since
version i′ lies to the left of version i in the GVL. We
find the pair of Ff (ū) with the version that precedes
version j in the LVL(ū), and return the value it contains.

Write(pointer pi, field f , value x). Let
pointer pi point to the ephemeral node u. Let ū be
the persistent node in φ(u) whose valid interval con-
tains version i. As in Read, we find the version j that
precedes version i in the LVL(ū), and the pair (j′, y)
in Ff (ū) whose valid interval contains version i. Fig-
ure 3 illustrates the setting before and after the opera-
tion Write.

If j′=i, we merely replace y with x, and add
pair (i+, y) to Ff (ū). In this case, version i is the
currently updated version and it belongs to the LVL(ū).
Otherwise, we add both the pairs (i, x) and (i+, y)
to Ff (ū). By this way version i belongs only to the
valid interval of the pair (i, x). Moreover, the versions
that belonged to the valid interval of the pair (j′, y)
and succeed version i in the GVL, continue having the
previous value y. If there is already a pair in Ff (ū) with
version i+, it suffices to only add the pair (i, x). If Ff (ū)
is empty, we add the pairs (iū, null), (i, x) and (i+, null)
instead, where iū is the version of the persistent node ū.

Version i is inserted in LVL(ū) immediately to
the right of version j. Unless version i+ already
exists in the LVL(ū), i+ is inserted immediately to
the right of version i. These insertions may cause at
most din forward pointers −→Pū that point to ū to violate
Invariant 4. The persistent nodes that contain them
have to be inserted to the violation queue. To find the
forward pointers −→Pū, we determine the corresponding

backward pointers in ū. In particular, we find all the
pairs (k,←−p) in B(ū) whose valid intervals contain the
inserted versions, and check if there are more than 2π
versions in LVL(ū) between version k and the version of
the next pair in Bz̄(ū). If so, we access the persistent
node z̄ pointed by ←−p and mark the pair in Ff (z̄) with
the corresponding forward pointer. We insert z̄ to the
violation queue, unless it is already there.

If x is a pointer to an ephemeral node v at
version i, the argument pointer xi is implemented by
a forward pointer −→x to the persistent node v̄ in φ(v)
whose valid interval contains version i. Version i belongs
to the span of −→x . We add to Ff (ū) the pairs (i,−→x)
and (i+,−→y ′) instead, where −→y ′ is a forward pointer to
the persistent node w̄ pointed by the forward pointer −→y
of the pair (j′,−→y) in Ff (ū). We restore Invariant 3 for
the added pair (i,−→x) by inserting the corresponding
backward pointer ←−x to B(v̄). In particular, we add
the pair (i,←−x) to Bū(v̄), where the backward pointer
←−x points to the persistent node ū and corresponds to
−→x . If Bū(v̄) contains only the pair (i,←−x), then we
also add the pair (i+, null) in order to determine the
span of −→x without traversing ←−x . We perform a binary
search in the span of −→x in order to find the version
in the LVL(v̄) that precedes version i. Unless it is i
itself, we insert version i immediately to the right of
it. The at most din forward pointers −→Pv̄ that violate
Invariant 4 are processed as described above. We set −→x
to point to version i in the LVL(v̄). The added pair
implements pointer xi. If (i+,−→y ′) was also added, we
restore Invariant 3 for−→y ′ as described above. Version i+

belongs to the span of −→y . The at most din forward
pointers −→Pw̄ may violate Invariant 4. Notice that ū may
contain a pointer from −→

Pv̄ or −→Pw̄.
The insertion of pairs in the persistent

nodes ū, v̄ and w̄ increases their size. If the nodes are
not small anymore due to the insertion, we remove
them from the auxiliary linked list and move them to
an empty block. If they violate Invariant 2, we insert
them to the violation queue, unless they are already
there. Finally, Repair is called.

pointer pi = NewNode(version i). We create a
new family φ(u) which consists of one empty persistent
node ū. We insert version i to the LVL(ū), so that ū
satisfies Invariant 1. All fields of ū are emprty. Node ū
is added to the auxiliary linked list since it is small. We
return a forward pointer to version i in the LVL(ū).

version j = NewVersion(version i). We tra-
verse the pointer stored at the i-th position of the access
array to find the position of version i in the GVL. We in-
sert version j immediately to the right of version i in the
GVL. We insert in the j-th position of the access array a
pointer to version j in the GVL. Let ū be the persistent

y
jj′

j′

ū

w̄

Pw̄

Pū

(a) Before

y
j i

xy′j′ i+

j′ i+ i

ū

w̄ v̄

Pw̄

Pū

Pv̄

(b) After

Figure 3: Operation Write inserts to the ephemeral node u
at version i a pointer x that points to the ephemeral node
v at version i. The figures show how the corresponding
persistent nodes ū, v̄ and w̄ look before and after the
operation. The persistent node w̄ is the node that is pointed
by the forward pointer of the pair in Ff (ū) whose valid
interval contains version i, where f is the field in ū that
contains the inserted pointer. The local version lists are
represented by horizontal lines.

node pointed by the forward pointer in the i-th posi-
tion of the access array. We insert in the j-th position
of the access array a forward pointer ←−p to ū, and add
a pair (j,←−p) to B(ū) where the backward pointer ←−p
points to the j-th position of the access array and cor-
responds to −→p . At most din forward pointers −→Pū that
point to ū may violate Invariant 4. If ū violates Invari-
ant 2 we insert it to the violation queue, unless it is
already there. Finally, Repair is called.

