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AbstractThis progress report presents the work accomplished by the author during part A of thePh.D. programme at the University of Aarhus.We consider the complexity of di�erent data structures, and introduce the distinctionbetween query and restructuring complexity of data structures. In the light of threedi�erent computational frameworks we argue that data structures should be designed tohave minimal restructuring complexity.The main result is the result of [3] where we show how to make bounded degree datastructures partially persistent with worst case slowdown in O(1). We also give a restrictedresult for the case of fully persistent data structures.Reference [3] is appended at the end of the report.
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Chapter 1IntroductionIn this progress report we consider the complexity of data structures. Many existingdata structures are characterised by updates consisting of cascades of local restructurings.Typical local restructurings are copying or splitting of nodes, linking or cutting of treesor rotations in a tree. We are interested in how to avoid or control these cascades of localrestructurings. In this report we review known approaches to improving the restructur-ing complexity of data structures. The results obtained by the author are presented inChap. 3, Chap. 4, Chap. 5 and [3].In the following we assume that data structures are described in the pointer machinemodel [26]. So our view of a data structure is a directed graph of bounded out-degreewhere each node contains a �xed amount of information. We also assume that a singleoperation on a data structure consists of one or more of the following three independentsteps:i) Perform a search in the data structure to locate a given position.ii) Perform an update at the position found in i).iii) Reorganise the data structure such that it satis�es some structural constraints.As a concrete example consider an insertion into an (a; b){tree [18]. Here i) is a searchin the tree, ii) is the creation of a new leaf containing the element to be inserted and iii)is the splitting of a sequence of nodes so that all internal nodes (except possibly for theroot) have degree between a and b.Table 1.1 gives a short list of data structures that satis�es these assumptions.In general the �rst step can often be done by an ordinary search or is trivial becausethe relevant position is already known. This is true for all data structures in Table 1.1. Asan example step i) of insertions into binomial heaps and Fibonacci heaps will just be to donothing because new elements are always inserted at the same place. The second step canoften be done in timeO(1), as in all the given examples. What actually can take time, is toperform step iii) which can be regarded as maintaining the constraints on the structure.If we look at the data structures in Table 1.1 we see that restructurings are actuallysequences of local restructuring transformations which can be performed independently ofeach other. Table 1.1 mentions which local restructurings are performed on the di�erentdata structures and how large the worst case times of performing step ii) and iii) are.2



Data structure Local restructuring Step ii) & iii)(2; 3){trees, B-trees, (2; 4){trees Splitting-, fusion- and �(logn)and (a; b){trees [2, 18] sharing-stepsRed-black-trees [27] Rotations �(logn)Dynamic fractional cascading [21] Insertion/deletion of bridges �(n)Partially persistent BID1 [13] Node copying �(n)Fully persistent BID1 [13] Node splitting �(n)Binomial heaps [29] Linking binomial trees �(logn)Fibonacci heaps [15] Linking/cutting trees �(logn)Catenable min-dequeues [4] Path compression �(n)Table 1.1: Local restructuring operations on di�erent data structuresThe above examples and the constraints that we have forced on the considered datastructures give us that a data structure is characterised by two di�erent kinds of com-plexities:� The complexity of performing searches in the data structure.� The complexity of maintaining the structural constraints on the data structure.In the following, the query complexity of a data structure refers to the complexity ofperforming step i) and the restructuring complexity to the complexity of performing stepii) and iii).Below we give three applications of data structures where it is important that we makea distinction between the query and the restructuring complexity. We present two parallelenvironments and one sequential environment.In the �rst parallel environment we have a number of processes that share a datastructure. Here it is often the restructuring steps that are expensive because they needto lock the data structure (or parts of the data structure) to be able to perform theupdates safely. There is no problem when performing searches, because processes canread the same nodes of the data structure concurrently without blocking each other. Soin this parallel environments it is important that the restructuring complexity is as smallas possible.Another parallel environment is the following (of Smid [25]). Instead of having only onedata structure we maintain several copies of a data structure in a network of processeswhere all processes have their own memory. There is one central structure on whichupdates are performed and which is maintained by a special process. All other processeshave copies of the central structure (or a restricted version of it) which are called the clientstructures. The processes are only allowed to perform queries on the client structures,updates have to be done via the central structure. An update is performed by the processhaving the central structure. After having updated the central structure the necessaryinformation is broadcasted to all the processes. We are interested in the client update time,which is de�ned as the time a client needs to perform the corresponding update plus the1BID � bounded in-degree data structures 3



