
Pattern Mathing in Dynami Texts�Stephen Alstrupy Gerth St�lting Brodalz Theis RauheyAbstratPattern mathing is the problem of �nding all ourrenesof a pattern in a text. In a dynami setting the problemis to support pattern mathing in a text whih an bemanipulated on-line, i.e., the usual situation in textediting.We present a data struture that supports insertionsand deletions of haraters and movements of arbitrarylarge bloks within a text in O(log2 n log log n log� n)time per operation. Furthermore a searh for a patternP in the text is supported in time O(log n log log n +o + jP j), where o is the number of ourrenes tobe reported. An ingredient in our solution to the abovemain result is a data struture for the dynami stringequality problem introdued by Mehlhorn, Sundar andUhrig. As a seondary result we give almost quadratibetter time bounds for this problem whih in addition tokeeping polylogarithmi fators low for our main resultalso improves the omplexity for several other problems.1 IntrodutionPattern mathing on strings is the problem of de-termining all ourrenes of a pattern string P as asubstring of a larger text string T of length n. Op-timal solutions ahieving O(n) time for this problemwere given in the 70s by Knuth, Morris, and Prat-t [19℄, and Boyer and Moore [3℄. Several text books,see e.g., [1, 6, 25℄, address various pattern math-ing problems inluding the above lassi problem. O-riginally the lassi problem was motivated (amongother things) in terms of text editing. In a text edit-ing proess it is desirable to e�etively handle tex-t updates and searhes for di�erent patterns, i.e.,avoid using time proportional to the full text for eahtext manipulation or searh. Several papers inlud-ing [11, 12, 13, 14, 18, 20, 28, 30, 24℄, desribe data�Partially supported by the ESPRIT Long Term ResearhProgram of the EU under ontrat 20244 (projet ALCOM-IT). Part of this work was done while the last author was atBRICS.yThe IT University in Copenhagen, Glentevej 67, DK-2400 Copenhagen NV, Denmark. E-mail: fstephen,theisg�itu.dk.zBRICS, Basi Researh in Computer Siene, Centre ofthe Danish National Researh Foundation. Department ofComputer Siene, University of Aarhus, Ny Munkegade, DK-8000 �Arhus C, Denmark. E-mail: gerth�bris.dk.

strutures addressing various dynami settings of eÆ-ient text manipulation and searhing. In addition totext editing this work has also provided appliationsin other �elds, e.g., in omputational biology [21, 29℄.We present a data struture that supportsinsertions and deletions of haraters and move-ments of arbitrary large bloks within a text inO(log2 n log logn log� n) time per operation. Further-more a searh for a pattern P in the text is supportedin time O(logn log logn+ o+ jP j), where o is thenumber of ourrenes. Hene eah text manipula-tion or searh is supported in time polylogarithmito the length of the text plus the neessary linearterms for input and output.The data struture we present is based on thefollowing losely related problem. A family of stringsis maintained under two update operations, splitand onatenate. Given an index i and a strings = a1a2 : : : ak in the family, the split operation splitss into the two substrings a1 : : : ai�1 and ai : : : ak,and inserts them into the family without preservingargument s. The onatenate operation takes twostrings s1 and s2 from the family, and inserts theonatenation s1s2 into the family, again withoutpreserving the arguments s1 and s2. Finally thesearh query supported for the family takes any stringin the family and reports ourrenes of this stringwithin the other strings of the family. The querytime is O(logn log logn + o), where n is the totalsize of the strings and o the number of ourrenesreported. The update operations are supported inO(log2 n log logn log� n) time. In the setting of textediting, e.g., the problem of moving a blok in a text,the family only onsists of a single string representingthe text. Movement of a blok then onsists of aonstant number of split and onatenate operations.In order to searh for a pattern P in the string (text)we in addition to the O(logn log logn + o) timefor the searh, also need additional O(jP j) time toonstrut a temporary version of P to be insertedin the string family suh that it an be given as aparameter for the searh operation.Our main result, a fully dynami pattern math-ing algorithm with polylogarithmi time per opera-tions uses as a blak box an algorithm for the dynam-



