
Ordered and Unordered Top-K Range Reporting in Large Data Sets

Peyman Afshani∗ Gerth Stølting Brodal† Norbert Zeh‡

Abstract

We study the following problem: Given an array A
storing N real numbers, preprocess it to allow fast
reporting of the K smallest elements in the subarray
A[i, j] in sorted order, for any triple (i, j, K) with 1 ≤
i ≤ j ≤ N and 1 ≤ K ≤ j − i + 1. We are interested
in scenarios where the array A is large, necessitating an
I/O-efficient solution.

For a parameter f with 1 ≤ f ≤ logm n, we
construct a data structure that uses O((N/f) logm n)
space and achieves a query bound of O(logB N +
fK/B) I/Os,1 where B is the block size, M is the
size of the main memory, n := N/B, and m :=
M/B. Our main contribution is to show that this
solution is nearly optimal. To be precise, we show that
achieving a query bound of O(logα n + fK/B) I/Os,

for any constant α, requires Ω
(

N f−1 logM n
log(f−1 logM n)

)

space,

assuming B = Ω(log N). For M ≥ B1+ε, this is within a
log logm n factor of the upper bound. The lower bound
assumes indivisibility of records and holds even if we
assume K is always set to j − 1 + 1.

We also show that it is the requirement that the
K smallest elements be reported in sorted order which
makes the problem hard. If the K smallest elements
in the query range can be reported in any order, then
we can obtain a linear-size data structure with a query

∗Faculty of Computer Science, Dalhousie University, Halifax,
NS B3H 1W5, Canada. Email: peyman@madalgo.au.dk. This
research was done while the first author was a postdoctoral
fellow at the MADALGO Center for Massive Data Algorithmics,
Department of Computer Science, Aarhus University, Denmark
and was supported in part by the Danish National Research
Foundation and the Danish Strategic Research Council.

†MADALGO Center for Massive Data Algorithmics, Depart-
ment of Computer Science, Aarhus University, Denmark. Email:
gerth@madalgo.au.dk. Research supported in part by the Danish
National Research Foundation and the Danish Strategic Research
Council.

‡Faculty of Computer Science, Dalhousie University, Halifax,
NS B3H 1W5, Canada. Email: nzeh@cs.dal.ca. This research was
supported in part by NSERC and the Canada Research Chairs
programme and was done while the third author was on sabbat-
ical at the MADALGO Center for Massive Data Algorithmics,
Department of Computer Science, Aarhus University, Denmark.

1Throughout this paper, we use log
x

y to refer to the value
max(1, log

x
y).

bound of O(logB N + K/B) I/Os.

1 Introduction

In this paper, we study the following variant of one-
dimensional range reporting: Given an array A storing
N real numbers, preprocess it to allow fast reporting
of the K smallest elements in the array A[i, j], for any
triple (i, j, K) with 1 ≤ i ≤ j ≤ N and 1 ≤ K ≤ j−i+1.
We study two variants of this problem, one where the
reported elements have to be reported in sorted order
and one where this is not required. We call these
variants ordered and unordered top-K range reporting,
respectively.

Our solution to unordered top-K range reporting
is required as a building block for the solution to the
ordered variant and to demonstrate that it is exactly
the ordering requirement that makes the problem hard.
Ordered top-K range reporting generalizes and is moti-
vated by the following natural problem in information
retrieval and web search engines. Consider a collection
of text documents (web pages) stored in a trie or suf-
fix tree to allow identifying all documents containing a
query term. A query returns a node of the trie, and
the documents corresponding to its descendant leaves
are those containing the query term. If the number of
matching documents is large, we only want to report the
“most relevant” documents according to some ranking
and, even if the number of matching documents is fairly
small, it is desirable to list matches by decreasing rele-
vance (rank).

Often, a significant part of the rank of a match to a
query is independent of the query, such as for example
the PageRank [13] of a web page. Thus, as an initial
filtering step, it is useful to retrieve only the top K
matches with respect to this static rank component. If
we number the leaves of the trie left to right and store
the ith leaf in position i of an array A, this is exactly an
ordered top-K range reporting query with query interval
restricted to correspond to the set of descendants of a
trie node.

Since search engines and information retrieval ap-
plications often deal with massive amounts of data, it is
useful to seek an I/O-efficient solution to this problem,
that is, one that aims to minimize the number of disk

accesses required to answer a query using a disk-based
data structure. This is the focus in this paper. In par-
ticular, we design and analyze our data structures in the
input/output model (I/O model) of [1]. In this model,
the computer is equipped with two levels of memory: a
slow but conceptually unlimited external memory and
a fast internal memory with capacity M . All computa-
tion happens on data in internal memory. Data is trans-
ferred between internal and external memory in blocks
of B consecutive data items. The complexity of an al-
gorithm is the number of such I/O operations (I/Os) it
performs. Throughout this paper, we use N to denote
the input size, n := N/B to denote the input size mea-
sured in blocks, and m := M/B to denote the memory
size measured in blocks. Aggarwal and Vitter [1] showed
that comparison-based sorting of N elements in the I/O
model takes sort(N) = Θ(n logm n) I/Os, while arrang-
ing N elements according to a given permutation takes
perm(N) = Θ(min(N, sort(N)) I/Os.

1.1 Previous Work. It seems that, even though
top-K range reporting is a natural problem with practi-
cal applications, it has received little theoretical atten-
tion so far. The range minimum problem is a special
case of top-K range reporting with K = 1. For this
problem, a number of linear-space data structures with
constant-time (and, hence, constant-I/O) queries have
been obtained [5, 10, 14].

In [6], Brodal et al. studied ordered top-K range
reporting in the word-RAM model and presented a
linear-space data structure with query time O(1 + K).
In the pointer machine model, a priority search tree
[12] combined with Frederickson’s O(K)-time algorithm
for finding the K smallest elements in a binary heap-
ordered tree [8] results in a linear-space data structure
for unordered top-K range reporting with query bound
O(log N + K). These K elements can then be sorted
in O(K log K) time, so that the same data structure
also supports ordered top-K range reporting queries in
O(log N + K log K) time. We are not aware of any
non-trivial results on data structures for ordered top-
K range reporting in the pointer machine or I/O model
with an optimal dependence of the query bound on the
output size.