Repair() iteratively pops a persistent node ū from
the violation queue, and restores Invariant 4 for the
forward pointers in the marked pairs of Ff (ū) and
Invariant 2 for ū. These invariants may in turn be
violated in other persistent nodes, which we insert in
the violation queue as well. This iteration terminates
when the queue becomes empty.

To restore Invariant 4 for the forward pointer in the
marked pair (i,−→p) in Ff (ū), we reset the size of its span
to π as following. Let −→p point to the persistent node v̄.
We find the version j in the span of −→p that resides π
positions to the right of version i in the LVL(v̄). We
set the forward pointer −→p ′ to version j in the LVL(v̄),
and add the pair (j,−→p ′) to Ff (ū). If the span of −→p ′
violates Invariant 4, we mark its pair. We restore
Invariant 3 for the added pair as described in Write.
Node v̄ may violate Invariant 2. We find the version that
precedes version j in the LVL(ū), by a binary search over
the whole LVL(ū). We insert j immediately to the right
of its preceding version, unless it already exists. This
may cause at most din forward pointers −→Pū to violate
Invariant 4. Node ū may violate Invariant 2.

To restore Invariant 2 for the persistent node ū, we
split it into two persistent nodes, such that the right one
has size approximately cmax

2 B. We first determine the

version j at which we will split ū, by scanning LVL(ū)
from right to left. Version j is the leftmost version
in the LVL(ū), such that the number of pairs whose
version succeeds j is less than cmax

2 B. Unless j′ = j,
for every pair (j′, x) in ū whose valid interval contains
version j, we add a pair (j, x) in ū. If x is a forward
pointer to a persistent node v̄, we restore Invariant 3
as described in Write. If x is a backward pointer to v̄,
restoring Invariant 3 involves a binary search for the
version that precedes j′ in the LVL(v̄). Node v̄ may
violate Invariant 2. Moreover, at most din forward
pointers −→Pv̄ may violate Invariant 4. We create a new
persistent node ū′ that succeeds ū in the family φ(u), by
setting c(ū′)=c(ū) and c(ū)=ū′. We split the LVL(ū) at
version j. The right part becomes LVL(ū′). Version j
becomes the version of ū′. All the pairs in ū with
a version in LVL(ū′) are moved to ū′. We traverse
all forward and backward pointers in F(ū′) and B(ū′)
in order to update the corresponding backward and
forward pointers to point to ū′, respectively. Version j
becomes the version of ū′. The node ū′ satisfies
Invariant 1 due to the addition of the pairs (j, x).

2.3 Analysis In this subsection we prove the follow-
ing theorem.

Theorem 2.1. Let D be a pointer-based ephemeral
data structure that supports queries in O(q) worst
case I/Os and where updates make O(u) modifications
to the structure in the worst case. Given that every node
of D occupies at most)cf* blocks, for a constant cf , D
can be made fully persistent such that a query to a par-
ticular version is supported in O(q(cmax+log2 π)) worst
case I/Os, and an update to any version is supported in
O(din(cmax + log2(cmaxB)) + log2 π) amortized I/Os,
where din = O(1) is the maximum in-degree of any
node in D, cmax = Ω

(
cf

(
din + d2

in
B

))
is the number

of blocks occupied by a node of D̄, and π ≥ din+9 is
a constant.After performing a sequence of m updates,
the fully persistent structure occupies O(um

B) blocks of
space.

The following remarks are necessary for the analy-
sis. A version in the LVL(ū) belongs to the span of at
most din forward pointers that point to ū, and thus it
belongs to the valid interval of at most din pairs in B(ū).

Lemma 2.1. After splitting a persistent node ū
the size of ū′ is within the range [(cmax

2 −cf)B,(
cmax

2 +cf

)
B+din−1]

Proof. The number of pairs with version j and with
versions that succeed version j in LVL(ū) before the
split is at least (cmax

2 −cf)B. This sets the lower bound.

The number of pairs with a version that succeeds j in
the LVL(ū) is at most cmax

2 B−1. There are at most cfB
pairs with a single version in F(ū), and at most din pairs
in B(ū) whose valid interval contains version j. We add
one pair for each of them to ū′. This sets the upper
bound. !