i string equality problem [23℄. As a seondary resultwe improve the time bounds of the results in [23℄.Using the result of [23℄ our updates inreases with apolylogarithmi fator. The dynami string equalityproblem is a data struture to maintain a family ofstrings under persistent onatenate and split opera-tions (the arguments are preserved in the family) suhthat the equality of two strings an be determinedin onstant time. We give an almost quadrati im-provement of the time bounds for updates in [23℄. Inaddition to this improvement we generalize the prob-lem suh that the equality query is strengthened tolexiographial order omparison between any pairof strings in the family within onstant time. Fur-thermore we also support longest ommon pre�x andsuÆx operations between a pair of strings in almostO(logn) time. In [23℄, the problem is mainly motivat-ed by problems in high-level programming languageslike SETL. However subsequently this data struturehas served as an important omponent for eÆien-t solutions to other problems, whih also bene�t forour new bounds, see e.g., [4, 15℄.1.1 Related work In this setion we sketh thehistory of pattern mathing and refer to [14℄ for amore detailed aount. Some of the early progress ofmaking pattern mathing dynami is the suÆx tree.In [20, 30℄ it is shown how to preproess a text inlinear time suh that pattern mathing queries anbe answered on-line in O(jP j+ o) time. In [28℄ thesuÆx tree is extended suh that the text an be ex-tended by a single harater at the end. Gu et al. [18℄were the �rst to onsider the problem where the textould be manipulated fully dynamially, and denot-ed this problem dynami text indexing. The updateoperations they support are insertion and deletion ofa single harater to/from the text in O(logn) time,where n is the urrent size of the text. The queryoperation is supported in O(jP j+ o log i+ i log jP j)time, where i is the urrent number of updates per-formed. Ferragina [12℄ gave a more general solutionthat eÆiently ould handle insertions/deletions ofa string into/from the text. The problem onsid-ered was denoted inremental text editing. Ferrag-ina and Grossi [11, 13, 14℄ improved the result ofFerragina ahieving time bounds O(n1=2 + s) for up-dates and O(jP j + o) for the searh, or updates inO(s(log s + log logn) + logn) time with query timeO(jP j+o+ i log p+log logn), where s is the lengthof the inserted/deleted string. Finally Sahinalp andVishkin [24℄ gave the following result for inremen-tal text indexing. Searhes in O(p + o) time andinsert/delete of a string in O(log3 n+ s) time.

1.2 Outline of the paper In Setion 2 we reviewthe signature enoding of strings from Mehlhornet al. [23℄ and state our time bounds for the dynamistring equality problem. We proeed in Setion 3with a desription of our data struture for dynamipattern mathing. In Setion 4 we provide theimplementation for the generalised string equalityproblem.1.3 Preliminaries Given a string s over an alpha-bet �, we let jsj denote the length of s, s[i℄ the ithelement of s (1 � i � jsj), and s[i::j℄ the substrings[i℄s[i+ 1℄ : : : s[j℄ of s (1 � i � j � jsj). If j < i thens[i::j℄ denotes the empty string �. For arbitrary i andj, s[i::j℄ = s[max(1; i)::min(jsj; j)℄, s[i::℄ = s[i::jsj℄and s[::j℄ = s[1::j℄. We let prefk(s) = s[::jsj � k℄,sufk(s) = s[k + 1::℄, and infk(s) = s[k + 1::jsj � k℄.The reverse string s[jsj℄ : : : s[2℄s[1℄ is denoted sR. Fora mapping f : � ! U , we extend f : �� ! U� byde�ning f(a1a2 : : : an) = f(a1)f(a2) : : : f(an). For t-wo strings s1 and s2 we let lp(s1; s2) and ls(s1; s2)denote the longest ommon pre�x and suÆx respe-tively of s1 and s2. We assume without loss of gen-erality throughout the paper that no string is equalto the empty string.Let � be totally ordered. We de�ne the lexio-graphial ordering on �� by s1 � s2 if and only if s1 =lp(s1; s2) or s1[jlp(s1; s2)j+1℄ < s2[jlp(s1; s2)j+1℄.We let u �R v denote that the reverse of u is less thanthe reverse of v, i.e., uR � vR.We let logn = lnn= ln 2, log(1) n = logn,log(i+1) n = log log(i) n, and log� n =minfij log(i) n � 1g. When interpreting inte-gers as bit-strings we let and, or, and xor denotebitwise boolean operations, and x "i be the operationshifting x i bits to the left, i.e., x "i= x � 2i. Forpositive integers x and i we let bit(x; i) denotethe ith bit in the binary representation of x, i.e.,bit(x; i) = (x� 2i) mod 2.2 Signature enoding of stringsIn the following we desribe the signature enodingof strings over some �nite alphabet �. The signatureenoding we use throughout this paper was originallydesribed by Mehlhorn et al. in [23℄. The basi ideais to assoiate a unique signature � to eah string ssuh that two strings are equal if and only if theyhave equal signatures. The signature enoding ofa string s 2 �� is de�ned relative to a signaturealphabet E � N and a partial injetive mappingSig : � [ (E1 [ E2 [ E3 [ E4) [ (E � N ) ,! E . Themapping Sig is extended during updates in order tokeep it de�ned for all applied values.



