
Lines: 500

Dynamic Convex Hulls for Simple Paths
Bruce Brewer !

Kahlert School of Computing, University of Utah, Salt Lake City, UT 84112, USA

Gerth Stølting Brodal !

Department of Computer Science, Aarhus University, Aabogade 34, 8200 Aarhus N, Denmark.

Haitao Wang !

Kahlert School of Computing, University of Utah, Salt Lake City, UT 84112, USA

Abstract1

We consider two restricted cases of the planar dynamic convex hull problem with point insertions2

and deletions. We assume all updates are performed on a deque (double-ended queue) of points.3

The first case considers the monotonic path case, where all points are sorted in a given direction, say4

horizontally left-to-right, and only the leftmost and rightmost points can be inserted and deleted.5

The second case, which is more general, assumes that the points in the deque constitute a simple6

path. For both cases, we present solutions supporting deque insertions and deletions in worst-case7

constant time and standard queries on the convex hull of the points in O(logn) time, where n is the8

number of points in the current point set. The convex hull of the current point set can be reported9

in O(h+ logn) time, where h is the number of edges of the convex hull. For the 1-sided monotone10

path case, where updates are only allowed on one side, the reporting time can be reduced to O(h),11

and queries on the convex hull are supported in O(log h) time. All our time bounds are worst case.12

In addition, we prove lower bounds that match these time bounds, and thus our results are optimal.13

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Dynamic convex hull, convex hull queries, simple paths, path updates, deque

Related Version Full Version: https://arxiv.org/abs/2403.05697

Funding Bruce Brewer : Supported in part by NSF under Grant CCF-2300356.
Gerth Stølting Brodal: Supported by Independent Research Fund Denmark, grant 9131-00113B.
Haitao Wang: Supported in part by NSF under Grant CCF-2300356.

1 Introduction14

Computing the convex hull of a set of n points in the plane is a classic problem in compu-15

tational geometry. In the static setting, several algorithms can compute the convex hull in16

O(n logn) time [2,14], or in output-sensitive O(n log h) time [7,23]; we use h to denote the17

size of the convex hull throughout the paper. Linear time is also possible for certain special18

cases, e.g., if points are sorted [2, 14] or points are vertices of a simple path [15,25].19

Overmars and van Leeuwen [27] studied the problem in the dynamic context where points20

can be inserted and deleted. Their data structure can support the insertion and deletion21

of points in O(log2 n) time, where n is the number of points stored. The convex hull itself22

can be output in O(h) time and queries on the convex hull can be answered in O(logn)23

time. Some example convex hull queries are (see Figure 1): Determine whether a point q is24

outside the convex hull, and if yes, compute the tangents (i.e., find the tangent points) of the25

convex hull through q. Given a direction ρ, compute an extreme point on the convex hull26

along ρ. Given a line `, determine whether ` intersects the convex hull, and if yes, find the27

two edges (bridges) on the convex hull intersected by `. Tangent and extreme point queries28

are examples of decomposable queries, which are queries whose answers can be obtained29

in constant time from the query answers for any constant number of subsets that form a30

partition of the point set. In contrast, bridge queries are not decomposable.31

© Bruce Brewer, Gerth Stølting Brodal, Haitao Wang;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Computational Geometry (SoCG 2024).
Editors: Wolfgang Mulzer and Jeff M. Phillips; Article No.XX; pp.XX:1–XX:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bruce.brewer@utah.edu
mailto:gerth@cs.au.dk
mailto:haitao.wang@utah.edu
https://arxiv.org/abs/2403.05697
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Dynamic Convex Hulls for Simple Paths

p1
pn

t1

t2

e1

e2

pρ

ρ
q

`

Figure 1 The convex hull (dashed) of a simple path p1, . . . , pn (solid). Three types of convex hull
queries are shown (dotted): the tangent points t1 and t2 with a query point q outside the convex hull;
the extreme point pρ in direction ρ; and the two convex hull edges e1 and e2 intersecting a line `.

32

33

34

Chan [8] improved the update (insertion/deletion) time to amortized O(log1+ε n), for35

any ε > 0. Tangent and extreme point queries are supported in O(logn) time, and the convex36

hull can be reported in O(h logn) time. The bridge query time was increased to O(log3/2 n).37

The update time was subsequently improved to amortized O(logn log logn) by Brodal and38

Jacob [3] and Kaplan, Tarjan, Tsioutsiouliklis [22], and to amortized O(logn) by Brodal39

and Jacob [4]. Chan [9] improved the time for bridge queries to 2O
(√

log log n log log log n
)

logn,40

with the same amortized update time. It is known that sub-logarithmic update time and41

logarithmic query time are not possible. For example, to achieve O(logn) time extreme point42

queries, an amortized update time Ω(logn) is necessary [3].43

In this paper, we consider the dynamic convex hull problem for restricted updates, where46

we can achieve worst-case constant update time and logarithmic query time. In particular,47

we assume that the points are inserted and deleted in a deque (double-ended queue) and that48

they are geometrically restricted. We consider two restrictions: The first is the monotone49

path case, where all points in the deque are sorted in a given direction, say horizontally50

left-to-right, and only the leftmost and rightmost points can be inserted and deleted. The51

second case allows the points to form a simple path, where updates are restricted to both52

ends of the path. The simple path problem was previously studied by Friedman, Hershberger,53

and Snoeyink [13], who supported deque insertions in amortized O(logn) time, deletions in54

amortized O(1) time, and queries in O(logn) time. Bus and Buzer [6] considered a special55

case of the problem where insertions only happen to the “front” end of the path and deletions56

are only on points at the “rear” end. They achieved O(1) amortized update time to support57

O(h) time hull reporting. However, hull queries were not considered in [6]. Wang [33] recently58

considered a special monotone path case where updates are restricted to queue-like updates,59

i.e., insert a point to the right of the point set and delete the leftmost point of the point set.60

Wang called it window-sliding updates and achieved amortized constant time updates, hull61

queries in O(log h) time,1 and hull reporting in O(h) time.62

1 The runtime was O(logn) in the conference paper but was subsequently improved to O(log h) in the
arXiv version https://arxiv.org/abs/2305.08055.

44

45

https://arxiv.org/abs/2305.08055

B. Brewer, G. S. Brodal, and H. Wang XX:3

Table 1 Known and new results for dynamic convex hull on paths. OA are amortized time
bounds. – denotes operation is not supported. For an update, h denotes the maximum size of the
hull before and after the update. DL = delete left, IR = insert right, etc.