Data structure ApproachOriginal Improved2Search trees [2, 18, 27] unnamed [14, 20] BucketingFinger search trees [17] unnamed [9] Bucketing + RAM modelDynamic fractional cascading [21] unnamed [10] BucketingPartially persistent BID [13] unnamed [22] Bucketing + RAM modelunnamed [3] Regularity constraintFully persistent BID [13] unnamed [10] BucketingBinomial heaps [29] unnamed3 [6] Regularity constraintFibonacci heaps [15] Relaxed heaps3[12] Structural relaxationCatenable min-dequeues [4] unnamed [19] Regularity constraintTable 1.2: Improvement of restructuring complexitiesnumber of bits in the information broadcasted [25]. For a given data structure there is asimple protocol that bounds the clients update time by the restructuring complexity of thedata structure | the central process just has to broadcast the locations of the di�erentmodi�cations and the modi�cations done (this assumes that the index of a memory cellhas size O(1) and that the clients have random access to their data structures). A simpleexample of this strategy is to maintain a balanced binary search tree. If we let the centralstructure be a red-black tree [27], the client structures can be copies of the red-black treewithout the colour information, because only the central structure needs this informationfor restructuring the tree. Because updates only involve a constant number of rotationsthe client update times will be worst case O(1). The central update time is of course stillO(log n). In Chap. 5 we give a similar result for bounded degree fully persistent datastructures.When returning to Table 1.1 we see that for four of the data structures the restructur-ing time can be as bad as �(n). But in the amortised sense (see Chap. 2) the restructuringcomplexities of all the four data structures are O(1), so in o�-line applications of the datastructures the restructuring complexity does not a�ect the overall complexity. In on-lineapplications the worst case restructuring complexity is unsatisfying, especially becausethe worst case restructuring complexity is worse than the query complexity. The querycomplexity of the persistence techniques of [13] is worst case O(1). If possible, we wouldlike to have the restructuring complexity bounded by the query complexity. There can ofcourse be a lower bound that makes this impossible, as for priority queues where at leastone of the operations has to take time 
(log n).A lot of work has been done in the past to improve the restructuring complexity ofdi�erent existing data structures where the restructuring complexity dominates the querycomplexity. Table 1.2 summarises the approaches done on the data structures mentionedin Table 1.1. In Chap. 2 the di�erent approaches will be considered in more detail.In the following chapters we consider the di�erent ideas used to improve the restruc-turing complexity of data structures. Often, the goal is to remove the amortisation froman existing data structure. In Chap. 2 we review existing approaches to remove the2unnamed � the improved data structure is just an extension of the original data structure3The improvements do not a�ect the delete operations4



amortisation from data structures.In Chap. 3 we present a counter which supports addtion/subtraction of an arbitrarypower of two and test for zero in worst case constant time. This problem is of interestbecause a number of data structures use ideas that come from considering redundantcounter representations.In Chap. 4 and Chap. 5 we describe a new approach to improving the restructuringcomplexity of data structures. We consider a pebble game on graphs, that in [3] enablesus to remove the amortisation from the restructuring complexity of the partial persistencetechnique of [13] with query complexity slowdown in O(1). We also present a restrictedresult for the full persistence technique of [13].
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Chapter 2Elimination of AmortisationAs mentioned in Chap. 1 the restructuring complexities of the data structures we con-sider are characterised by being bad in the worst case sense, but often good (i.e. O(1)) inthe amortised sense. In this chapter we brie
y review the de�nitions of amortised com-plexity, give typical examples of data structures with good amortised performance andreview known approaches to remove the amortisation from the restructuring complexityof di�erent data structures.2.1 Amortised ComplexityThe concept of amortised complexity was introduced by Tarjan in [28] as an alternative tothe worst case complexity measure. Tarjan de�ned amortised complexity as \to averagethe running time of operations in a sequence over the sequence" [28]. We shall viewamortised complexity as the banker view, i.e. the computer is coin-operated, and coins aredeposited in the data structure. One coin can pay for a �xed number of operations. Atthe beginning the data structure contains no coins. The amortised time of an operation isthe number of coins we add to the data structure when we perform the operation. Unusedcoins can be used by latter operations to make the amortised cost less than the actualcost for these operation.The power of amortised complexity is best illustrated by the idea of splaying. In [24]splay trees were introduced as an alternative to the well known variants of search treeswith good worst case performance. Splay trees are characterised by being very simple,with no balancing information in the nodes, good amortised performance but bad worstcase performance.Examples of data structures where a simple coin deposit argument can give a goodand very tight bound on the amortised performance are many, we just mention a list ofreferences [13, 15, 16, 18, 21, 27, 29]. They all use the same idea to have small local bu�erswhich ensure that potential cascades or local restructurings are prepayed in advance byimplicitly placing coins in the bu�ers. An example is the cutting of trees in Fibonacciheaps [15] where it is allowed to cut o� one son of a node without implying a cascadedcut. So in Fibonacci heaps each node has a bu�er that allows one son to be cut o�, andif a node has had a son cut o� it contains coins to pay for a latter cut.In the following sections we consider the approaches that have been developed to avoidcascades of local restructurings. 6