1.2 New Results. In this paper, we present nearly
matching space upper and lower bounds for ordered top-
K range reporting data structures in the I/O model
with a query bound of O(logB N + fK/B) I/Os, for
some parameter 1 ≤ f ≤ logm n. In particular, we
present an O((N/f) logm n)-space data structure with
this query bound in Section 3. For f = 1, this gives an
O(N logm n)-space data structure with a query bound

of O(logB N + K/B) I/Os. For f = logm n, the data
structure uses linear space, but at the expense of an
increased query bound of O(logB N + (K/B) logm n)
I/Os. Our main contribution is to show that the space-
query trade-off of our data structure is nearly optimal.
In particular, we prove in Section 4 that any data
structure with a query bound of O(logα n+fK/B) I/Os,

for some constant α, has to use Ω
(

N f−1 logM n
log(f−1 logM n)

)

space, as long as B = Ω(log N). In general, this leaves a
gap of O(logm M log logM n) to the upper bound. Under
the common tall cache assumption (M ≥ B1+ε, for
some constant ε > 0), the gap is O(log logm n). Our
lower bound holds under the assumption of indivisibility
of records; that is, to output an element, the query
procedure must visit a cell in the data structure that
stores this element. See Section 4 for more details.

As part of our upper bound construction, we present
a linear-space data structure that achieves a query
bound of O(logB N + K/B) I/Os for unordered top-K
range reporting; see Section 2. This demonstrates that
the ordering requirement is exactly what makes ordered
top-K range reporting hard. Our lower bound proof
emphasizes this fact further, as it uses counting argu-
ments similar to the ones used to prove the permutation
lower bound in the I/O model [1]. The difference to
that purely counting-based proof is that we cannot ar-
gue that an ordered range reporting data structure has
to be able to report all N ! permutations of the elements
in A. Indeed, only O(N3) different combinations of i,
j, and K are possible, leading to only O(N3) different
queries. Instead, we consider a hierarchy of query sizes
and prove that, if the input is a random permutation
of the integers between 1 and N , then (almost) inde-
pendent data structures must be stored for the different
query sizes. In other words, what needs to be stored
to answer queries of one size efficiently is almost useless
for answering queries of significantly larger or smaller

size. For Ω
(

f−1 logM n
log(f−1 logM n)

)

different query sizes, this

gives the desired space lower bound.

2 Unordered Top-K Range Reporting

First we present a linear-space data structure that can
answer unordered top-K range reporting queries using
O(logB N + K/B) I/Os. This data structure is used
as part of our ordered top-K range reporting data
structure described in Section 3.

Theorem 2.1. There exists a data structure that uses
linear space to store a sequence A of N elements and
is able to report the K smallest elements in the sub-
sequence A[i, j] using O(logB N + K/B) I/Os, for any
triple (i, j, K) with 1 ≤ i ≤ j ≤ N and 1 ≤ K ≤ j−i+1.

A[i] A[j]

(a)

q(i, j,K)

(b)

A[i] A[j]

q̃(i, j,K)

(c)

p1
p2

p3

p4

p5

p6

p7

A[i] A[j]

(d)

Figure 1: (a) The representation of the input array A. The range corresponding to the query array A[i, j] is
shaded in grey. (b) The three-sided query q(i, j, K) is shaded in grey. (c) The dashed lines bound cells in the
shallow cutting. Fat dashed lines bound the cells whose x-ranges cover q(i, j, K). q̃(i, j, K) is the cell with the
highest top boundary among them. (d) An example of the subdivision Ak.

We take the following view of the problem. We
denote the ith element in A by ai and consider the
pair (i, ai) to be a point in the plane; see Figure 1(a).
Let µK(i, j) be the Kth smallest element in A[i, j].
Then the K smallest elements in A[i, j] are exactly
the points in the three-sided query range q(i, j, K) :=
[i, j]× (−∞, µK(i, j)]; see Figure 1(b). Given this query
range, we could use an external priority search tree [4],
which uses linear space and supports three-sided range
reporting queries using O(logB N + K/B) I/Os, to find
the points in q(i, j, K). Unfortunately, finding µK(i, j)
does not seem to be any easier than finding the K
smallest elements in A[i, j].

To avoid this problem, we construct a data struc-
ture that consists of two parts. The first part is a data
structure to find a three-sided query range q̃(i, j, K)
that covers q(i, j, K) and contains O(K) points; see
Figure 1(c). Below, we describe such a data structure
that uses linear space and can identify such a query
range q̃(i, j, K) using O(logB N) I/Os, given only the
triple (i, j, K). The second part is an external pri-
ority search tree storing the input points. Given the
query range q̃(i, j, K), we can use the external prior-
ity search tree to retrieve the O(K) points in q̃(i, j, K)
using O(logB N + K/B) I/Os. Next, we can eliminate
the points outside the x-range [i, j] using a single scan of
this point list. Then we apply linear-time selection [7] to
the remaining points to find the K lowest points among
them, which are exactly the points in q(i, j, K). This
takes O(K/B) I/Os. Both parts of our data structure
use linear space, and the total cost of the different parts
of the query procedure is O(logB N + K/B). Thus,
to prove Theorem 2.1, it remains to describe the data
structure that finds q̃(i, j, K).

Our data structure for finding q̃(i, j, K) is based
on shallow cuttings [11]. In the context of three-sided
range reporting, a shallow K-cutting is a collection of
O(N/K) three-sided ranges, called cells, such that each
contains O(K) points and, for every three-sided range
q containing at most K points, there exists a cell that
completely covers q. In the appendix, we describe a
simple procedure for constructing a shallow cutting for
a point set based on a construction from [2, 4]. Using
standard I/O-efficient techniques, this construction can
be implemented to take O(N/K + sort(N)) I/Os.

Let C0, C1, . . . , Ct be shallow cuttings, where t :=
⌈log N⌉ and Ch is a shallow 2h-cutting. By the proper-
ties of shallow cuttings, there exists a cell in Ck, where
k := ⌈log K⌉, that covers q(i, j, K) and contains O(K)
points. Thus, we can use such a cell in Ck as the query
range q̃(i, j, K). What we need is a method to identify
such a cell, given only the x-range [i, j]. Let Ci,j,k be
the subset of cells C ∈ Ck whose x-ranges contain the
x-range [i, j]; see Figure 1(c). We choose q̃(i, j, K) to
be the cell in Ci,j,k with maximum top boundary. This
guarantees that q̃(i, j, K) covers q(i, j, K) because there
exists a cell in Ck that covers q(i, j, K), only cells in Ci,j,k

can cover q(i, j, K), and, if the query with highest top
boundary in Ci,j,k does not cover q(i, j, k), then none of
the cells in Ci,j,k does.