The signature enoding of s onsist-s of a sequene of signature strings from E�,shrink 0(s); pow 0(s); shrink1(s); pow 1(s); : : : ; shrinkh(s).The strings are de�ned indutively byshrink0(s) = Sig(s)pow0(s) = Sig(enpow (shrink 0(s)))...shrink j(s) = Sig(enblok (pow j�1(s)))pow j(s) = Sig(enpow (shrink j(s)))...shrinkh(s) = Sig(enblok (powh�1(s)))where enpow and enblok are funtions de�nedbelow, and h the height of the enoding of s whih isthe smallest value for whih jshrinkh(s)j = 1. We leth(s) denote the height of the enoding of s.The mapping enpow groups idential elementssuh that a substring �i is mapped into the pair(�; i). Formally, for s 2 E� and s = �l11 : : : �lmm ; �i 2E where �i 6= �i+1 for 1 � i < m. Thenenpow (s) = (�1; l1); (�2; l2); : : : ; (�m; lm). The fun-tion enpow(s) an be omputed in time O(jsj).The mapping enblok deomposes a string in-to a sequene of small substrings of sizes betweentwo and four, exept for the �rst blok whih hassize between one and four. Eah substring is denot-ed a blok. The strategy behind the deompositionis based on the deterministi oin tossing algorithmof Cole and Vishkin [5℄ whih ensures the propertythat the boundaries of any blok are determined bya small neighborhood of the blok. This strategy isonly appliable to strings where no two onseutiveelements are idential and the role of the mappingenpow is to ensure this property prior to employ-ment of enblok .Beause the signature enoding is deterministi,two idential strings also have idential enodings.The neighborhood dependene of a blok deom-position is haraterized by two parameters �L and�R, suh that given a signature � in a string it anbe determined if � is the �rst signature in a blok byonly examine �L and �R signatures respetively tothe left and to right of �. We assume in the followingthat N is a onstant bounding the total number ofsignatures to be used, and we also assume that signa-tures and haraters an be handled in onstant time.Given a signature � we let � denote the string from�� enoded by �, and for a signature string �1 : : : �kwe let �1 : : : �k = �1 : : : �k.

The details of the blok deomposition an befound in [23℄, from whih it follows that �L =log�N + 6 and �R = 4.2.1 Persistent strings Mehlhorn et al. [23℄ on-sidered how to maintain a family F of strings underthe following operations.String(a) A new single letter string ontaining theletter a 2 � is reated. The resulting string isadded to F and returned.Conatenate(s1; s2) Conatenates the twostrings s1; s2 2 F . The resulting string is addedto F and returned. The two strings s1 and s2are not destroyed.Split(s; i) Splits s into two strings s[::i � 1℄ ands[i::℄. The two resulting strings are added to Fand returned. The string s is not destroyed.Equal(s1; s2) Returns true if and only if s1 = s2.Note that strings are never modi�ed or de-stroyed, i.e., the strings reated are persistent. Inthe Conatenate operation s1 and s2 are allowedto refer to the same string, i.e., it is possible to on-strut strings of exponential length in linear time.Mehlhorn et al. [23℄ proved the following theorem.Theorem 2.1. (Mehlhorn et al. [23℄) There ex-ists a persistent string implementation whih sup-ports String and Equal in O(1) time, andConatenate and Split in O(logn((log�N)2 +logn)) time, where n is the length of strings involvedin the operations.In the above theorem we assumed that a lookupin the Sig funtion takes onstant time. In [23℄ theSig funtion is stored using a searh tree, implyingthat it takes time logm to make a lookup, where m isthe number of operations done so far. Constant timelookup for Sig an be ahieved by using randomiza-tion or using more than linear spae by either usingdynami perfet hashing [10℄ or using a digital searhtree of degree N  [22℄, 0 <  < 1. The number oflookups to the Sig funtion for eah Conatenateand Split operation is O(logn log�N). Sine themaximal blok size is 4, Sig�1 an be omputed inonstant time if Sig�1 is stored as an array.In Setion 4 we show how to improve the boundsof [23℄ and to extend the set of supported persistentstring operations with the following operations.Compare(s1; s2) Returns the lexiographial or-der of s1 relative to s2, i.e., if s1 = s2, s1 < s2,or s1 > s2.LCPrefix(s1; s2) Returns jlp(s1; s2)j.



LCSuffix(s1; s2) Returns jls(s1; s2)j.To be able to refer to the length of the string we in thefollowing assume that eah string length an be storedin a single word. We additionally assume that eahsignature � has assoiated j�j. The following theoremsummarizes our results in Setion 4 for persistentstrings.Theorem 2.2. There exists a persistent stringimplementation whih supports String inO(log j�j) time, Equal and Compare in O(1)time, LCPrefix in O(logn) time, LCSuffix inO(logn log�N) time, and Conatenate and Splitin O(logn log�N + log j�j) time, where n is thelength of strings involved in the operations.3 Dynami pattern mathingIn this setion we will desribe how to implementa data struture for the dynami pattern mathingproblem, with the laimed update and query timebounds.Let G denote a family of strings over a �xedalphabet �. An ourrene of a string s in family G, isa pair (s0; p) where s0 2 G and p spei�es the spei�loation of the ourrene within s0. Let index (p)denote the index o�set of this loation in s0, i.e., itsatis�es s = s0[index (p)::index (p)+jsj�1℄. We denotethe set of all ourrenes of s in G by O(s;G).The dynami pattern mathing problems is tomaintain a data struture for a family of stringsG whih supports the updates String, Split andConatenate for strings in G de�ned as in last se-tion, but without the persistene, i.e., the argumentsto Split and Conatenate are removed from G bythe all. In addition to these update operations thedata struture supports the searh query:Find(s) : Return the set of all ourrenes ofs 2 G.For the rest of this setion we let n denote the totalsize of G, i.e., n =Ps2G jsj.Theorem 3.1. There exists an implementation forthe dynami pattern mathing problem whih support-s Conatenate, Split in O(log2 n log logn log� n)time, String in O(logn log� n) time and Find(s) inO(o + logn log logn) time where o is the numberof ourrenes.Here, and in the following we have used the fat thatO(log�N) = O(log� n). The number of signatures Nused to maintain G together with an auxilary internalfamily of strings, is always polynomially bounded inn, sine eah operation operation is polylarithmi

