Pattern Matching in Dynamic Texts*

Stephen Alstrupf

Abstract

Pattern matching is the problem of finding all occurrences
of a pattern in a text. In a dynamic setting the problem
is to support pattern matching in a text which can be
manipulated on-line, ¢.e., the usual situation in text
editing.

We present a data structure that supports insertions
and deletions of characters and movements of arbitrary
large blocks within a text in O(log® nloglognlog™ n)
time per operation. Furthermore a search for a pattern
P in the text is supported in time O(lognloglogn +
occ + |P|), where occ is the number of occurrences to
be reported. An ingredient in our solution to the above
main result is a data structure for the dynamic string
equality problem introduced by Mehlhorn, Sundar and
Uhrig. As a secondary result we give almost quadratic
better time bounds for this problem which in addition to
keeping polylogarithmic factors low for our main result
also improves the complexity for several other problems.

1 Introduction

Pattern matching on strings is the problem of de-
termining all occurrences of a pattern string P as a
substring of a larger text string 7' of length n. Op-
timal solutions achieving O(n) time for this problem
were given in the 70s by Knuth, Morris, and Prat-
t [19], and Boyer and Moore [3]. Several text books,
see e.g., [1, 6, 25], address various pattern match-
ing problems including the above classic problem. O-
riginally the classic problem was motivated (among
other things) in terms of text editing. In a text edit-
ing process it is desirable to effectively handle tex-
t updates and searches for different patterns, i.e.,
avoid using time proportional to the full text for each
text manipulation or search. Several papers includ-
ing [11, 12, 13, 14, 18, 20, 28, 30, 24], describe data
~ *Partially supported by the ESPRIT Long Term Research
Program of the EU under contract 20244 (project ALCOM-
IT). Part of this work was done while the last author was at
BRICS.

fThe IT University in Copenhagen, Glentevej 67, DK-
2400 Copenhagen NV, Denmark. E-mail: {stephen,
theis}@itu.dk.

IBRICS, Basic Research in Computer Science, Centre of
the Danish National Research Foundation. Department of
Comp}lter Science, University of Aarhus, Ny Munkegade, DK-
8000 Arhus C, Denmark. E-mail: gerth@brics.dk.

Gerth Stelting Brodal

Theis Rauhef

structures addressing various dynamic settings of effi-
cient text manipulation and searching. In addition to
text editing this work has also provided applications
in other fields, e.g., in computational biology [21, 29].

We present a data structure that supports
insertions and deletions of characters and move-
ments of arbitrary large blocks within a text in
O(log® nloglognlog* n) time per operation. Further-
more a search for a pattern P in the text is supported
in time O(lognloglogn + occ+ | P|), where occ is the
number of occurrences. Hence each text manipula-
tion or search is supported in time polylogarithmic
to the length of the text plus the necessary linear
terms for input and output.

The data structure we present is based on the
following closely related problem. A family of strings
is maintained under two update operations, split
and concatenate. Given an index ¢ and a string
s = aias . ..ay in the family, the split operation splits
s into the two substrings a;...a;—1 and a;...ay,
and inserts them into the family without preserving
argument s. The concatenate operation takes two
strings s; and sy from the family, and inserts the
concatenation s;se into the family, again without
preserving the arguments s; and s,. Finally the
search query supported for the family takes any string
in the family and reports occurrences of this string
within the other strings of the family. The query
time is O(lognloglogn + occ), where n is the total
size of the strings and occ the number of occurrences
reported. The update operations are supported in
O(log® nloglognlog® n) time. In the setting of text
editing, e.g., the problem of moving a block in a text,
the family only consists of a single string representing
the text. Movement of a block then consists of a
constant number of split and concatenate operations.
In order to search for a pattern P in the string (text)
we in addition to the O(lognloglogn + occ) time
for the search, also need additional O(|P|) time to
construct a temporary version of P to be inserted
in the string family such that it can be given as a
parameter for the search operation.

Our main result, a fully dynamic pattern match-
ing algorithm with polylogarithmic time per opera-
tions uses as a black box an algorithm for the dynam-

ic string equality problem [23]. As a secondary result
we improve the time bounds of the results in [23].
Using the result of [23] our updates increases with a
polylogarithmic factor. The dynamic string equality
problem is a data structure to maintain a family of
strings under persistent concatenate and split opera-
tions (the arguments are preserved in the family) such
that the equality of two strings can be determined
in constant time. We give an almost quadratic im-
provement of the time bounds for updates in [23]. In
addition to this improvement we generalize the prob-
lem such that the equality query is strengthened to
lexicographical order comparison between any pair
of strings in the family within constant time. Fur-
thermore we also support longest common prefix and
suffix operations between a pair of strings in almost
O(logn) time. In [23], the problem is mainly motivat-
ed by problems in high-level programming languages
like SETL. However subsequently this data structure
has served as an important component for efficien-
t solutions to other problems, which also benefit for
our new bounds, see e.g., [4, 15].

