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ABSTRACT
We present the first cache-oblivious data structure for planar
orthogonal range counting, and improve on previous results
for cache-oblivious planar orthogonal range searching.

Our range counting structure uses O(N log2 N) space and
answers queries using O(logB N) memory transfers, where
B is the block size of any memory level in a multilevel mem-
ory hierarchy. Using bit manipulation techniques, the space
can be further reduced to O(N). The structure can also
be modified to support more general semigroup range sum
queries in O(logB N) memory transfers, using O(N log2 N)
space for three-sided queries and O(N log2

2 N/ log2 log2 N)
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space for four-sided queries.
Based on the O(N log N) space range counting structure,

we develop a data structure that uses O(N log2 N) space
and answers three-sided range queries in O(logB N + T/B)
memory transfers, where T is the number of reported points.
Based on this structure, we present a general four-sided
range searching structure that uses O(N log2

2 N/ log2 log2 N)
space and answers queries in O(logB N + T/B) memory
transfers.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—geometrical
problems and computations

General Terms
Algorithms, Design

Keywords
Cache-Oblivious, orthogonal range searching, range count-
ing, semi-group range queries

1. INTRODUCTION
The memory systems of modern computers are becoming

increasingly complex; they consist of a hierarchy of several
levels of cache, main memory, and disk. The access times
of different levels of memory often vary by orders of mag-
nitude, and to amortize the large access times of memory
levels far away from the processor, data is normally trans-
fered between levels in large blocks. Thus, it is important
to design algorithms that are sensitive to the architecture
of the memory system and have a high degree of locality in
their memory-access patterns.



For the traditional RAM model of computation one as-
sumes a flat memory-system with uniform access time;
therefore algorithms for the RAM model often exhibit low
memory-access locality and are thus inefficient in a hierar-
chical memory system. Although a lot of work has recently
been done on algorithms for a two-level memory model, in-
troduced to model the large difference in the access times
of main memory and disks, relatively little work has been
done in models of multilevel memory. One reason for this is
the many parameters in such models. The cache-oblivious
model was introduced as a way of achieving algorithms that
are efficient in arbitrary memory hierarchies without the use
of complicated multilevel memory models.

In this paper we develop new and improved cache-
oblivious data structures for planar orthogonal range count-
ing and searching. Planar orthogonal range searching is the
problem of finding, among a set of N points in the plane, all
T points lying in a given query axis-parallel rectangle. The
corresponding counting problem returns the number of such
points.

1.1 Model of computation
In the two-level I/O-model (or external-memory model),

introduced by Aggarwal and Vitter [3], the memory hier-
archy consists of an internal memory (or cache) of size M
and an arbitrarily large external memory partitioned into
blocks of size B. An I/O, or memory transfer, transfers one
block between the internal and the external memory. Com-
putation can only occur on data present in internal memory.
The complexity of an algorithm in this model (an external
memory algorithm) is measured in terms of the number of
memory transfers it performs, as well as the amount of ex-
ternal memory it uses.

In the cache-oblivious model, introduced by Frigo et
al. [21], algorithms are described in the RAM model, but
are analyzed in the two-level I/O-model. It is assumed that
when an algorithm accesses an element that is not stored
in cache, the relevant block is automatically transfered into
the cache. If the cache is full, an optimal paging strategy re-
places the ideal block in cache based on the future accesses
of the algorithm. Often, it is also assumed that M > B2

(the tall cache assumption). So informally, cache-oblivious
algorithms run in the two-level I/O-model, but cannot make
use of M and B. Because an analysis of a cache-oblivious
algorithm in the two-level model must hold for any block
and main memory size, it holds for any level of an arbitrary
memory hierarchy [21]. As a consequence, an algorithm that
is optimal in the two-level model is optimal on all levels of
an arbitrary multilevel hierarchy.

1.2 Previous results
Range searching has been studied extensively in the RAM

model. In the planar case, for example, some of the best
known structures (for any fixed ε > 0) answer orthogonal
range queries in O(log2 N +T logε(2N/T )) time using linear
space and in O(log2 N + T ) time using O(N logε N) space,
respectively [17, 18]. Refer to a recent survey for further
results [2].

In the I/O-model, the B-tree [7, 20] supports one-
dimensional range queries in O(logB N + T/B) memory
transfers using linear space. In two dimensions, one
has to use Θ(N logB N/ logB logB N) space to obtain an
O(logB N + T/B) query bound [6, 19]. The external range-

tree structure obtains these bounds [6]. If only linear space

is used then Θ(
p

N/B + T/B) transfers, as obtained by
the kd-B tree [24, 27], is needed to answer a query. For
the problem of range counting, the CRB-tree [22], which
is an external version of the compressed range tree [18], an-
swers queries in O(logB N) memory transfers and uses O(N)
space if bit manipulations of pointers and counters are al-
lowed. Refer to recent surveys for further I/O-model and
hierarchical memory model results [4, 28].