First we analyze the worst case cost of every op-
eration. Access performs O(1) I/Os to the access
array. Read performs O(cmax) I/Os to load the
persistent node ū into memory, and O(log2 2π) I/Os
for the order maintenance queries to the data struc-
ture of [8] in order to determine the appropriate ver-
sion j. Write performs O(cmax) I/Os to load ū as
well as O(log2 2π) I/Os to locate the proper version
as in Read. O(1) I/Os are needed to access ver-
sion i+ in the GVL, and O(dincmax) I/Os are needed
to access the forward pointers of −→Pū. If the written
value is a pointer, then we also need O(log2 2π) I/Os
to process v̄ and w̄, and O(dincmax) I/Os to ac-
cess the forward pointers of −→Pv̄ and −→

Pw̄. In total,
without taking into account the call to Repair, the
worst case cost is O(dincmax+log22π+cmax+1) I/Os.
NewNode makesO(cmax) I/Os to access the entry node.
NewVersion spends O(1) I/Os to update the GVL,
and O(cmax) I/Os to process ū and to insert ū to
the violation queue. To restore Invariant 4 for one for-
ward pointer Repair makes O(cmax) I/Os to load ū
and v̄ into memory, O(log2(cmaxB)) I/Os to insert ver-
sion j to the LVL(v̄), and O(dincmax) I/Os to insert
the nodes with −→Pv̄ to the violation queue. In total the
worst case cost is O(cmax(din+2)+log2(cmaxB)) I/Os.
To restore Invariant 2 for a persistent node, Repair
makes O(cmax) I/Os to load the node into mem-
ory, O(cfB(cmax+log22π)) I/Os to restore Invari-
ant 3 for the added pairs in ū with forward point-
ers, O(din(cmax+log2(cmaxB))) I/Os to restore In-
variant 3 for the added pairs in ū with back-
ward pointers, O((cfB+din)dincmax) I/Os to insert
the nodes with −→

Pv̄ to the violation queue, and
O(((cmax

2)B−1)cmax) I/Os to set the forward and back-
ward pointers to point to ū′. In total the worst
case cost is O

(
B

(c2
max
2 +cf (cmax(din+1) + log2 2π)

)
+

din

(
cmax(din+1)+log2(cmaxB)

))
I/Os.

Let Di be the persistent structure after the i-
th operation. We define the potential of Di to be
Φ(Di)=

∑
−→p ∈P Ξ(−→p)+

∑
ū∈UΨ(ū), where P is the set

of all forward pointers and U is the set of all persis-
tent nodes in Di. The function Ξ(−→p)=max{0, |−→p |−π}
provides the potential to the forward pointer −→p
for the splitting of its span. By |−→p | we denote
the size of the span of −→p . Function Ψ(ū) =

max
{
0, 3

(
|ū|−

((
cmax

2 +cf

)
B+din

))}
provides the po-

tential to the persistent node ū for its split. By |ū| we
denote the size of the persistent node ū.

Operation Write, without the call to Repair, in-
creases Ψ(ū), Ψ(v̄) and Ψ(w̄) by at most 12 in total.
The potential of the at most 2din forward pointers of −→Pū

and −→Pv̄ is increased by at most 2. The potential of the
at most din forward pointers and −→Pw̄ is increased by at
most 1. In total the potential increases by 12+5din.
Operation NewVersion increases Ψ(ū) by 3 and the po-
tential of at most din forward pointers −→Pū by 1. In
total the potential increases by 3+din. When opera-
tion Repair restores Invariant 4 for one marked pair
it increases Ψ(ū) and Ψ(v̄) by 6 in total, and the po-
tential of the at most din forward pointers Pū by at
most 1. The potential of the forward pointer in the
pair is decreased by π. In total the potential changes
by din+6−π. When operation Repair restores Invari-
ant 2 for the persistent node ū, it increases Ψ(ū) by at
most 3cfB due to the added pairs with elements and
forward pointers, and by at most 3din due to the added
pairs with backward pointers. The addition of the cor-
responding backward and forward pointers increases the
potential of at most cfB+din persistent nodes by 3. The
potential of at most din(cfB+din) forward pointers to
these persistent nodes is increased by 1. After the split,
the potential decreases by 3(cmax

2 −cf)B by the lower
bound in Lemma 2.1. In total the potential changes by
B(cf (9+din)− 3

2cmax)+din(din+6).
Let Di be the result of executing Write

or NewVersion on Di−1, followed by a Repair opera-
tion. We assume that a version and a pair fit in a field
of a block. A modification of a field involves adding a
pair or a version in a persistent node, or changing the
value in a pair. The number of modifications caused
by Repair bounds asymptotically the number of persis-
tent nodes it accesses. The amortized number of fields
modified by Repair is c̃i=ci+Φ(Di)−Φ(Di−1), where ci

is the real number of modifications in Di−1. If Repair
restores Invariant 4 for α forward pointers, the amor-
tized number of modified fields is

α (3+(din+6−π)) .