in n and hene atmost introdue a polylogarithminumber of signatures.The ourrenes returned by the Find operationare represented by pointers into the spei� our-renes in lists representing the strings. For suh apointer we need (as usual) additional O(logn) timeto ompute the exat o�set index (p) of the our-rene. That is the time for Find is O(o logn +logn log logn) when output is required in this form.3.1 The data struture The data struture on-sists of several ingredients, where the primary partonsists of a ombination of a range searh struturewith the persistent string data struture.For eah string in s 2 G we maintain a list l(s),where the ith harater in s is the ith node in l(s).These lists are maintained by balaned trees underjoin and split operations, suh that given index i onean report the ith node l(s)[i℄ and return the rank ofa node, see e.g., [6℄. The set of all nodes for all listsfor G is denoted L.The strings in G and substrings of these (spei�edlater) will be represented in a larger family of strings,denoted as F . The family F will be maintained usingthe persistent string data struture, see Theorem 2.2.Hene we an eÆiently onatenate, split, ompareet. the strings in F . Furthermore we assume thereverse representation of every string t 2 F to be inF as well, i.e., tR 2 F . This only inreases the timerequirement for the split and onatenation operationon F by a onstant fator. To eah string s in Gwe assoiate two values; its signature � representingthe string in F , thus � = s, and a pointer to thetree struture assoiated to l(s). These two valuesdesribe the interfae between the pattern mathingpart in this setion and the persistent data struture.Given � and Sig�1 we an unpak the signatureenoding shrink j(s) and pow j(s) for any level j. Thetree struture an be used to aess a node with indexi in l(s)[i℄ in O(logn) time.3.2 How to ombine range searh and per-sistent strings First we desribe a simple methodwhih ombines the data struture for the persistentstring data struture given in Setion 2 with a dynam-i two-dimensional orthogonal range searh struture.The elements of this range searh struture are pairsof strings from the persistent family of strings, withordering provided through the lexiographi order ofthe strings (w.r.t. some arbitrary �xed ordering of thealphabet �). Our �rst simple approah for the dy-nami pattern mathing ahieves the laimed searhbound but without meeting the laimed time bounds



for split and onatenation. Next we extend this sim-ple approah suh that we obtain the laimed boundsfor updates as well.Consider a string s in our family of strings G.For eah index i in s assume that the two substringss[1::i�1℄ and s[i::jsj℄, denoted the ontext strings forindex i are in the string family F . For a node x 2 l(s)with index i, we assoiate an anhor, denoted An(i),de�ned to be the triple (s[1::i� 1℄; s[i::jsj℄; x) 2 F �F � L. For all strings in G and indies in these, letR be the set of anhors kept in a dynami rangesearh struture. We laim that provided a stringw 2 G, we an now eÆiently report all ourrenesof w within strings in G. Choose any index i inw with anhor (a; b; x). Let $ be a letter in thealphabet larger than letters ourring in strings forG. The range searh supported for R is now able toreport anhors (p; s; y) 2 R, where a �R p �R $aand b � s � b$. Next we show that eah reportedanhor identify an ourrene, and eah ourreneis reported one. For an anhor (p; s; y) reportedwe have that a is a suÆx of p and b is as pre�x ofs. That is w ours in the string ps 2 G at indexi0 � i + 1, where i0 = index(y). We say the index iof w aligns with the index i0 of ps. Finally, for eahourrene of w preisely one index in the ourrenealigns with an index i in w. The omparisons withrespet to the lexiographi ordering among stringsin F are done in worst-ase onstant time aordingto Theorem 2.2. Sine the number of anhors equalsthe total length of strings in G, this range searh anbe performed in time O(logn log logn + o) worst-ase, see [8℄. Furthermore onstruting the strings $aand b$ needed as the range bounds are done in timeO(logn log� n) aording to Theorem 2.2.The problem with the above strategy is thatonatenation and split operations on strings in Ga�ets a number of anhors linear to the size ofthe updated strings. In order to avoid this we willlimit the amount of indies we assoiate anhors to,together with a ertain limitation on the lengthsof the assoiated ontext strings. These limitationsmake extensive use of the properties with respet tothe signature enodings of the strings.3.3 Assoiating anhors to signatures Let x =shrink j(t) and y = shrink j(s) for a j � 0 in thesignature enodings for two strings s; t 2 G. Firstwe show how two indies i 2 x and k 2 y an align.The o�set of an index i in x, denoted o�setjt (i) =jx[1::i� 1℄j+1, is the index in t, where the signaturex[i℄ starts its enoding in t. Let s be a searh string.We say index k aligns with index i if s[1::o�setjs(k)�1℄