1.1 Related work In this section we sketch the
history of pattern matching and refer to [14] for a
more detailed account. Some of the early progress of
making pattern matching dynamic is the suffix tree.
In [20, 30] it is shown how to preprocess a text in
linear time such that pattern matching queries can
be answered on-line in O(|P| + occ) time. In [28] the
suffix tree is extended such that the text can be ex-
tended by a single character at the end. Gu et al. [18]
were the first to consider the problem where the text
could be manipulated fully dynamically, and denot-
ed this problem dynamic text indexing. The update
operations they support are insertion and deletion of
a single character to/from the text in O(logn) time,
where n is the current size of the text. The query
operation is supported in O(|P| + occlogi + i log | P|)
time, where i is the current number of updates per-
formed. Ferragina [12] gave a more general solution
that efficiently could handle insertions/deletions of
a string into/from the text. The problem consid-
ered was denoted incremental text editing. Ferrag-
ina and Grossi [11, 13, 14] improved the result of
Ferragina achieving time bounds O(n'/? + s) for up-
dates and O(|P| + oce) for the search, or updates in
O(s(log s + loglogn) + logn) time with query time
O(|P| + occ+ilogp+loglogn), where s is the length
of the inserted/deleted string. Finally Sahinalp and
Vishkin [24] gave the following result for incremen-
tal text indexing. Searches in O(p + occ) time and
insert /delete of a string in O(log” n + s) time.

1.2 Outline of the paper In Section 2 we review
the signature encoding of strings from Mehlhorn
et al. [23] and state our time bounds for the dynamic
string equality problem. We proceed in Section 3
with a description of our data structure for dynamic
pattern matching. In Section 4 we provide the
implementation for the generalised string equality
problem.

1.3 Preliminaries Given a string s over an alpha-
bet X, we let |s| denote the length of s, s[i] the ith
element of s (1 < i < |s]), and s[i..j] the substring
slilsfi+1]...s[j] of s (1 <i<j<]s|). If j <i then
s[i..j] denotes the empty string e. For arbitrary i and
J, s[i..j] = s[max(1,4)..min(]s|,j)], s[i..] = s[i..|s]]
and s[..j] = s[l..j]. We let pref,(s) = s[..|s| — k],
suf,(s) = s[k + 1..], and inf,(s) = s[k + 1..|s| — k].
The reverse string s[|s|] . . . s[2]s[1] is denoted s’. For
a mapping f : ¥ — U, we extend f : ¥* — U* by
defining f(ajas...a,) = f(a1)f(a2) ... f(an). For t-
wo strings s; and so we let lep(sy, s2) and les(s, $2)
denote the longest common prefix and suffix respec-
tively of s; and sy. We assume without loss of gen-
erality throughout the paper that no string is equal
to the empty string.

Let ¥ be totally ordered. We define the lexico-
graphical ordering on ¥* by s; < s if and only if 7 =
lep(s1, s2) or s1[|lep(s1,s2)|+1] < saof|lep(s1,s2)|+1].
We let u <g v denote that the reverse of u is less than
the reverse of v, i.e., u® < v,

We let logn = Inn/In2, logMn =
log* V) n = loglog” n, and log*n =
min{i| log(i) n < 1}. When interpreting inte-
gers as bit-strings we let AND, OR, and XOR denote
bitwise boolean operations, and z 1? be the operation
shifting = 4 bits to the left, i.e., z 1= z - 2'. For
positive integers = and i we let bit(x,7) denote
the ith bit in the binary representation of z, i.e.,
bit(z,i) = (z + 2) mod 2.

logn,

2 Signature encoding of strings

In the following we describe the signature encoding
of strings over some finite alphabet ¥. The signature
encoding we use throughout this paper was originally
described by Mehlhorn et al. in [23]. The basic idea
is to associate a unique signature o to each string s
such that two strings are equal if and only if they
have equal signatures. The signature encoding of
a string s € X* is defined relative to a signature
alphabet £ C N and a partial injective mapping
Sig : DU(E'UETUERUEN U(E X N) = £ The
mapping Sig is extended during updates in order to
keep it defined for all applied values.

The signature encoding of s consist-
s of a sequence of signature strings from &,

The details of the block decomposition can be
found in [23], from which it follows that A; =

shrinko(s), pow(s), shrinky(s), pow,(s), ..., shrinkp(s)log" N + 6 and Ag = 4.

3 3

The strings are defined inductively by

shrinko(s) Sig(s)
powy(s) = Sig(encpow(shrinko(s)))
shrink;(s) = Sig(encblock(pow;_;(s)))
pow;(s) = Sig(encpow(shrink;(s)))
shrinky(s) = Sig(encblock(pow,_,(s)))

where encpow and encblock are functions defined
below, and h the height of the encoding of s which is
the smallest value for which |shrink,(s)| = 1. We let
h(s) denote the height of the encoding of s.

The mapping encpow groups identical elements
such that a substring ¢! is mapped into the pair
(0,1). Formally, for s € £* and s = 0111 ol oy €
E where 0; # o041 for 1 < i < m. Then
encpow(s) = (o1,11), (62,12), ..., (Gm,lm). The func-
tion encpow(s) can be computed in time O(]s|).

The mapping encblock decomposes a string in-
to a sequence of small substrings of sizes between
two and four, except for the first block which has
size between one and four. Each substring is denot-
ed a block. The strategy behind the decomposition
is based on the deterministic coin tossing algorithm
of Cole and Vishkin [5] which ensures the property
that the boundaries of any block are determined by
a small neighborhood of the block. This strategy is
only applicable to strings where no two consecutive
elements are identical and the role of the mapping
encpow is to ensure this property prior to employ-
ment of encblock.

Because the signature encoding is deterministic,
two identical strings also have identical encodings.

The neighborhood dependence of a block decom-
position is characterized by two parameters Ay, and
AR, such that given a signature ¢ in a string it can
be determined if o is the first signature in a block by
only examine Aj, and Ag signatures respectively to
the left and to right of 0. We assume in the following
that N is a constant bounding the total number of
signatures to be used, and we also assume that signa-
tures and characters can be handled in constant time.
Given a signature o we let @ denote the string from
¥* encoded by o, and for a signature string o1 ... oy,
we let 57 ... 0 =01 ...0%.