2.2 Global rebuildingThe simplest example of an application of the global rebuilding technique is min-dequeues.A min-dequeue is a double ended queue that supports insertion and deletion of elementsat both ends of the queue, and which can return | but not delete | the current minimumelement in the queue.In [16] two di�erent implementations are given. One with amortised O(1) restruc-turing complexity and one with worst case O(1). The amortised solution is based ontwo min-stacks whose concatenation is equal to the queue. When one of the min-stacksbecomes empty two new min-stacks of about the same size are constructed. The con-version to a worst-case variant is done by the global rebuilding technique, where a new(more) \balanced" version is build incrementally by a process in the background. Herethe measure of balance is the di�erence of the sizes of the two min-stacks. The mainrequirement to get global rebuilding to work appropriately is that the data structure doesnot degenerate faster than it can be rebuild.In Sect. 2.4 we summerise the further work that has been done on min-dequeues therecent years.2.3 BucketingRaman considered in his Ph.D. thesis several techniques to eliminate amortisation fromdi�erent data structures [22]. The techniques are based on the following combinatorialcontinuous zeroing game (and various variations of the game). The game is played bytwo players I and D on n variables x1; : : : ; xn. Initially the variables are all zero. Thetwo players-line alternate to perform the following moves:Player I: Chooses n non negative real numbers q1; : : : ; qn such that Pni=1 qi = 1, and setsxi  xi + qi for i = 1; : : : ; n.Player D: Chooses an integer i 2 f1; : : : ; ng and sets xi  0.The goal of the game is to give a strategy for player D that bounds the values of thexi's as much as possible. Let M be a number such that xi � M for all i. We have thefollowing theorem:Theorem 1 (Dietz and Sleator [11]) If player D picks i such that xi = maxjfxjg,then will M = �(log n) and this strategy is optimal.The upper bound is obtained by showing that xi � Hn�1 + 1 for all i, where Hk is thek'th hamonic number. The lower bound is obtained by letting player I uniformly increaseall variables not zeroed. This leads to a situation where M � Hn � 1.A variation of the zeroing game is the halving game where xi is halved instead ofbeing zeroed, xi  xi=2. That this game also has M = �(log n) is an easy consequenceof Theorem 1, because playing the halving game on x1; : : : ; xn corresponds to playing thezeroing game on yi = maxf0; xi �Hn�1 � 2g.The theorem is essential to the idea of bucketing [9, 11, 20, 22]. We will not gointo the details of the technique but just sketch the main idea. A set of n elements ispartitioned into buckets of polylogarithmic size and, at regular intervals, with frequency7