is a suÆx of t[1::o�setjt (i) � 1℄, and s[o�setjs(k)::jsj℄is a pre�x of t[o�setjt (i)::jtj℄. For k aligned with i, wesay this alignment is relative to the ourrene of sin t with o�set o�setjt (k) � o�setjs(i) + 1. Note thatfor s a substring of t, it is not neessarily the asethat shrink j(s) and shrink j(t) ontains any alignedindies. However, hoosing j suÆiently small thiswill be the ase.Let s be a substring of t. For level j = 0 everyindex in shrink j(s) aligns with an index in shrink j(t),orresponding to the approah given in Setion 3.2.The ontext string whih we will assoiate to an indexat level j depend on the signature enoding at level j.Our goal is to maximize the level j thus minimizingthe size of the signature enoding an anhor at thatlevel depends on. However the level should still besmall enough suh that we an �nd an index whihaligns. Fix � > �L + �R + 4 = O(log� n). It ispossible to show the following lemma.Lemma 3.1. Let t = t0st00 and s = s1s2 theni) shrink j(t) =pref�(shrink j(t0))w1 inf�(shrink j(s))�w2 suf�(shrink j(t00)); where jw1j; jw2j � 2� ;ii) shrink i(s) = pref�(shrink i(s1))wi �suf�(shrink i(s2)), where jwij � 2� :For every level j in the signature enoding it followsfrom lemma 3.1(i) that the (possible empty) in�xprotetedj(s) = shrink j(s)[� + 1::jshrink j(s)j � �℄must be a substring of shrink j(t).Hene hoosing j small enough suh thatjshrink j(s)j > 2�, we have jprotetedj(s)j > 0. Thusfor eah ourrene of s in the string t, any index kin protetedj(s) aligns with an index i in shrink j(t).We all the indies in substring protetedj(s) withinshrink j(s) for proteted indies. The ontext stringsassoiated to i should be large enough to over thestring s. Let the left boundary of an index i, denotedlb(i), be an index smaller than i. Similarly the rightboundary of i, rb(i) is an index larger than i. Let l, pand r be the o�sets of lb(i), i and rb(i) respetively.The anhor assoiated to i, An(i), is then the triple(t[l::p�1℄; t[p::r�1℄; l(t)[p℄) 2 F�F�L. Our goal isto minimize the distane of lb(i) and rb(i) from i, butstill suh that the ontext string assoiated i overss. The larger we hoose j, the smaller distane of theboundaries from i an be allowed. Hene j shouldbe hosen as large as possible, but still small enoughsuh that jprotetedj(s)j > 0. However, we annot en-sure the length of shrink j(s) to be of bounded lengthfor the maximal level with jprotetedj(s)j > 0. Thatis rb(i) � lb(i) need to be arbitrary large, implying



that we only an a�ord to have anhors to a subsetof the indies at a given level. The idea is to ex-ploit that there is a level where jprotetedj(s)j > 0,and at the same time shrink j(s) only ontains a fewdi�erent signatures, i.e., pow j(s) is of short length.Eah index at level j for whih we assoiate an anhor(with perhaps large ontext strings) is assoiated oneof these di�erent signatures, and hene the ontextstrings only spans in�xes with few anhors. In thefollowing we formalize the above disussion.Let x = shrink j(s). De�ne the set of breakpointsfor x by BP(x) = f i j x[i℄ 6= x[i + 1℄ g. We onsidertwo ases for a level j of the signature enoding of s.Case 1 jpow j(s)j � 12� for j = 0.Case 2 jshrink j(s)j > 3� and jBP(shrink j(s))j �12� for some j > 0.Lemma 3.2. For any string s 2 G, either Case 1 orCase 2 (or both) are satis�ed.Proof. Suppose Case 1 is not satis�ed. Then let j =minf i j jpow i(s)j � 12� g. Then jpow j�1(s)j > 12�and sine eah blok has size at most 4, we havejshrink j(s)j � 14 jpow j�1(s)j > 3�. By minimalityof j, jBP(shrink j(s))j = jpow j(s)j � 12�, so level jsatis�es Case 2.Lemma 3.3. Let s; t 2 G and let j be suh that Case1 or Case 2 form Setion 3 are satis�ed. For anybreakpoint i in M(s) and any ourrene (t; p) 2O(s;G), there exists i0 2 BP(shrink j(t)) suh thati align with i0 relative to ourrenes of s in t witho�set index (p) = o�setjt (i0)� o�setjs(i) + 1.Proof. First if j = 0 with Case 1 satis�ed the lemmais immediately true sine all of shrink 0(s) is a in�xa position a o�set p for eah ourrene (s; p) 2O(s;G).Consider the ase for j > 0 suh that Case 2satis�ed. Let (t; p) 2 O(s;G) and i 2 M(s). Writet as t = t1 s t2 where jt1j = index (p) � 1. ByLemma 3.1(i) we haveshrink j(t) = u shrink j(s)[� + 1::jshrink j(s)j ��℄ v(3.1)for some u; v 2 E�, whereu = t1 shrink j(s)[::�℄:(3.2)Sine i � �+1 (it is in M(s)), we an write (3.1) asshrink j(t) =u shrink j(s)[� + 1::i℄shrink j(s)[i + 1::jshrink j(s)j ��℄ v and hene the index i0 = juj + i � � + 1 is