2.1 Persistent strings Mehlhorn et al. [23] con-
sidered how to maintain a family F of strings under
the following operations.

STRING(a) A new single letter string containing the
letter a € ¥ is created. The resulting string is
added to F and returned.

CONCATENATE(S1, s2) Concatenates the two
strings s1,s2 € F. The resulting string is added
to F and returned. The two strings s; and s
are not destroyed.

SpLIT(s,i) Splits s into two strings s[..i — 1] and
s[i..]. The two resulting strings are added to F
and returned. The string s is not destroyed.

EQUAL(s1,52) Returns true if and only if s1 = ss.

Note that strings are never modified or de-
stroyed, i.e., the strings created are persistent. In
the CONCATENATE operation s; and s; are allowed
to refer to the same string, i.e., it is possible to con-
struct strings of exponential length in linear time.
Mehlhorn et al. [23] proved the following theorem.

THEOREM 2.1. (MEHLHORN et al. [23]) There ez-
ists a persistent string implementation which sup-
ports STRING and EQUAL in O(1) time, and
CONCATENATE and SpLIT in O(logn((log* N)? +
logn)) time, where n is the length of strings involved
in the operations.

In the above theorem we assumed that a lookup
in the Sig function takes constant time. In [23] the
Sig function is stored using a search tree, implying
that it takes time log m to make a lookup, where m is
the number of operations done so far. Constant time
lookup for Sig can be achieved by using randomiza-
tion or using more than linear space by either using
dynamic perfect hashing [10] or using a digital search
tree of degree N€¢ [22], 0 < ¢ < 1. The number of
lookups to the Sig function for each CONCATENATE
and SpLiT operation is O(lognlog® N). Since the
maximal block size is 4, Sig~' can be computed in
constant time if Sig~' is stored as an array.

In Section 4 we show how to improve the bounds
of [23] and to extend the set of supported persistent
string operations with the following operations.

COMPARE(s1,82) Returns the lexicographical or-
der of s relative to ss, i.e., if 1 = 89, 51 < 89,
or s; > Sa.

LCPREFIX(s1,s2) Returns |lep(sy,s2)].

LCSUFFIX(s1,82) Returns [les(sq, s2)].

To be able to refer to the length of the string we in the
following assume that each string length can be stored
in a single word. We additionally assume that each
signature ¢ has associated |7|. The following theorem
summarizes our results in Section 4 for persistent
strings.

THEOREM 2.2. There exists a persistent string
implementation which supports STRING in
O(log|X|) time, EQuAL and CoMPARE in O(1)
time, LCPREFIX in O(logn) time, LCSUFFIX in
O(lognlog* N) time, and CONCATENATE and SPLIT
in O(lognlog® N + log|X|) time, where n is the
length of strings involved in the operations.

3 Dynamic pattern matching

In this section we will describe how to implement
a data structure for the dynamic pattern matching
problem, with the claimed update and query time
bounds.

Let G denote a family of strings over a fixed
alphabet ¥. An occurrence of a string s in family G, is
a pair (s',p) where s’ € G and p specifies the specific
location of the occurrence within s'. Let index(p)
denote the index offset of this location in s, i.e., it
satisfies s = s'[index(p)..index (p)+|s|—1]. We denote
the set of all occurrences of s in G by Oce(s, G).

The dynamic pattern matching problems is to
maintain a data structure for a family of strings
G which supports the updates STRING, SPLIT and
CONCATENATE for strings in G defined as in last sec-
tion, but without the persistence, i.e., the arguments
to SPLIT and CONCATENATE are removed from G by
the call. In addition to these update operations the
data structure supports the search query:

FIND(s) : Return the set of all occurrences of
s€QG.

For the rest of this section we let n denote the total
size of G, i.e., n =) |s|.

THEOREM 3.1. There exists an implementation for
the dynamic pattern matching problem which support-
s CONCATENATE, SpLIT in O(log” nloglognlog* n)
time, STRING in O(lognlog” n) time and FIND(s) in
O(occ + lognloglogn) time where occ is the number
of occurrences.

Here, and in the following we have used the fact that
O(log* N) = O(log™ n). The number of signatures N
used to maintain G together with an auxilary internal
family of strings, is always polynomially bounded in
n, since each operation operation is polylarithmic

in n and hence atmost introduce a polylogarithmic
number of signatures.

The occurrences returned by the FIND operation
are represented by pointers into the specific occur-
rences in lists representing the strings. For such a
pointer we need (as usual) additional O(logn) time
to compute the exact offset index(p) of the occur-
rence. That is the time for FIND is O(occlogn +
log nloglogn) when output is required in this form.

3.1 The data structure The data structure con-
sists of several ingredients, where the primary part
consists of a combination of a range search structure
with the persistent string data structure.

For each string in s € G we maintain a list I(s),
where the ith character in s is the ith node in I(s).
These lists are maintained by balanced trees under
join and split operations, such that given index 4 one
can report the ith node I(s)[i] and return the rank of
a node, see e.g., [6]. The set of all nodes for all lists
for G is denoted L.