90

91

92

93 Reference DL IL IR DR Queries Reporting
No geometric restrictions

94 Preparata [28] + rollback – – O(log h) O(log h) O(log h) O(h)
Monotone path

95 Andrews’ sweep [2] – OA(1) OA(1) – O(log h) O(h)
96 Wang [33] OA(1) – OA(1) – O(log h) O(h)
97 New (Theorem 5) O(1) O(1) O(1) O(1) O(logn) O(h+ logn)
98 New (Theorem 6) – – O(1) O(1) O(log h) O(h)

Simple path
99 Friedman et al. [13] OA(1) OA(logn) OA(logn) OA(1) O(logn) –

100 Bus and Buzer [6] OA(1) – OA(1) – – O(h)
101 New (Theorem 7) O(1) O(1) O(1) O(1) O(logn) O(h+ logn)

1.1 Our results63

We present data structures for the monotone path and the simple path variants. For both64

problems, we support deque insertions and deletions in worst-case constant time. We can65

answer extreme point, tangent, and bridge queries in O(logn) time, and we can report the66

convex hull in O(h+ logn) time. For the one-sided monotone case, where updates are only67

allowed on one side, the reporting time can be reduced to O(h), and convex hull queries are68

supported in O(log h) time. That is, they are only dependent on the current hull size and69

independent of the number of points in the set. In addition, we show that these time bounds70

are the best possible by proving matching lower bounds. The previous and new bounds for71

the various versions of the dynamic convex hull problem are summarized in Table 1.72

Our results are obtained by a combination of several ideas. To support deque updates,73

we partition the deque into left and right parts and treat these parts as two independent74

stack problems. Queries then need to compose the convex hull information from both the75

stack problems. This strategy has previously been used by Friedman, Hershberger, and76

Snoeyink [13] and by Wang [33]. To support deletions in the stack structures, we store77

rollback information when performing insertions. When one of the stacks becomes nearly78

empty, we repartition the deque into two new stacks of balanced sizes. To achieve worst-case79

bounds, the repartition is done with incremental global rebuilding ahead of time [26]. To80

achieve worst-case insertion time, we perform incremental merging of convex hull structures,81

where we exploit that the convex hulls of two horizontally separated sets can be combined in82

worst-case O(logn) time [27] and that the convex hulls of a bipartition of a simple path can83

be combined in O(log2 n) time [16]. To reduce the query bounds for the 1-sided monotone84

path problem to be dependent on h instead of n, we adopt ideas from Sundar’s priority queue85

with attrition [30]. In particular, we partition the stack of points into four lists (possibly86

with some interior points removed), of which three lists are in convex position, and three87

lists have size O(h). We believe this idea is interesting in its own right as, to our knowledge,88

this is the first time Sundar’s approach has been used to solve a geometric problem.89

SoCG 2024

XX:4 Dynamic Convex Hulls for Simple Paths

1.2 Other related work102

Andrew’s algorithm [2] is an incremental algorithm that explicitly maintains the convex hull103

of the points considered so far. It can add the next point to the right and left of the convex104

hull in amortized O(1) time. Preparata [28] presented an insertion-only solution maintaining105

the convex hull in an AVL tree [1] that supports the insertion of an arbitrary point in O(log h)106

time, queries on the convex hull in O(log h) time, and reporting queries in O(h) time. For107

the stack version, where updates form a stack, a general technique to support deletions is by108

having a stack of rollback information, i.e., the changes performed by the insertions. The109

time bound for deletions will then match that for insertions, provided that insertion bounds110

are worst-case. Applying this idea to [28], we have a stack dynamic convex hull solution with111

O(log h) time updates. Note that these time bounds hold for arbitrary new points inserted112

without geometric restrictions. The only limitation is that updates form a stack.113

Hershberger and Suri [19] considered the offline version of the dynamic convex hull114

problem, assuming the sequence of insertions and deletions is known in advance, supporting115

updates in amortized O(logn) time. Hershberger and Suri [20] also considered the semi-116

dynamic deletion-only version of the problem, supporting initial construction and a sequence117

of n deletions in O(n logn) time.118

Given a simple path of n vertices, Guibas, Hershberger, and Snoeyink [16] considered the119

problem of building a data structure so that the convex hull of a query subpath (specified by120

its two ends) can be (implicitly) constructed to support queries on the convex hull. Using a121

compact interval tree, they gave a data structure of O(n log logn) space with O(logn) query122

time. The space was recently improved to O(n) by Wang [32]. There are also other problems123

in the literature regarding convex hulls for simple paths. For example, Hershberger and124

Snoeyink [18] considered the problem of maintaining convex hulls for a simple path under125

split operations at certain extreme points, which improves the previous work in [11].126

Notation. We define some notation that will be used throughout the paper. For any127

compact subset R of the plane (e.g., R is a set of points or a simple path), let H(R) denote128

the convex hull of R and let |H(R)| denote the number of vertices of H(R). We also use ∂R129

to denote the boundary of R.130

For a dynamic set P of points, we define the following operations: InsertRight: Insert131

a point to P that is to the right of all of the points of P ; DeleteRight: Delete the132

rightmost point of P ; InsertLeft: Insert a point to P that is to the left of all the points133

of P ; DeleteLeft: Delete the leftmost point of P ; HullReport: Report the convex134

hull H(P) (i.e., output the vertices of H(P) in cyclic order around H(P)). We also use135

StandardQuery to refer to standard queries on H(P). This includes all decomposable136

queries like extreme point and tangent queries. It also includes certain non-decomposable137

queries like bridge queries. Other queries, such as deciding if a query point is inside H(P),138

can be reduced to bridge queries.139

We define the operations for the dynamic simple path π similarly. For convenience, we140

call the two ends of π the rear end and the front end, respectively. As such, instead of “left”141

and “right”, we use “rear” and “front” in the names of the update operations. Therefore,142

we have the following four updates: InsertFront, DeleteFront, InsertRear, and143

DeleteRear, in addition to HullReport and StandardQuery as above.144

Outline. We present our algorithms for the monotone path problem in Section 2 and for145

the simple path problem in Section 3. Due to the space limit, many details and proofs are146

omitted but can be found in the full paper.147

B. Brewer, G. S. Brodal, and H. Wang XX:5

2 The monotone path problem148

In this section, we study the monotone path problem where updates occur only at the extremes149

in a given direction, say, the horizontal direction. That is, given a set of points P ⊂ R2, we150

maintain the convex hull of P , denoted by H(P), while points to the left and right of P151

may be inserted to P and the rightmost and leftmost points of P may be deleted from P .152