This is because we add one version and two pairs.
It is non-positive for π≥din+9. If Repair restores
Invariant 2 for β persistent nodes, the amortized number
of modified fields is

β

(
3cfB + 3din + 2B

(cmax

2
+ cf

)
+ 2din − 2 +

+B
(
cf (9 + din)− 3

2
cmax

)
+ din(din + 6)

)
.

This is because we add at most cfB pairs with for-
ward pointers in the node and one corresponding
backward pointer and version at the node pointed
by each of these forward pointers. We add at
most din pairs with backward pointers in the node
and one corresponding forward pointer and version
at the node pointed by each backward pointer. We
transfer at most (cmax

2 +cf)B+din−1 pairs to ū′ and
update as many pointers. It is non-positive for
cmax≥cf (28+2din)+2d2

in+11din−2
B . The amortized num-

ber of fields modified by Write is 8+12+5din. This is
because we add at most 4 versions and 4 pairs. The
amortized number of fields modified by NewVersion is
2+3+din. This is because we add at most one version
and one pair. Thus, the amortized number of fields
modified by Write and NewVersion is O(din), which
implies an O(din(cmax+log2π)) amortized I/O-cost per
modification, since O(cmax) I/Os are needed to load
a node in memory and O(log2 π) I/Os are needed to
insert a version to the span. Moreover, when we in-
sert a version to the local version list of a persistent
node that is accessed by a backward pointer, we need
O(log2(cmaxB)) I/Os. Thus, we charge every modified
field with O(log2 cmaxB) I/Os. The total cost for an
update step is O(din(cmax+log2cmaxB)+log2π) amor-
tized I/Os. Since an update operation makes O(din)
amortized number of fields modifications and since all
small blocks are packed in the auxiliary linked list, it fol-
lows that the space usage after m operations is Θ(din

m
B).

3 Incremental B-Trees
In this section we design B-Trees [4, 7, 14] that use
O(n/B) disk blocks of space, support insertions and
deletions of elements in O(logB n) I/Os, and range
queries in O(logB n + t/B) I/Os. They are designed
such that an update makes in the worst case O(1)
modifications to the tree. This is achieved by marking
unbalanced nodes and by incrementally performing the
expensive rebalancing operations of ordinary B-Trees
over the sequence of succeeding updates.

Before we describe our B-Trees, we briefly recall
the properties of ordinary B-Trees [4, 7, 14]. All the
nodes of a B-Tree, except possibly the root, have degree
Θ(B). The tree has height O(logB n) when n elements
are stored in it. Range searching is supported in
O(logB n + t/B) I/Os and inserting and deleting an
element in O(logB n) I/Os. The latter operations might
cause some nodes to exceed the upper and lower bounds
of the degree. Thus, updates perform rebalancing
operations to restore the bounds. These are splitting a
node into two nodes of almost equal degree, fusing two
low degree nodes into one, and moving children from
a high degree node to a low degree node (share). In

ordinary implementations of B-Trees, a single update
might cause the rebalancing operations to cascade up on
a path of the tree, causing O(logB n) I/Os in the worst
case. In particular, insertions of elements in the leaves
might cause cascaded splits on a leaf-to-u path, where u
is an ancestor node of the leaf in the tree. Similarly
deletions might cause cascaded fusions on a leaf-to-u
path, possibly followed by a share at the parent of u.

3.1 The Structure An Incremental B-Tree is a
rooted tree with all leaves on the same level. Each
element is stored exactly once in the tree, either in a
leaf or in an internal node. In the latter case it acts
as a search key. An internal node u with k children
stores a list [p1, e1, p2, . . . , ek−1, pk] of k − 1 elements
e1, . . . , ek−1 stored in non-decreasing order and k chil-
dren pointers p1, . . . , pk. The discussion that follows
shows that B

2 −1≤k≤2B+1. If xi is an element stored in
the i-th subtree of u, then x1<e1<x2<e2<· · ·<ek−1<xk

holds.
To handle the rebalancings of the tree incremen-

tally, we mark the nodes to be rebalanced. In partic-
ular, each node can either be unmarked or it contains
one of the following marks:

Overflowing mark : The node should be replaced by two
nodes.
Splitting mark : The node w is being incrementally
split by moving elements and children pointers to its
unmarked right sibling w′. We say that nodes w and w′

define an incremental splitting pair.
Fusion mark : The node w is being incrementally
fused by moving elements and children pointers to its
unmarked right sibling w′. In case w is the rightmost
child of its parent, then w′ is its unmarked left sibling
and elements and children pointers are moved from w′

to w. We say that nodes w and w′ define an incremental
fusion pair.