2.1 Finding q̃(i, j, K). The x-range [x1, x2] of a cell
C := [x1, x2] × (−∞, y] in Ck contains the interval [i, j]
if and only if xl ≤ i and j ≤ x2. A standard transforma-
tion turns finding q̃(i, j, K) into a 2-d dominance prob-
lem: map each cell C ∈ Ck to the point pC := (−x1, x2)
and define the weight w(pC) of point pC to be the top
boundary y of C. Let Pk be the set of points obtained
from Ck in this manner. Then Ci,j,k is the set of cells

in Ck whose corresponding points in Pk dominate the
point (−i, j), and q̃(i, j, K) is the cell corresponding to
the point with maximum weight among them. Thus, we
need a data structure that solves this max-dominance
problem.

2.2 Max-Dominance. Given the point set Pk, we
define a planar subdivision Ak as follows; see Fig-
ure 1(d). For every point p ∈ Pk, let D(p) be the region
dominated by p. Now let p1, p2, . . . be the sequence of
points in Pk, sorted by decreasing weight. We associate
a region R(pi) := D(pi) \

⋃i−1
j=1 D(pj) with every point

pi ∈ Pk. Ak is the subdivision defined by this set of
regions. The following observation is the basis for using
the subdivision Ak to find q̃(i, j, K).

Observation 1. A point pi ∈ Pk is the point with
maximum weight among the points in Pk that dominate
a query point q if and only if q ∈ R(pi). Furthermore,
the complexity of the subdivision Ak is O(N/2k).

Proof. The first claim follows immediately from the
definition of Ak. To prove the second claim, we observe
that Ak is a subgraph of the subdivision obtained by
inserting the points p1, p2, . . . by decreasing weight and,
for each point shooting rays to the left and down until
they hit an edge already in the subdivision. These
contact points become vertices of the subdivision. Using
this procedure, every point in Pk adds at most three
vertices to the subdivision, and Ak is a planar straight-
line graph with O(N/2k) vertices. �

By Observation 1, we can use a planar point loca-
tion data structure on Ak to identify q̃(i, j, K). Data
structures that use O(|Ak|) = O(N/2k) space to rep-
resent Ak and support point location queries using
O(logB N) I/Os are presented in [3, 9]. Thus, storing
one such data structure for each of the arrangements
A1,A2, . . . ,At corresponding to the shallow cuttings
C1, C2, . . . , Ct results in the desired linear-space data
structure that can identify q̃(i, j, K) using O(logB N)
I/Os.

3 Ordered Top-K Range Reporting

For ordered top-K range reporting, we prove the follow-
ing result.

Theorem 3.1. There exists a data structure that uses
O((N/f) logm n) space to store a sequence A of N
elements, for a parameter 1 ≤ f ≤ logm n, and is able to
report the K smallest elements in the subsequence A[i, j]
in sorted order using O(logB N + fK/B) I/Os, for any
triple (i, j, K) with 1 ≤ i ≤ j ≤ N and 1 ≤ K ≤ j−i+1.

For K ≤ Mmf , we can use the data structure
for unordered top-K range reporting to answer or-
dered top-K range reporting queries. First we retrieve
the K minimum elements in the query range using
O(logB N +K/B) I/Os; then we sort them, which takes
O((K/B) logm(K/M)) = O(fK/B) I/Os using stan-
dard external merge sort [1]. Thus, it remains to de-
scribe a data structure for K > Mmf .

The first part of our data structure is the data
structure we used in the previous section to identify
the query range q̃(i, j, K), given the triple (i, j, K).
Since |q̃(i, j, K)| = O(K), it suffices to retrieve the
points in q̃(i, j, K) sorted by their y-coordinates; then
we scan these points using O(K/B) I/Os, discard all
points not in the x-range [i, j], and report the first K
points among the remaining points. Next we describe
an O((N/f) logm n)-space data structure that can be
used to retrieve the points in q̃(i, j, K) in sorted order,
using O(fK/B) I/Os. This proves Theorem 3.1.

3.1 The Data Structure. Our data structure is
based on the same set of shallow cuttings C1, C2, . . . , Ct

used in the unordered top-K range reporting data
structure. Here we assume each shallow cutting Ch

has the following additional property: every three-sided
query range q containing K points can be covered using
O(⌈K/2h⌉) cells of Ch. In the appendix, we describe a
method based on a construction in [2, 4] to obtain this
type of shallow cutting.

Now we consider a subset of these shallow cuttings,
Cℓ1 , · · · Cℓt′

, where ℓi := ⌊log(Mmfi)⌋ and, thus, t′ =
O(f−1 logm n). Each shallow cutting Cℓi

is a shallow
Θ(Mmfi)-cutting. For each such shallow cutting Cℓi

and each cell C ∈ Cℓi
, we store the points in C in y-

sorted order. This takes O(N) space for one shallow
cutting Cℓi

and, thus, O(Nt′) = O((N/f) logm n) space
in total. For every shallow cutting Ch with log(Mmf) ≤
h ≤ t, let j be the index such that ℓj ≤ h < ℓj+1. Every
cell C ∈ Ch can be covered using O(2h/2ℓj) = O(mf)
cells in Cℓj

, and we store pointers to these cells with the
cell C in Ch. Each cell in Ch stores O(mf) pointers,
and the total number of cells in shallow cuttings Ch

with log(Mmf) ≤ h ≤ t is O(N/(Mmf)). Hence, these
pointers use O(N/M) space in total, and the size of the
data structure is dominated by the size of the sorted
point lists for the shallow cuttings Cℓ1 , Cℓ2 , . . . , Cℓt′

,
which is O((N/f) logm n).

3.2 The Query Procedure. To retrieve the point
list of a shallow cutting cell q̃(i, j, K) ∈ Ck using
O(f2k/B) = O(fK/B) I/Os, let j be the index
such that ℓj ≤ k < ℓj+1. We follow the pointers
from q̃(i, j, K) to the O(2k/2ℓj) cells in Cℓj

that cover

q̃(i, j, K) and merge their point lists using standard m-
way merging [1]. Then we scan the resulting sorted
point list and discard duplicates and points not in
q̃(i, j, K). Since O(2k/2ℓj) = O(mf), the merging of
these O(mf) lists requires O(mf +(K ′/B) logm(mf)) =
O(mf +fK ′/B) I/Os, where K ′ is the number of points
in the merged lists. The O(mf) term accounts for the
random accesses required to retrieve the first block of
each list to be merged. Since we merge O(2k/2ℓj) point
lists of cells in Cℓj

and every cell of Cℓj
contains O(2ℓj)

points, we have K ′ = O(2k), that is, the merging cost
is O(mf + f2k/B) = O(mf + fK/B). Now it suffices
to observe that mf = O(K/B) because K ≥ mfM and
M ≥ B. This proves that the cost of retrieving the
sorted point list of q̃(i, j, K) is O(fK/B).