f , the largest bucket of elements is split into two smaller buckets. By using the abovetheorem it is possible to show that the size of the largest bucket will be bounded byO(f log n), because the number of buckets is less than n and we have a variation of thehalving game scaled up with a factor of f . In [9, 20] f is O(log n) so the buckets are ofsize O(log2 n). The representation and implementation of the buckets, as well as the valueof f , are speci�c to the given problem to which the bucketing technique is applied. Theresulting data structures are hybrid or two-level data structures. The interval f betweentwo zeroings or splittings can be used to perform a lazy update on the top level datastructure as in the search trees of [20].By appropriate representations of the buckets [22] they can in some situations beimplemented on the RAM such that they can be manipulated in time O(1). The idea isto put sets of size O(log n) into a constant number of words on the RAM and to store anumber of incrementally built tables [1, 9].Two implementations of search trees that use this lemma are the search trees of [14]and [20], where it is possible to perform updates in worst case timeO(1), when it is knownwhere to insert/delete an element. Di�erent representations of the buckets are used thatdo not need the RAM model.2.4 Data Structural BootstrappingRecently a new approach has been taken to develop data structures | data structural boot-strapping [5]. Given an implementation of a data structure that has a limited repertoireof operations, a new implementation of the data structure can be constructed by recur-sively applying the old data structure and thereby extending the repertoire of supportedoperations. The new data structure is a tree where all nodes correspond to instances ofthe original data structure.In [4] catenable heap ordered double ended queues (catenable min-dequeues) are con-structed in this way by recursively using min-dequeues. The main operation is a pulloperation which pulls a subtree towards the root of the tree of min-dequeues. In a com-plex analysis it is shown that the number of pulls is linear in the number of operations,which gives an amortised performance in O(1).Kosaraju has recently shown [19] that the amortised bound can be made worst case.Again the approach is data structural bootstrapping. But in contrast with the orig-inal construction the new construction uses two levels of bootstrapping. First a newimplementation of min-dequeues is constructed. These are then extended to restrictedcatenable min-dequeues, where catenations of min-dequeues are performed lazily over thesubsequent sequence of insertions and deletions, and �nally catenable min-dequeues areconstructed by using data structural bootstrapping. The interesting idea of the appliedform of bootstrapping is that it is based on an explicit regularity constraint, which guar-antees that nodes can always be removed in worst case time O(1). The idea is to considera left-to-right Euler walk of the tree of restricted min-dequeues and then to maintain theinvariant that to the left of the i'th node in the Euler walk there is at least 
(i) elements.More precisely that the potential to the left of the i'th node is 
(i) where the potentialis de�ned as the number of elements minus the heights of the restricted min-dequeues inthe leafs and minus the missing amount of lazy melding which still remains to be per-formed on these restricted min-dequeues. The symmetric invariant is maintained on the8



right-to-left Euler walk of the tree.2.5 Regularity Constraints and Structural RelaxingAs mentioned above, a regularity condition is used in [19] to achieve the worst case boundof O(1) of the restructuring complexity of catenable min-dequeues. We give two otherapplications of this idea.The �rst is the maintenance of a priority queue. A simple and elegant implementationis the binomial heap [29], that supports the operations Insert and Delete in timeO(log n) (Insert amortised O(1)) and FindMin in timeO(1). Binomial heaps were laterextended to Fibonacci heaps [15], which also supports aDecreaseKey in amortised timeO(1). As mentioned in Sect. 2.1 the amortised bound on DecreaseKey is reached byrelaxing the structural constraint on the data structure. The restructuring complexityof Fibonacci heaps was improved to worst case O(1) for all operations, except for deletewhich costs O(log n), by relaxed heaps [12]. The general idea is to relax the heap orderat O(log n) nodes in the Fibonacci heaps. This enables the data structure to be improvedlazily with worst case work O(1) per update. Another approach to improve the insertiontime in binomial heaps to worst case O(1) is taken in [6]. Here the idea is to relax thenumber of binomial trees of height h to be between zero and two. It is shown that byrepeating the step of linking the two smallest binomial trees of the same height three timesper insertion, the number of binomial trees of the same height is between zero and twoand the number of heights where two binomial trees are of the same height is O(log� n).The second example of a data structure where a relaxation improves the restructuringcomplexity is the �nger search trees of [17]. The basic structure used to represent a sortedlist is an (a; b){tree where a �nger is a pointer to a leaf. To be able to insert/delete anelement in the neighbourhood of a �nger in timeO(log d), where d is the distance betweenthe �nger and the node to insert, a regularity constraint is maintained on the path fromthe �nger to the the root of the (a; b){tree. The regularity constraint implies that it issu�cient to split only one node on the path per insertion. The idea is related to the ideaof using redundant counters, a problem we consider in Chap. 3. The regularity conditionis very simple. Each node on the path has at least two and at most six sons. Betweentwo nodes with six sons on the path there will be at least one node with at most foursons, and between two nodes with two sons at least one node has at least four sons. Theonly secondary data structures needed on the path are two double linked lists of nodes,containing the nodes with respectively two and six sons.An important property we will mention is that the explicitly stated regularity con-straint only involves one path and therefore only works for a single �nger. To our knowl-edge no corresponding regularity constraints exist for trees that would enable multiple�ngers. Multiple �ngers are also considered in [17] but the idea is just to maintain a pathfor each �nger and the constants in the construction increase with the number of �ngersto maintain. 9