All kinds of marks can be stored in the nodes
explicitly. However, we cannot afford to explicitly mark
all unbalanced nodes since an update operation may
unbalance more than a constant number of them. We
can also store overflowing and fusion marks implicitly,
based on the observation that the unbalanced nodes
occur consecutively in a path of the tree. In particular,
for a u→v path in the tree, where u is an ancestor of
v and all nodes in the path have overflowing marks,
we can represent the marks implicitly, by marking u
with an overflowing mark and additionally storing in
u an element of v. The rest of the nodes in the path
have no explicit mark. This defines an overflowing path.
Similarly, we can represent paths of nodes with fusion
marks, which defines a fusion path.

Unmarked nodes that do not belong to incremental
pairs are called good nodes. We define the size su of an
internal node u to be the number of good children plus
twice the number of its children with an overflowing
mark minus the number of its children with a fusion
mark. The size of a leaf is the number of elements
in it. Conceptually, the size of an internal node is the
degree that the node would have, when the incremental
rebalancing of its children has been completed. The
advance of the incremental rebalancing is captured by
the following invariants.

Invariant 5. An incremental splitting pair (w,w′)
with sizes sw and sw′ respectively satisfies
2·|sw+sw′−2B−1|≤sw′<sw. Node w is explicitly
marked with a splitting mark and node w′ is unmarked.

The left inequality of Invariant 5 ensures that
the incremental split terminates before the resulting
nodes may participate in a split or a fusion again. In
particular, it ensures that the number of the transferred
elements and children pointers from w to w′ is at least
twice the number of insertions and deletions that involve
the nodes of the splitting pair since the beginning of the
incremental split. This allows for the transfer of one
element and one child pointer for every such insertion
and deletion. The right inequality of Invariant 5 ensures
that the incremental split terminates, since the size of w′

increases and the size of w decreases for every such
insertion and deletion.

Invariant 6. An incremental fusion pair (w,w′) with
sizes sw and sw′ respectively, where elements and
children pointers are moved from w to w′, satisfies
0<sw≤B

2 +3−2·|sw+sw′−B+1|. Node w is explicitly
marked with a fusion mark and node w′ is unmarked.

Conversely, the right inequality of Invariant 6 en-
sures that the incremental fusion terminates before the
resulting node may participate in a split or a fusion
again. The left inequality of Invariant 6 ensures that
the incremental fusion terminates, since the size of w
decreases for every insertion and deletion that involve
the nodes of the incremental pair.

Invariant 7. Except for the root, all good nodes have
size within [B/2, 2B]. If the root is unmarked, it has at
least two children and size at most 2B.

It follows from the invariants that the root of the tree
cannot have a splitting or a fusion mark, since no sibling
is defined. It can only have an overflowing mark or
be unmarked. The following invariants are maintained
with respect to the incremental paths.

Invariant 8. Let u→v be an overflowing path. All
nodes of the path have size 2B + 1. Node u is explicitly
marked with an overflowing mark, and the rest of the
nodes are implicitly marked with an overflowing mark.

Invariant 8 implies that a node with an overflowing
mark has size 2B+1.

Invariant 9. Let u→v be a fusion path. All nodes of
the path have size B/2. Node u is explicitly marked with
a fusion mark, and the rest of the nodes are implicitly
marked with a fusion mark.

Invariant 9 implies that a node with an implicit
fusion mark has size B/2. A node with an explicit fusion
mark may have size B/2 or belong to an incremental
fusion pair.

Invariant 10. All overflowing and fusion paths are
node-disjoint.

Lemma 3.1. The height of the Incremental B-Tree
with n elements is O(logB n).

Proof. We transform the Incremental B-Tree into a tree
where all incremental operations are completed and thus
all nodes are unmarked. We process the marked nodes
bottom-up in the tree and replace them by unmarked
nodes, such that when processing a node all its children
are already unmarked. A node with an overflowing
mark that has size 2B + 1 is replaced by two unmarked
nodes of size B and B + 1 respectively. The two nodes
in an incremental splitting pair (w,w′) are replaced
by two nodes, each containing half the union of their
children. More precisely, they have sizes + sw+sw′

2 ,
and) sw+sw′

2 * respectively. By Invariant 5 we derive
that 8

5B≤sw+sw′ , i.e. each of the nodes has degree
at least B/2. The two nodes in an incremental fusion
pair (w,w′) are replaced by a single node that contains
the union of their children and has size sw+sw′ . By
Invariant 6 we derive that 3

4B−1≤sw+sw′ . In all
cases the nodes of the transformed tree have degree at
least B/2, thus its height is O(logB n). The height of the
transformed tree is at most the height of the initial tree
minus one. It may be lower than that of the initial tree,
if the original root had degree two and its two children
formed a fusion pair. !