The strings in G and substrings of these (specified
later) will be represented in a larger family of strings,
denoted as F. The family F will be maintained using
the persistent string data structure, see Theorem 2.2.
Hence we can efficiently concatenate, split, compare
etc. the strings in F. Furthermore we assume the
reverse representation of every string ¢ € F to be in
F as well, i.e., t € F. This only increases the time
requirement for the split and concatenation operation
on F by a constant factor. To each string s in G
we associate two values; its signature o representing
the string in F, thus ¢ = s, and a pointer to the
tree structure associated to I(s). These two values
describe the interface between the pattern matching
part in this section and the persistent data structure.
Given o and Sig~' we can unpack the signature
encoding shrink;(s) and pow,(s) for any level j. The
tree structure can be used to access a node with index
iin I(s)[i] in O(logn) time.

3.2 How to combine range search and per-
sistent strings First we describe a simple method
which combines the data structure for the persistent
string data structure given in Section 2 with a dynam-
ic two-dimensional orthogonal range search structure.
The elements of this range search structure are pairs
of strings from the persistent family of strings, with
ordering provided through the lexicographic order of
the strings (w.r.t. some arbitrary fixed ordering of the
alphabet X). Our first simple approach for the dy-
namic pattern matching achieves the claimed search
bound but without meeting the claimed time bounds

for split and concatenation. Next we extend this sim-
ple approach such that we obtain the claimed bounds
for updates as well.

Consider a string s in our family of strings G.
For each index 7 in s assume that the two substrings
s[1..i — 1] and s[i..]s|], denoted the context strings for
index ¢ are in the string family F. For a node x € I(s)
with index i, we associate an anchor, denoted Anc(i),
defined to be the triple (s[1..i — 1], s[i..|s]],z) € F x
F x L. For all strings in G and indices in these, let
R be the set of anchors kept in a dynamic range
search structure. We claim that provided a string
w € G, we can now efficiently report all occurrences
of w within strings in G. Choose any index ¢ in
w with anchor (a,b,x). Let § be a letter in the
alphabet larger than letters occurring in strings for
G. The range search supported for R is now able to
report anchors (p,s,y) € R, where a <g p <g $a
and b < s < b$. Next we show that each reported
anchor identify an occurrence, and each occurrence
is reported once. For an anchor (p,s,y) reported
we have that a is a suffix of p and b is as prefix of
s. That is w occurs in the string ps € G at index
i’ — i+ 1, where i’ = index(y). We say the index i
of w aligns with the index i’ of ps. Finally, for each
occurrence of w precisely one index in the occurrence
aligns with an index ¢ in w. The comparisons with
respect to the lexicographic ordering among strings
in F are done in worst-case constant time according
to Theorem 2.2. Since the number of anchors equals
the total length of strings in G, this range search can
be performed in time O(lognloglogn + occ) worst-
case, see [8]. Furthermore constructing the strings $a
and b$ needed as the range bounds are done in time
O(lognlog™ n) according to Theorem 2.2.

The problem with the above strategy is that
concatenation and split operations on strings in G
affects a number of anchors linear to the size of
the updated strings. In order to avoid this we will
limit the amount of indices we associate anchors to,
together with a certain limitation on the lengths
of the associated context strings. These limitations
make extensive use of the properties with respect to
the signature encodings of the strings.

3.3 Associating anchors to signatures Let z =
shrink;(t) and y = shrink;(s) for a j > 0 in the
signature encodings for two strings s,t € G. First
we show how two indices 1 € x and k € y can align.
The offset of an index i in z, denoted offset] (i) =
|z[1..i — 1]| + 1, is the index in ¢, where the signature
x[i] starts its encoding in ¢. Let s be a search string.
We say index k aligns with index i if s[1..offset? (k) —1]

is a suffix of t[l..oﬁset{ (i) — 1], and s[offset! (k)..|s]]
is a prefix of t[offset (i)..|t|]. For k aligned with i, we
say this alignment is relative to the occurrence of s
in t with offset offset! (k) — offset’ (i) + 1. Note that
for s a substring of ¢, it is not necessarily the case
that shrink;(s) and shrink;(t) contains any aligned
indices. However, choosing j sufficiently small this
will be the case.

Let s be a substring of ¢. For level j = 0 every
index in shrink ;(s) aligns with an index in shrink;(t),
corresponding to the approach given in Section 3.2.
The context string which we will associate to an index
at level j depend on the signature encoding at level j.
Our goal is to maximize the level j thus minimizing
the size of the signature encoding an anchor at that
level depends on. However the level should still be
small enough such that we can find an index which
aligns. Fix A > A + Ag +4 = O(log*n). It is
possible to show the following lemma.

LEMMA 3.1. Lett = t'st" and s = s152 then

i) shrink;(t) =
prefa (shrink (")) wy infa (shrink;(s))-
wa sufp (shrink;(t")), where |w1], |wa| < 2A,

ii) shrink;(s) = prefa (shrink;(s1))w; -
sufp (shrink;(sz)), where |w;| < 2A .

For every level j in the signature encoding it follows
from lemma 3.1(i) that the (possible empty) infix
protected;(s) = shrink;(s)[A + 1..|shrink;(s)| — A]
must be a substring of shrink;(t).

