
Pattern Mat
hing in Dynami
 Texts�Stephen Alstrupy Gerth St�lting Brodalz Theis RauheyAbstra
tPattern mat
hing is the problem of �nding all o

urren
esof a pattern in a text. In a dynami
 setting the problemis to support pattern mat
hing in a text whi
h
an bemanipulated on-line, i.e., the usual situation in textediting.We present a data stru
ture that supports insertionsand deletions of
hara
ters and movements of arbitrarylarge blo
ks within a text in O(log2 n log log n log� n)time per operation. Furthermore a sear
h for a patternP in the text is supported in time O(log n log log n +o

 + jP j), where o

 is the number of o

urren
es tobe reported. An ingredient in our solution to the abovemain result is a data stru
ture for the dynami
 stringequality problem introdu
ed by Mehlhorn, Sundar andUhrig. As a se
ondary result we give almost quadrati
better time bounds for this problem whi
h in addition tokeeping polylogarithmi
 fa
tors low for our main resultalso improves the
omplexity for several other problems.1 Introdu
tionPattern mat
hing on strings is the problem of de-termining all o

urren
es of a pattern string P as asubstring of a larger text string T of length n. Op-timal solutions a
hieving O(n) time for this problemwere given in the 70s by Knuth, Morris, and Prat-t [19℄, and Boyer and Moore [3℄. Several text books,see e.g., [1, 6, 25℄, address various pattern mat
h-ing problems in
luding the above
lassi
 problem. O-riginally the
lassi
 problem was motivated (amongother things) in terms of text editing. In a text edit-ing pro
ess it is desirable to e�e
tively handle tex-t updates and sear
hes for di�erent patterns, i.e.,avoid using time proportional to the full text for ea
htext manipulation or sear
h. Several papers in
lud-ing [11, 12, 13, 14, 18, 20, 28, 30, 24℄, des
ribe data�Partially supported by the ESPRIT Long Term Resear
hProgram of the EU under
ontra
t 20244 (proje
t ALCOM-IT). Part of this work was done while the last author was atBRICS.yThe IT University in Copenhagen, Glentevej 67, DK-2400 Copenhagen NV, Denmark. E-mail: fstephen,theisg�itu.dk.zBRICS, Basi
 Resear
h in Computer S
ien
e, Centre ofthe Danish National Resear
h Foundation. Department ofComputer S
ien
e, University of Aarhus, Ny Munkegade, DK-8000 �Arhus C, Denmark. E-mail: gerth�bri
s.dk.

stru
tures addressing various dynami
 settings of eÆ-
ient text manipulation and sear
hing. In addition totext editing this work has also provided appli
ationsin other �elds, e.g., in
omputational biology [21, 29℄.We present a data stru
ture that supportsinsertions and deletions of
hara
ters and move-ments of arbitrary large blo
ks within a text inO(log2 n log logn log� n) time per operation. Further-more a sear
h for a pattern P in the text is supportedin time O(logn log logn+ o

+ jP j), where o

 is thenumber of o

urren
es. Hen
e ea
h text manipula-tion or sear
h is supported in time polylogarithmi
to the length of the text plus the ne
essary linearterms for input and output.The data stru
ture we present is based on thefollowing
losely related problem. A family of stringsis maintained under two update operations, splitand
on
atenate. Given an index i and a strings = a1a2 : : : ak in the family, the split operation splitss into the two substrings a1 : : : ai�1 and ai : : : ak,and inserts them into the family without preservingargument s. The
on
atenate operation takes twostrings s1 and s2 from the family, and inserts the
on
atenation s1s2 into the family, again withoutpreserving the arguments s1 and s2. Finally thesear
h query supported for the family takes any stringin the family and reports o

urren
es of this stringwithin the other strings of the family. The querytime is O(logn log logn + o

), where n is the totalsize of the strings and o

 the number of o

urren
esreported. The update operations are supported inO(log2 n log logn log� n) time. In the setting of textediting, e.g., the problem of moving a blo
k in a text,the family only
onsists of a single string representingthe text. Movement of a blo
k then
onsists of a
onstant number of split and
on
atenate operations.In order to sear
h for a pattern P in the string (text)we in addition to the O(logn log logn + o

) timefor the sear
h, also need additional O(jP j) time to
onstru
t a temporary version of P to be insertedin the string family su
h that it
an be given as aparameter for the sear
h operation.Our main result, a fully dynami
 pattern mat
h-ing algorithm with polylogarithmi
 time per opera-tions uses as a bla
k box an algorithm for the dynam-

i
 string equality problem [23℄. As a se
ondary resultwe improve the time bounds of the results in [23℄.Using the result of [23℄ our updates in
reases with apolylogarithmi
 fa
tor. The dynami
 string equalityproblem is a data stru
ture to maintain a family ofstrings under persistent
on
atenate and split opera-tions (the arguments are preserved in the family) su
hthat the equality of two strings
an be determinedin
onstant time. We give an almost quadrati
 im-provement of the time bounds for updates in [23℄. Inaddition to this improvement we generalize the prob-lem su
h that the equality query is strengthened tolexi
ographi
al order
omparison between any pairof strings in the family within
onstant time. Fur-thermore we also support longest
ommon pre�x andsuÆx operations between a pair of strings in almostO(logn) time. In [23℄, the problem is mainly motivat-ed by problems in high-level programming languageslike SETL. However subsequently this data stru
turehas served as an important
omponent for eÆ
ien-t solutions to other problems, whi
h also bene�t forour new bounds, see e.g., [4, 15℄.1.1 Related work In this se
tion we sket
h thehistory of pattern mat
hing and refer to [14℄ for amore detailed a

ount. Some of the early progress ofmaking pattern mat
hing dynami
 is the suÆx tree.In [20, 30℄ it is shown how to prepro
ess a text inlinear time su
h that pattern mat
hing queries
anbe answered on-line in O(jP j+ o