2.6 SummaryThe ideas to improve the restructuring complexity of data structures that have been usedin the past can be summarised by the following list:� Global rebuilding of the data structure.� Partition the elements into buckets.� Place small arrays into a single word on the RAM model.� Relaxation of the structure constraints.� Regularity conditions on the structure of the data structure.
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Chapter 3A CounterThe result of this chapter is a new counter where it is possible to increase and decreasean arbitrary \bit". More precisely we implement a data type over Z that supports thefollowing three operations.� Add(i) adds 2i to the counter,� Sub(i) subtracts 2i from the counter,� Zero tests if the counter is equal to zero.We assume that the length (i.e. the number of bits in the binary representation) of thecounter is bounded by N . Our result is:Theorem 2 A data structure exists that implements Add(i), Sub(i) and Zero in worstcase time O(1).The motivation to study this problem is that a number of data structures involve ideasthat come from considering redundant counter representations [6, 17]. Our counter showshow to avoid the predecessor problem on a subset of the set f1; : : : ; Ng, which seemedfundamental to the redundant counter that Guibas et al. used in the construction of �ngersearch trees [17]. We have sketched the redundant counter of [17] in Sect. 2.5 in termsof a regularity constraint on a path in a tree. In terms of a redundant counter, the ideais to have a redundant counter representation where the digits are allowed to be between�2 and 2. Between two digits of value 2 there will at least be one digit that is less thanor equal to zero, and similarly for �2. The main problem with this counter is that whenadding or subtracting 2i for an arbitrary i, the implementation needs to �nd the nearestdigit that is 2 or �2.The solution we sketch is based on the power of shared indirect pointers.The usual binary representation of a number n is a string of digits (ablognc; : : : ; a0)such that ai 2 f0; 1g and n = Pblognci=0 ai2i. In our redundant representation we allowai 2 f�2;�1; 0; 1; 2g. When using this representation n can have many di�erent repre-sentations: (1; 0; 1); (2;�1;�1) and (1; 1;�1) all represent the value 510.When performing Add(i) (Sub(i)) the �rst step is to increment (decrement) ai.To guarantee that the digits are in the given bounds we have to do some additionalvalue preserving transformations on the digits. The transformations that we allow are:(aj+1; aj) (aj+1 + 1; aj � 2) and (aj+1; aj) (aj+1 � 1; aj + 2). Compared to binomial11



heaps this corresponds to joining two binomial trees of height i to obtain a new tree ofheight i+1 or splitting a tree of height i+1 into two trees of height i. When performingan Add or Sub operation we only want to do O(1) transformations of this type. Forsimplicity we allow that temporary while performing the transformations the values ofthe ais to become outside the given bounds.The main idea in our data structure is the following observation about a sequence of1s in the representation of a value (in the following we underline such sequences):(1; 1; 1; 1; 1) � (1; 0; 0; 0; 0;�1) � (2; 0; 0; 0;�1):A similar observation holds for a sequence of �1s. We will call maximal sequences of1's 1{blocks (respectively �1{blocks). For each index we will maintain information aboutwhich block it is contained in. In the following we describe how to do that.The situation we want to avoid is the following where two 1{blocks get joined becauseof an Add operation (the italic digits indicate the position where we perform Add):(1; 1; 1; 0 ; 1; 1; 0; 0) > (1; 1; 1; 1 ; 1; 1; 0; 0):Instead we want the result of the transformation to be (1; 0; 0;�1; 1 ; 1; 1; 0; 0), where weuse one of the above identities on the leftmost block in the original counter. Because a1{block can be arbitrary long we can not do this transformation in time O(1). This canbe avoided if we instead do the transformation in advance by using the other identitymentioned. The above mentioned example will instead become the following transforma-tion: (2; 0;�1; 0 ; 2;�1; 0; 0) > (1; 0; 0;�1; 2 ; 0;�1; 0; 0):The only non trivial information we need to store for each digit is whether it belongsto a �1{block and, if so, the leftmost and rightmost digit in the block (remember that(2; 0; 0; 0;�1) is a 1{block). This problem we solve in a way that resembles the partialpersistence problem [3] by using the power of shared indirect pointers. Each digit containsa pointer to a block-record that contains pointers to both the extremes of a �1{block. Ifthese pointers are null the digits do not belong to a block. It is now clear how to appenda new �1 to an existing block | we just have to set the block pointer of the new digitto the block pointer of its neighbour digit and update one of the extreme pointers in theblock-record.There are a number of cases to consider when performing Add and Sub. We mentiononly two cases of Add, which capture the central idea of the construction:(1; 0; 2; 0; 0; 0;�1; 0 ; 2; 0; 1) > (2;�1; 0; 0; 0; 0;�1; 2 ; 0; 0; 1);(2;�1;�2; 0 ; 1; 2; 0;�1) > (1; 0; 0; 2 ; 0; 0; 0; 1):What happens is that we destroy a �1{block by performing O(1) transformations atthe ends of the block, exploiting that we have an alternative representation of the blockand that we have access to where the ends of the block are. The transformations at theends of the block either expand or shrink the neighbouring blocks or create new blockscontaining only one digit. By doing these block transformations in an appropriate waywe can avoid joining two neighbouring �1{blocks with the same digits when we performAdd and Sub as illustrated by the �rst example.12