a breakpoint in BP(shrink j(t)). Furthermore using(3.2)o�setjt (i0) = juj+ jshrink j(s)[� + 1::i� 1℄j+ 1= jt1j+ jshrink j(s)[::�℄j+jshrink j(s)[� + 1::i� 1℄j+ 1= jt1j+ o�setjs(i):Hene index (p) = jt1j+1 = o�setjt (i0)�o�setjs(i)+1and thus i0 is the desired breakpoint aligned with i.It is only the breakpoints we assoiate anhors.Anhors assoiated to the breakpoint in signatureenodings at level j of all strings in G are kept ina range searh struture denoted Rj . When a searhfor a string s is done we use the range searh strutureRj for j hosen suh that Case 1. or 2. are satis�edaording to Lemma 3.2. Let j = 0 if Case 1 aboveis satis�ed, or hoose j > 0 as in the proof of theabove lemma suh that Case 2 is satis�ed, and letx = shrink j(s). For Case 2 above we de�ne theproteted set of breakpoints, denoted M(s), as thebreakpoints in the in�x protetedj(s) = inf�(x),i.e., M(s) = BP(x) \ [� + 1::jxj � �℄. For Case1 (j = 0), the proteted breakpoints are simply allthe breakpoints, i.e., M(s) = BP(shrink 0(s)). Inthis setion we limit the exposition to the ase whereM(s) is nonempty, i.e., for Case 2, we assume thesubstring inf�(x) of length at least � ontains twodi�erent signatures. The speial (tedious) ase whereM(s) is empty, i.e., s ontains a long substring ofsmall periodiity, is omitted.Let s 2 G be a in�x of t. With the assump-tion that jM(s)j > 0, we have a breakpoint i inprotetedj(s). Hene in shrink j(t)) there is an in-dex i0, with An(i0), whih aligns with i by Lem-ma 3.3). Then it suÆes to show that the ontextstring assoiated to An(i0) overs all of s. In Lem-ma 3.4 we show this is satis�ed by hoosing lb(i) =max(f j 2 BP(x) j j[j::i℄ \ BP(x)j > 16� g [ f 1 g)and rb(i) = min(f j 2 BP(x) j j[i::j℄ \ BP(x)j >16� g [ f jxj g). With suÆient large ontext stringswe an �nd all ourrenes using the range searhstruture Rj following the approah from Setion 3.2.Write s = s1s2, where s1 = s[1::o�setjs(i) � 1℄. Thenext lemma states that for every breakpoint i0 thataligns with i, the anhor assoiated i0 has suÆientlylarge ontext information with respet to s.Lemma 3.4. Let s; t 2 G. Let i0 be any breakpointin shrink j(t) whih aligns with index i in shrink j(s).Write s = s1s2, where s1 = s[1::o�setjs(i) � 1℄ andlet (t1; t2; e) = An(i0) 2 Rj . Then js1j � jt1j andjs2j � jt2j, i.e., ls(s1; t1) = s1 and lp(s2; t2) = s2.



Proof. Let p be the o�set of the ourrene of s in trelative to the alignment of i0 to i. Let t = t0 s t00 suhthat jt0j = p� 1. By Lemma 3.1(i) we an write:shrink j(t) = pref�(shrink j(t0))w1 inf�(shrink j(s))w2 suf�(shrink j(t00)); where jw1j; jw2j � 2�. Letv = shrink j(t)[lb(i0)::i0 � 1℄. By the de�nition of ananhor t1 = v. Reall that i and i0 are aligned andhene we only need to show that either lb(i0) = 1or lb(i0) is an index in pref�(shrink j(t0)) in orderto establish jt1j � js1j. From de�nition of the leftboundary we have lb(i0) = 1 or jBP(v)j = 16�. SinejBP(w1inf�(shrink j(s)))j � jBP(shrink j(s))j+2� �14� aording to Lemma 3.2, lb(i0) must be an indexin pref�(shrink j(t0)). A similar argument showsjs2j � jt2j.3.4 Searhing A searh operation is arried out inthree steps:1. Find level j aording to Lemma 3.2, and abreakpoint i 2 M(s). Compute the o�set p =o�setjs(i) of i in s.2. Construt and insert the strings s1 = s[1::p� 1℄,s2 = s[p::jsj℄, $s1 and s2$ into F using the Splitand Conatenate operations on s 2 F .3. Report ourrenes (represented as nodes in L)using the range searh struture Rj .In order to determine the quantities in step 1.above we show that it is suÆient to examine aportion of size O(�) of the signature enoding of s.First if jpow 0(s)j � 12� we let j = 0. Otherwisewe expand the signature strings of s starting from theroot signature until we reah a level j suh that Case2 is satis�ed for j. Then by the Lemma 3.5 below, wean eÆiently derive the quantities i and p needed inaddition to j for step 1. Reall from Setion 2 thatwe an expand a signature string to the next levelusing the inverse mapping Sig�1 in time linear to thelength of the expanded string. Hene the total timeto expand level by level until the string pow j(s) isexpanded for a level j satisfying jshrink j(s)j > 3�and jBP(shrink j(s))j = jpow j(s)j � 12� (Case 2),is bounded by the total length of these expandedsignature strings, i.e., bounded by O(jpow j(s)j) =O(�). Note that by Lemma 3.2 Case 2 will besatis�ed at some stage in the absene of Case 1. Inorder to e�etively test whether a level j satis�es Case2, we need to test whether the length of shrink j(s)exeeds 3� without atually expanding it to its fulllength (unbounded in terms of �). By i) in thelemma below we an �nd the length of shrink j(s) intime O(�) on basis of the expanded string pow j(s).