3.2 Algorithms The insertion and deletion algo-
rithms use the explicit mark and the incremental step
algorithms as subroutines. The former maintains In-
variant 10 by transforming implicit marks into explicit
marks. The latter maintains Invariants 5 and 6 by mov-
ing at most four elements and child pointers between the

nodes of an incremental pair, whenever an insertion or
a deletion involve these nodes.

In particular, let u→v be an implicitly defined
overflowing (resp. fusion) path where u is an ancestor
of v in the tree. That is, all marks are implicitly
represented by marking u explicitly with an overflowing
(resp. fusion) mark and storing in u an element e of v.
Let w be a node on u→v, and wp, wc be its parent
and child node in the path respectively. Also, let ep be
an element in wp. The subroutine explicit mark makes
the mark on w explicit, by breaking the u→v path into
three node-disjoint subpaths u→wp, w, and wc→v. This
is done by replacing the element at u with ep, explicitly
setting an overflowing mark on w, and explicitly setting
an overflowing mark together with the element e in wc.
If u=w or w=v, then respectively the first or the third
subpath is empty.

The incremental step algorithm is executed on
a node w that belongs to a fusion or a splitting
pair (w,w′), or on an overflowing node w. In the lat-
ter case, we first call the procedure explicit mark on w.
Then, we mark it with an incremental split mark and
create a new unmarked right sibling w′, defining a new
incremental splitting pair. The algorithm proceeds as
in the former case, moving one or two children from w
to w′, while preserving consistency for the search algo-
rithm. Note that the first moved child causes an element
to be inserted to the parent of w, increasing its size.

In the former case, the rightmost element ek and
child pk+1 of w are moved from w to w′. If the special
case of the fusion mark definition holds, they are moved
from w′ to w. Let wp be the common parent of w
and w′, and let ei be the element at wp that separates w
and w′. If pk+1 is part of an overflowing or a fusion path
before the move, we first call explicit mark on it. Next,
we delete ek and pk+1 from w, replace ei with ek, and
add pk+1 and ei to w′. If pk+1 was part of a splitting or
fusion pair, we repeat the above once again so that both
nodes of the pair are moved to w′. We also ensure that
the left node of the pair is marked with an incremental
fusion mark, and that the right node is unmarked.
Finally, if the algorithm causes sw′≥sw for a splitting
pair (w,w′), the incremental split is complete and thus
we unmark w. It is also complete if it causes sw=0 for
a node w of a fusion pair. Thus, we unmark the nodes
of the pair, possibly first marking them explicitly with
a fusion mark and dismissing the empty node w from
being a child of its parent.

Insert The insertion algorithm inserts one new
element e in the tree. Like in ordinary B-Trees, it begins
by searching down the tree to find the leaf v in which the
element should be inserted, and inserts e in v as soon as
it is found. If v is marked, we perform two incremental

steps at v and we are done. If v is unmarked and has
size at most 2B after the insertion, we are done as well.
Finally, if v has size 2B + 1 it becomes overflowing. We
define an overflowing path from the highest ancestor u
of v, where all the nodes on the u→v path have size
exactly 2B, are unmarked and do not belong to an
incremental pair. We do this by explicitly marking u
with an overflowing mark and inserting element e in
it as well. This increases the size of up, the parent
of u. We perform two incremental steps to up, if it is a
marked node or if it is an unmarked node that belongs
to an incremental pair. Otherwise, increasing the size
of up leaves it unmarked and we are done. Note that in
order to perform the above algorithms, the initial search
has to record node up, the topmost ancestor and the
bottommost node of the last accessed implicitly marked
path, and the last accessed explicitly marked node.

Delete The deletion algorithm removes an ele-
ment e from the tree. Like in ordinary B-Trees, it be-
gins by searching down the tree to find node z that
contains e, while recording the topmost and the bot-
tommost node of the last accessed implicitly marked
path and the last accessed explicitly marked node. If z
belongs to an overflowing or a fusion path, it explicitly
marks it. If z is not a leaf, we then find the leaf v that
stores the successor element e′ of e. Next, we swap e
and e′ in order to guarantee that a deletion always takes
place at a leaf of the tree. If v belongs to an overflowing
or a fusion path, we mark it explicitly as well. The ex-
plicit markings are done in order to ensure that e and e′

are not stored as implicit marks in ancestors of z or v.
We then delete e from v. If v is good and has size

at least B/2 after the deletion, then we are done. If v
is overflowing or belongs to an incremental pair, we
perform two incremental steps on v and we are done.
Otherwise, if leaf v is unmarked and has size B/2−1
after the deletion, we check its right sibling v′. If v′

is overflowing or belongs to an incremental pair, we
perform two incremental steps on v′, move the leftmost
child of v′ to v and we are done. Only the move of
the leftmost child suffices when v′ is good and has
degree more than B/2 + 1. Finally, if v′ is good and
has size at most B/2 + 1, we begin a search from the
root towards v in order to identify all its consecutive
unmarked ancestors u of size B/2 that have a good right
sibling u′ of size at most B/2+1. We act symmetrically
for the special case of the fusion pair.