Throughout this section, we let n denote the size of the current set P and h = |H(P)|. For153

ease of exposition, we assume that no three points of P are collinear.154

If updates are allowed at both sides (resp., at one side), we denote it the two-sided (resp.155

one-sided) problem. We call the structure for the two-sided problem the “deque convex hull,”156

where we use the standard abbreviation deque to denote a double-ended queue (according157

to Knuth [24, Section 2.2.1], E. J. Schweppe introduced the term deque). The one-sided158

problem’s structure is called the “stack convex hull”.159

In what follows, we start with describing a “stack tree” in Section 2.1, which will be used160

to develop a “deque tree” in Section 2.2. We will utilize the deque tree to implement the161

deque convex hull in Section 2.3 for the two-sided problem. The deque tree, along with ideas162

from Sundar’s priority queues with attrition [30], will also be used for constructing the stack163

convex hull in Section 2.4 for the one-sided problem.164

2.1 Stack tree165

Suppose P is a set of n points in R2 sorted from left to right. Consider the following166

operations on P (assuming P = ∅ initially). (1) InsertRight; (2) DeleteRight; (3)167

TreeRetrieval: Return the root of a balanced binary search tree (BST) that stores all168

points of the current P in the left-to-right order. We have the following lemma.169

I Lemma 1. Let P be an initially empty set of n points in R2 sorted from left to right. There170

exists a “Stack Tree” ST (P) for P supporting the following operations: (1) InsertRight:171

O(1) time; (2) DeleteRight: O(1) time; (3) TreeRetrieval: O(logn) time.172

Remark. Note that the statement of Lemma 1 is not new. Indeed, one can simply use a173

finger search tree [5, 17,31] to store P to achieve the lemma (in fact, TreeRetrieval can174

even be done in O(1) time). We propose a stack tree as a new implementation for the lemma175

because it can be applied to our dynamic convex hull problem. When we use the stack tree,176

TreeRetrieval will be used to return the root of a tree representing the convex hull of P ;177

in contrast, simply using a finger search tree cannot achieve the goal (the difficulty is how to178

efficiently maintain the convex hull to achieve constant time update). Our stack tree may be179

considered a framework for Lemma 1 that potentially finds other applications as well.180

Structure of the stack tree. The stack tree ST (P) consists of a sequence of trees Ti for181

i = 0, 1, . . . , dlog logne. Each Ti is a balanced BST storing a contiguous subsequence of P182

such that for any j < i, all points of Ti are to the left of each point of Tj . The points of183

all Ti’s form a partition of P . We maintain the invariant that |Ti| is a multiple of 22i and184

0 ≤ |Ti| ≤ 22i+1 , where |Ti| represents the number of points stored in Ti. (The right side of `185

in Figure 2 is a stack tree).186

To achieve worst-case constant time insertions, the process of joining two trees is performed187

incrementally over subsequent insertions. Specifically, we apply the recursive slowdown188

technique of Kaplan and Tarjan [21], where every 2i+1-th insertion, i ≥ 1, performs delayed189

incremental work toward joining Ti−1 with Ti, if such a join is deemed necessary.190

SoCG 2024

XX:6 Dynamic Convex Hulls for Simple Paths

22
0

22
1

22
⌈log logn−1⌉

22
⌈log logn⌉

22
0

22
1

22
⌈log logn−1⌉

22
⌈log logn⌉

ℓ

Stack Tree STL(PL) Stack Tree STR(PR)

Figure 2 Illustrating a deque tree, comprising two stack trees separated by the vertical line `.191

Remark. The critical observation of our algorithm is that because the ranges of the trees192

do not overlap, we can join adjacent trees Ti and Ti+1 to obtain (the root) of a new balanced193

BST that stores all points in Ti ∪ Ti+1 in O(log(|Ti| + |Ti+1|)) time. Later in the paper194

we generalize this idea to horizontally neighboring convex hulls which can be merged in195

O(log(|H(Ti)| + |H(Ti+1)|)) time [27] and to convex hulls over consecutive subpaths of a196

simple path which can be merged in O(log |H(Ti)| · log |H(Ti+1)|) time [16].197

InsertRight. Suppose we wish to insert into P a point p that is right of all points of P .198

We start with inserting p into the tree T0, which takes O(1) time as |T0| = O(1). Next, we199

perform O(1) delayed incremental work on a tree Ti for a particular index i. To determine i,200

we maintain a counter N that is a binary number. Initially, N = 1, and it is an invariant201

that N = 1 + n. For each insertion, we increment N by one and determine the index i of the202

digit which flips from 0 to 1, indexed from the right where the rightmost digit has index 0.203

Note that there is exactly one such digit. Then, if i ≥ 1, we perform incremental work on Ti204

(i.e., joining Ti−1 with Ti). To find the digit i in O(1) time, we represent N by a sequence205

of ranges, where each range represents a contiguous subsequence of digits of 1’s in N . For206

example, if N is 101100111, then the ranges are [0, 2], [5, 6], [8, 8]. After N is incremented by207

one, N becomes 101101000, and the ranges become [3, 3], [5, 6], [8, 8]. Therefore, based on208

the first two ranges in the range sequence, one can determine the digit that flips from 0 to 1209

and update the range sequence in O(1) time (note that this can be easily implemented using210

a linked list to store all ranges, without resorting to any bit tricks).211

After i is determined, we perform incremental work on Ti as follows. We use a variable nj212

to maintain the size of each tree Tj , i.e., nj = |Tj |. For each tree Tj , with j ≥ 1, we say213

that Tj is “blocked” if there is an incremental process for joining a previous Tj−1 with Tj214

(more details to be given later) and “unblocked” otherwise (T0 is always unblocked). If Ti215

is blocked, then there is an incremental process for joining a previous Ti−1 with Ti. This216

process will complete within time linear in the height of Ti, which is O(2i), since |Ti| ≤ 22i+1 .217

We perform the next c steps for the process for a sufficiently large constant c. If the joining218

process is completed within the c steps, we set Ti to be unblocked.219

Next, if Ti is unblocked and ni ≥ 22i+1 (in this case by Observation 2 ni is exactly equal220

to 22i+1), our algorithm maintains the invariant that Ti+1 must be unblocked by Lemma 3.221

In this case, we first set Ti+1 to be blocked, and then we start an incremental process to222

join Ti with Ti+1 without performing any actual steps. For reference purpose, let T ′i refer to223

the current Ti and let Ti start over from ∅. Using this notation, we are actually joining T ′i224

with Ti+1. Although the joining process has not been completed, we follow the convention225