Frigo et al. [21] developed cache-oblivious algorithms for
sorting, Fast Fourier Transform, and matrix multiplication.
Subsequently, a number of other results have been obtained
in the cache-oblivious model [1, 5, 8, 9, 10, 11, 12, 13, 14,
15, 16, 26], among them several cache-oblivious B-tree struc-
tures with O(logB N) search and update bounds [10, 11, 12,
16, 26]. Several of these structures can also support one-
dimensional range searching in O(logB N + T/B) memory
transfers [11, 12, 16] (but at an increased amortized up-
date cost of O(logB N + 1

B
log2

2 N) = O(log2
B N) memory

transfers). In [13], an algorithm for batched planar orthog-
onal range searching were developed, which answers a set of
O(N) queries using O(N

B
logM/B

N
B

+ T/B) memory trans-
fers, where T is the combined size of the answers.

Agarwal et al. [1] were the first to develop cache-oblivious
structures for non-batched planar orthogonal range search-
ing. They developed a cache-oblivious version of a kd-tree
that answers planar range queries in O(

p

N/B+T/B) mem-
ory transfers using linear space. It supports updates in
O( log2 N

B
logM/B N) = O(log2

B N) transfers. The structure
can be extended to d dimensions. They also developed a
cache-oblivious version of a two-dimensional range tree that
answers planar range queries in O(logB N + T/B) memory
transfers but using O(N log2

2 N) space. The central part of
this structure is an O(N log2 N) space structure for answer-
ing planar three-sided range queries in O(logB N + T/B)
memory transfers, that is, for finding all T points in a query
range [xl, xr]× [yb,∞). The analysis of the range tree struc-
ture (or rather, the structure for three-sided queries) re-

quires that B = 22c

for some nonnegative integer constant c.

1.3 Our results
In this paper, we develop the first cache-oblivious struc-

tures for planar orthogonal range counting. Our structures
answer queries in O(logB N) memory transfers. We first
describe a version using O(N log2 N) space, and then re-
duce the space to O(N) assuming that bit manipulations of
pointers and counters are allowed. This matches the perfor-
mance of the CRB-tree [22] in the I/O-model. The struc-
ture can be generalized to support semigroup range sum
queries in O(logB N) memory transfers using O(N log2 N)
and O(N log2

2 N/ log2 log2 N) space for three-sided and four-
sided queries, respectively (assuming that elements in the
semigroup can be represented in O(1) space).

For planar orthogonal range searching, we develop an im-
proved cache-oblivious three-sided structure without any
assumption on B. The structure uses O(N log2 N) space
and supports queries in O(logB N + T/B) memory trans-
fers. Based on this structure, we then give an im-
proved O(logB N + T/B) query general (four-sided) struc-
ture without any assumption on B and with an improved
O(N log2

2 N/ log2 log2 N) space bound.



2. RANGE COUNTING
In this section we describe a cache-oblivious data struc-

tures supporting four-sided range counting queries in
O(logB N) memory transfers. A four-sided range counting
query Q = [xl, xr]× [yb, yt] can be answered using four two-
sided queries; refer to Figure 1. Without loss of generality
we therefore only consider two-sided range counting queries
Q = (−∞, xr] × (−∞, yt] in the rest of this section.

Q1

x
xl xr

Q2

Q3

Q

yt

yb

y

Q4

Q1 = (−∞, xr] × (−∞, yt]
Q2 = (−∞, xl) × (−∞, yt]
Q3 = (−∞, xr] × (−∞, yb)
Q4 = (−∞, xl) × (−∞, yb)

Figure 1: Reducing four-sided range counting
queries Q = [xl, xr]× [yb, yt] to four two-sided queries;
Q = Q1 − Q2 − Q3 + Q4.

Our structures are based on a construction of Lueker [23]
for range reporting in O(log2 N + T ) time. The basic struc-
ture resembling Lueker’s construction [23] is described in
Section 2.1. The main contribution of Section 2.2 is then
a recursive layout of this structure in memory that enables
cache-oblivious range counting queries in O(logB N) mem-
ory transfers using O(N log2 N) space. The layout is a gen-
eralization of the layout of the cache oblivious search tree of
Prokop [25] to handle non-constant sized secondary struc-
tures. In Section 2.3 we then reduce the space to O(N) using
standard bit manipulation techniques, assuming that each
word contains Ω(log2 N) bits.

2.1 Basic approach
Given a set S of N points in the plane, our basic structure,

based on the structure of Lueker [23], is defined as follows:
The N points are stored at the leaves of a binary search
tree T in x-coordinate sorted order from left-to-right. A list
Lv is associated with each internal node v of T containing
the points stored at the leaves of the subtree rooted at v
sorted with respect to y-coordinate. With each point pi in
Lv we store two pointers left(pi) and right(pi) to the topmost
point pl and pr in Lleft(v) and Lright(v), respectively, with y-
coordinate at most y(pi); here left(v) and right(v) are the
left and right child of v, respectively, and y(pi) is the y-
coordinate of the point pi. With pi in Lv we also store the
number of points in Lleft(v) with y-coordinate at most y(pi)
as leftsum(pi). Finally, for the root r we store a binary
search tree on Lr ordered with respect to y-coordinate. The
store uses O(N log N) space since each point is stored in
a list on each level of T . Figure 7 illustrates a tree T for
sixteen points and the links between the associated Lv lists.