) time. In [28℄ thesuÆx tree is extended su
h that the text
an be ex-tended by a single
hara
ter at the end. Gu et al. [18℄were the �rst to
onsider the problem where the text
ould be manipulated fully dynami
ally, and denot-ed this problem dynami
 text indexing. The updateoperations they support are insertion and deletion ofa single
hara
ter to/from the text in O(logn) time,where n is the
urrent size of the text. The queryoperation is supported in O(jP j+ o

 log i+ i log jP j)time, where i is the
urrent number of updates per-formed. Ferragina [12℄ gave a more general solutionthat eÆ
iently
ould handle insertions/deletions ofa string into/from the text. The problem
onsid-ered was denoted in
remental text editing. Ferrag-ina and Grossi [11, 13, 14℄ improved the result ofFerragina a
hieving time bounds O(n1=2 + s) for up-dates and O(jP j + o

) for the sear
h, or updates inO(s(log s + log logn) + logn) time with query timeO(jP j+o

+ i log p+log logn), where s is the lengthof the inserted/deleted string. Finally Sahinalp andVishkin [24℄ gave the following result for in
remen-tal text indexing. Sear
hes in O(p + o

) time andinsert/delete of a string in O(log3 n+ s) time.

1.2 Outline of the paper In Se
tion 2 we reviewthe signature en
oding of strings from Mehlhornet al. [23℄ and state our time bounds for the dynami
string equality problem. We pro
eed in Se
tion 3with a des
ription of our data stru
ture for dynami
pattern mat
hing. In Se
tion 4 we provide theimplementation for the generalised string equalityproblem.1.3 Preliminaries Given a string s over an alpha-bet �, we let jsj denote the length of s, s[i℄ the ithelement of s (1 � i � jsj), and s[i::j℄ the substrings[i℄s[i+ 1℄ : : : s[j℄ of s (1 � i � j � jsj). If j < i thens[i::j℄ denotes the empty string �. For arbitrary i andj, s[i::j℄ = s[max(1; i)::min(jsj; j)℄, s[i::℄ = s[i::jsj℄and s[::j℄ = s[1::j℄. We let prefk(s) = s[::jsj � k℄,sufk(s) = s[k + 1::℄, and infk(s) = s[k + 1::jsj � k℄.The reverse string s[jsj℄ : : : s[2℄s[1℄ is denoted sR. Fora mapping f : � ! U , we extend f : �� ! U� byde�ning f(a1a2 : : : an) = f(a1)f(a2) : : : f(an). For t-wo strings s1 and s2 we let l
p(s1; s2) and l
s(s1; s2)denote the longest
ommon pre�x and suÆx respe
-tively of s1 and s2. We assume without loss of gen-erality throughout the paper that no string is equalto the empty string.Let � be totally ordered. We de�ne the lexi
o-graphi
al ordering on �� by s1 � s2 if and only if s1 =l
p(s1; s2) or s1[jl
p(s1; s2)j+1℄ < s2[jl
p(s1; s2)j+1℄.We let u �R v denote that the reverse of u is less thanthe reverse of v, i.e., uR � vR.We let logn = lnn= ln 2, log(1) n = logn,log(i+1) n = log log(i) n, and log� n =minfij log(i) n � 1g. When interpreting inte-gers as bit-strings we let and, or, and xor denotebitwise boolean operations, and x "i be the operationshifting x i bits to the left, i.e., x "i= x � 2i. Forpositive integers x and i we let bit(x; i) denotethe ith bit in the binary representation of x, i.e.,bit(x; i) = (x� 2i) mod 2.2 Signature en
oding of stringsIn the following we des
ribe the signature en
odingof strings over some �nite alphabet �. The signatureen
oding we use throughout this paper was originallydes
ribed by Mehlhorn et al. in [23℄. The basi
 ideais to asso
iate a unique signature � to ea
h string ssu
h that two strings are equal if and only if theyhave equal signatures. The signature en
oding ofa string s 2 �� is de�ned relative to a signaturealphabet E � N and a partial inje
tive mappingSig : � [(E1 [E2 [E3 [E4) [(E � N) ,! E . Themapping Sig is extended during updates in order tokeep it de�ned for all applied values.

The signature en
oding of s
onsist-s of a sequen
e of signature strings from E�,shrink 0(s); pow 0(s); shrink1(s); pow 1(s); : : : ; shrinkh(s).The strings are de�ned indu
tively byshrink0(s) = Sig(s)pow0(s) = Sig(en
pow (shrink 0(s)))...shrink j(s) = Sig(en
blo
k (pow j�1(s)))pow j(s) = Sig(en
pow (shrink j(s)))...shrinkh(s) = Sig(en
blo
k (powh�1(s)))where en
pow and en
blo
k are fun
tions de�nedbelow, and h the height of the en
oding of s whi
h isthe smallest value for whi
h jshrinkh(s)j = 1. We leth(s) denote the height of the en
oding of s.The mapping en
pow groups identi
al elementssu
h that a substring �i is mapped into the pair(�; i). Formally, for s 2 E� and s = �l11 : : : �lmm ; �i 2E where �i 6= �i+1 for 1 � i < m. Thenen
pow (s) = (�1; l1); (�2; l2); : : : ; (�m; lm). The fun
-tion en
pow(s)
an be
omputed in time O(jsj).The mapping en
blo
k de
omposes a string in-to a sequen
e of small substrings of sizes betweentwo and four, ex
ept for the �rst blo
k whi
h hassize between one and four. Ea
h substring is denot-ed a blo
k. The strategy behind the de
ompositionis based on the deterministi

oin tossing algorithmof Cole and Vishkin [5℄ whi
h ensures the propertythat the boundaries of any blo
k are determined bya small neighborhood of the blo
k. This strategy isonly appli
able to strings where no two
onse
utiveelements are identi
al and the role of the mappingen
pow is to ensure this property prior to employ-ment of en
blo
k .Be
ause the signature en
oding is deterministi
,two identi
al strings also have identi
al en
odings.The neighborhood dependen
e of a blo
k de
om-position is
hara
terized by two parameters �L and�R, su
h that given a signature � in a string it
anbe determined if � is the �rst signature in a blo
k byonly examine �L and �R signatures respe
tively tothe left and to right of �. We assume in the followingthat N is a
onstant bounding the total number ofsignatures to be used, and we also assume that signa-tures and
hara
ters
an be handled in
onstant time.Given a signature � we let � denote the string from�� en
oded by �, and for a signature string �1 : : : �kwe let �1 : : : �k = �1 : : : �k.