B. Brewer, G. S. Brodal, and H. Wang XX:7

that T ′i is now part of Ti+1; hence, we update ni+1 = ni+1 + ni. Also, since Ti is now empty,226

we reset ni = 0. This finishes the work due to the insertion of p. See the full paper for the227

proofs of Observation 2 and Lemma 3.228

I Observation 2. 1. If ni ≥ 22i+1 , then ni = 22i+1 .229

2. It holds that ni = 0 or 22i ≤ ni ≤ 22i+1 for i ≥ 1, and n0 ≤ 4.230

I Lemma 3. 1. If n0 ≥ 4, then T1 must be unblocked.231

2. If i ≥ 1 and ni ≥ 22i+1 right after the process of joining Ti−1 with Ti is completed, then232

Ti+1 must be unblocked.233

As we only perform O(1) incremental work, the total time for inserting p is O(1).234

DeleteRight. To perform DeleteRight, we maintain a stack that records the changes235

made on each insertion. To delete a point p, p must be the most recently inserted point, and236

thus all changes made due to the insertion of p are at the top of the stack. To perform the237

deletion, we simply pop the stack and roll back all the changes during the insertion of p.238

TreeRetrieval. To perform TreeRetrieval, we start by completing all incremental joining239

processes. Then, we join all trees Ti’s in their index order. This results in a single BST T240

storing all points of P . In applications, we usually need to perform binary searches on T ,241

after which we need to continue processing insertions and deletions on P . To this end, when242

constructing T as above, we maintain a stack that records the changes we have made. Once243

we are done with queries on T , we use the stack to roll back the changes and return the244

stack tree to its original form right before the TreeRetrieval operation.245

The runtime is O(logn) because the heights of all trees Ti form a geometric series246

(i.e.,
∑dlog log ne

i=1 2i = O(logn)). The detailed analysis can be found in the full paper.247

2.2 Deque tree248

The deque tree is built upon stack trees. We have the following lemma, where Tree-249

Retrieval is defined in the same way as in Section 2.1.250

I Lemma 4. Let P be an initially empty set of n points in R2 sorted from left to right.251

There exists a “Deque Tree” data structure DT (P) for P supporting the following operations:252

(1) InsertRight: O(1) time; (2) DeleteRight: O(1) time; (3) InsertLeft: O(1) time;253

(4) DeleteLeft: O(1) time; (5) TreeRetrieval: O(logn) time.254

The statement of Lemma 4 is not new because we can also use a finger search tree [5, 17]255

to achieve it. Here, we propose a different method for our dynamic convex hull problem.256

DT (P) consists of two stack trees STL(PL) and STR(PR) built from opposite directions,257

where PL and PR are the subsets of P to the left and right of a vertical dividing line `,258

respectively (see Figure 2). To insert a point to the left of P , we insert it to STL(PL). To259

delete the leftmost point of P , we delete it from STL(PL). For insertion/deletion on the260

right side of P , we use STR(PR). For TreeRetrieval, we perform TreeRetrieval on261

both STL(PL) and STR(PR), which result in two balanced BSTs; then, we join these two262

trees into a single one. The time complexities of all these operations are as stated Lemma 4.263

To make this idea work, we need to make sure that neither STL(PL) nor STR(PR) is264

empty. To this end, we apply incremental global rebuilding [26, Section 5.2.2], where we265

dynamically adjust the dividing line `. The details are in the full paper. Note that using two266

stacks to form a deque structure is a natural idea and has been used elsewhere, e.g., [11, 18].267

SoCG 2024

XX:8 Dynamic Convex Hulls for Simple Paths

2.3 Two-sided monotone path dynamic convex hull268

We can tackle the 2-sided monotone path dynamic convex hull problem using the deque269

tree. Suppose P is a set of n points in R2. In addition to the operations InsertRight,270

DeleteRight, InsertLeft, DeleteLeft, HullReport, as defined in Section 1, we also271

consider the operation HullTreeRetrieval: Return the root of a BST of height O(log h)272

that stores all vertices of the convex hull H(P) (so that binary search based operations273

on H(P) can all be supported in O(log h) time). We will prove the following theorem.274

I Theorem 5. Let P ⊂ R2 be an initially empty set of points, with n = |P | and h = |H(P)|.275

There exists a “Deque Convex Hull” data structure DH(P) of O(n) space that supports the276

following operations: (1) InsertRight: O(1) time; (2) DeleteRight: O(1) time; (3)277

InsertLeft: O(1) time; (4) DeleteLeft: O(1) time; (5) HullTreeRetrieval: O(logn)278

time; (6) HullReport: O(h+ logn) time.279

Remark. The time complexities of the four update operations in Theorem 5 are obviously280

optimal. The lower bound proved in the full paper establishes that the other two operations281

are also optimal. In particular, it is not possible to reduce the time of HullTreeRetrieval282

to O(log h) or reduce the time of HullReport to O(h) (but this is possible for the one-sided283

case as shown in Section 2.4).284

The deque convex hull is a direct application of the deque tree from Section 2.2. We285

maintain the upper hull and lower hull of H(P) separately. In the following, we only discuss286

how to maintain the upper hull, as maintaining the lower hull is similar. By slightly abusing287

the notation, let H(P) refer to the upper hull only in the following discussion.288

We use a deque treeDT (P) to maintainH(P). TheDT (P) consists of two stack trees STL289

and STR. Each stack tree is composed of a sequence of balanced search trees Ti’s; each such290

tree Ti stores left-to-right the points of the convex hull H(P ′) for a contiguous subsequence P ′291

of P . We follow the same algorithm as the deque tree with the following changes. During292

the process of joining Ti−1 with Ti, our task here becomes merging the two hulls stored in293

the two trees. To perform the merge, we first compute the upper tangent of the two hulls.294

This can be done in O(log(|Ti−1|+ |Ti|)) time [27]. Then, we split the tree Ti−1 into two295

portions at the tangent point; we do the same for Ti. Finally, we join the relevant portions296

of the two trees into a new tree that represents the merged hull of the two hulls. The entire297

procedure takes O(log(|Ti−1|+ |Ti|)) time. This time complexity is asymptotically the same298

as joining two trees Ti−1 and Ti as described in Section 2.1, and thus we can still achieve299

the same performances for the first five operations as in Lemma 4; in particular, to perform300

HullTreeRetrieval, we simply call TreeRetrieval on the deque tree. Finally, for301

HullReport, we first perform HullTreeRetrieval to obtain a tree representing H(P).302

Then, we perform an in-order traversal on the tree, which can output H(P) in O(h) time.303

Thus, the total time for HullReport is O(h+ logn).304

2.4 One-sided monotone path dynamic convex hull305

Let P be a set of n points in R2. Consider the following operations on P (with P = ∅ initially):306