To answer a counting query Q = (−∞, xr] × (−∞, yt] we
perform a top-down traversal of T for the rightmost leaf
storing a point with x-coordinate at most xr, while in each
encountered node v locating the topmost point in Lv with
y-coordinate at most yt: We first search the binary search
tree on Lr to locate the topmost point pi with y-coordinate
at most yt in Lr. Based on the x-coordinate split value in r,
we then proceed to left(v) or right(v) following the left(pi)
or right(pi) pointers. By continuing this process down the

tree, we will, as argued below, locate the relevant topmost
point with y-coordinate at most yt in the list Lv in each node
v on the search path. Whenever the search continues to the
right child, we also add leftsum(pi) to the output count; if
the point stored at the final leaf is contained in Q the count
is incremented by one.

It is easy to see that in order to prove that the query
procedure correctly counts the number of points from S in Q,
we simply have to argue that if pi is the topmost point in Lv

with y-coordinate at most yt, then left(pi) and right(pi) are
the topmost points in Lleft(v) and Lright(v) with y-coordinate
at most yt. This is implied by the fact that Lleft(v) ⊆ Lv

and Lright(v) ⊆ Lv for all nodes v.
It it equally easy to see that the query procedure uses

O(log2 N) time: O(log2 N) time to search Lr and O(1) time
at each level of T .

2.2 Memory layout
Our method for achieving an efficient cache-oblivious ver-

sion of the above data structure is based on two ideas. The
first idea is a recursively defined memory layout of the Lv

lists, developed from the van Emde Boas layout [25] of bi-
nary trees. In each step of the van Emde Boas recursion,
we further divide the Lv lists for the nodes in the subtree
under consideration. The first part for all nodes in the sub-
tree are stored together, then the next part for all nodes,
and so forth. The second idea is to ensure locality of ref-
erence during a search by adding redundant information to
the lists: each list Lv is replaced by a list Lv ⊇ Lv con-
sisting of Lv plus some dummy points. We will ensure that
Lr = Lr and Lv ⊆ Lparent(v) for all nodes v. As in the basic

structure, a point pi ∈ Lv has pointers left(pi) and right(pi)
to the topmost points pl and pr in Lleft(v) and Lright(v) with
y-coordinate at most y(pi). However, dummy points are not
counted in leftsum(pi), i.e. leftsum(pi) denotes the number
of points in Lleft(v) with y-coordinate at most y(pi). Since

Lv ⊆ Lparent(v) and Lv ⊇ Lv dummy points do not affect the
time complexity or the correctness of the query procedure
described above. The dummy points are introduced during
the recursive layout of the structure in memory, as defined
formally below.

The cache-oblivious data structure consists of three sub-
structures: X, Y , and L. The structures X and Y are sim-
ply van Emde Boas layouts [25] of the base tree T (without
the Lv lists) and of Lr; this cache-oblivious layout supports
searches in O(logB N) memory transfers [25]. The struc-
ture L is the recursive layout of the Lv lists described in the
rest of this section.

In the following we let α denote a positive integer. For
the O(N log2 N) space structure we use α = 1, whereas
for the linear space data structure in Section 2.3 we use
α = ⌊log2 N⌋. The recursive layout is defined using triples
< C, I, p >, where I is a y-interval, C is a subtree of T
consisting of the topmost h levels of the subtree rooted at
a node v, for some height h, and p is a dummy point to be
included in all Lu lists for nodes u ∈ C; we require that
|Lu ∩ I | ≤ α2h where h is the height of C, and that the
y-coordinate of p equals the lower endpoint of I . For the
outermost recursion we have C = T and I = (y(p),∞),
where p is the lowest input point.

The recursive layout of < C, I, p > resembles the van
Emde Boas layout: C is partitioned into a top tree C0 of
height ⌊h/2⌋ and s = 2⌊h/2⌋ bottom trees C1, . . . , Cs of
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C1,n1 Cs,nsC0,n0

Figure 2: The recursive layout of a subtree C with
respect to an interval I.

height ⌈h/2⌉. The layouts of C0, . . . , Cs are stored con-
secutively in memory, and the layout of each Ci consists
of one or more recursive layouts. Let vi be the root of Ci

and hi the height of Ci. For Ci we split the interval I into
ni = ⌈|Lvi ∩ I |/(α2hi)⌉ disjoint intervals I1

i , . . . , Ini
i , such

that |I1
i ∩ Lvi | ≤ α2hi and |Ij

i ∩ Lvi | = α2hi for 1 < j ≤ ni.
The recursive layouts of Ci are Ci,1 = < Ci, I

1
i , p > and

then Ci,j = < Ci, I
j
i , pj

i >, for 1 < j ≤ ni, where pj
i is the

point with minimum y-coordinate in Ij
i ∩ Lvi . Note that

the partitioning of I depends on the points in Lvi ∩ I and
is different for each Ci. For the base-case of the recursion
where C is a single node, {p} ∪ (Lv ∩ I) is simply stored
in consecutive memory locations. The recursive layout is
illustrated in Figure 2.