We skip further details of the implementation; the above discussion should give a clearidea of the implementation. We just have to maintain the invariant that we do not havetwo adjacent blocks with the same digits.The Zero test is very simple. We just count how many digits are di�erent from zero.The counter is zero if and only if all digits are zero. This is because the least signi�cantnon zero digit is always a �1 (strings like (1;�2) are not possible, because we maintain�1{blocks).The counter presented here is a good example of the power of indirect pointers com-bined with structural relaxation1.We conclude this chapter by mentioning two problems where the ideas perhaps can beused. It is data structural problems, where there are gaps between the best known worstcase bounds and the amortised bounds on the update complexities.� Is it possible to construct heaps, such that Insert, FindMin and Merge can bedone in worst case time O(1) and Delete in time O(log n)? Binomial heaps [29]do it in the amortised sense.By using the ideas of the described counter we can modify binomial heaps such thatthey can support the insertion of a binomial tree of arbitrary height in worst caseconstant time and that the number of binomial trees of every height at most is aconstant.� Does an extension of (a; b){trees [18] exist, where it is enough to do one split oper-ation per insertion, and the place to split can be found in worst case time O(1) (onthe pointer machine model)? This is the simplest version of the splitting game ofChap. 4.This problem can also be viewed as the problem to maintain �nger search trees withan arbitrary number of �ngers. It was this problem that originally motivated thestudy of the counter. If we only have to maintain O(1) �ngers we can just replacethe counter in Guibas et al. [17] by our counter.
1Here the redundancy of the representation 13



Chapter 4Games on GraphsIn Chap. 2 we presented a general technique to remove the amortisation from the restruc-turing complexity of data structures. One draw back of this idea is that it introduces theidea of bucketing that does not necessarily have natural relation to the original problem.An example is the construction of �nger search trees in [9] where it becomes necessary touse the power of the RAMmodel to put small arrays into a single word. Another exampleis the removing of the amortisation from the update steps of the full persistency techniqueof [13]. The original persistency technique could perform query steps with slowdown inO(1) whereas by using the bucketing technique the slowdown is in O(log log n) [10].In the following we take a completely di�erent approach, that is based on the localproperties of the data structure. The problem with techniques based on the combinatoriallemma in Chap. 2 is that it does not use the topology of the data structure at all, so thefact that restructurings are local is neglected completely.If we consider data structures to be graphs we can use the notion of on-line two playergames on graphs where the moves of the �rst player correspond to performing step ii) ofupdates and the moves of the second player correspond to the local restructurings on adata structure. The goal of the games is to �nd strategies for the second player which:� guarantee that some structural constraints on the graphs are satis�ed,� do as few local restructurings as possible,� helps locating the position to perform the restructurings as fast as possible.If we are interested in maintaining multiple versions of a data structure in a parallelenvironment [25] the last item is not as important as the �rst two, because it is the numberof restructurings that is expensive.Two di�erent games will be considered. The �rst game is strongly related to thepartial persistence technique [13] and the second game is related to the full persistencetechnique [13], �nger search trees [14] and dynamic fractional cascading [21].4.1 Zeroing GameThe �rst game is played on a directed graph G = (V;E) of bounded out-degree d andbounded in-degree b. On each node of the graph we place a number of pebbles. The14