InsertRight, DeleteRight, HullTreeRetrieval, HullReport, as in Section 2.3.307

Applying Theorem 5, we can perform HullTreeRetrieval in O(logn) time and perform308

HullReport in O(h + logn) time. We have the following theorem, which reduces the309

HullTreeRetrieval time to O(log h) and reduces the HullReport time to O(h).310

B. Brewer, G. S. Brodal, and H. Wang XX:9

I Theorem 6. Let P ⊂ R2 be an initially empty set of points, with n = |P | and h = |H(P)|.311

There exists a “Stack Convex Hull” data structure SH(P) of O(n) space that supports the312

following operations: (1) InsertRight: O(1) time; (2) DeleteRight: O(1) time; (3)313

HullTreeRetrieval: O(log h) time; (4) HullReport: O(h) time.314

The main idea to prove Theorem 6 is to adapt ideas from Sundar’s algorithm in [30] for315

priority queue with attrition as well as the deque convex hull data structure from Section 2.3.316

As in Section 2.4, we maintain the upper and lower hulls of H(P) separately. By slightly317

abusing the notation, let H(P) refer to the upper hull only in the following discussion.318

For any two disjoint subsets P1 and P2 of P , we use P1 ≺ P2 to denote the case where all319

points of P1 are to the left of each point of P2. Our data structure maintains four subsets320

A1 ≺ A2 ≺ A3 ≺ A4 of P . Each Ai, 1 ≤ i ≤ 3, is a convex chain, but this may not be true321

for A4. Further, the following invariants are maintained during the algorithm (which are322

strongly inspired by Sundar’s method [30]): (1) Vertices of H(P) are all in
⋃4

i=1 Ai; (2) A1 is323

a prefix of the vertices of H(P) sorted from left to right; (3) A1 ∪A2 and A1 ∪A3 are both324

convex chains; (4) |A1| ≥ |A3|+ 2 · |A4|. Note that the second and fourth invariants imply325

that |A1|, |A3|, and |A4| are all bounded by O(h), which helps to achieve O(log h) time for326

HullTreeRetrieval and O(h) time for HullReport.327

We omit the details, which can be found in the full paper.328

3 The simple path problem329

In this section, we consider the dynamic convex hull problem for a simple path. Let π be a330

simple path of n vertices in the plane (note that π consists of n− 1 line segments and each331

segment endpoint is defined to be a vertex of π). Unless otherwise stated, a “point” of π332

always refers to a vertex of it (this is for convenience also for being consistent with the notion333

in Section 2). For ease of discussion, we assume that no three vertices of π are colinear.334

For any subpath π′ of π, let |π′| denote the number of vertices of π, and H(π′) the convex335

hull of π′, which is also the convex hull of all vertices of π′.336

We designate the two ends of π as the front end and the rear end, respectively. We consider337

the following operations on π: InsertFront, DeleteFront, InsertRear, DeleteRear,338

StandardQuery, and HullReport, as defined in Section 1. The following theorem339

summarizes the main result of this section.340

I Theorem 7. Let π ⊂ R2 be an initially empty simple path, with n = |π| and h = |H(π)|.341

There exists a “Deque Path Convex Hull” data structure PH(π) of O(n) space that supports342

the following operations: (1) InsertFront: O(1) time; (2) DeleteFront: O(1) time; (3)343

InsertRear: O(1) time; (4) DeleteRear: O(1) time; (5) StandardQuery: O(logn)344

time; (6) HullReport: O(h+ logn) time.345

Remark. The lower bound in the full paper implies that all these bounds are optimal even346

for the “one-sided” case. In particular, it is not possible to reduce the time of HullTree-347

Retrieval to O(log h) or reduce the time of HullReport to O(h). This is why we do not348

consider the one-sided simple path problem separately. For answering standard queries, our349

algorithm first constructs four BSTs representing convex hulls of four (consecutive) subpaths350

of π whose union is π and then uses these trees to answer queries. The height of the two trees351

for the two middle subpaths are O(logn) while the heights of the other two are O(log logn).352

As such, all decomposable queries can be answered in O(logn) time. We show that certain353

non-decomposable queries can also be answered in O(logn) time, such as the bridge queries.354

SoCG 2024

XX:10 Dynamic Convex Hulls for Simple Paths

In what follows, we prove Theorem 7. One crucial property we rely on is that the355

convex hulls of two subpaths of a simple path intersect at most twice and thus have at356

most two common tangents as observed by Chazelle and Guibas [10]. Let π1 and π2 be357

two consecutive subpaths of π. Suppose we have two BSTs representing H(π1) and H(π2),358

respectively. Compared to the monotone path problem, one difficulty here (we refer to it as359

the “path-challenge”) is that we do not have an O(logn) time algorithm to find the common360

tangents between H(π1) and H(π2) and thus merge the two hulls. The best algorithm we361

have takes O(log2 n) time by a nested binary search, assuming that we have two “helper362

points”: a point on each convex hull that is outside the other convex hull [16].363

It is tempting to apply the deque hull idea of Theorem 5 (i.e., consider the points in364

the “path order” along π). We could get the same result as in Theorem 5 except that365

the HullTreeRetrieval operation now takes O(log2 n) time and HullReport takes366

O(h+ log2 n) time due to the path-challenge. As such, our main effort below is to achieve367

O(logn) time for StandardQuery and O(h+ logn) time for HullReport.368

Before presenting our data structure, we introduce in Section 3.1 several basic lemmas369

which we will use on several occasions later on.370

3.1 Basic lemmas371

The following two lemmas, both from [16], will be used later.372

I Lemma 8. (Guibas, Hershberger, and Snoeyink [16, Lemma 5.1]) Let π1 and π2 be373

two consecutive subpaths of π. Suppose the convex hull H(πi) is stored in a BST of height374

O(log |πi|), for i = 1, 2. We can do the following in O(log(|π1| + |π2|)) time: Determine375

whether H(π2) is completely inside H(π1) and if not find a “helper point” p ∈ ∂H(π2) such376

that p ∈ ∂H(π1 ∪ π2) and p /∈ ∂H(π1).377

I Lemma 9. (Guibas, Hershberger, and Snoeyink [16, Section 2]) Let π1 and π2 be two378

consecutive subpaths of π. Suppose the convex hull H(πi) is stored in a BST of height379

O(log |πi|), i = 1, 2. We can compute a BST of height O(log(|π1| + |π2|)) that stores the380

convex hull of π1 ∪ π2 in O(log |π1| · log |π2|) time.381

The following lemma provides a tool for answering bridge queries, obtained with the help382

of the binary search algorithm of Overmars and van Leeuwen [27] for computing the common383

tangents of two convex polygons separated by a line. See the full paper for the detailed proof.384