The dummy points introduced for the example in Figure 7
are shown in Figure 8. Note that the introduction of p9 in
Lleft(r) guarantees that the pointer left(p9) in Lr points to
p9 in Lleft(r), guaranteeing that following the left point of
p9 at the root will end up at a (dummy) point in the same
recursive layout of the top tree.

The space required for X and Y is O(N) [25]. The space
required for L, not counting dummy points, is O(N log2 N),
since each input point p appears as a regular point in the Lv

lists of each of the O(log2 N) ancestors v of the leaf storing p.
What remains is to argue that the number of dummy points
is at most O(N log2 N).

Lemma 1. The total number of dummy points introduced
in the recursive layout is O(N + (N log2 N)/α).

Proof. Initially (in the outermost recursive level) we in-
troduce the lowest input point as a dummy point for each
node of T , i.e. at most N dummy points. For a recursive
layout of < C, I, p > where the subtree C is partitioned into
C0, . . . , Cs and there are ni recursive layouts of Ci, we intro-
duce at most ni − 1 ≤ |Lvi ∩ I |/(α2hi ) dummy points into
Lu for each node u ∈ Ci. We charge these dummy points to
the points in Lvi ∩ I . Since |Ci| ≤ 2hi , each point in Lvi ∩ I
is charged O((|Ci| · |Lvi ∩ I |/(α2hi))/|Lvi ∩ I |) = O(1/α)
dummy points. To count how many times a point q can be
charged, observe that q ∈ Lu only for ancestors u of the leaf
of T storing q. Since the recursive layout follows the van
Emde Boas layout with top trees and bottom trees, there

are O(
Plog log n

i=0 2i) = O(log n) subtrees C rooted at the an-
cestors of the leaf storing q (of which up to O(log2 log2 n)
subtrees can share a root). Therefore during the recursive
layout there are at most O(log2 N) different recursive lay-
outs < C, I, p > having an ancestor of q as the root of C
and y(q) ∈ I . It follows that each point q is at most charged
O((log2 N)/α) dummy points.

For the construction in Section 2.3 we need the following
lemma. By a similar argument as in Lemma 1 the number of
base cases of the recursive layout, i.e. total number of pieces
the Lv lists are cut into, becomes O(N + (N log2 N)/α),
since each point in an Lv list can be charged a number of
base cases created instead of the number of dummy points
introduced.

Lemma 2. The total number of base cases in the recursive
layout is O(N + (N log2 N)/α).

Finally, we are ready to bound the number of memory
transfers used to answer a range counting query (using the
query proceedure described in Section 2.1): First observe
that the dummy points ensure that a search in a layout
< C, I, p > cannot leave the layout at internal nodes of C
using the left(pi) and right(pi) pointers, because all nodes in
C are guaranteed to have a dummy point with y-coordinate
min(I) = y(p). Next observe that the size of < C, I, p > is
O(|C|(1 + |Lv ∩ I |)), where v is the root of C, since p and
each point from Lv∩I can at most be added once as dummy
points to all Lu lists for u ∈ C. If C has height at most
h this is O(α22h). Thus if C has height at most 1

2
log2 B

and α = 1, the layout of < C, I, p > fits into O(1) blocks,
and a path through it can be traversed in O(1) memory
transfers. Since a query path from the root to a leaf of T can
be covered by layouts corresponding to subtrees of height
between 1

4
log2 B and 1

2
log2 B, each fitting into O(1) blocks,

it follows that a query performs O(
log2 N

(log2 B)/4
) = O(logB N)

memory transfers.

Theorem 1. There exists a cache-oblivious data struc-
ture for storing N points in the plane using O(N log2 N)
space, such that a four-sided range counting query can be
answered in O(logB N) memory transfers.

2.3 Linear space
In this section we describe how the range counting data

structure in Section 2.2 using O(N log2 N) space can be com-
pressed to use O(N) space (memory words) using bit ma-
nipulation techniques; we assume that the memory consists
of W ≥ log2 N bit words, and that it is possible to perform
shifts, additions, and boolean operations in O(1) time.

Let α = ⌊log2 N⌋; by Lemma 1 the total number of dummy
points introduced (and base cases of the recursive layout) is
O(N). By Lemma 2 it follows that the O(N log2 N) points
are laid out in the Lv lists in O(N) chunks, i.e. the base case
in the recursive layout, each of size O(log2 N).

Lemma 3. Each chunk of a list Lv contains left and right
pointers to points in at most O(1) different chunks.

Proof. Consider a chunk c of Lv, and let u be a child
of v. In the recursive layout let I be the y-interval spanning c
for the recursion where v is in the top tree C0 and u is the
root of a bottom tree Ci. The dummy points ensure that all



pointers in c to Lu point to points with y-coordinate in I .
Since u is the root of the bottom tree Ci, the recursive layout
ensures that Lu ∩ I is partitioned into a sequence of chunks
of size exactly α and one last chunk of size at most α plus
possibly one dummy points. Since the O(α) pointers in the
chunk c in Lv point to consecutive points in Lu, it follows
that at most O(1) chunks of Lu can possibly be hit by a
pointer from c.