The details of the blo
k de
omposition
an befound in [23℄, from whi
h it follows that �L =log�N + 6 and �R = 4.2.1 Persistent strings Mehlhorn et al. [23℄
on-sidered how to maintain a family F of strings underthe following operations.String(a) A new single letter string
ontaining theletter a 2 � is
reated. The resulting string isadded to F and returned.Con
atenate(s1; s2) Con
atenates the twostrings s1; s2 2 F . The resulting string is addedto F and returned. The two strings s1 and s2are not destroyed.Split(s; i) Splits s into two strings s[::i � 1℄ ands[i::℄. The two resulting strings are added to Fand returned. The string s is not destroyed.Equal(s1; s2) Returns true if and only if s1 = s2.Note that strings are never modi�ed or de-stroyed, i.e., the strings
reated are persistent. Inthe Con
atenate operation s1 and s2 are allowedto refer to the same string, i.e., it is possible to
on-stru
t strings of exponential length in linear time.Mehlhorn et al. [23℄ proved the following theorem.Theorem 2.1. (Mehlhorn et al. [23℄) There ex-ists a persistent string implementation whi
h sup-ports String and Equal in O(1) time, andCon
atenate and Split in O(logn((log�N)2 +logn)) time, where n is the length of strings involvedin the operations.In the above theorem we assumed that a lookupin the Sig fun
tion takes
onstant time. In [23℄ theSig fun
tion is stored using a sear
h tree, implyingthat it takes time logm to make a lookup, where m isthe number of operations done so far. Constant timelookup for Sig
an be a
hieved by using randomiza-tion or using more than linear spa
e by either usingdynami
 perfe
t hashing [10℄ or using a digital sear
htree of degree N
 [22℄, 0 <
 < 1. The number oflookups to the Sig fun
tion for ea
h Con
atenateand Split operation is O(logn log�N). Sin
e themaximal blo
k size is 4, Sig�1
an be
omputed in
onstant time if Sig�1 is stored as an array.In Se
tion 4 we show how to improve the boundsof [23℄ and to extend the set of supported persistentstring operations with the following operations.Compare(s1; s2) Returns the lexi
ographi
al or-der of s1 relative to s2, i.e., if s1 = s2, s1 < s2,or s1 > s2.LCPrefix(s1; s2) Returns jl
p(s1; s2)j.

LCSuffix(s1; s2) Returns jl
s(s1; s2)j.To be able to refer to the length of the string we in thefollowing assume that ea
h string length
an be storedin a single word. We additionally assume that ea
hsignature � has asso
iated j�j. The following theoremsummarizes our results in Se
tion 4 for persistentstrings.Theorem 2.2. There exists a persistent stringimplementation whi
h supports String inO(log j�j) time, Equal and Compare in O(1)time, LCPrefix in O(logn) time, LCSuffix inO(logn log�N) time, and Con
atenate and Splitin O(logn log�N + log j�j) time, where n is thelength of strings involved in the operations.3 Dynami
 pattern mat
hingIn this se
tion we will des
ribe how to implementa data stru
ture for the dynami
 pattern mat
hingproblem, with the
laimed update and query timebounds.Let G denote a family of strings over a �xedalphabet �. An o

urren
e of a string s in family G, isa pair (s0; p) where s0 2 G and p spe
i�es the spe
i�
lo
ation of the o

urren
e within s0. Let index (p)denote the index o�set of this lo
ation in s0, i.e., itsatis�es s = s0[index (p)::index (p)+jsj�1℄. We denotethe set of all o

urren
es of s in G by O

(s;G).The dynami
 pattern mat
hing problems is tomaintain a data stru
ture for a family of stringsG whi
h supports the updates String, Split andCon
atenate for strings in G de�ned as in last se
-tion, but without the persisten
e, i.e., the argumentsto Split and Con
atenate are removed from G bythe
all. In addition to these update operations thedata stru
ture supports the sear
h query:Find(s) : Return the set of all o

urren
es ofs 2 G.For the rest of this se
tion we let n denote the totalsize of G, i.e., n =Ps2G jsj.Theorem 3.1. There exists an implementation forthe dynami
 pattern mat
hing problem whi
h support-s Con
atenate, Split in O(log2 n log logn log� n)time, String in O(logn log� n) time and Find(s) inO(o

 + logn log logn) time where o

 is the numberof o

urren
es.Here, and in the following we have used the fa
t thatO(log�N) = O(log� n). The number of signatures Nused to maintain G together with an auxilary internalfamily of strings, is always polynomially bounded inn, sin
e ea
h operation operation is polylarithmi

in n and hen
e atmost introdu
e a polylogarithmi
number of signatures.The o

urren
es returned by the Find operationare represented by pointers into the spe
i�
 o

ur-ren
es in lists representing the strings. For su
h apointer we need (as usual) additional O(logn) timeto
ompute the exa
t o�set index (p) of the o

ur-ren
e. That is the time for Find is O(o

 logn +logn log logn) when output is required in this form.3.1 The data stru
ture The data stru
ture
on-sists of several ingredients, where the primary part
onsists of a
ombination of a range sear
h stru
turewith the persistent string data stru
ture.For ea
h string in s 2 G we maintain a list l(s),where the ith
hara
ter in s is the ith node in l(s).These lists are maintained by balan
ed trees underjoin and split operations, su
h that given index i one
an report the ith node l(s)[i℄ and return the rank ofa node, see e.g., [6℄. The set of all nodes for all listsfor G is denoted L.The strings in G and substrings of these (spe
i�edlater) will be represented in a larger family of strings,denoted as F . The family F will be maintained usingthe persistent string data stru
ture, see Theorem 2.2.Hen
e we
an eÆ
iently
on
atenate, split,
ompareet
. the strings in F . Furthermore we assume thereverse representation of every string t 2 F to be inF as well, i.e., tR 2 F . This only in
reases the timerequirement for the split and
on
atenation operationon F by a
onstant fa
tor. To ea
h string s in Gwe asso
iate two values; its signature � representingthe string in F , thus � = s, and a pointer to thetree stru
ture asso
iated to l(s). These two valuesdes
ribe the interfa
e between the pattern mat
hingpart in this se
tion and the persistent data stru
ture.Given � and Sig�1 we
an unpa
k the signatureen
oding shrink j(s) and pow j(s) for any level j. Thetree stru
ture
an be used to a