Let up be the node where the search ends and u be
its child that was last accessed by this search towards v.
We implicitly mark all the nodes on the u→v path as
fusion pairs by setting a fusion mark on u and storing
an element of v in u. We next check node up. If it is
unmarked and has size greater than B/2, defining the

fusion path only decreases the size of up by one, hence
we are done. If node up is marked, we additionally apply
two incremental steps on it and we are done. If up is
good and has size B/2, and its sibling u′p is good and has
size bigger than B/2+1, we move the leftmost child of u′p
to up. This restores the size of u′p back to B/2 and we
are done. Finally, if node up is good and has size B/2,
but its sibling is marked or belongs to an incremental
pair, we explicitly mark up and move the leftmost child
of u′p to up. Next, we apply two incremental steps on u′p.

Range Search A range search is implemented as
in ordinary B-Trees. It decomposes into two searches
for the leaves that contain the marginal elements of the
range, and a linear scan of the leaves that lie in the
range interleaved with a inorder traversal of the search
keys in the range.

3.3 Correctness & Analysis We show that the up-
date algorithms maintain all invariants. Invariant 8 fol-
lows from the definition of overflowing paths in the in-
sert algorithm. The insert and delete algorithms per-
form two incremental steps, whenever the size of a node
that belongs to an incremental pair increases or de-
creases by one. This suffices to move at least one el-
ement and pointer and thus to preserve Invariants 5
and 6. Invariant 7 is a corollary of Invariant 8, 5 and 6.
With respect to Invariant 10, the insert and delete algo-
rithms define node-disjoint incremental paths. More-
over, each incremental step ensures that two paired
nodes remain children of a common parent node. Fi-
nally, the moves performed by the delete algorithm ex-
cluding incremental steps, explicitly mark the involved
node preventing the overlap of two paths.

Theorem 3.1. Incremental B-Trees can be imple-
mented in external memory using O(n/B) blocks of
space and support searching, insertions and deletions
of elements in O(logB n) I/Os and range searches in
O(logB n+ t/B) I/Os. Moreover, every update makes a
constant number of modifications to the tree.

Proof. By Lemma 3.1 we get that the height of the
tree is O(logB n). We now argue that the tree has
O(n/B) nodes, each of which has degree O(B), i.e. the
space bound follows and each node can be accessed in
O(1) I/Os.

From Invariants 5 - 9, it follows that all overflowing
and the good leaves have size at least B/2. Also
two leaves in an incremental pair have at least B/2
elements combined. Thus the leaves consume O(n/B)
disk blocks of space, which dominates the total space of
the tree. The same invariants show that all nodes have
at most 8B+4

3 elements in them and their degree is upper
bounded by 16B+8

3 . Thus every node consumes O(1)

disk blocks of space and can be accessed in O(1) I/Os.
We conclude that searching, inserting and deleting

an element costs O(logB n) I/Os. A range search costs
O(logB n) I/Os for the search and O(t/B) I/Os for the
traversal. Finally, the rebalancing algorithms are de-
fined such that they perform at most a constant num-
ber of modifications (incremental steps and definitions
of paths) to the structure. !

3.4 Application to Incremental B-Trees The in-
terface in Section 2 can be used to make Incremen-
tal B-Trees fully persistent. The marks of every node
are recorded by an additional field. Since din=1, cf≤3,
by Theorem 2.1 we get constants π≥10 and cmax=96.
A range search operation on the i-th version of the
fully persistent incremental B-Tree is implemented by
an Access(i) operation to determine the root at ver-
sion i, and a Read operation for every node at ver-
sion i visited by the ephemeral algorithm. Since ev-
ery node at version i is accessed in O(1) I/Os, the
range search makes O(logB n+t/B) I/Os. An update
operation on the i-th version is implemented first by
a NewVersion(i) operation that creates a new version
identifier j for the structure after the update operation.
Then, an Access(j) operation and a sequence of Read
operations follow in order to determine the nodes at ver-
sion j to be updated. Finally, a sequence of O(1) Write
operations follows in order to record the modifications
made by the insertion and the deletion algorithms de-
scribed in Section 3.2. By Theorem 2.1 we get the fol-
lowing corollary.

Corollary 3.1. There exist fully persistent B-Trees
that support range searches at any version in
O(logB n+t/B) I/Os and updates at any version in
O(logB n+log2B) amortized I/Os, using space O(m/B)
disk blocks, where n denotes the number of elements in
the accessed version, m the total number of updates, t
the size of the query’s output, and B the disk block size.