I Lemma 10. Let H1, H2, . . . , be a collection of O(1) convex polygons, each represented by a385

BST or an array so that binary search on each convex hull can be supported in O(logn) time.386

Let H be the convex hull of all these convex polygons. We can answer the following queries387

in O(logn) time each, where n is the total number of vertices of all these convex polygons.388

1. Bridge queries: Given a query line `, determine whether ` intersects H, and if yes, find389

the edges of H that intersect `.390

2. Given a query point p, determine whether p ∈ H, and if yes, determine whether p ∈ ∂H.391

3.2 Structure of the deque path convex hull PH(π)392

We partition π into four (consecutive) subpaths πr, πr
m, πf

m, and πf from the front to the393

rear of π. As such, πf and πr contain the front and rear ends, respectively. Further, let394

π+ = πf ∪ πf
m and π− = πr ∪ πr

m. Our algorithm maintains the following two invariants.395

Invariants: (1) 1
4 ≤ |π

+|/|π−| ≤ 4. (2) |πf | = O(log2 |π+|) and |πr| = O(log2 |π−|).396

B. Brewer, G. S. Brodal, and H. Wang XX:11

ST (πr): stack tree for H(πr)

|πr| = Θ(log2 n)

ST (πf): stack tree for H(πf)

|πf | = Θ(log2 n)

{ {
|πr

m| = Θ(n) |πf
m| = Θ(n)

BST BST

T r
m T f

m

{ {π− = πr ∪ πr
m π+ = πf

m ∪ πf

Figure 3 A schematic view of the deque path convex hull data structure PH(π).401

Note that the invariants imply |πf
m|, |πr

m| = Θ(n), where n = |π|. The first invariant397

resembles the partition of P by a dividing line ` in our deque tree in Section 2.2. As with398

the deque tree, in order to maintain the first invariant, we use the global rebuilding idea [26].399

The details can be found in the full paper.400

We use a stack tree ST (πf) to maintain the convex hull H(πf), with the algorithm in402

Lemma 9 for merging two hulls of two consecutive subpaths. More specifically, we consider403

the vertices of πf following their order along the path (instead of left-to-right order as in404

Section 2.1) with insertions and deletions only at the front end. Whenever we need to join two405

neighboring trees, we merge the two hulls of their subpaths by Lemma 9. Due to the second406

invariant, merging all trees of ST (πf) takes O(log2 logn) time, after which we obtain a single407

tree of height O(log logn) that represents H(πf). Similarly, we build a stack tree ST (πr)408

for H(πr) but along the opposite direction of the path. See Figure 3 for an illustration.409

Define n+ = |π+|, which is Θ(n). In order to maintain the second invariant, when πf410

is too big due to insertions, we will cut a subpath of length Θ(log2 n+) and concatenate411

it with πf
m. When πf becomes too small due to deletions, we will split a portion of πf

m of412

length Θ(log2 n+) and merge it with πf ; but this split is done implicitly using the rollback413

stack for deletions. As such, we need to build a data structure for maintaining πf
m so that414

the above concatenate operation on πm can be performed in O(log2 n+) time (this is one415

reason why the bound for πf in the second invariant is set to O(log2 n+)). We process π− in416

a symmetric way. The way we handle the interaction between πf
m and πf (as well as their417

counterpart for π−) are one main difference from our approach for the two-sided monotone418

path problem in Section 2.3; again this is due to the path-challenge.419

Our data structure for πf
m is simply a balanced BST T f

m, which stores the convex420

hull H(πf
m). In particular, we will use T f

m to support the above concatenation operation421

(denoted by Concatenate) in O(log2 n) time. For reference purpose, this is summarized in422

the following lemma, which is an immediate application of Lemma 9.423

I Lemma 11. Given a BST of height O(log |τ |) representing a simple path τ of length424

O(log2 n) such that the concatenation of πm
f and τ is still a simple path, we can perform the425

following Concatenate operation in O(log2 n) time: Obtain a new tree T f
m of height O(logn)426

that represents the convex hull H(πf
m), where πf

m is the new path after concatenating with τ .427

Similarly, we use a balanced BST T r
m to store the convex hull H(πr

m). We have a similar428

lemma to the above for the Concatenate operation on πr
m.429

The four trees ST (πr), T r
m, T f

m, and ST (πf) constitute our deque path convex hull data430

structure PH(π) for Theorem 7; see Figure 3. In the following, we discuss the operations.431

SoCG 2024

XX:12 Dynamic Convex Hulls for Simple Paths

3.3 Standard queries432

For answering a decomposible query σ, we first perform a TreeRetrieval operation433

on ST (πf) to obtain a tree Tf that represents H(πf). Since |πf | = O(log2 n), this takes434

O(log2 logn) time as discussed before. We do the same for ST (πr) to obtain a tree Tr435

for H(πr). Recall that the tree T f
m stores H(πf

m) while T r
m stores H(πr

m). We perform436

query σ on each of the above four trees. Based on the answers to these trees, we can obtain437

the answer to the query σ for H(π) because σ is a decomposable query. Since the heights of438

Tf and Tr are both O(log logn), and the heights of T f
m and T r

m are O(logn), the total query439

time is O(logn).440

If σ is a bridge query, we apply Lemma 10 on the above four trees. The query time441

is O(logn).442

3.4 Insertions and deletions443

InsertFront and DeleteFront are handled by the data structure for π+, i.e., T f
m and444

ST (πf), while InsertRear and DeleteRear are handled by the data structure for π−.445

InsertFront. Suppose we insert a point p to the front end of π. We first perform the insertion446

using ST (πf). To maintain the second invariant, we must handle the interaction between447

the largest tree Tk of ST (πf) and the tree T f
m. Recall that n+ = |π+| and n+ = Θ(n).448

According to the second invariant and the definition of the stack tree ST (πf), we have449

|Tk| = O(log2 n+), and we can assume a constant c such that the total size of all trees of450

ST (πf) smaller than Tk is at most c · log2 n+. We set the size of Tk to be (c+ 1) · log2 n+.451

During the algorithm, whenever |Tk| > (c+ 1) · log2 n+ and there is no incremental process452

of joining Tk−1 with Tk, we let T ′k = Tk and let Tk = ∅, and then start to perform an453

incremental Concatenate operation to concatenate T ′k with T f
m. The operation takes454

O(log2 n+) time by Lemma 11. We choose a sufficiently large constant c1 so that each455

Concatenate operation can be finished within c1 · log2 n+ steps. For each InsertFront456

in future, we run c1 steps of this Concatenate algorithm. As such, within the next log2 n+
457