Finally ii) and iii) of this lemma provide us with theremaining quantities for step 1.Lemma 3.5. In time linear to the length of pow j(s)we an determine the following: i) the length ofshrink j(s), ii) the �rst proteted breakpoint i 2M(s)(if it exists), iii) the o�set o�setjs(i) of the breakpointi.Proof. Let m = jpow j(s)j. In time O(m) wean ompute the list Sig�1(pow j(s)) = (�1; l1);(�1; l2); : : : ; (�m; lm) where eah pair (�k ; lk) orre-sponds to substring �lkk in shrink j(s) aording to thede�nition of the signature enoding in Setion 2. i) issimply determined by omputing the sumPl=mk=1 lk =jshrink j(s)j. ii) Let u = minwPk=wk=1 lk > �. Thenthe �rst proteted breakpoint is i = Pk=uk=1 lk, andhene i an be determined by summing at most� terms lk to obtain suh u and i. Note that ifjshrink j(s)j � i < � there is no suh breakpoint inM(s) whih we assumed not ours. iii) To eah sig-nature �k 1 � k � m, the signature enoding ofs provide us with the lengths of expanded strings�k. Hene we an determine the sum o�setjs(i) =(Pk=u�1k=1 lkj�kj) + (lu � 1)j�uj + 1 in time boundedby the number of these terms, bounded by O(m).We onlude that the time to �nd j satisfyingCase 1. or 2., expand the signature strings untilpow j(s), and the omputation of the quantities forstep 1. on basis of this string, by the disussion aboveand Lemma 3.5 takes time O(�).Let s1 = s[1::p� 1℄, and s = s1s2. Aording toTheorem 2.2 we an in time O(logn log� n) onstrutand insert s1; s2; $s1; s2$ into F . With these stringsin F we an perform step 3, using the approahfrom Setion 3.2, in time O(logn log logn + o)whih dominates the total searh time. If P is anexternal string, we use additional O(jP j) time forpreproessing P , the lexiographi order of P withany other string in F an heked in onstant time.3.5 Conatenate and split In this setion wedesribe how to perform onatenation of two stringsin G. The split operation for a string in G is done ina similar manner and omitted.3.5.1 Conatenate(s1; s2) Consider two stringss1; s2 2 G where we want to ompute the onate-nation s = s1s2 and insert this string s into G, de-stroying s1 and s2. First the signature enoding fors is omputed and inserted into the auxiliary stringfamily F through the Conatenate operation forthis family. Next a new list l(s) for s is reated by



joining l(s1) and l(s2). This means that the node in-formation assoiated the anhors in the various rangesearh strutures Rj is onsidered as nodes in l(s) in-stead.The main part of the omputation onsists of re-struturing the various range searh strutures Rjsuh that they ontain anhors with respet to thenew ontext information relevant for s. From Lem-ma 3.1(ii) we have thatshrink i(s) = pref�(shrink i(s1))wi suf�(shrink i(s2));where jwij � 2�. We will only be onerned withassoiating anhors properly to the breakpoints (theonstruting of shrink i(s) is a part of the persistentdata struture). We have� The anhors assoiated to the suÆx and pre-�x of length � to respetively shrink i(s1) andshrink i(s2) should be deleted from Ri.� The anhors in pref�(shrink i(s1)) andsuf�(shrink i(s2)) whih are depended onwi should be updated.� New anhors should be assoiated to the O(�)breakpoints in wi.We will desribe how to assoiate anhors tobreakpoints in wi and onstrut new anhors for thoseoutside wi with a�eted ontext. Removal of an-hors are done in a similarly way and thus omit-ted. First we show that at most O(�) new an-hor have to be onstruted. An anhor to a break-point k does by de�nition only depend of index l thenumber of breakpoints between k and l are O(�).Hene, at most O(�) breakpoints in shrink i(s1) andshrink i(s2) should have their assoiated anhors up-dated, thus bounding the total number of new an-hors to be reated to O(�). By the same argumentit follows that an in�x IP (i) of pow i(s) of size O(�)overs all these breakpoints in shrink i(s), and inlud-ing the indies these ontext strings depends on. Sim-ilar to the searh routine above we will update an-hors in shrink i(s) using pow i(s). However we onlyexpand to the next level in order to get IP (i). Thetehnique to do this is (tedious and) similar to thesearh routine, and omitted here. Let l be the leftmost index in IP (i). Given the o�set o�set is(l � 1)and IP (i) we proeed to show how to ompute thenew anhors. Eah signature in IP (i) represents abreakpoint for an index in shrink i(s). Denote theanhor for index k in shrink i(s) as An0(k). San-ning IP (i) we detet lb(k) and rb(k) in O(�) time.Using Lemma 3.5 and adding o�set is(l�1) we get the