In the following we describe how each of the O(N) chunks
can be stored in O(1) words, implying O(N) space in total.
A pointer to a point in a chunk is represented by a pair
〈chunk, offset〉, i.e. a pointer to the chunk containing the
point and the offset of the point within the chunk relative
to the lowest point in the chunk.

For a chunk we store left(p0), right(p0), and leftsum(p0)
for the lowest point p0 in the chunk. For each of the fol-
lowing points p1, p2, . . . we store three bits: ∆leftsum(i),
∆left(i), and ∆right(i), where ∆leftsum(i) = leftsum(pi) −
leftsum(pi−1), ∆left(i) = 0 if and only if left(pi) = left(pi−1),
and ∆right(i) = 0 if and only if right(pi) = right(pi−1). The
bit values ∆leftsum, ∆left, and ∆right are stored in O(1)
words. Finally we store explicit pointers left(pi) if left(pi)
and left(pi−1) point to distinct chunks, and similarly for
right(pi). From Lemma 3 there are only O(1) of such point-
ers, implying total O(1) space for a chunk.

Given a pointer 〈c, i〉 to an implicit point pi in a chunk c,

we compute leftsum(pi) as leftsum(p0)+
Pi

j=1 ∆leftsum(j).

To compute left(pi) we find the highest explicit left pointer
left(pk) = 〈q, o〉 stored in the chunk with k ≤ i, and return

the pointer 〈q, o +
Pi

j=1 ∆left(j) −
Pk

j=1 ∆left(j)〉. Right
pointers are computed similarly.

The sums
Pi

j=1 ∆leftsum(j) and
Pi

j=1 ∆left(j) can be

computed by the operation bitcount(w, i). Given a word w
and an integer i bitcount(w, i) returns the number of bits
equal to one among the i least significant bits of w, for 1 ≤
i ≤ W .

If bitcount(w, i) is not supported in constant time, we
together with w store an additional word w′, allowing
bitcount(w, i) to be computed in constant time using ad-
ditions, shifting and boolean operations. Without loss of
generality we assume W = 2a for some integer a. Let
b = 2⌈log2 a⌉. The word w′ consists of ⌊W/b⌋ subblocks
w′

0, . . . , w
′
⌊W/b⌋−1 of b bits each, where block w′

j stores
bitcount(w, j · b).

To compute bitcount(w, i) the precomputed sum of the
bits of the first ⌊i/b⌋ blocks of w can be extracted from w′

by appropriate shifting and masking, whereas the sum of the
i mod b least significants bits of the ⌊i/b⌋ + 1st block of w
can be looked up using a precomputed table stored in O(1)
words (note that in the cache oblivious model a table of size
ω(1) words could cause a memory transfer at each level of
T ). More precisely, we compute bitcount(w, i) as

(w′ >> (i ∧ ¬(b − 1))) ∧ (b − 1)
+Count[(w >> (i∧ (¬(b− 1))))∧ ((1 << (i∧ (b− 1)))− 1)]

where Count[x] denotes the number of bits equal to one
in x for 0 ≤ x < 2b. To compute Count[x] we partition
x into at most four groups of at most a/2 bits and count
the number of one bits in each group separately. For x
containing at most a/2 bits we can store Count[x] as an array

of 2a/2 entries each consisting of at most ⌈log2
a
2
≤ 2a⌉ ≤ 2a

bits. By using 2⌈log2⌈log2
a
2
⌉⌉ ≤ 2a bits for each entry we

in total use 2a · 2a/2 = O(W ) bits which can be stored in
O(1) precomputed words and be looked up in O(1) time by
appropriate shifting and bit masking.

We have argued that a compressed chunk uses O(1) space
and supports pointer traversals in O(1) time. To bound the
number of memory transfers used by a query we observe
that a recursive layout < C, I, p > where the root of C is
v satisfies |Lv ∩ I | ≤ α|C|. The total number of chunks
to be layed out recursively for < C, I, p > is bounded by
O(α|C|2/α) = O(|C|2). As in Section 2.2 this implies that
searches use O(logB N) memory transfers.

Theorem 2. There exists a cache-oblivious data struc-
ture for storing N points in the plane using O(N) space,
such that a four-sided range counting query can be answered
in O(logB N) memory transfers.

3. THREE-SIDED RANGE QUERIES
In this section we develop an O(N log2 N) space structure

for answering tree-sided range queries Q = [xl, xr]× [yb,∞)
on a set S of N points in the plane using O(logB N + T/B)
memory transfers. We first describe a linear space structure
which requires the output size T to be in an interval [T̄ , 2T̄ )
for a fixed value T̄ . This structure utilizes ideas from the
three-sided structure of Agarwal et al. [1], which in turn
is inspired by the external priority search tree of Arge et
al. [6]. Then we describe how to use this structure in an
O(N log2 N) space structure for unknown output size T .