4 A Lower Bound for Ordered Range
Reporting

In this section, we prove a lower bound on the size
of any data structure that achieves a query bound
of O(logα n + fK/B) I/Os for ordered top-K range
reporting, where α is a constant and 1 ≤ f ≤ logm n.
The lower bound matches the upper bound achieved in
Theorem 3.1 up to a factor of O(logm M log logM n),
which is O(log logm n) when M ≥ B1+ε, for a constant
ε > 0 (the tall cache assumption).

Ordered range reporting is a special case of ordered
top-K range reporting that simply asks to report all
elements in the query range in sorted order. We prove
our lower bound for any ordered range reporting data
structure with the above query bound, which implies
the same lower bound for any ordered top-K range
reporting data structure.

Theorem 4.1. Any data structure capable of answer-
ing ordered range reporting queries over a sequence of
N elements using O(logα n + fK/B) I/Os, for a con-
stant α, 1 ≤ f ≤ logm n, and B = Ω(log N), must use

Ω
(

N f−1 logM n
log(f−1 logM n)

)

space in the worst case.

4.1 Lower Bound Model. Our lower bound holds
for any data structure in the I/O model with the ad-
ditional assumption of indivisibility of records. This
means that we assume the data structure stores the
data elements in a linear sequence of cells (disk loca-
tions), each cell stores at most one element, and the
query procedure is only allowed to move or copy data
elements but not create any data elements without ac-
cessing them (e.g., using arithmetic operations). Apart
from this restriction on storing data elements, the data
structure may store any kind of book-keeping informa-
tion, and we place no restriction on the operations used
to manipulate this information.

We can view a sequence of I/O operations per-
formed by an algorithm A as a transformation of the
sequence of occupied disk blocks and, hence, of the se-
quence σ of elements stored in these blocks into a new
sequence σ′. We say that A generates a sequence ρ from
a subsequence τ of σ if ρ is a (not necessarily contigu-
ous) subsequence of σ′ and each element of ρ can be
traced back as being copied from an element of τ . (By
the indivisibility assumption, every element of σ′ can be
traced back to a unique element of σ.)

4.2 Proof of Theorem 4.1. Our lower bound is
in fact a permutation lower bound, showing that it
is impossible to build a small data structure capable
of quickly permuting each subsequence of the input
sequence into its sorted order. A lower bound on
the number of I/Os necessary to transform an input
permutation into a target permutation was shown in [1].
While our approach is quite different, we first describe
the intuition behind that proof, as it serves as a starting
point for our argument.

For a fixed permutation stored on disk, it is not
difficult to see that only a bounded number of permu-
tations can be generated from it using a single I/O. In
other words, we can explore only a small fraction of
the space of all permutations using a single I/O from a
given start permutation. Since the permutation space
contains N ! different permutations, this observation can
be used to show a non-trivial lower bound on the num-
ber of I/Os required to generate any permutation from
a fixed starting permutation.

In the case of ordered range reporting, we have only
O(N2) different query ranges, that is, the data structure
only needs to be able to report O(N2) different output
sequences quickly, which makes the above counting
argument ineffective. To overcome this difficulty, we
consider a fixed random permutation π and show that,
with non-zero probability, any efficient ordered range
reporting data structure storing π must use the space
stated in Theorem 4.1. To prove this, we derive h =

Ω
(

f−1 logM n
log(f−1 logM n)

)

permutations σ1(π), σ2(π), . . . , σh(π)

of the elements in π and show that any data structure
that can answer ordered range reporting queries over π
using O(logα n+fK/B) I/Os, for a constant α, must be
able to generate each permutation σi(π), for 1 ≤ i ≤ h,
using O(fn) I/Os. For a random permutation π, these
permutations σ1(π), σ2(π), . . . , σh(π) will be “far apart”
in the permutation space, which makes it impossible
to store only one permutation in the data structure
that is close even to two of these permutations (i.e.,
can be used as a starting point to generate both
permutations quickly). This suggests that the best
strategy is to store one permutation close to each

permutation σi(π) in the data structure, which requires

Ω(Nh) = Ω
(

N f−1 logM n
log(f−1 logM n)

)

space. Of course, the

data structure might be able to store a short sequence
of elements (with multiple copies of each element) such
that, for each i, a permutation close to σi(π) can
be found as a subsequence of this sequence. The
main difficulty is to prove that any sequence containing
such permutations close to σ1(π), σ2(π), . . . , σh(π) as
subsequences must have length Ω(Nh), that is, is not
significantly shorter than the naive concatenation of
σ1(π), σ2(π), . . . , σh(π).

We define these sequences σ1(π), σ2(π), . . . , σh(π)
as follows. Let N > N1 ≥ N2 · · · ≥ Nh ≥ 1 be
parameters to be chosen later and, for simplicity, assume
Ni divides N . For each 1 ≤ i ≤ h, we divide π
into N/Ni contiguous subsequences of length Ni, called
level-i pieces. The permutation σi(π), called a level-i
permutation, is obtained from π by sorting its level-i
pieces.

Now consider a fixed data structure D(π) con-
structed over π (which is simply a sequence of elements
stored on disk) and an algorithm that generates the se-
quence σi(π) from D(π). Every element in σi(π) can
be traced back to an origin cell in D(π). We use Di(π)
to denote the set of these origin cells for all elements of
σi(π). Using our terminology, this means that the algo-
rithm generates σi(π) from Di(π). We show that, for a
random permutation π and a fixed level i, the probabil-
ity that |Di(π)∩(D1(π)∪D2(π)∪· · ·∪Di−1(π))| ≤ N/2 is
high, for any data structure D(π) that can generate each
of the permutations σ1(π), σ2(π), . . . , σi(π) using O(fn)
I/Os. This implies that there exists a permutation π
such that this condition holds for all 1 < i ≤ h. Thus,
the set of cells D1(π)∪D2(π)∪· · ·∪Dh(π) has size at least
hN/2, that is, the size of the data structure is at least

hN/2 = Ω
(

N
f−1 logM n

log(f−1 logM n)

)

. Since this is true for every

data structure that can generate σ1(π), σ2(π), . . . , σh(π)
efficiently, Theorem 4.1 follows.