4 Conclusions
By further parametrizing the amortized analysis with
respect to π we can achieve a method for I/O-efficient
full persistence with O(cmax log2 π) I/O-overhead per
access step and O(din(cmax+din

log2 cmaxB
π)+log2π)

amortized I/O-overhead and O(1
B) amortized space-

overhead per update step. For example, set-
ting π=log2B in the case of Incremental B-Trees, we
obtain an access and update overhead of O(log2 log2 B)
I/Os. Obtaining fully persistent Incremental B-Tress
with constant I/O- and space-overhead per access and
update step remains an open problem. This paper is
a first step towards solving the open problem posed by

Vitter [23] that asks to make B-Trees with O(1) amor-
tized update time fully persistent.

References

[1] Alok Aggarwal and Jeffrey S. Vitter. The input/output
complexity of sorting and related problems. Commun.
ACM, 31:1116–1127, September 1988.

[2] Lars Arge, Andrew Danner, and Sha-Mayn Teh. I/O-
efficient point location using persistent B-trees. J. Exp.
Algorithmics, 8:1.2, 2003.

[3] Rudolf Bayer. Symmetric binary B-trees: Data struc-
ture and maintenance algorithms. Acta Inf., 1:290–
306, 1972.

[4] Rudolf Bayer and Edward M. McCreight. Organization
and maintenance of large ordered indices. Acta Inf.,
1:173–189, 1972.

[5] Bruno Becker, Stephan Gschwind, Thomas Ohler,
Bernhard Seeger, and Peter Widmayer. An asymptoti-
cally optimal multiversion B-tree. The VLDB Journal,
5(4):264–275, 1996.

[6] Michael A. Bender, Richard Cole, Erik D. Demaine,
Martin Farach-Colton, and Jack Zito. Two simplified
algorithms for maintaining order in a list. In Proceed-
ings of the 10th Ann. European Symp. on Algorithms,
LNCS 2461, pages 152–164, 2002.

[7] Douglas Comer. The ubiquitous B-tree. ACM Com-
put. Surv., 11(2):121–137, 1979.

[8] Paul Dietz and Daniel Sleator. Two algorithms for
maintaining order in a list. In Proceedings of the 19th
Ann. ACM Symp.on Theory of Computing, pages 365–
372, 1987.

[9] Paul F. Dietz. Maintaining order in a linked list. In
Proceedings of the 14th Ann. ACM Symp. on Theory
of Computing, pages 122–127, 1982.

[10] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and
Robert E. Tarjan. Making data structures persistent.
J. Comput. Syst. Sci., 38(1):86–124, 1989.

[11] Rudolf Fleischer. A simple balanced search tree with
O(1) worst-case update time. Int. J. Found. Comput.
Sci., 7(2):137–150, 1996.

[12] Michael T. Goodrich, Jyh-Jong Tsay, Darren E. Ven-
groff, and Jeffrey S. Vitter. External-memory com-
putational geometry. In Proceedings of the 34th Ann.
Conf. on Foundations of Computer Science, pages 714–
723, 1993.

[13] Scott Huddleston and Kurt Mehlhorn. Robust balanc-
ing in B-trees. In In Proceedings of the 5th GI-Conf. on
Theoretical Computer Science, LNCS 104, pages 234–
244, 1981.

[14] Scott Huddleston and Kurt Mehlhorn. A new data
structure for representing sorted lists. Acta Inf.,
17:157–184, 1982.

[15] Haim Kaplan. Persistent data structures. In Dinesh
Mehta and Sartaj Sahni, editors, Handbook of Data
Structures and Applications, chapter 31, pages 31-1–
31-26. CRC Press, 2004.

[16] Sitaram Lanka and Eric Mays. Fully persistent B+-
trees. In Proceedings of the ACM SIGMOD Int. Conf.
on Management of Data, pages 426–435, 1991.

[17] David B. Lomet and Betty Salzberg. Exploiting a
history database for backup. In Proceedings of the 19th
Int. Conf. on Very Large DataBases, pages 380–390,
1993.

[18] David Maier and Sharon C. Salveter. Hysterical B-
trees. Inf. Process. Lett., 12(4):199–202, 1981.

[19] Betty Salzberg and Vassilis J. Tsotras. Comparison of
access methods for time-evolving data. ACM Comput.
Surv., 31(2):158–221, 1999.

[20] Athanasios K. Tsakalidis. Maintaining order in a
generalized linked list. Acta Inf., 21(1):101–112, 1984.

[21] Athanasios K. Tsakalidis. AVL-trees for localized
search. Inf. Control, 67(1-3):173–194, 1986.

[22] Peter J. Varman and Rakesh M. Verma. An efficient
multiversion access structure. IEEE Trans. Knowl.
Data Eng., 9(3):391–409, 1997.

[23] Jeffrey Scott Vitter. Algorithms and data structures
for external memory. Found. Trends Theor. Comput.
Sci., 2(4):305–474, 2008.