Hence choosing j small enough such that
|shrink;(s)| > 2A, we have |protected;(s)| > 0. Thus
for each occurrence of s in the string ¢, any index k
in protected;(s) aligns with an index i in shrink;(t).
We call the indices in substring protected;(s) within
shrink;(s) for protected indices. The context strings
associated to i should be large enough to cover the
string s. Let the left boundary of an index i, denoted
Ib(i), be an index smaller than i. Similarly the right
boundary of i, rb(i) is an index larger than i. Let [, p
and r be the offsets of 1b(7), i and rb(i) respectively.
The anchor associated to i, Anc(i), is then the triple
(t[l..p—1],t[p..r —1],1(t)[p]) € F x F x L. Our goal is
to minimize the distance of 1b(¢) and rb(i) from ¢, but
still such that the context string associated ¢ covers
s. The larger we choose j, the smaller distance of the
boundaries from ¢ can be allowed. Hence j should
be chosen as large as possible, but still small enough
such that |protected;(s)| > 0. However, we cannot en-
sure the length of shrink;(s) to be of bounded length
for the maximal level with |protected;(s)| > 0. That
is rb(i) — 1b(i) need to be arbitrary large, implying

that we only can afford to have anchors to a subset
of the indices at a given level. The idea is to ex-
ploit that there is a level where |protected;(s)| > 0,
and at the same time shrink;(s) only contains a few
different signatures, i.e., pow;(s) is of short length.
Each index at level j for which we associate an anchor
(with perhaps large context strings) is associated one
of these different signatures, and hence the context
strings only spans infixes with few anchors. In the
following we formalize the above discussion.

Let & = shrink;(s). Define the set of breakpoints
for x by BP(x) = {i | z[i] # «[i + 1] }. We consider
two cases for a level j of the signature encoding of s.

Case 1 [pow,(s)| < 12A for j = 0.

Case 2 |shrink;(s)] > 3A and |BP(shrink;(s))| <
12A for some j > 0.

LeEMMA 3.2. For any string s € G, either Case 1 or
Case 2 (or both) are satisfied.

Proof. Suppose Case 1 is not satisfied. Then let 7 =
min{i | [pow,(s)| < 12A}. Then |pow;_,(s)| > 12A
and since each block has size at most 4, we have
|shrink;(s)| > %\powj71(5)| > 3A. By minimality
of j, |BP(shrink;(s))| = |pow;(s)| < 12A, so level j
satisfies Case 2.

LeMMA 3.3. Let s, t € G and let j be such that Case
1 or Case 2 form Section 8 are satisfied. For any
breakpoint i in M(s) and any occurrence (t,p) €
Occ(s,G), there exists i' € BP(shrink;(t)) such that
i align with i' relative to occurrences of s in t with
offset index(p) = offset] (i') — offset’ (i) + 1.

Proof. First if j = 0 with Case 1 satisfied the lemma
is immediately true since all of shrinko(s) is a infix
a position a offset p for each occurrence (s,p) €
Occ(s,G).

Consider the case for j > 0 such that Case 2
satisfied. Let (¢,p) € Occ(s,G) and i € M(s). Write
t as t = ty sty where |t;| = indezx(p) — 1. By
Lemma 3.1(i) we have

(3.1
shrink ;(t) = u shrink;(s)[A + 1..|shrink;(s)] — A]v

for some u,v € £, where

(3.2) u = t1 shrink;(s)[..A].

Since i > A +1 (it is in M(s)), we can write (3.1) as
shrink ;(t) =

u shrink;(s)[A + 1..4)shrink;(s)[i + 1..|shrink;(s)| —
Alv and hence the index i' = |u| +i — A+ 1 is

a breakpoint,
(3.2)

offset (i)

in BP(shrink;(t)). Furthermore using

[@] + |shrink;(s)[A +1..0—1]| +1

= [tu] + [shrink; (s)[.A]| +
|shrink;(s)[A + 1.0 —1]| + 1

= |t1| + offset (i).

Hence index(p) = |t +1 = offset! (i') — offset? (i) + 1
and thus 4’ is the desired breakpoint aligned with 4.

It is only the breakpoints we associate anchors.
Anchors associated to the breakpoint in signature
encodings at level j of all strings in G are kept in
a range search structure denoted R;. When a search
for a string s is done we use the range search structure
R; for j chosen such that Case 1. or 2. are satisfied
according to Lemma 3.2. Let 7 = 0 if Case 1 above
is satisfied, or choose j > 0 as in the proof of the
above lemma such that Case 2 is satisfied, and let
shrink;(s). For Case 2 above we define the
protected set of breakpoints, denoted M(s), as the
breakpoints in the infix protected;(s) = infa(x),
i.e., M(s) = BP(z) N [A + 1..]z|] — A]. For Case
1 (5 = 0), the protected breakpoints are simply all
the breakpoints, i.e., M(s) = BP(shrinkq(s)). In
this section we limit the exposition to the case where
M (s) is nonempty, i.e., for Case 2, we assume the
substring infa (x) of length at least A contains two
different signatures. The special (tedious) case where
M(s) is empty, i.e., s contains a long substring of
small periodicity, is omitted.

Let s € G be a infix of t. With the assump-
tion that |M(s)] > 0, we have a breakpoint 7 in
protected;(s). Hence in shrink;(t)) there is an in-
dex 4', with Anc(i'), which aligns with ¢ by Lem-
ma 3.3). Then it suffices to show that the context
string associated to Anc(i') covers all of s. In Lem-
ma 3.4 we show this is satisfied by choosing lb(i) =
max({j € BP(z) | |[j..i] N BP(z)] > 16A}U{1})
and rb(i) = min({j € BP(z) | |[¢..j] N BP(z)| >
16A } U {|z| }). With sufficient large context strings
we can find all occurrences using the range search
structure R; following the approach from Section 3.2.
Write s = 5152, where s; = s[l..oﬁseti(i) —1]. The
next lemma states that for every breakpoint i’ that
aligns with 7, the anchor associated i’ has sufficiently
large context information with respect to s.