To bound the probability that |Di(π) ∩ (D1(π) ∪
D2(π)∪· · ·∪Di−1(π))| > N/2, we fix a uniform random
permutation π, a data structure D(π), and two levels
1 ≤ k < i ≤ h, and bound |Di(π) ∩ Dk(π)|. Let σ◦

k(π)
be the subsequence of σk(π) whose origin cells belong
to Di(π) ∩ Dk(π). Since σk(π) can be generated from
Dk(π) using O(fn) I/Os, σ◦

k(π) can also be generated
from Di(π) ∩ Dk(π) using O(fn) I/Os. Since σi(π)
can be generated from Di(π) using O(fn) I/Os, this
implies that σ◦

k(π) can be generated from σi(π) using
O(fn) I/Os: first we invert the I/O sequence generating
σi(π) from Di(π) to obtain Di(π) from σi(π), and
then we apply the I/O sequence that generates σ◦

k(π)
from Di(π) ∩ Dk(π). Now, for fn = o(perm(N)),

it is impossible to generate every permutation of N
elements from σi(π) using O(fn) I/Os. We prove that,
with high probability, σk(π) is “sufficiently different”
from σi(π) that we also cannot generate σ◦

k(π) from
σi(π) using O(fn) I/Os unless σ◦

k(π) contains only a
small portion of the elements of σk(π), that is, unless
|Di(π) ∩ Dk(π)| is small. By applying this argument
to all pairs (i, k) with 1 ≤ k < i, we obtain the desired
bound on the size of the intersection between Di(π) and
D1(π) ∪ D2(π) ∪ · · · ∪ Di−1(π).

In the remainder of this section, we define the pa-
rameters N1, N2, . . . , Nh used to construct the permuta-
tions σ1(π), σ2(π), . . . , σh(π), introduce some more no-
tation, state our main lemma (Lemma 4.2), and prove
that it implies Theorem 4.1. In Section 4.3, we prove
Lemma 4.2.

Let C be a constant, γ := Cf log(f−1 logM n),
t := Mγ , and h := ⌊logt(n/ logα n)⌋. For 1 ≤ i ≤ h,
we define Ni := N/ti. Then, for 1 ≤ i ≤ h and
0 ≤ j < ti, we use πi,j to denote the jth level-i
piece 〈π(jNi +1), π(jNi +2), . . . π((j +1)Ni)〉 of π, and
σi,j(π) to denote the sequence obtained by sorting the
elements in πi,j . Thus, σi(π) is the concatenation of the
sequences σi,0(π), σi,1(π), . . . , σi,ti

−1(π). We also refer
to σi,j(π) as a level-i piece of σi(π).

Lemma 4.1. Any data structure that supports or-
dered range reporting queries over π using O(logα n +
fK/B) I/Os can generate each of the sequences
σ1(π), σ2(π), . . . , σh(π) using O(fn) I/Os.

Proof. Consider a sequence σi(π). We can generate
σi(π) by reporting each sequence σi,j(π) in turn, for 0 ≤
j < ti. In particular, for 0 ≤ j < ti, we report σi,j(π)
and then copy σi,j(π) to a new sequence of O(Ni/B)
blocks so that the blocks containing the sequence σi,j(π)
succeed the blocks containing the sequence σi,j′ (π), for
all j′ < j. The resulting sequence of O(tiNi/B) =
O(N/B) blocks then stores the sequence σi(π). Since
σi,j(π) is the result of an ordered range reporting query
over π with query interval [jNi + 1, (j + 1)Ni], each
subsequence σi,j(π) can be reported using O(logα n +
fNi/B) I/Os. Thus, generating σi(π) in this manner
takes O(ti(logα n + fNi/B)) = O(ti logα n + fn) =
O(fn) I/Os. �

By Lemma 4.1, any lower bound on the size of a
data structure that can generate each of the permuta-
tions σ1(π), σ2(π), . . . , σh(π) using O(fn) I/Os is also
a lower bound on the size of any ordered range re-
porting data structure over π with a query bound of
O(logα n + fK/B) I/Os. The following is our main
lemma, which we prove in Section 4.3. Here we prove
that this lemma implies Theorem 4.1.

Lemma 4.2. For a random permutation π, any two
indices 1 ≤ k < i ≤ h, and any data structure
D(π) that can generate σi(π) and σk(π) using O(fn)
I/Os, the number of cells in Di(π) ∩ Dk(π) is at most

N
3(i−k) log h with probability at least 1 − 1/N , assuming

B = Ω(log N).

Lemma 4.2 implies that, for a uniform random
permutation π, the number of cells shared between
Di(π) and D1(π) ∪ D2(π) ∪ · · · ∪ Di−1(π) is at most

i−1
∑

k=1

N

3(i − k) log h
≤

(

N

3 log h

)

(ln i + 1) ≤ N/2

with probability at least 1− (i− 1)/N . Thus, the prob-
ability that |Di(π)∩ (D1(π)∪D2(π)∪ · · · ∪Di−1(π))| ≤
N/2, for all 1 ≤ i ≤ h, is at least 1− h2/N > 0, that is,
there exists a permutation π so that this is true. As we
argued previously, this implies that the size of the data
structure D(π) is at least

hN

2
= Ω

(

N
f−1 logM n

log(f−1 logM n)

)

for this permutation. This proves Theorem 4.1.

4.3 Proof of Lemma 4.2. To prove Lemma 4.2, we
fix two levels 1 ≤ k < i ≤ h. We begin by proving that,
for a uniform random permutation π, the permutation
σi(π) is a uniform random level-i permutation, that is,
σi(π) is drawn uniformly at random from the set of all
possible level-i permutations (permutations composed
of sorted level-i pieces). Once σi(π) is fixed, so is
σk(π) because σk(π) is obtained from σi(π) by sorting
its level-k pieces. The remainder of the proof then
shows that, for a uniform random level-i permutation σi,
its corresponding level-k permutation σk is sufficiently
different from σi that Di ∩ Dk must be small for any
data structure D that can generate both σi and σk using
O(fn) I/Os.

Lemma 4.3. Consider a level-i permutation σ′

i and
a uniform random permutation π. With probability
(Ni!)

ti

/N !, σi(π) = σ′

i. The number of distinct level-i
permutations is tiN/O(2N).