3.1 Known output size structure
In the following we let T̄ be a fixed value and we assume

that the output size T ∈ [T̄ , 2T̄ ). Our linear space struc-
ture consists of 2N/T̄ structures of size O(T̄ ). To define
the structure, we first consider dividing the plane into N/T̄
vertical slabs X1, X2, . . . , XN/T̄ containing T̄ points from S

each. Using these slabs we then define 2N/T̄ − 1 buckets. A
bucket is a rectangular region of the plane that completely
spans one or more consecutive slabs and is unbounded in the
positive y-direction, like a three-sided query. Each bucket
contains T̄ points and is constructed as follows: We start
with N/T̄ active buckets b1, b2, . . . , bN/T̄ corresponding to

the N/T̄ slabs. The x-range of the slabs define a natural
linear ordering on these buckets. We then imagine sweep-
ing a horizontal sweep line from y = −∞ to y = ∞. Ev-
ery time the total number of points above the sweep line
in two adjacent active buckets bi and bj in the linear order
falls to T̄ , we mark bi and bj as inactive. Then we con-
struct a new active bucket spanning the slabs spanned by
bi and bj with a bottom y-boundary equal to the current
position of the sweep line. This bucket replaces bi and bj

in the linear ordering of active buckets intersected by the
sweepline. The total number of buckets constructed in this
way is 2N/T̄ − 1, since we start with N/T̄ buckets and the
number of active buckets decreases by one every time a new
bucket is constructed. Note that the procedure defines an
active y-interval for each bucket in a natural way. Buckets
overlap but the set of buckets with active y-intervals con-
taining a given y-coordinate (the buckets active when the
sweep line was at that value) are non-overlapping and span
all the slabs. This means that the active y-intervals of buck-
ets spanning a given slab are non-overlapping, and that the
x-ranges and active y-intervals of all the buckets define a
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Figure 3: Slabs (dotted lines) and subdivision de-
fined by the x-ranges and active y-intervals (solid
lines) of the 2N/T̄ − 1 buckets. The buckets span-
ning the slab Xi and their active y-intervals are high-
lighted.

planer (rectangular) subdivision of size 2N/T̄ − 1. Refer to
Figure 3.

After defining the 2N/T̄ − 1 buckets, we are now ready
to present the three-sided query data structure. It simply
consists of a list Bi for each of the 2N/T̄ − 1 buckets bi

storing the T̄ points in bi, as well as a cache-oblivious point
location structure T on the subdivision defined by the buck-
ets [10]. Since the subdivision is of size O(N/T̄ ), the point
location structure uses O(N/T̄ ) space and answers a query
in O(logB(N/T̄ )) = O(logB N) memory accesses [10]. The
layout of the structure simply consists of O(N) memory lo-
cations containing T followed by B1, . . . ,B2N/T̄−1.

To answer a three-sided query Q = [xl, xr]×[yb,∞) where
|Q ∩ S| ∈ [T̄ , 2T̄ ), we consider the buckets whose active
y-intervals contain yb. These buckets are non-overlapping
and together they contain all points in Q since they span
all slabs and have bottom y-boundary below yb. A constant
number, say K, of the buckets are intersected by Q: The
two buckets containing xl and xr, as well as at most 3 buck-
ets with x-range completely between xl and xr (since by
construction every two adjacent active buckets contain at
least T̄ points above yb). Refer to Figure 4. Thus to an-
swer the query Q we can simply scan the list Bi of each
of these buckets bi and report the relevant points using
K · O(T̄ /B) = O(T/B) memory transfers. To find the K
buckets we first query T to find the bucket bl whose active
range contains (xl, yb). If bl spans slabs Xl, Xl+1, . . . , Xm we
then query T to find the bucket containing points in Xm+1

with y-coordinate yb. We continue this procedure for each
of the K intersected active buckets. Since each query on T
uses O(logB N) memory transfers, the query Q is answered
in O(logB N + T/B) memory transfers in total.

Lemma 4. Provided that the output size T ∈ [T̄ , 2T̄ ) for a
fixed value T̄ , there exists a cache-oblivious data structure for
storing N points in the plane using O(N) space, such that a
three-sided range query can be answered in O(logB N+T/B)
memory transfers.

3.2 General structure
Our general structure for answering three-sided queries

on a set S of n points in the plane consists of a structure C
for three-sided range counting, as well as log2 N structures
T1, T2, . . . , Tlog2 N for answering queries with known approx-
imate output size. The structure C is implemented using the
O(N log N) space (four-sided) counting structures described
in Section 2 and each Ti is the linear space structures de-
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Figure 4: Buckets active at yb. Only a constant num-
ber of the buckets are intersected by the query Q.

scribed above with T̄ = 2i. Thus overall the structures uses
O(N log2 N) space.

To answer a query Q we simply query C to compute the
output size T = |Q ∩ S| and then we query the structure Ti

where 2i < T ≤ 2i+1. Since the query on C uses O(logB N)
memory transfers (Theorem 1) and the query on Ti uses
O(logB N + T/B) memory transfers (Lemma 4) we obtain
the following.

Theorem 3. There exists a cache-oblivious data struc-
ture for storing N points in the plane using O(N log2 N)
space, such that a three-sided range query can be answered
in O(logB N + T/B) memory transfers.