InsertFront operations in future, the Concatenate operation will be completed. If there458

is an incremental Concatenate operation (that is not completed), then we say that T f
m is459

dirty; otherwise, it is clean.460

If T f
m is dirty, an issue arises during a StandardQuery operation. Recall that during a461

StandardQuery operation, we need to perform queries on H(πf
m) by using the tree T f

m.462

However, if T f
m is dirty, we do not have complete information for T f

m. To address this463

issue, we resort to persistent data structures [12,29]. Specifically, we use a persistent tree464

for T f
m so that if there is an incremental Concatenate operation, the old version of T f

m465

can still be accessed (we call it the “clean version”); as such, a partially persistent tree466

suffices for our purpose [12,29]. After the Concatenate is completed, we designate the new467

version of T f
m as clean and the old version as dirty; in this way, at any time, there is only468

one clean version we can refer to. During a StandardQuery operation, we can perform469

queries on the clean version of T f
m. Similarly, during the query, if there is an incremental470

Concatenate process, T ′k is also dirty, and we need to access its clean version (i.e., the471

version right before T ′k started the Concatenate operation). To solve this problem, before472

we start Concatenate, we make another copy of T ′k, denoted by T ′′k . After Concatenate473

is completed, we make T ′′k refer to null. The above strategy causes additional O(log2 n+) time,474

i.e., update the persistent tree T f
m and make a copy T ′′k . To accommodate this additional475

cost, we make the constant c1 large enough so that all these procedures can be completed476

B. Brewer, G. S. Brodal, and H. Wang XX:13

within the next log2 n+ InsertFront operations.477

Recall that once we are about to start a Concatenate operation for T ′k, Tk becomes478

empty. We can show that Concatenate will be completed before another Concatenate479

operation starts. See the full paper for the detailed argument. As such, there cannot be two480

concurrent Concatenate operations from Tk to T f
m.481

DeleteFront. As before, we keep a stack of changes to our data structure PH(π) due to482

the InsertFront operations. For each DeleteFront, we simply roll back the changes.483

InsertRear and DeleteRear. Handling updates at the rear end is the same, but using T r
m484

and ST (πr) instead. We omit the details.485

3.5 Reporting the convex hull H(π)486

We show that the convex hull H(π) can be reported in O(h+ logn) time.487

As in the algorithm for StandardQuery, we first obtain in O(logn) time the four trees488

Tf , Tr, T f
m, and T r

m representing H(πf), H(πr), H(πf
m), and H(πr

m), respectively. Then,489

we can merge these four convex hulls using Lemma 9 in O(log2 n) time and compute a490

BST T (π) representing H(π). Finally, we can output H(π) by traversing T (π) in additional491

O(h) time. As such, in total O(h + log2 n) time, H(π) can be reported. To reduce the492

time to O(h+ logn), we first enhance our data structure PH(π) by having it maintain the493

common tangents of H(πf
m) and H(πr

m) during updates. The details are in the full paper.494

Remark. As discussed in the full paper, it is possible to achieve O(h + logn) time for495

HullReport without enhancing the data structure. Nevertheless, we choose to present496

the enhanced data structure for two reasons: (1) Enhancing the data structure will make497

the HullReport algorithm much simpler; (2) the enhanced data structure helps us to498

obtain in O(logn log logn) time a tree of height O(logn) to represent H(π), improving the499

aforementioned O(log2 n) time algorithm.500

References501

1 Georgii Maksimovich Adel’son-Velskii and Evgenii Mikhailovich Landis. An algorithm for502

organization of information. Doklady Akademii Nauk, 146(2):263–266, 1962.503

2 A.M. Andrew. Another efficient algorithm for convex hulls in two dimensions. Information504

Processing Letters, 9:216–219, 1979. doi:10.1016/0020-0190(79)90072-3.505

3 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull with optimal query time506

and O(logn · log logn) update time. In Proceedings of the 7th Scandinavian Workshop on507

Algorithm Theory (SWAT), pages 57–70, 2000. doi:10.1007/3-540-44985-X_7.508

4 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull. In Proceedings of the509

43rd IEEE Symposium on Foundations of Computer Science (FOCS), pages 617–626, 2002.510

doi:10.1109/SFCS.2002.1181985.511

5 Gerth Stølting Brodal. Finger search trees. In Dinesh P. Mehta and Sartaj Sahni, editors,512

Handbook of Data Structures and Applications. Chapman and Hall/CRC, 2004. URL: https:513

//www.cs.au.dk/~gerth/papers/finger05.pdf.514

6 Norbert Bus and Lilian Buzer. Dynamic convex hull for simple polygonal chains in constant515

amortized time per update. In Proceedings of the 31st European Workshop on Computa-516

tional Geometry (EuroCG), 2015. URL: https://perso.esiee.fr/~busn/publications/517

2015_eurocg_dynamicConvexHull/eurocg2015_dynamicHull.pdf.518

SoCG 2024

https://doi.org/10.1016/0020-0190(79)90072-3
https://doi.org/10.1007/3-540-44985-X_7
https://doi.org/10.1109/SFCS.2002.1181985
https://www.cs.au.dk/~gerth/papers/finger05.pdf
https://www.cs.au.dk/~gerth/papers/finger05.pdf
https://www.cs.au.dk/~gerth/papers/finger05.pdf
https: //perso.esiee.fr/~busn/publications/2015_eurocg_dynamicConvexHull/eurocg2015_dynamicHull.pdf
https: //perso.esiee.fr/~busn/publications/2015_eurocg_dynamicConvexHull/eurocg2015_dynamicHull.pdf
https: //perso.esiee.fr/~busn/publications/2015_eurocg_dynamicConvexHull/eurocg2015_dynamicHull.pdf

XX:14 Dynamic Convex Hulls for Simple Paths

7 Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions.519

Discrete and Computational Geometry, 16:361–368, 1996. doi:10.1007/BF02712873.520

8 Timothy M. Chan. Dynamic planar convex hull operations in near-logarithmaic amortized521

time. Journal of the ACM, 48:1–12, 2001. doi:10.1145/363647.363652.522

9 Timothy M. Chan. Three problems about dynamic convex hulls. Int. J. Comput. Geom. Appl.,523

22(4):341–364, 2012. doi:10.1142/S0218195912600096.524

10 Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: II. Applications. Algorithmica,525

1:163–191, 1986. doi:10.1007/BF01840441.526

11 David Dobkin, Leonidas Guibas, John Hershberger, and Jack Snoeyink. An efficient algorithm527

for finding the CSG representation of a simple polygon. Algorithmica, 10:1–23, 1993. doi:528