Proof. To prove the first part of the lemma, observe
that σi(π) is independent of the order of the elements
in the level-i pieces of π because σi(π) is obtained from π
by sorting the elements in these pieces. What matters
is the set of elements that occur in each level-i piece
of π. Thus, there are (Ni!)

ti

different permutations
π that define the same level-i permutation σi(π), and
the probability that σi(π) = σ′

i, for a fixed level-i

permutation σ′

i and a uniform random permutation π,

is (Ni!)
ti

/N !.
The second part of the lemma follows because the

number of level-i permutations is N !/(Ni!)
ti

. Using
Stirling’s approximation (N ! = (N/e)N · Θ(

√
N)), this

gives a bound of

(N/e)NΘ(
√

N)

(Ni/e)NitiΘ
(√

Ni

)ti ≥ tiN/2O(N)

because Ni · ti = N and Θ
(√

Ni

)ti

= 2O(N). �

By Lemma 4.3, we can ignore the random permuta-
tion π used to define σi(π) and σk(π) and instead reason
about a uniform random level-i permutation σi, its cor-
responding level-k permutation σk, and a data structure
D that can generate both σi and σk using O(fn) I/Os.
Once again, let Di and Dk denote the sets of cells in D
that are used to generate σi and σk, respectively, and
let σ◦

i and σ◦

k be the subsequences of σi and σk that are
generated from the cells in Di ∩ Dk. To distinguish the
elements of σ◦

i and σ◦

k from the remaining elements in
σi and σk, we mark the elements in σ◦

i and σ◦

k and leave
the remaining elements unmarked.

As argued before, the fact that σi can be generated
from Di using O(fn) I/Os and σk can be generated from
Dk using O(fn) I/Os implies that σ◦

k can be generated
from σi using O(fn) I/Os. W.l.o.g., we can assume
that the I/O sequence generating σ◦

k from σi does not
overwrite disk blocks. If it does, we can alter it to
instead create new blocks right next to the blocks it
would otherwise have overwritten. It is easy to see
that this altered I/O sequence still generates σ◦

k. The
advantage of this view is that we can consider not only
the effect this I/O sequence has on σ◦

i , which is to
generate σ◦

k from it, but the effect it has on the entire
sequence σi, which is to generate a new permutation of
the elements in σi that arranges the marked elements in
the same order as in σk.

To prove that |Di ∩ Dk| cannot be too large, we
consider a set of variables x1, x2, . . . , xN . Each level-i
permutation σi defines a particular assignment of values
to these variables, which assigns the jth element in
σi to the variable xj . We mark a variable xj if it is
assigned a marked element of σi. Now, using O(fn)
I/Os, we can generate a subset of all permutations
of the variables x1, x2, . . . , xN . Each of these has 2N

corresponding marked permutations, each of which is
obtained by marking a particular subset of the variables
x1, x2, . . . , xN in the permutation. We use P to denote
the set of all marked permutations generated in this way.

These marked permutations capture the following
intuition. The permutation σi defines a particular as-

signment of elements to the variables x1, x2, . . . , xN .
Since we can generate σ◦

k from σi using O(fn) I/Os,
there exists a permutation ρ ∈ P so that the permuta-
tion ρ◦σi obtained by assigning the jth element in σi to
the variable xj in ρ arranges the elements in σ◦

i in the
same order as in σ◦

k. The marking of variables reflects
which variables receive elements of σ◦

i and, thus, need to
be arranged in an order matching σk. Now, for a given
marked permutation ρ ∈ P and a level-i permutation σi,
ρ ◦ σi may or may not arrange the elements assigned by
σi to variables marked by ρ in the order they appear in
the level-k permutation σk corresponding to σi, that is,
ρ may or may not generate σ◦

k from σi. If it does, we
call σi ρ-consistent ; otherwise we don’t.

The remainder of the proof of Lemma 4.2 consists
of two steps. First we show that, for a given marked
permutation ρ ∈ P with many marked variables, the
number of ρ-consistent level-i permutations is small.
Next, we show that the number of marked permutations
is also small. By Lemma 4.3, the number of level-
i permutations is large. Together, these three facts
imply that, with high probability, a random level-i
permutation σi is not ρ-consistent with respect to any
marked permutation ρ ∈ P that has many marked
variables, that is, |Di ∩Dk| must be small, for any data
structure D that can generate σi and its corresponding
level-k permutation σk using O(fn) I/Os.

Lemma 4.4. For a fixed marked permutation ρ ∈ P
that marks βN variables, for some 0 ≤ β ≤ 1, the
number of level-i permutations that are ρ-consistent is
tkβN ti(N−βN)2O(N).

Proof. For 0 ≤ j < tk, let Mj be the set of variables
among xjNk+1, xjNk+2, . . . , x(j+1)Nk

that are marked
by ρ, and let mj := |Mj |. The elements assigned to
xjNk+1, xjNk+2, . . . , x(j+1)Nk

by a level-i permutation
σi are exactly the elements of a level-k piece σk,j of
σk and are arranged in sorted order in σk,j . The
requirement that the level-i permutation be ρ-consistent
implies that, once the set of elements assigned by σi to
the variables in Mj is fixed, there is only one way to
assign these elements to these variables. Every level-
k piece of σk is divided into ti−k level-i pieces, and
the elements in each such level-i piece occur in sorted
order in σi. Therefore, once the set of elements assigned
by σi to the unmarked variables in such a level-i piece
is chosen, there is once again only one way to assign
them. This leads to the following method of bounding
the number of assignments to variables x1, x2, . . . , xN

defined by ρ-consistent level-i permutations.
For 0 ≤ j′ < ti−k, let mj,j′ be the number of

marked variables among xjNk+j′Ni+1, xjNk+j′Ni+2, . . . ,

xjNk+(j′+1)Ni
. We have mj =

∑ti−k
−1

j′=0 mj,j′ . For

each level-k piece, we construct an assignment to its
variables by first choosing mj elements to be assigned
to the variables in Mj and then choosing the set of
elements to be assigned to the unmarked variables in
each level-i piece contained in this level-k piece. While it
is not hard to see that not every assignment produced in
this way corresponds to a level-i permutation (because
we do not enforce any ordering constraints on the
marked elements with respect to the unmarked elements
in σi), the argument in the previous paragraph implies
that every assignment representing a ρ-consistent level-i
permutation can be generated in this way, giving us
an upper bound on the number of ρ-consistent level-i
permutations.