4. FOUR-SIDED RANGE QUERIES
Using our structure for three-sided queries, we can con-

struct a cache-oblivious structure for general (four-sided)
range queries on a set S of N points in the plane. The struc-
ture is similar to the internal and external range trees [6, 17]
and utilizes the notion of “multislabs” that has been used
in several external data structures (refer e.g. to [4]).

Our structure consists of a fanout f =
p

log2 N base tree
T on the N points in S sorted by x-coordinates. The base
tree has height O(log2 N/ log2 log2 N) and can be laid out in
memory by storing each node as a small log2 log2 N height
tree and using the standard van Emde Boas layout such
that a root-leaf path can be traversed cache-obliviously in
O(logB N) memory accesses. With each node v of T we
naturally associate a slab Xv : The slab Xl associated with
a leaf l is defined by the x-interval formed by two consecu-
tive points; the slab Xv of an internal node v is the union
of the slabs associated with the children v1, v2, . . . , vf of
v. Thus the slab Xv is divided into f sub-slabs by the
slabs associated with the children of v. We define a mul-
tislab of v to be a continuous range of its sub-slabs, that
is, Xv [i : j] =

Sj
l=i Xvl is the multislab consisting of sub-

slabs Xvi through Xvj , for 1 ≤ i ≤ j ≤ f . There are

O(f2) = O(log2 N) multislabs at v. Refer to Figure 5.
For an internal node v, let Sv be the points of Xv (i.e.

the points from S residing in leaves below v). We store the
points of Sv in O(log2 N) secondary structures associated
with v: One structure Lv on Sv for answering three-sided
queries with the opening to the left, one structure Rv on Sv

for answering queries with the opening to the right, and for
each multislab Xv [i : j] of v one cache-oblivious search tree
MXv[i:j] on the points in Sv with x-coordinates in Xv [i : j].
The points in each MXv[i:j] tree are stored in y-coordinate
order. The secondary structures are stored separately from
the memory layout of the base tree T . Separately we also



v

v1 v2 v3 v4 v5

Xv

Xv2 Xv4 Xv5Xv1 Xv3

Xv [2 : 3]

Figure 5: Node v of base tree T . The slab Xv as-
sociated with v is divided into subslabs by the slabs
associated with the children v1, . . . , v5.

store for each node v of T an array of pointers to v’s asso-
ciated structures; the node v itself stores a pointer to the
array. Using this array and index calculation based on i and
j, we can access Lv, Rv , and any single MXv [i:j] in O(1)
memory transfers.

Since each point in Sv is stored in O(f) = O(log2 N) linear
space search trees MXv[i:j], and in two O(N log2 N) space
structures Lv and Rv , the secondary structures of v occupy
O(|Sv | log2 |Sv|) space in total. Since each point is stored
in the secondary structures of the O(log2 N/ log2 log2 N)
nodes on one root-leaf path of T , our structure uses
O(N log2

2 N/ log2 log2 N) space overall.
To answer a range query Q = [xl, xr] × [yb, yt], we search

down T using O(logB N) memory transfers to find the first
node v where xl and xr are contained in different children
vi and vj of v. To answer Q on Sv, and thus on S, we then
first query Rvi to find the points from Xvi lying in Q and
query Lvj to find the points from Xvj lying in Q. Finally, if
j > i + 1, we perform a (one-dimensional) range query with
[yb, yt] on MXv[i+1:j−1] to find the remaining points from
Xvi+1 , Xvi+2 , . . . , Xvj−1 lying in Q. It is easy to see that this
correctly reports all T points in Q; refer to Figure 6. Since
each of the three queries uses O(logB N + T/B) memory
access, we have obtained the following.

Theorem 4. There exists a cache-oblivious data
structure for storing N points in the plane using
O(N log2

2 N/ log2 log2 N) space, such that a four-sided
range query can be answered using O(logB N + T/B)
memory transfers.

xl xr

Xvi
Xvj

Xv [i + 1 : j − 1]

yt

yb

Figure 6: Answering query in v by answering three-
sided queries on points in Xvi and Xvj , as well as a
range query on points in multislab Xv[i + 1, j − 1].

5. SEMIGROUP RANGE SUM QUERIES
In this section we describe how the range counting struc-

ture in Section 2 can be modified to support semigroup range
sum queries, where each point has an associated weight from
some semigroup and the output of a range query is the sum

(with respect to the semigroup operator, e.g. max) of the
weights of the points contained within the query range.

Three-sided semigroup range sum queries are supported in
O(logB N) memory transfers using O(N log2 N) space, and
four-sided semigroup range sum queries are supported in
O(logB N) memory transfers using O(N log2

2 N/ log2 log2 N)
space. The space bounds hold for semigroups where points
can be represented in O(1) space.

5.1 Three-sided queries
The three-sided data structure is identical to the

O(N log2 N) space cache oblivious range counting data
structure described in Section 2, except that a point pi in a
list Lv now stores two values: leftsum(pi) and rightsum(pi).
The value leftsum(pi) is the sum of the weights of the
points in Lleft(v) with y-coordinate at most y(pi). Simi-
larly, rightsum(pi) is the sum of the weights of the points in
Lright(v) with y-coordinate at most y(pi).