ess a node with indexi in l(s)[i℄ in O(logn) time.3.2 How to
ombine range sear
h and per-sistent strings First we des
ribe a simple methodwhi
h
ombines the data stru
ture for the persistentstring data stru
ture given in Se
tion 2 with a dynam-i
 two-dimensional orthogonal range sear
h stru
ture.The elements of this range sear
h stru
ture are pairsof strings from the persistent family of strings, withordering provided through the lexi
ographi
 order ofthe strings (w.r.t. some arbitrary �xed ordering of thealphabet �). Our �rst simple approa
h for the dy-nami
 pattern mat
hing a
hieves the
laimed sear
hbound but without meeting the
laimed time bounds

for split and
on
atenation. Next we extend this sim-ple approa
h su
h that we obtain the
laimed boundsfor updates as well.Consider a string s in our family of strings G.For ea
h index i in s assume that the two substringss[1::i�1℄ and s[i::jsj℄, denoted the
ontext strings forindex i are in the string family F . For a node x 2 l(s)with index i, we asso
iate an an
hor, denoted An
(i),de�ned to be the triple (s[1::i� 1℄; s[i::jsj℄; x) 2 F �F � L. For all strings in G and indi
es in these, letR be the set of an
hors kept in a dynami
 rangesear
h stru
ture. We
laim that provided a stringw 2 G, we
an now eÆ
iently report all o

urren
esof w within strings in G. Choose any index i inw with an
hor (a; b; x). Let $ be a letter in thealphabet larger than letters o

urring in strings forG. The range sear
h supported for R is now able toreport an
hors (p; s; y) 2 R, where a �R p �R $aand b � s � b$. Next we show that ea
h reportedan
hor identify an o

urren
e, and ea
h o

urren
eis reported on
e. For an an
hor (p; s; y) reportedwe have that a is a suÆx of p and b is as pre�x ofs. That is w o

urs in the string ps 2 G at indexi0 � i + 1, where i0 = index(y). We say the index iof w aligns with the index i0 of ps. Finally, for ea
ho

urren
e of w pre
isely one index in the o

urren
ealigns with an index i in w. The
omparisons withrespe
t to the lexi
ographi
 ordering among stringsin F are done in worst-
ase
onstant time a

ordingto Theorem 2.2. Sin
e the number of an
hors equalsthe total length of strings in G, this range sear
h
anbe performed in time O(logn log logn + o

) worst-
ase, see [8℄. Furthermore
onstru
ting the strings $aand b$ needed as the range bounds are done in timeO(logn log� n) a

ording to Theorem 2.2.The problem with the above strategy is that
on
atenation and split operations on strings in Ga�e
ts a number of an
hors linear to the size ofthe updated strings. In order to avoid this we willlimit the amount of indi
es we asso
iate an
hors to,together with a
ertain limitation on the lengthsof the asso
iated
ontext strings. These limitationsmake extensive use of the properties with respe
t tothe signature en
odings of the strings.3.3 Asso
iating an
hors to signatures Let x =shrink j(t) and y = shrink j(s) for a j � 0 in thesignature en
odings for two strings s; t 2 G. Firstwe show how two indi
es i 2 x and k 2 y
an align.The o�set of an index i in x, denoted o�setjt (i) =jx[1::i� 1℄j+1, is the index in t, where the signaturex[i℄ starts its en
oding in t. Let s be a sear
h string.We say index k aligns with index i if s[1::o�setjs(k)�1℄

is a suÆx of t[1::o�setjt (i) � 1℄, and s[o�setjs(k)::jsj℄is a pre�x of t[o�setjt (i)::jtj℄. For k aligned with i, wesay this alignment is relative to the o

urren
e of sin t with o�set o�setjt (k) � o�setjs(i) + 1. Note thatfor s a substring of t, it is not ne
essarily the
asethat shrink j(s) and shrink j(t)
ontains any alignedindi
es. However,
hoosing j suÆ
iently small thiswill be the
ase.Let s be a substring of t. For level j = 0 everyindex in shrink j(s) aligns with an index in shrink j(t),
orresponding to the approa
h given in Se
tion 3.2.The
ontext string whi
h we will asso
iate to an indexat level j depend on the signature en
oding at level j.Our goal is to maximize the level j thus minimizingthe size of the signature en
oding an an
hor at thatlevel depends on. However the level should still besmall enough su
h that we
an �nd an index whi
haligns. Fix � > �L + �R + 4 = O(log� n). It ispossible to show the following lemma.Lemma 3.1. Let t = t0st00 and s = s1s2 theni) shrink j(t) =pref�(shrink j(t0))w1 inf�(shrink j(s))�w2 suf�(shrink j(t00)); where jw1j; jw2j � 2� ;ii) shrink i(s) = pref�(shrink i(s1))wi �suf�(shrink i(s2)), where jwij � 2� :For every level j in the signature en
oding it followsfrom lemma 3.1(i) that the (possible empty) in�xprote
tedj(s) = shrink j(s)[� + 1::jshrink j(s)j � �℄must be a substring of shrink j(t).Hen
e
hoosing j small enough su
h thatjshrink j(s)j > 2�, we have jprote
tedj(s)j > 0. Thusfor ea
h o