We begin by counting the number of possible assign-
ments to the variables in the jth level-k piece, assuming
we can choose the elements from a universe of size U .
We denote this number by a(U, j). We have

a(U, j) =

(

U

mj

)

·
(

U − mj

Ni − mj,0

)

·
(

U − mj − (Ni − mj,0)

Ni − mj−1

)

· · ·
(

U − mj − (Ni − mj,0) − · · · − (Ni − mj,ti−j−2)

Ni − mj,ti−j−1

)

,

where the first term accounts for the different assign-
ments of values to marked variables and each of the ti−k

subsequent terms accounts for the different assignments
to unmarked variables in one of the level-i pieces. The
total number of assignments we can generate using this
approach, counting all combinations of assignments to
the tk level-k pieces, is therefore

a(N) := a(N, 0)a(N − Nk, 1) · · ·a(Nk, tk).

By expanding this expression and replacing each bino-
mial coefficient

(

a
b

)

with a!
b!(a−b)! , we obtain

(4.1) a(N) =
N !

∏tk−1
j=0

(

mj ! ·
∏ti−k−1

j′=0 (Ni − mj,j′)!
) .

It can be verified that (4.1) is maximized when each
mj,j′ is roughly equal to mj/ti−k and each mj is roughly
equal to βN/tk = βNk. Note that this means that each
mj,j′ is roughly equal to mj/ti−k = βNi. With these
values and using Sterling’s formula, we obtain an upper
bound on a(N) of

NN

NβN
k NN−βN

i

·2O(N) = tkβN ti(N−βN)2O(N). �

The next lemma bounds the number of marked
permutations in P .

Lemma 4.5. Assuming B = Ω(log N), the number of
marked permutations of the variables x1, x2, . . . , xN that
can be generated using O(fn) I/Os is MO(fN).

Proof. It suffices to prove that a single I/O increases
the number of permutations that can be generated from
the sequence 〈x1, x2, . . . , xN 〉 by a factor of MO(B).
The number of permutations generated by O(fn) I/Os
is then MO(B)·O(fn) = MO(fN), and for each such
permutation, there are 2N ways of marking its elements.
Thus, the number of marked permutations that can
be generated from 〈x1, x2, . . . , xN 〉 using O(fn) I/Os
is 2NMO(fN) = MO(fN).

Consider a given I/O operation, and assume there
are T occupied disk blocks before this operation. A read
operation only loads elements into memory and, thus,
does not change the number of permutations of variables
x1, x2, . . . , xN found in the current set of disk blocks. A
write operation chooses B of the M elements in memory
to write to a new disk block, arranges them in one of
B! ways inside the disk block, and places the new disk
block in one of T + 1 locations relative to the existing
T blocks. (Remember we assumed we do not overwrite
existing blocks.) This gives (T +1)

(

M
B

)

B! ≤ (T +1)MB

possibilities. For each such choice and each permutation
π of x1, x2, . . . , xN already present as a subsequence
of cells in the T blocks before this write operation,
we can choose a subset S of 2B elements from the
block just written. These elements are arranged as a
particular sequence σ in this block. We can then delete
the elements in S from π and insert the sequence σ in at
most N−|S| ≤ N different positions with respect to the
elements we did not delete from π. This gives another
increase of the number of permutations represented by
the current set of disk blocks by a factor of at most
N · 2B, that is, a single I/O increases the number of
permutations by a factor of at most N(T + 1)(2M)B.

Since the variables x1, x2, . . . , xN are initially stored
in at most N disk blocks and fn < N2, we have O(N2)
blocks containing copies of the variables x1, x2, . . . , xN

at any point during a sequence of O(fn) I/Os applied to
the sequence 〈x1, x2, . . . , xN 〉. Therefore, one I/O can
increase the number of permutations by a factor of at
most O(N3)(2M)B = MO(B), since B = Ω(log N). �

By Lemma 4.5, there are MO(fN) different
marked permutations in P , and by Lemma 4.4,
only tkβN ti(N−βN)2O(N) level-i permutations are ρ-
consistent, for each ρ ∈ P that marks βN vari-
ables. Thus, the total number of level-i permuta-
tions that are ρ-consistent for at least one ρ ∈ P that
marks βN elements is MO(fN)tkβN ti(N−βN)2O(N) =
MO(fN)tkβN ti(N−βN). The term tkβN ti(N−βN) de-
creases by a factor of ti−k ≥ t if we increase βN by

one. Therefore, the number of level-i permutations that
are ρ-consistent for at least one ρ ∈ P that marks
at least βN variables is O(MO(fN)tkβN ti(N−βN)) =
MO(fN)tkβN ti(N−βN).

By Lemma 4.3, on the other hand, there are
tiN/2O(N) different level-i permutations. Thus, the
probability that a uniform random level-i permutation
is ρ-consistent, for some marked permutation ρ ∈ P that
marks at least βN elements, is at most

MO(fN)tkβN ti(N−βN)

tiN/2O(N)
=

MO(fN)

t(i−k)βN
.

For β := 1/(3(i − k) log h), this equals
MO(fN)/tN/(3 log h), which is bounded by 1/N if
we choose the constant C in the definition of t large
enough. Thus, with probability at least 1 − 1/N , a
uniform random level-i permutation σi is ρ-consistent
only for marked permutations ρ ∈ P that mark less
than N/(3(i − k) log h) variables. This implies that,
for a uniform random level-i permutation σi and any
data structure D that can generate σi and σk using
O(fn) I/Os, we have |Di ∩ Dk| ≤ N/(3(i − k) log h)
with probability 1 − 1/N . This finishes the proof of
Lemma 4.2 and, hence, of Theorem 4.1.

References

[1] A. Aggarwal and J. S. Vitter. The input/output com-
plexity of sorting and related problems. Communica-

tions of the ACM, 31(9):1116–1127, 1988.
[2] L. Arge, G. S. Brodal, R. Fagerberg, and M. Laustsen.

Cache-oblivious planar orthogonal range searching and
counting. In Proceedings of the 21st ACM Symposium

on Computational Geometry, pages 160–169, 2005.
[3] L. Arge, A. Danner, and S.-M. Teh. I/O-efficient point

location using persistent B-trees. ACM Journal of

Experimental Algorithmics, 8, 2003.
[4] L. Arge, V. Samoladas, and J. S. Vitter. On two-

dimensional indexability and optimal range search
indexing. In Proceedings of the 18th ACM

SIGMOD-SIGACT-SIGART Symposium on Principles

of Database Systems, pages 346–357, 1999.
[5] M. A. Bender and M. Farach-Colton. The LCA prob-

lem revisited. In Proceedings of the 4th Latin American

Symposium on Theoretical Informatics, volume 1776
of Lecture Notes in Computer Science, pages 88–94.
Springer-Verlag, 2000.