To perform a query Q = [xl, xr] × (−∞, yt] we follow the
path to the leaf of T storing the point with the smallest x-
coordinate larger than or equal to xl, and the path to the leaf
storing the largest x-coordinate less than or equal to xr. For
each of the visited nodes v we locate the point pi in Lv with
largest y-coordinate that is less than or equal to yt. For all
nodes on the search path to xl and xr, respectively, that are
not nodes on the search path to xr and xl, respectively, we
sum up rightsum(pi) and leftsum(pi), respectively. Finally,
we add the weight of the two leaves if they are contained
within the query rectangle.

Since the data structure is identical to the data struc-
ture in Section 2, except for the additional O(1) informa-
tion at the nodes of the Lv lists, the O(N log2 N) space
bound follows from Section 2. Similarly following each of
the two root-to-leaf paths uses O(logB N) memory trans-
fers, i.e. a three-sided semigroup range sum query requires
in total O(logB N) memory transfers.

Theorem 5. There exists a cache-oblivious data struc-
ture for storing N points in the plane using O(N log2 N)
space, such that a three-sided semigroup range sum query
can be answered in O(logB N) memory transfers.

5.2 Four-sided queries
To support four-sided semigroup range sum queries we

apply the approach used in Section 4 for reducing four-sided
range queries to three-sided range queries, by using a fanout
p

log2 N base tree T where each node v spans a slab which

is partitioned into
p

log2 N sub-slabs by the children of v.
In the following we will adopt the notion used in Section 4.

For each node v of T we store Sv in two three-sided struc-
tures (as described in Section 5.1) Lv and Rv, respectively,
to answer three-sided queries with the opening to the left
and right, respectively. For each of the O(log2 N) multislabs
Xv [i : j] we have a cache-oblivious search tree MXv[i:j] stor-
ing the points in S∩Xv[i : j] at the leaves sorted with respect
to y-coordinate. With each node u in MXv [i:j] we store the
two sums leftsum(u) and rightsum(u) of the weights of the
points in the left and right subtree of u, respectively.

A query is performed in a similar way as described in
Section 4. First we search T to find the node v where xl and
xr are contained in different sub-slabs Xvi and Xvj of v. We
then query Rvi and Lvj with [xl,∞)×[yb, yt] and (−∞, xr]×
[yb, yt], respectively. If i+1 < j, we query MXv[i+1:j−1] with



[yb, yt], where we sum up the rightsum(u) and leftsum(u)
values for the nodes u on the search paths for yb and yt,
respectively, i.e. summing up the weight of the subtrees of
MXv [i+1:j−1] spanned completely by the range [yb, yt].

A node v in the base tree occupies O(|Sv | log2 |Sv|) space
for the two three-sided structures Lv and Rv, and O(|Sv |) for
each of the O(log2 N) multislab structures MXv[i:j]. There-
fore each level of the base-tree T uses O(N log2 N) space,
with a total of O(N log2

2 N/ log2 log2 N) space. A query uses
O(logB N) memory transfers since the searches in T and
MXv [i+1:j−1] use O(logB M) memory transfers and the two
three-sided semigroup range sum queries also use O(logB M)
memory transfers.

Theorem 6. There exists a cache-oblivious data
structure for storing N points in the plane using
O(N log2

2 N/ log2 log2 N) space, such that a four-sided
semigroup range sum query can be answered using
O(logB N) memory transfers.

6. CONCLUSION
We have presented cache-oblivious data structures for

various planar range problems all achieving optimal query
time bounds. Four-sided range counting queries can be an-
swered in O(logB N) memory transfers using O(N) space.
General semigroup range sum queries can be answered in
O(logB N) memory transfers, using O(N log2 N) space for
three-sided queries and O(N log2

2 N/ log2 log2 N) space for
four-sided queries. Range reporting queries can be answered
in O(logB N +T/B) memory transfers, where T is the num-
ber of reported points, using space O(N log2 N) for three-
sided range queries and O(N log2

2 N/ log2 log2 N) space for
four-sided range queries.

Many problems remain open. Can the space for three-
sided and four-sided range queries be reduced to O(N) and
O(N log2 N/ log2 log2 N) respectively, matching the optimal
space bounds for the I/O-model? Can we achieve space
O(N) for special cases of the semigroup range sum problem,
e.g. for max? Our data structures are for static point sets.
Can the data structures be made dynamic, while maintain-
ing optimal query times? Can the techniques be used for
higher dimensional queries?
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Figure 7: The basic range counting structure T for 16 points. Leaves show the coordinates of the points and
internal nodes show the x-coordinates for the branching. The boxes show the Lv lists, where each line is the
y-coordinate of a point pi and a ’+’ followed by the leftsum(pi) value (note that points are not stored in the
data structure, the y-coordinates are only included for illustrative purposes). The search path for the query
Q = (−∞, 26] × (−∞, 33] is emphasized.
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Figure 8: Illustration of the construction of the recursive layout including all dummy points introduced for
the example in Figure 7. Dummy points are shown using italic numbers. The shaded triangles depict the
toplevel partitioning, and the partitioning of the Lv lists in the top tree correspond to the four recursive
layouts of the top tree (there is only one recursive layout for each of the buttom trees).