€r =

LEMMA 3.4. Let s,t € G. Let i' be any breakpoint
in shrink;(t) which aligns with index i in shrink;(s).
Write s = s152, where s, = s[l..oﬁseti(i) — 1] and
let (t1,t2,e) = Anc(i') € R;. Then |s1] < [t1| and
|sa| < |tal, d.e., les(s1,t1) = s1 and lep(sa,ta) = sa.

Proof. Let p be the offset of the occurrence of s in ¢
relative to the alignment of i’ to i. Let t = t' st” such
that [t'| = p — 1. By Lemma 3.1(i) we can write:
shrink j(t) = prefa (shrink;(t')) wy inf (shrink;(s))
wa sufp (shrink;(t")), where |wi], |wz| < 2A. Let
v = shrink;(t)[1b(i")..i' — 1]. By the definition of an
anchor t; = T. Recall that ¢ and ¢’ are aligned and
hence we only need to show that either 1b(i') = 1
or Ib(i") is an index in prefa (shrink;(t')) in order
to establish |¢1] > |s1|. From definition of the left
boundary we have lb(i') = 1 or |BP(v)| = 16A. Since
\BP (wyinfa (shrink(s)))| < [BP(shrink;(s))|+2A <
14A according to Lemma 3.2, Ib(i') must be an index
in prefa (shrink;(t')). A similar argument shows
[$2] < [ta].

3.4 Searching A search operation is carried out in
three steps:

1. Find level j according to Lemma 3.2, and a
breakpoint i € M(s). Compute the offset p =
offset’(i) of i in s.

2. Construct and insert the strings s; = s[1..p — 1],
sy = s[p..|s|], $s1 and 5,9 into F using the SPLIT
and CONCATENATE operations on s € F.

3. Report occurrences (represented as nodes in L)
using the range search structure R;.

In order to determine the quantities in step 1.
above we show that it is sufficient to examine a
portion of size O(A) of the signature encoding of s.

First if [powg(s)] < 12A we let j = 0. Otherwise
we expand the signature strings of s starting from the
root signature until we reach a level j such that Case
2 is satisfied for j. Then by the Lemma 3.5 below, we
can efficiently derive the quantities ¢ and p needed in
addition to j for step 1. Recall from Section 2 that
we can expand a signature string to the next level
using the inverse mapping Sig ' in time linear to the
length of the expanded string. Hence the total time
to expand level by level until the string pow;(s) is
expanded for a level j satisfying |shrink;(s)| > 3A
and [BP(shrink;(s))| = |pow;(s)| < 12A (Case 2),
is bounded by the total length of these expanded
signature strings, i.e., bounded by O(|pow;(s)|) =
O(A). Note that by Lemma 3.2 Case 2 will be
satisfied at some stage in the absence of Case 1. In
order to effectively test whether a level j satisfies Case
2, we need to test whether the length of shrink;(s)
exceeds 3A without actually expanding it to its full
length (unbounded in terms of A). By i) in the
lemma below we can find the length of shrink;(s) in
time O(A) on basis of the expanded string pow(s).

Finally ii) and iii) of this lemma provide us with the
remaining quantities for step 1.

LEMMA 3.5. In time linear to the length of pow;(s)
we can determine the following: i) the length of
shrink;(s), ii) the first protected breakpoint i € M (s)
(if it exists), iii) the offset oﬁseti(i) of the breakpoint
i.

Proof. Let m = |pow;(s)]. In time O(m) we
can compute the list Sigil(powj(s)) = (o1,h),
(01,12), .., (0m,lm) where each pair (o,l;) corre-
sponds to substring 02’“ in shrink ;(s) according to the
definition of the signature encoding in Section 2. i) is
simply determined by computing the sum 22::”11 ly =
|shrink;(s)|. ii) Let u = min,, Z:z? Iy > A. Then
the first protected breakpoint is i = Z::f lg, and
hence ¢ can be determined by summing at most
A terms [; to obtain such w and i. Note that if
|shrink;(s)| —i < A there is no such breakpoint in
M (s) which we assumed not occurs. iii) To each sig-
nature o 1 < k < m, the signature encoding of
s provide us with the lengths of expanded strings
7%. Hence we can determine the sum offset! (i) =
(=" llow]) + (I — 1)[7a] + 1 in time bounded
by the number of these terms, bounded by O(m).

We conclude that the time to find j satisfying
Case 1. or 2., expand the signature strings until
pow;(s), and the computation of the quantities for
step 1. on basis of this string, by the discussion above
and Lemma 3.5 takes time O(A).

Let s1 = s[1..p — 1], and s = s182. According to
Theorem 2.2 we can in time O(lognlog* n) construct
and insert sq, 52, $s1, 529 into F. With these strings
in F we can perform step 3, using the approach
from Section 3.2, in time O(lognloglogn + occ)
which dominates the total search time. If P is an
external string, we use additional O(|P|) time for
preprocessing P, the lexicographic order of P with
any other string in F can checked in constant time.

3.5 Concatenate and split In this section we
describe how to perform concatenation of two strings
in G. The split operation for a string in G is done in
a similar manner and omitted.

3.5.1 CONCATENATE(s1, s2) Consider two strings
S1,82 € G where we want to compute the concate-
nation s = s;8y and insert this string s into G, de-
stroying s; and so. First the signature encoding for
s is computed and inserted into the auxiliary string
family F through the CONCATENATE operation for
this family. Next a new list I(s) for s is created by

joining I(s1) and I(s2). This means that the node in-
formation associated the anchors in the various range
search structures R; is considered as nodes in [(s) in-
stead.