[6] G. S. Brodal, R. Fagerberg, M. Greve, and A. López-
Ortiz. Online sorted range reporting. In Proceedings

of the 20th International Symposium on Algorithms

and Computation, volume 5878 of Lecture Notes in

Computer Science, pages 173–182. Springer-Verlag,
2009.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT Press,
second edition, 2001.

ℓ

L R R′L′L′′ R′′.

p

x1x2x3

(a)

ℓ

R′L′L′′ R′′.

p

x1 x3

X

(b)

ℓ

R′L′L′′ R′′.

p

x1 x3

C

(c)

X R.

x0 x4

Y = y1

Y = c

L

q

(d)

Figure 2: (a) The invariant is violated at point p. (b) The new active bucket X that replaces L and R. (c) The
new shallow cutting cell C created together with bucket X . (d) The query q contains at most K points and
intersects at most three active buckets L, X , and R. The line Y = c denotes the position of the sweep line when
it reaches the top boundary of q. The line Y = y1 denotes the position of the sweep line when L was created.
The region in the shallow cutting cell created with L is shaded in grey. If L is the most recently created active
bucket among L, X , and R, then X and R were active at the time of its creation; thus, the shallow cutting cell
created with L covers q.

[8] G. N. Frederickson. An optimal algorithm for selec-
tion in a min-heap. Information and Computation,
104(2):197–214, 1993.

[9] M. T. Goodrich, J.-J. T. Tsay, D. E. Vengroff, and J. S.
Vitter. External-memory computational geometry. In
Proceedings of the 34th IEEE Symposium on Founda-

tions of Computer Science, pages 714–723, 1993.
[10] D. Harel and R. E. Tarjan. Fast algorithms for

finding nearest common ancestors. SIAM Journal on

Computing, 13(2):338–355, 1984.
[11] J. Matoušek. Reporting points in halfspaces. Compu-

tational Geometry: Theory and Applications, 2(3):169–
186, 1992.

[12] E. M. McCreight. Priority search trees. SIAM Journal

on Computing, 14(2):257–276, 1985.
[13] L. Page, S. Brin, R. Motwani, and T. Winograd. The

PageRank citation ranking: Bringing order to the web.
Technical Report 1999-66, Stanford InfoLab, 1999.

[14] B. Schieber and U. Vishkin. On finding lowest common
ancestors: Simplification and parallelization. SIAM

Journal on Computing, 17:1253–1262, 1988.

A Constructing Shallow K-Cuttings

Here we discuss how to obtain shallow cuttings with the
properties required in Section 3 using a construction
similar to one used in [2, 4]. For a parameter K, we
want to construct a set C of O(N/K) three-sided ranges,
called cells, that have the following properties: each cell
C ∈ C contains O(K) points and, for every three-sided
range q that contains T points, there exists one cell in C
that contains q if T ≤ K, and O(T/K) cells in C whose
union covers q if T > K. W.l.o.g., we assume three-
sided ranges are of the form [x1, x2] × (−∞, y], that is,
are open to the bottom.

We construct C by sweeping a horizontal line ℓ
across the plane. The sweep starts at Y = +∞ and
moves down towards Y = −∞. Before the sweep, we

divide the plane into N/K vertical slabs containing K
points each. For each such slab covering the x-range
[x1, x2], we create a bucket, which is a three-sided range
[x1, x2] × (−∞, +∞). These buckets can be active or
inactive; initially, all buckets are active. We also create
a cell of C for each group of five consecutive buckets.
This cell is the union of these buckets. During the
sweep, we call a point active if it is below the sweep line.
We maintain the invariant that the number of active
points in two adjacent active buckets is more than K.

Now consider the event when two adjacent buckets
L = [x1, x2] × (−∞, y1] and R = [x2, x3] × (−∞, y2]
start to violate this invariant, that is, L ∪ R contains
only K active points. This happens when the sweep line
passes a point p = (xp, yp) in L ∪ R; see Figure 2(a).
Let L′ and L′′ be the two active buckets to the left
of L, and R′ and R′′ be the two active buckets to
the right of R; that is, the buckets L′′, L′, L, R, R′, R′′

are consecutive in the left-to-right sequence of active
buckets. To maintain the invariant, we deactivate
buckets L and R and create a new active bucket X =
[x1, x3]× (−∞, yp]; see Figure 2(b). This maintains the
invariant because both L′ and R′ contain at least one
active point; otherwise the invariant would have been
violated by L′ and L or by R and R′ before reaching
point p. When creating the bucket X , we also create
a new cell C = [x0, x4] × (−∞, yp] and add it to C,
where x0 is the left boundary of L′′ and x4 is the right
boundary of R′′; see Figure 2(c).

To prove that the set C of cells we obtain using
this procedure has the desired properties, first note that
every bucket contains exactly K points. Every cell in C
contains the active points from five active buckets and,
thus, contains at most 5K points. The number of cells
we create is equal to the number of buckets we create

during the sweep. To bound this number, observe that
we create N/K buckets initially, all of which are active.
Every time we create a new active bucket, two buckets
become inactive. Thus, the number of active buckets
decreases by one every time we create a new bucket,
and we can repeat this only N/K − 1 times before we
are left with only one active bucket. This shows that
the total number of buckets we create is 2N/K − 1.

So far we have shown that C has O(N/K) cells
containing O(K) points each. It remains to prove the
covering properties of these cells. So consider a three-
sided range q = [a, b]×(−∞, c], and assume q contains T
points. First assume T ≤ K and consider the time when
the sweep line is at the y-coordinate Y = c. Since two
consecutive buckets that are active at this time contain
more than K active points, the x-range of [a, b] can span
at most one active buckets X . This implies that q can
be covered using the three buckets L, X , and R, where
L and R are the two active buckets adjacent to X . Now
assume w.l.o.g. that L was created after X and R. Then
X and R were active when L was created, and the cell
C ∈ C created along with L covers the x-ranges of L,
X , and R. Since the top boundary of C is the same as
that of L and, thus, is above the line Y = c, this implies
that C covers q.

For the case T > K, consider again the time when
the sweep line is at the y-coordinate Y = c. As before,
since two consecutive active buckets contain more than
K active points, the x-range of q can span at most 2T/K
active buckets, that is, q can be covered using at most
2 + 2T/K active buckets. For each such bucket X , the
cell in C created along with X includes X . Thus, q can
be covered using at most 2 + 2T/K cells in C.