urren
e of s in the string t, any index kin prote
tedj(s) aligns with an index i in shrink j(t).We
all the indi
es in substring prote
tedj(s) withinshrink j(s) for prote
ted indi
es. The
ontext stringsasso
iated to i should be large enough to
over thestring s. Let the left boundary of an index i, denotedlb(i), be an index smaller than i. Similarly the rightboundary of i, rb(i) is an index larger than i. Let l, pand r be the o�sets of lb(i), i and rb(i) respe
tively.The an
hor asso
iated to i, An
(i), is then the triple(t[l::p�1℄; t[p::r�1℄; l(t)[p℄) 2 F�F�L. Our goal isto minimize the distan
e of lb(i) and rb(i) from i, butstill su
h that the
ontext string asso
iated i
overss. The larger we
hoose j, the smaller distan
e of theboundaries from i
an be allowed. Hen
e j shouldbe
hosen as large as possible, but still small enoughsu
h that jprote
tedj(s)j > 0. However, we
annot en-sure the length of shrink j(s) to be of bounded lengthfor the maximal level with jprote
tedj(s)j > 0. Thatis rb(i) � lb(i) need to be arbitrary large, implying

that we only
an a�ord to have an
hors to a subsetof the indi
es at a given level. The idea is to ex-ploit that there is a level where jprote
tedj(s)j > 0,and at the same time shrink j(s) only
ontains a fewdi�erent signatures, i.e., pow j(s) is of short length.Ea
h index at level j for whi
h we asso
iate an an
hor(with perhaps large
ontext strings) is asso
iated oneof these di�erent signatures, and hen
e the
ontextstrings only spans in�xes with few an
hors. In thefollowing we formalize the above dis
ussion.Let x = shrink j(s). De�ne the set of breakpointsfor x by BP(x) = f i j x[i℄ 6= x[i + 1℄ g. We
onsidertwo
ases for a level j of the signature en
oding of s.Case 1 jpow j(s)j � 12� for j = 0.Case 2 jshrink j(s)j > 3� and jBP(shrink j(s))j �12� for some j > 0.Lemma 3.2. For any string s 2 G, either Case 1 orCase 2 (or both) are satis�ed.Proof. Suppose Case 1 is not satis�ed. Then let j =minf i j jpow i(s)j � 12� g. Then jpow j�1(s)j > 12�and sin
e ea
h blo
k has size at most 4, we havejshrink j(s)j � 14 jpow j�1(s)j > 3�. By minimalityof j, jBP(shrink j(s))j = jpow j(s)j � 12�, so level jsatis�es Case 2.Lemma 3.3. Let s; t 2 G and let j be su
h that Case1 or Case 2 form Se
tion 3 are satis�ed. For anybreakpoint i in M(s) and any o

urren
e (t; p) 2O

(s;G), there exists i0 2 BP(shrink j(t)) su
h thati align with i0 relative to o

urren
es of s in t witho�set index (p) = o�setjt (i0)� o�setjs(i) + 1.Proof. First if j = 0 with Case 1 satis�ed the lemmais immediately true sin
e all of shrink 0(s) is a in�xa position a o�set p for ea
h o

urren
e (s; p) 2O

(s;G).Consider the
ase for j > 0 su
h that Case 2satis�ed. Let (t; p) 2 O

(s;G) and i 2 M(s). Writet as t = t1 s t2 where jt1j = index (p) � 1. ByLemma 3.1(i) we haveshrink j(t) = u shrink j(s)[� + 1::jshrink j(s)j ��℄ v(3.1)for some u; v 2 E�, whereu = t1 shrink j(s)[::�℄:(3.2)Sin
e i � �+1 (it is in M(s)), we
an write (3.1) asshrink j(t) =u shrink j(s)[� + 1::i℄shrink j(s)[i + 1::jshrink j(s)j ��℄ v and hen
e the index i0 = juj + i � � + 1 is

a breakpoint in BP(shrink j(t)). Furthermore using(3.2)o�setjt (i0) = juj+ jshrink j(s)[� + 1::i� 1℄j+ 1= jt1j+ jshrink j(s)[::�℄j+jshrink j(s)[� + 1::i� 1℄j+ 1= jt1j+ o�setjs(i):Hen
e index (p) = jt1j+1 = o�setjt (i0)�o�setjs(i)+1and thus i0 is the desired breakpoint aligned with i.It is only the breakpoints we asso
iate an
hors.An
hors asso
iated to the breakpoint in signatureen
odings at level j of all strings in G are kept ina range sear
h stru
ture denoted Rj . When a sear
hfor a string s is done we use the range sear
h stru
tureRj for j
hosen su
h that Case 1. or 2. are satis�eda

ording to Lemma 3.2. Let j = 0 if Case 1 aboveis satis�ed, or
hoose j > 0 as in the proof of theabove lemma su
h that Case 2 is satis�ed, and letx = shrink j(s). For Case 2 above we de�ne theprote
ted set of breakpoints, denoted M(s), as thebreakpoints in the in�x prote
tedj(s) = inf�(x),i.e., M(s) = BP(x) \ [� + 1::jxj � �℄. For Case1 (j = 0), the prote
ted breakpoints are simply allthe breakpoints, i.e., M(s) = BP(shrink 0(s)). Inthis se
tion we limit the exposition to the
ase whereM(s) is nonempty, i.e., for Case 2, we assume thesubstring inf�(x) of length at least �
ontains twodi�erent signatures. The spe
ial (tedious)
ase whereM(s) is empty, i.e., s
ontains a long substring ofsmall periodi
ity, is omitted.Let s 2 G be a in�x of t. With the assump-tion that jM(s)j > 0, we have a breakpoint i inprote
tedj(s). Hen
e in shrink j(t)) there is an in-dex i0, with An
(i0), whi
h aligns with i by Lem-ma 3.3). Then it suÆ
es to show that the
ontextstring asso
iated to An
(i0)
overs all of s. In Lem-ma 3.4 we show this is satis�ed by
hoosing lb(i) =max(f j 2 BP(x) j j[j::i℄ \ BP(x)j > 16� g [f 1 g)and rb(i) = min(f j 2 BP(x) j j[i::j℄ \ BP(x)j >16� g [f jxj g). With suÆ
ient large
ontext stringswe
an �nd all o

urren
es using the range sear
hstru
ture Rj following the approa
h from Se
tion 3.2.Write s = s1s2, where s1 = s[1::o�setjs(i) � 1℄. Thenext lemma states that for every breakpoint i0 thataligns with i, the an
hor asso
iated i0 has suÆ
ientlylarge
ontext information with respe
t to s.Lemma 3.4. Let s; t 2 G. Let i0 be any breakpointin shrink j(t) whi
h aligns with index i in shrink j(s).Write s = s1s2, where s1 = s[1::o�setjs(i) � 1℄ andlet (t1; t2; e) = An
(i0) 2 Rj . Then js1j � jt1j andjs2j � jt2j, i.e., l
s(s1; t1) = s1 and l
p(s2; t2) = s2.