o�sets o�set is(k), o�set is(lb(k)), and o�set is(rb(k)) intime O(�). Using the tree struture assoiated tothe list l(s) we ompute the node l(s)[o�set is(k)℄ intime O(logn). Finally by applying the persistentSplit operation on s 2 F for the o�sets, the twoontext strings for the anhor are generated in F inO(logn log� n) time aording to Theorem 2.2. Thenew anhor is inserted in the range searh strutureRi in time O(logn log logn), see [8℄.In total, at eah of the O(logn) levels weupdate O(�) anhors in time O(logn log� n)and insert/delete these in an range searhstruture in time O(logn log logn), summing toO((logn log� n) � (logn log� n + logn log logn)) =O(log2 n log logn log� n).4 Persistent stringsWe represent a persistent string s by the root-signature � of a signature enoding of s. We denotethis the impliit representation of s. This impliesthat a string an be stored in a single word plusthe spae required to store the signature funtionSig . The lower levels of the signature enoding ofs an be extrated from � by reursively applyingSig�1, espeially the neighborhoods of a signaturein a signature string whih need to be onsideredby the di�erent operations an be onstruted whenrequired.We would like to note, that this is an essentialdi�erene ompared to the representation used inMehlhorn et al. [23℄. They represent a string by apersistent data struture whih onsists of a linkedlist of rooted trees, eah tree storing one level of thesignature enoding of the string. Their representationimplies an overhead of O(logn) for aessing eahlevel of the enoding of a string. Our simpli�edrepresentation avoids this overhead.By using the impliit representation of strings weget Lemma 4.1 below, improving and extending theresult of Mehlhorn et al. [23℄.Lemma 4.1. The operations String and Equal anbe supported in O(1) time, Conatenate, Split,and LCSuffix in time O(logn log�N) time, andLCPrefix and Compare in O(logn) time, wheren is the length of strings involved in the operations.Proof. The operation String(a) returns Sig(a), andEqual(s1; s2) returns true if and only if the root-signatures of the signature enodings of s1 and s2 areidential. The details of the other operations will begiven in the full version of the paper.



4.1 Maintaining strings sorted In this setionwe prove Theorem 2.2, i.e., we desribe how to re-due the time for performing omparisons on per-sistent strings to O(1) time while maintaining theasymptoti times for the update operations String,Conatenate and Split exept for an additivelog j�j term. The ideas used are: i) keep all persis-tent strings lexiographial sorted, and ii) assoiatewith eah string s a key key(s), suh that two stringsan be ompared by omparing their assoiated keysin O(1) time.Data strutures for maintaining order in alist have been developed by Dietz [7℄, Dietz andSleator [9℄ and Tsakalidis [27℄. The data stru-ture of Dietz and Sleator [9℄ supports Insert(x; y),Delete(x) and Order(x; y) operations in worst-ase O(1) time. The operation Insert(x; y) insertselement y after x in the list, and Delete(x) deletesx from the list. The query Order(x; y) returns if xis before y in the list.The key we assoiate with eah persisten-t string is a \handle" given by the data stru-ture of Dietz and Sleator [9℄. A Compare(s1; s2)query an now be answered in worst-ase O(1)time by applying Equal(s1; s2) and by applyingOrder(key(s1); key(s2)).In the remaining of this setion we desribe hownew strings reated by String, Conatenate andSplit an be added to the lexiographial sorted listof strings, i.e., how to loate where to insert newstrings into the data struture of Dietz and Sleator. Astraightforward implementation is to store the stringsas elements in a balaned searh tree and to use theCompare operation when searhing in the searhtree. This implementation requires O(logm logn)time for eah string reated, where m is the numberof strings stored. By maintaning a olletion of trieswe an avoid the logm fator. Details are left for thefull version of the paper.Referenes[1℄ A. Apostolio and Z. Galil. Pattern mathingalgorithms. Oxford university press, 1997.[2℄ P. Atzeni and G. Mea. Cut and paste. In16th Ann. ACM Symp. on Priniples of DatabaseSystems (PODS), pages 144{153, 1997.[3℄ R. Boyer and J. Moore. A fast string searhingalgorithm. Comm. ACM, 20:762{772, 1977.[4℄ S. Cheng and M. Ng. Isomorphism testing anddisplay of symmetries in dynami trees. In Pro.7th ACM-SIAM Symposium on Disrete Algorithms(SODA), pages 202{211, 1996.
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