The main part of the computation consists of re-
structuring the various range search structures R;
such that they contain anchors with respect to the
new context information relevant for s. From Lem-
ma 3.1(ii) we have that

shrink;(s) = prefp (shrink;(s1)) w; sufa (shrink;(s2)),

where |w;| < 2A. We will only be concerned with
associating anchors properly to the breakpoints (the
constructing of shrink;(s) is a part of the persistent
data structure). We have

e The anchors associated to the suffix and pre-
fix of length A to respectively shrink;(s;) and
shrink;(s2) should be deleted from R;.

e The anchors in pref (shrink;(s1)) and
sufp (shrink;(s2)) which are depended on
w; should be updated.

e New anchors should be associated to the O(A)
breakpoints in w;.

We will describe how to associate anchors to
breakpoints in w; and construct new anchors for those
outside w; with affected context. Removal of an-
chors are done in a similarly way and thus omit-
ted. First we show that at most O(A) new an-
chor have to be constructed. An anchor to a break-
point k does by definition only depend of index [the
number of breakpoints between k and [are O(A).
Hence, at most O(A) breakpoints in shrink;(s1) and
shrink;(s2) should have their associated anchors up-
dated, thus bounding the total number of new an-
chors to be created to O(A). By the same argument
it follows that an infix TP(i) of pow,(s) of size O(A)
covers all these breakpoints in shrink;(s), and includ-
ing the indices these context strings depends on. Sim-
ilar to the search routine above we will update an-
chors in shrink;(s) using pow;(s). However we only
expand to the next level in order to get IP(i). The
technique to do this is (tedious and) similar to the
search routine, and omitted here. Let [be the left
most index in IP(i). Given the offset offset’ (I — 1)
and IP(i) we proceed to show how to compute the
new anchors. Each signature in IP(i) represents a
breakpoint for an index in shrink;(s). Denote the
anchor for index k in shrink;(s) as Anc'(k). Scan-
ning IP(i) we detect 1b(k) and rb(k) in O(A) time.
Using Lemma 3.5 and adding offset’ (I — 1) we get the

offsets offset’ (k), offset’ (Ib(k)), and offset’ (rb(k)) in
time O(A). Using the tree structure associated to
the list I(s) we compute the node I(s)[offset’ (k)] in
time O(logn). Finally by applying the persistent
SPLIT operation on s € F for the offsets, the two
context strings for the anchor are generated in F in
O(lognlog* n) time according to Theorem 2.2. The
new anchor is inserted in the range search structure
R; in time O(lognloglogn), see [8].

In total, at each of the O(logn) levels we
update O(A) anchors in time O(lognlog”®n)
and insert/delete these in an range search
structure in time O(lognloglogn), summing to
O((lognlog*n) - (lognlog*n + lognloglogn)) =
O(log® nloglognlog* n).

4 Persistent strings

We represent a persistent string s by the root-
signature o of a signature encoding of s. We denote
this the implicit representation of s. This implies
that a string can be stored in a single word plus
the space required to store the signature function
Sig. The lower levels of the signature encoding of
s can be extracted from o by recursively applying
Sig~', especially the neighborhoods of a signature
in a signature string which need to be considered
by the different operations can be constructed when
required.

We would like to note, that this is an essential
difference compared to the representation used in
Mehlhorn et al. [23]. They represent a string by a
persistent data structure which consists of a linked
list of rooted trees, each tree storing one level of the
signature encoding of the string. Their representation
implies an overhead of O(logn) for accessing each
level of the encoding of a string. Our simplified
representation avoids this overhead.

By using the implicit representation of strings we
get Lemma 4.1 below, improving and extending the
result of Mehlhorn et al. [23].

LemMA 4.1. The operations STRING and EQUAL can
be supported in O(1) time, CONCATENATE, SPLIT,
and LCSUFFIX in time O(lognlog® N) time, and
LCPREFIX and COMPARE in O(logn) time, where
n is the length of strings involved in the operations.

Proof. The operation STRING(a) returns Sig(a), and
EQuaAL(sy, s9) returns true if and only if the root-
signatures of the signature encodings of s; and s, are
identical. The details of the other operations will be
given in the full version of the paper.

4.1 Maintaining strings sorted In this section
we prove Theorem 2.2, i.e., we describe how to re-
duce the time for performing comparisons on per-
sistent strings to O(1) time while maintaining the
asymptotic times for the update operations STRING,
CONCATENATE and SPLIT except for an additive
log |X| term. The ideas used are:) keep all persis-
tent strings lexicographical sorted, and i) associate
with each string s a key key(s), such that two strings
can be compared by comparing their associated keys
in O(1) time.

Data structures for maintaining order in a
list have been developed by Dietz [7], Dietz and
Sleator [9] and Tsakalidis [27]. The data struc-
ture of Dietz and Sleator [9] supports INSERT(z,y),
DELETE(z) and ORDER(z,y) operations in worst-
case O(1) time. The operation INSERT(z,y) inserts
element y after z in the list, and DELETE(z) deletes
x from the list. The query ORDER(z,y) returns if x
is before y in the list.

The key we associate with each persisten-
t string is a “handle” given by the data struc-
ture of Dietz and Sleator [9]. A COMPARE(sq, S2)
query can now be answered in worst-case O(1)
time by applying EQUAL(s1,s2) and by applying
ORDER(key(s1),key(s2)).