Proof. Let p be the o�set of the o

urren
e of s in trelative to the alignment of i0 to i. Let t = t0 s t00 su
hthat jt0j = p� 1. By Lemma 3.1(i) we
an write:shrink j(t) = pref�(shrink j(t0))w1 inf�(shrink j(s))w2 suf�(shrink j(t00)); where jw1j; jw2j � 2�. Letv = shrink j(t)[lb(i0)::i0 � 1℄. By the de�nition of anan
hor t1 = v. Re
all that i and i0 are aligned andhen
e we only need to show that either lb(i0) = 1or lb(i0) is an index in pref�(shrink j(t0)) in orderto establish jt1j � js1j. From de�nition of the leftboundary we have lb(i0) = 1 or jBP(v)j = 16�. Sin
ejBP(w1inf�(shrink j(s)))j � jBP(shrink j(s))j+2� �14� a

ording to Lemma 3.2, lb(i0) must be an indexin pref�(shrink j(t0)). A similar argument showsjs2j � jt2j.3.4 Sear
hing A sear
h operation is
arried out inthree steps:1. Find level j a

ording to Lemma 3.2, and abreakpoint i 2 M(s). Compute the o�set p =o�setjs(i) of i in s.2. Constru
t and insert the strings s1 = s[1::p� 1℄,s2 = s[p::jsj℄, $s1 and s2$ into F using the Splitand Con
atenate operations on s 2 F .3. Report o

urren
es (represented as nodes in L)using the range sear
h stru
ture Rj .In order to determine the quantities in step 1.above we show that it is suÆ
ient to examine aportion of size O(�) of the signature en
oding of s.First if jpow 0(s)j � 12� we let j = 0. Otherwisewe expand the signature strings of s starting from theroot signature until we rea
h a level j su
h that Case2 is satis�ed for j. Then by the Lemma 3.5 below, we
an eÆ
iently derive the quantities i and p needed inaddition to j for step 1. Re
all from Se
tion 2 thatwe
an expand a signature string to the next levelusing the inverse mapping Sig�1 in time linear to thelength of the expanded string. Hen
e the total timeto expand level by level until the string pow j(s) isexpanded for a level j satisfying jshrink j(s)j > 3�and jBP(shrink j(s))j = jpow j(s)j � 12� (Case 2),is bounded by the total length of these expandedsignature strings, i.e., bounded by O(jpow j(s)j) =O(�). Note that by Lemma 3.2 Case 2 will besatis�ed at some stage in the absen
e of Case 1. Inorder to e�e
tively test whether a level j satis�es Case2, we need to test whether the length of shrink j(s)ex
eeds 3� without a
tually expanding it to its fulllength (unbounded in terms of �). By i) in thelemma below we
an �nd the length of shrink j(s) intime O(�) on basis of the expanded string pow j(s).

Finally ii) and iii) of this lemma provide us with theremaining quantities for step 1.Lemma 3.5. In time linear to the length of pow j(s)we
an determine the following: i) the length ofshrink j(s), ii) the �rst prote
ted breakpoint i 2M(s)(if it exists), iii) the o�set o�setjs(i) of the breakpointi.Proof. Let m = jpow j(s)j. In time O(m) we
an
ompute the list Sig�1(pow j(s)) = (�1; l1);(�1; l2); : : : ; (�m; lm) where ea
h pair (�k ; lk)
orre-sponds to substring �lkk in shrink j(s) a

ording to thede�nition of the signature en
oding in Se
tion 2. i) issimply determined by
omputing the sumPl=mk=1 lk =jshrink j(s)j. ii) Let u = minwPk=wk=1 lk > �. Thenthe �rst prote
ted breakpoint is i = Pk=uk=1 lk, andhen
e i
an be determined by summing at most� terms lk to obtain su
h u and i. Note that ifjshrink j(s)j � i < � there is no su
h breakpoint inM(s) whi
h we assumed not o

urs. iii) To ea
h sig-nature �k 1 � k � m, the signature en
oding ofs provide us with the lengths of expanded strings�k. Hen
e we
an determine the sum o�setjs(i) =(Pk=u�1k=1 lkj�kj) + (lu � 1)j�uj + 1 in time boundedby the number of these terms, bounded by O(m).We
on
lude that the time to �nd j satisfyingCase 1. or 2., expand the signature strings untilpow j(s), and the
omputation of the quantities forstep 1. on basis of this string, by the dis
ussion aboveand Lemma 3.5 takes time O(�).Let s1 = s[1::p� 1℄, and s = s1s2. A

ording toTheorem 2.2 we
an in time O(logn log� n)
onstru
tand insert s1; s2; $s1; s2$ into F . With these stringsin F we
an perform step 3, using the approa
hfrom Se
tion 3.2, in time O(logn log logn + o