10.1007/BF01908629.529

12 James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making data530

structures persistent. Journal of Computer and System Sciences, 38:86–124, 1989. doi:531

10.1016/0022-0000(89)90034-2.532

13 Joseph Friedman, John Hershberger, and Jack Snoeyink. Efficiently planning compliant motion533

in the plane. SIAM Journal on Computing, 25:562–599, 1996. doi:10.1145/73833.73854.534

14 Ronald L. Graham. An efficient algorithm for determining the convex hull of a finite planar535

set. Information Processing Letters, 1:132–133, 1972. doi:10.1016/0020-0190(72)90045-2.536

15 Ronald L. Graham and F. Frances Yao. Finding the convex hull of a simple polygon. Journal537

of Algorithms, 4:324–331, 1983. doi:10.1016/0196-6774(83)90013-5.538

16 Leonidas Guibas, John Hershberger, and Jack Snoeyink. Compact interval trees: A data539

structure for convex hulls. International Journal of Computational Geometry and Applications,540

1:1–22, 1991. doi:10.1142/S0218195991000025.541

17 Leonidas J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R. Roberts. A new542

representation for linear lists. In Proceedings of the 9th Annual ACM Symposium on Theory543

of Computing (STOC), pages 49–60, 1977. doi:10.1145/800105.803395.544

18 John Hershberger and Jack Snoeyink. Cartographic line simplification and polygon CSG545

formula in O(n log∗ n) time. Computational Geometry: Theory and Applications, 11:175–185,546

1998. doi:10.1016/S0925-7721(98)00027-3.547

19 John Hershberger and Subhash Suri. Offline maintenance of planar configurations. In548

Proceedings of the 2nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages549

32–41, 1991. doi:10.5555/127787.127801.550

20 John Hershberger and Subhash Suri. Applications of a semi-dynamic convex hull algorithm.551

BIT, 32:249–267, 1992. doi:10.1007/BF01994880.552

21 Haim Kaplan and Robert E. Tarjan. Persistent lists with catenation via recursive slow-down.553

In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing554

(STOC), pages 93–102, 1995. doi:10.1145/225058.225090.555

22 Haim Kaplan, Robert E. Tarjan, and Kostas Tsioutsiouliklis. Faster kinetic heaps and their556

use in broadcast scheduling. In Proceedings of the 20th Annual ACM-SIAM Symposium on557

Discrete Algorithms (SODA), pages 836–844, 2001. doi:10.5555/365411.365793.558

23 David G. Kirkpatrick and Raimund Seidel. The ultimate planar convex hull algorithm? SIAM559

Journal on Computing, 15:287–299, 1986. doi:10.1137/0215021.560

24 Donald E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms,561

2nd Edition. Addison-Wesley, 1973.562

25 Avraham A. Melkman. On-line construction of the convex hull of a simple polyline. Information563

Processing Letters, 25(1):11–12, 1987. doi:10.1016/0020-0190(87)90086-X.564

26 Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes in565

Computer Science. Springer, 1983. doi:10.1007/BFB0014927.566

27 Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane. Journal567

of Computer and System Sciences, 23:166–204, 1981. doi:10.1016/0022-0000(81)90012-X.568

28 Franco P. Preparata. An optimal real-time algorithm for planar convex hulls. Communications569

of the ACM, 22:402–405, 1979. doi:10.1145/359131.359132.570

https://doi.org/10.1007/BF02712873
https://doi.org/10.1145/363647.363652
https://doi.org/10.1142/S0218195912600096
https://doi.org/10.1007/BF01840441
https://doi.org/10.1007/BF01908629
https://doi.org/10.1007/BF01908629
https://doi.org/10.1007/BF01908629
https://doi.org/10.1016/0022-0000(89)90034-2
https://doi.org/10.1016/0022-0000(89)90034-2
https://doi.org/10.1016/0022-0000(89)90034-2
https://doi.org/10.1145/73833.73854
https://doi.org/10.1016/0020-0190(72)90045-2
https://doi.org/10.1016/0196-6774(83)90013-5
https://doi.org/10.1142/S0218195991000025
https://doi.org/10.1145/800105.803395
https://doi.org/10.1016/S0925-7721(98)00027-3
https://doi.org/10.5555/127787.127801
https://doi.org/10.1007/BF01994880
https://doi.org/10.1145/225058.225090
https://doi.org/10.5555/365411.365793
https://doi.org/10.1137/0215021
https://doi.org/10.1016/0020-0190(87)90086-X
https://doi.org/10.1007/BFB0014927
https://doi.org/10.1016/0022-0000(81)90012-X
https://doi.org/10.1145/359131.359132

B. Brewer, G. S. Brodal, and H. Wang XX:15

29 Neil Sarnak and Robert E. Tarjan. Planar point location using persistent search trees.571

Communications of the ACM, 29:669–679, 1986.572

30 Rajamani Sundar. Worst-case data structures for the priority queue with attrition. Information573

Processing Letters, 31:69–75, 1989. doi:10.1016/0020-0190(89)90071-9.574

31 Athanasios K. Tsakalidis. AVL-trees for localized search. Information and Control, 67:173–194,575

1985. doi:10.1016/S0019-9958(85)80034-6.576

32 Haitao Wang. Algorithms for subpath convex hull queries and ray-shooting among segments.577

In Proceedings of the 36th International Symposium on Computational Geometry (SoCG),578

pages 69:1–69:14, 2020. doi:10.4230/LIPIcs.SoCG.2020.69.579

33 Haitao Wang. Dynamic convex hulls under window-sliding updates. In Proceedings of580

the 18th Algorithms and Data Structures Symposium (WADS), pages 689–703, 2023. doi:581

10.1007/978-3-031-38906-1_46.582

SoCG 2024

https://doi.org/10.1016/0020-0190(89)90071-9
https://doi.org/10.1016/S0019-9958(85)80034-6
https://doi.org/10.4230/LIPIcs.SoCG.2020.69
https://doi.org/10.1007/978-3-031-38906-1_46
https://doi.org/10.1007/978-3-031-38906-1_46
https://doi.org/10.1007/978-3-031-38906-1_46

	1 Introduction
	1.1 Our results
	1.2 Other related work

	2 The monotone path problem
	2.1 Stack tree
	2.2 Deque tree
	2.3 Two-sided monotone path dynamic convex hull
	2.4 One-sided monotone path dynamic convex hull

	3 The simple path problem
	3.1 Basic lemmas
	3.2 Structure of the deque path convex hull PH(pi)
	3.3 Standard queries
	3.4 Insertions and deletions
	3.5 Reporting the convex hull H(pi)