In the remaining of this section we describe how
new strings created by STRING, CONCATENATE and
SPLIT can be added to the lexicographical sorted list
of strings, i.e., how to locate where to insert new
strings into the data structure of Dietz and Sleator. A
straightforward implementation is to store the strings
as elements in a balanced search tree and to use the
COMPARE operation when searching in the search
tree. This implementation requires O(logm logn)
time for each string created, where m is the number
of strings stored. By maintaning a collection of tries
we can avoid the logm factor. Details are left for the
full version of the paper.

References

[1] A. Apostolico and Z. Galil. Pattern matching
algorithms. Ozford university press, 1997.

[2] P. Atzeni and G. Mecca. Cut and paste. In
16th Ann. ACM Symp. on Principles of Database
Systems (PODS), pages 144 153, 1997.

[3] R. Boyer and J. Moore. A fast string searching
algorithm. Comm. ACM, 20:762-772, 1977.

[4] S. Cheng and M. Ng. Isomorphism testing and
display of symmetries in dynamic trees. In Proc.
Tth ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 202 211, 1996.

[5]

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

R. Cole and U. Vishkin. Deterministic coin tossing
with applications to optimal parallel list ranking.
Information and Control, 70:32 53, 1986.

T.H. Cormen, C.E. Leiserson and R.L. Rivest. In-
troduction to algorithms. The MIT electrical engi-
neering and computer science series, Eight printing
1992, chapter 34.

Paul F. Dietz. Maintaining order in a linked list. In
Proc. 14th Ann. ACM Symp. on Theory of Comput-
ing (STOC), pages 122-127, 1982.

Paul F. Dietz and Rajeev Raman. Persistence,
amortization and randomization. In Proc. 2nd
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 78 88, 1991.

Paul F. Dietz and Daniel D. Sleator. Two algo-
rithms for maintaining order in a list. In Proc. 19th
Ann. ACM Symp. on Theory of Computing (STOC),
pages 365 372, 1987.

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Mey-
er auf der Heide, H. Rohnert, and Robert Endre
Tarjan. Dynamic perfect hashing: Upper and lower
bounds. In Proc. 29th Ann. Symp. on Foundations
of Computer Science (FOCS), pages 524 531, 1988.
P. Ferragina. Dynamic data structures for string
matching problems. Ph.D. Thesis:TD-3/97., De-
partment of informatica, University of Pisa.

P. Ferragina. Dynamic text indexing under string
updates. Journal of algorithms., 22(2):296-328,
1997. See also (ESA’94).

P. Ferragina and R. Grossi. Fast incremental text
indexing In Proc. 6th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 531 540, 1995.
P. Ferragina and R. Grossi. Optimal on-line search
and sublinear time update in string matching. STAM
Journal on Comp., 27(3):713 736, 1998. See also
FOCS’95.

G.S. Frandsen, T. Husfeldt, P.B. Miltersen,
T. Rauhe and S. Skyum. Dynamic Algorithms for
the Dyck Languages. In Proc. 4th Workshop on Al-
gorithms and Data Structures (WADS), pages 98—
108, 1995.

Michael L. Fredman and Dan E. Willard. Sur-
passing the information theoretic bound with fusion
trees. Journal of Computer and System Sciences,
47:424-436, 1993.

A. V. Goldberg, S. A. Plotkin, and G. E. Shannon.
Parallel symmetry-breaking in sparse graphs. SIAM
J. Discrete Math., 1(4):434-446, 1988.

M. Gu, M. Farach and R. Beigel. An efficient
algorithm for dynamic text indexing. In Proc.
5th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 697-704, 1994.

D. Knuth, J. Morris, and V. Pratt. Fast pattern
matching in strings. STAM Journal on Comp., pages
63-78, 1977.

E. McCreight. A space economical suffix tree con-
truction algorithm. Journal of the ACM, 23(2):262—
272, 1976.

[21]

[22]

[23]

[24]

[25]

[26]

[27]
28]
[29]

[30]

J. Meidanis and J. Setubal. Introduction to compu-
tational molecular biology. PWS Publishing Compa-
ny, a division of international Thomson publishing
Inc., first print 1997.

Kurt Mehlhorn. Data Structures and Algorithms
1: Sorting and Searching. Springer Verlag, Berlin,
1984.

Kurt Mehlhorn, R. Sundar, and Christian Uhrig.
Maintaining dynamic sequences under equality tests
in polylogarithmic time. Algorithmica, 17(2):183—
198, 1997.

S.C. Sahinalp and U. Vishkin. Efficient approximate
results and dynamic matching of patterns using
a label paradigm. In Proc. 387th Ann. Symp. on
Foundations of Computer Science (FOCS), pages
320-328, 1996.

G.A. Stephen. String searching algorithms. World
Scientific publishing company, 1995.

Mikkel Thorup. Undirected single source shortest
paths in linear time. In Proc. 38th Annual Sympo-
sium on Foundations of Computer Science (FOCS),
pages 12-21, 1997.

A. K. Tsakalidis. Maintaining order in a generalized
list. Acta Informatica, 21(1):101-112, 1984.

E. Ukkonen. On-line construction of suffix trees.
Algorithmica, 14(3):249 260, 1995.

M.S. Waterman Introduction to computational
biology. Chapman and Hall, Second printing 1996.

P. Weiner. Linear pattern matching algorithm. In
IEEE Symp. on Switching and Automata Theory
(now FOCS), pages 1-11, 1973.