)whi
h dominates the total sear
h time. If P is anexternal string, we use additional O(jP j) time forprepro
essing P , the lexi
ographi
 order of P withany other string in F
an
he
ked in
onstant time.3.5 Con
atenate and split In this se
tion wedes
ribe how to perform
on
atenation of two stringsin G. The split operation for a string in G is done ina similar manner and omitted.3.5.1 Con
atenate(s1; s2) Consider two stringss1; s2 2 G where we want to
ompute the
on
ate-nation s = s1s2 and insert this string s into G, de-stroying s1 and s2. First the signature en
oding fors is
omputed and inserted into the auxiliary stringfamily F through the Con
atenate operation forthis family. Next a new list l(s) for s is
reated by

joining l(s1) and l(s2). This means that the node in-formation asso
iated the an
hors in the various rangesear
h stru
tures Rj is
onsidered as nodes in l(s) in-stead.The main part of the
omputation
onsists of re-stru
turing the various range sear
h stru
tures Rjsu
h that they
ontain an
hors with respe
t to thenew
ontext information relevant for s. From Lem-ma 3.1(ii) we have thatshrink i(s) = pref�(shrink i(s1))wi suf�(shrink i(s2));where jwij � 2�. We will only be
on
erned withasso
iating an
hors properly to the breakpoints (the
onstru
ting of shrink i(s) is a part of the persistentdata stru
ture). We have� The an
hors asso
iated to the suÆx and pre-�x of length � to respe
tively shrink i(s1) andshrink i(s2) should be deleted from Ri.� The an
hors in pref�(shrink i(s1)) andsuf�(shrink i(s2)) whi
h are depended onwi should be updated.� New an
hors should be asso
iated to the O(�)breakpoints in wi.We will des
ribe how to asso
iate an
hors tobreakpoints in wi and
onstru
t new an
hors for thoseoutside wi with a�e
ted
ontext. Removal of an-
hors are done in a similarly way and thus omit-ted. First we show that at most O(�) new an-
hor have to be
onstru
ted. An an
hor to a break-point k does by de�nition only depend of index l thenumber of breakpoints between k and l are O(�).Hen
e, at most O(�) breakpoints in shrink i(s1) andshrink i(s2) should have their asso
iated an
hors up-dated, thus bounding the total number of new an-
hors to be
reated to O(�). By the same argumentit follows that an in�x IP (i) of pow i(s) of size O(�)
overs all these breakpoints in shrink i(s), and in
lud-ing the indi
es these
ontext strings depends on. Sim-ilar to the sear
h routine above we will update an-
hors in shrink i(s) using pow i(s). However we onlyexpand to the next level in order to get IP (i). Thete
hnique to do this is (tedious and) similar to thesear
h routine, and omitted here. Let l be the leftmost index in IP (i). Given the o�set o�set is(l � 1)and IP (i) we pro
eed to show how to
ompute thenew an
hors. Ea
h signature in IP (i) represents abreakpoint for an index in shrink i(s). Denote thean
hor for index k in shrink i(s) as An
0(k). S
an-ning IP (i) we dete
t lb(k) and rb(k) in O(�) time.Using Lemma 3.5 and adding o�set is(l�1) we get the

o�sets o�set is(k), o�set is(lb(k)), and o�set is(rb(k)) intime O(�). Using the tree stru
ture asso
iated tothe list l(s) we
ompute the node l(s)[o�set is(k)℄ intime O(logn). Finally by applying the persistentSplit operation on s 2 F for the o�sets, the two
ontext strings for the an
hor are generated in F inO(logn log� n) time a

ording to Theorem 2.2. Thenew an
hor is inserted in the range sear
h stru
tureRi in time O(logn log logn), see [8℄.In total, at ea
h of the O(logn) levels weupdate O(�) an
hors in time O(logn log� n)and insert/delete these in an range sear
hstru
ture in time O(logn log logn), summing toO((logn log� n) � (logn log� n + logn log logn)) =O(log2 n log logn log� n).4 Persistent stringsWe represent a persistent string s by the root-signature � of a signature en
oding of s. We denotethis the impli
it representation of s. This impliesthat a string
an be stored in a single word plusthe spa
e required to store the signature fun
tionSig . The lower levels of the signature en
oding ofs
an be extra
ted from � by re
ursively applyingSig�1, espe
ially the neighborhoods of a signaturein a signature string whi
h need to be
onsideredby the di�erent operations
an be
onstru
ted whenrequired.We would like to note, that this is an essentialdi�eren
e
ompared to the representation used inMehlhorn et al. [23℄. They represent a string by apersistent data stru
ture whi
h
onsists of a linkedlist of rooted trees, ea
h tree storing one level of thesignature en
oding of the string. Their representationimplies an overhead of O(logn) for a

essing ea
hlevel of the en
oding of a string. Our simpli�edrepresentation avoids this overhead.By using the impli
it representation of strings weget Lemma 4.1 below, improving and extending theresult of Mehlhorn et al. [23℄.Lemma 4.1. The operations String and Equal
anbe supported in O(1) time, Con
atenate, Split,and LCSuffix in time O(logn log�N) time, andLCPrefix and Compare in O(logn) time, wheren is the length of strings involved in the operations.Proof. The operation String(a) returns Sig(a), andEqual(s1; s2) returns true if and only if the root-signatures of the signature en
odings of s1 and s2 areidenti
al. The details of the other operations will begiven in the full version of the paper.

4.1 Maintaining strings sorted In this se
tionwe prove Theorem 2.2, i.e., we des
ribe how to re-du
e the time for performing
omparisons on per-sistent strings to O(1) time while maintaining theasymptoti
 times for the update operations String,Con
atenate and Split ex
ept for an additivelog j�j term. The ideas used are: i) keep all persis-tent strings lexi
ographi
al sorted, and ii) asso
iatewith ea
h string s a key key(s), su
h that two strings
an be
ompared by
omparing their asso
iated keysin O(1) time.Data stru
tures for maintaining order in alist have been developed by Dietz [7℄, Dietz andSleator [9℄ and Tsakalidis [27℄. The data stru
-ture of Dietz and Sleator [9℄ supports Insert(x; y),Delete(x) and Order(x; y) operations in worst-
ase O(1) time. The operation Insert(x; y) insertselement y after x in the list, and Delete(x) deletesx from the list. The query Order(x; y) returns if xis before y in the list.The key we asso
iate with ea
h persisten-t string is a \handle" given by the data stru
-ture of Dietz and Sleator [9℄. A Compare(s1; s2)query
an now be answered in worst-
ase O(1)time by applying Equal(s1; s2) and by applyingOrder(key(s1); key(s2)).In the remaining of this se
tion we des
ribe hownew strings
reated by String, Con
atenate andSplit
an be added to the lexi
ographi
al sorted listof strings, i.e., how to lo
ate where to insert newstrings into the data stru
ture of Dietz and Sleator. Astraightforward implementation is to store the stringsas elements in a balan
ed sear
h tree and to use theCompare operation when sear
hing in the sear
htree. This implementation requires O(logm logn)time for ea
h string
reated, where m is the numberof strings stored. By maintaning a
olle
tion of trieswe
an avoid the logm fa
tor. Details are left for thefull version of the paper.Referen
es[1℄ A. Apostoli
o and Z. Galil. Pattern mat
hingalgorithms. Oxford university press, 1997.[2℄ P. Atzeni and G. Me

a. Cut and paste. In16th Ann. ACM Symp. on Prin
iples of DatabaseSystems (PODS), pages 144{153, 1997.[3℄ R. Boyer and J. Moore. A fast string sear
hingalgorithm. Comm. ACM, 20:762{772, 1977.[4℄ S. Cheng and M. Ng. Isomorphism testing anddisplay of symmetries in dynami
 trees. In Pro
.7th ACM-SIAM Symposium on Dis
rete Algorithms(SODA), pages 202{211, 1996.

[5℄ R. Cole and U. Vishkin. Deterministi

oin tossingwith appli
ations to optimal parallel list ranking.Information and Control, 70:32{53, 1986.[6℄ T.H. Cormen, C.E. Leiserson and R.L. Rivest. In-trodu
tion to algorithms. The MIT ele
tri
al engi-neering and
omputer s
ien
e series, Eight printing1992,
hapter 34.[7℄ Paul F. Dietz. Maintaining order in a linked list. InPro
. 14th Ann. ACM Symp. on Theory of Comput-ing (STOC), pages 122{127, 1982.[8℄ Paul F. Dietz and Rajeev Raman. Persisten
e,amortization and randomization. In Pro
. 2ndACM-SIAM Symposium on Dis
rete Algorithms(SODA), pages 78{88, 1991.[9℄ Paul F. Dietz and Daniel D. Sleator. Two algo-rithms for maintaining order in a list. In Pro
. 19thAnn. ACM Symp. on Theory of Computing (STOC),pages 365{372, 1987.[10℄ M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Mey-er auf der Heide, H. Rohnert, and Robert EndreTarjan. Dynami
 perfe
t hashing: Upper and lowerbounds. In Pro
. 29th Ann. Symp. on Foundationsof Computer S
ien
e (FOCS), pages 524{531, 1988.[11℄ P. Ferragina. Dynami
 data stru
tures for stringmat
hing problems. Ph.D. Thesis:TD{3/97., De-partment of informati
a, University of Pisa.[12℄ P. Ferragina. Dynami
 text indexing under stringupdates. Journal of algorithms., 22(2):296{328,1997. See also (ESA'94).[13℄ P. Ferragina and R. Grossi. Fast in
remental textindexing In Pro
. 6th ACM-SIAM Symposium onDis
rete Algorithms (SODA), pages 531{540, 1995.[14℄ P. Ferragina and R. Grossi. Optimal on-line sear
hand sublinear time update in string mat
hing. SIAMJournal on Comp., 27(3):713{736, 1998. See alsoFOCS'95.[15℄ G.S. Frandsen, T. Husfeldt, P.B. Miltersen,T. Rauhe and S. Skyum. Dynami
 Algorithms forthe Dy
k Languages. In Pro
. 4th Workshop on Al-gorithms and Data Stru
tures (WADS), pages 98{108, 1995.[16℄ Mi
hael L. Fredman and Dan E. Willard. Sur-passing the information theoreti
 bound with fusiontrees. Journal of Computer and System S
ien
es,47:424{436, 1993.[17℄ A. V. Goldberg, S. A. Plotkin, and G. E. Shannon.Parallel symmetry-breaking in sparse graphs. SIAMJ. Dis
rete Math., 1(4):434{446, 1988.[18℄ M. Gu, M. Fara
h and R. Beigel. An eÆ
ientalgorithm for dynami
 text indexing. In Pro
.5th ACM-SIAM Symposium on Dis
rete Algorithms(SODA), pages 697{704, 1994.[19℄ D. Knuth, J. Morris, and V. Pratt. Fast patternmat
hing in strings. SIAM Journal on Comp., pages63{78, 1977.[20℄ E. M
Creight. A spa
e{e
onomi
al suÆx tree
on-tru
tion algorithm. Journal of the ACM, 23(2):262{272, 1976.

[21℄ J. Meidanis and J. Setubal. Introdu
tion to
ompu-tational mole
ular biology. PWS Publishing Compa-ny, a division of international Thomson publishingIn
., �rst print 1997.[22℄ Kurt Mehlhorn. Data Stru
tures and Algorithms1: Sorting and Sear
hing. Springer Verlag, Berlin,1984.[23℄ Kurt Mehlhorn, R. Sundar, and Christian Uhrig.Maintaining dynami
 sequen
es under equality testsin polylogarithmi
 time. Algorithmi
a, 17(2):183{198, 1997.[24℄ S.C. Sahinalp and U. Vishkin. EÆ
ient approximateresults and dynami
 mat
hing of patterns usinga label paradigm. In Pro
. 37th Ann. Symp. onFoundations of Computer S
ien
e (FOCS), pages320{328, 1996.[25℄ G.A. Stephen. String sear
hing algorithms. WorldS
ienti�
 publishing
ompany, 1995.[26℄ Mikkel Thorup. Undire
ted single sour
e shortestpaths in linear time. In Pro
. 38th Annual Sympo-sium on Foundations of Computer S
ien
e (FOCS),pages 12-21, 1997.[27℄ A. K. Tsakalidis. Maintaining order in a generalizedlist. A
ta Informati
a, 21(1):101{112, 1984.[28℄ E. Ukkonen. On{line
onstru
tion of suÆx trees.Algorithmi
a, 14(3):249{260, 1995.[29℄ M.S. Waterman Introdu
tion to
omputationalbiology. Chapman and Hall, Se
ond printing 1996.[30℄ P. Weiner. Linear pattern mat
hing algorithm. InIEEE Symp. on Swit
hing and Automata Theory(now FOCS), pages 1{11, 1973.