Player I:a) adds a pebble to an arbitrary node v of the graph orb) removes an existing edge (v; u) and creates a new edge (v;w) withoutviolating the degree constraints, and places a pebble on the node v.Player D:c) does nothing ord) picks a node v and removes all pebbles from v and places a new pebbleon all the predecessors of v.Figure 4.1: Zeroing game.two players I and D alternate to do one of the moves described in Fig. 4.1. We call thisgame the zeroing game on graphs. The goal of the game is to �nd a strategy for playerD that can guarantee that the number of pebbles on all nodes is bounded by a constantM . The game was de�ned by Dietz and Raman in [10] to capture the essential problemof removing the amortisation from the partial persistence technique of [13]. They gave astrategy for player D, that achievedM � 2b+2d+O(pb). But they could not implementtheir strategy e�ciently (they could not �nd the appropriate node in constant time).In [3] we give a new strategy which improves the upper bound on the number ofpebbles to M = b+2d. But we are not able to implement this e�ciently either. Howeverwe can implement another strategy that achieves a reasonable bound. The result is thefollowing:Theorem 3 (Brodal [3]) There exists a strategy for player D that achieves a bound onthe number of pebbles of M = 2bd + 1. Furthermore the strategy can be implemented to�nd the node where to remove the pebbles in time O(1) on the pointer machine model.The important consequence of this theorem is that we can make data structures ofbounded degree partially persistent with worst case slowdown O(1), see Chap. 5 and [3].The hidden constants in the secondary data structure we give are very small, we onlyneed one indirect pointer per node to �nd the node where to remove the pebbles.We have also considered a lower bound for the game. By �xing three di�erent graphswe get the following lower bound on M . We have not been able to obtain the detaileddependence of M on b and d.Theorem 4 (Brodal [3]) For all strategies of player D where b; d � 1M � maxfb+ 1; bminfb; dg+q2minfb; dg � 7=4 � 1=2c;& log 23dlog log 23d � 1'g:4.2 Splitting gameThe second game we consider is the on-line splitting game on graphs that we de�ne below.The main di�erence to the zeroing game is that the graphs involved in the splitting game15



v v’ v"
split(v)Figure 4.2: The e�ect of performing Split on a node v. Notice that the degree of twoadjacent nodes increase by one.Player I: Selects two nodes u; v 2 V and inserts the edge fu; vg into the graph.Player S: A number of times selects a node v and performs Split(v). Thenumber of times is between 0 and s, where s 2 N is a constant.Figure 4.3: Splitting game.are much more dynamic and that there is no explicitly stated degree constraint on thenodes.The game is motivated by data structures where splittings are involved. In Chap. 5 wemention a list of such data structures and show the technical details in the relationshipbetween the data structures and the splitting game. Again the main motivation for usingthe terminology of games is to avoid the tedious details of the related data structures.The game is de�ned as simply as possible to concentrate on the main problem| cascadesof splittings in a graph.The game is played on an undirected graph G = (V;E) without self loops and multipleedges. We assume that initially E = ; and jV j can be in�nite. The last assumption allowsus to get new nodes for free. The number of nodes connected to v is denoted by d(v).Let k; � 2 N and � 2]0; 1[ be constants and Split be a function that can split a nodev 2 V into two nodes v0; v00 | provided that d(v) � � . Let G0 = (V 0; E 0) be the graphafter a Split(v) has been performed. The function Split shall guarantee that the edgesadjacent to v 2 V and to v0; v00 2 V 0 are related by the following equations. All otheredges remain unchanged.fu; vg 2 E , fu; v0g 2 E 0 _ fu; v00g 2 E 0;jfujfu; v0g 2 E 0 ^ fu; v00g 2 E 0gj � k;d(v0); d(v00) � b�d(v)c:The constant � is a measure on how evenly the edges connected to v are distributedbetween v0 and v00, and k is a measure on how many new edges can be introduced whenv is split. Figure 4.2 shows the e�ect of performing Split on a node v. We see that inthe example k � 2.The game is played by the two players I and S. Player I inserts edges into the graphand player S splits the nodes of the graph. More precisely the two players alternate toperform the moves in Fig. 4.3.The goal of the game is to �nd a strategy for player S which guarantees, that whateverplayer I and the function Split do, the degree of all nodes will be bounded by a constantM . This bound will of course depend on �; k; � and s.16



Results on The Splitting GameWe have been able to give a strategy for the game that can be implemented to �nd thenode to split in amortised time O(1), but we have not found a data structure that can�nd the node to split in worst case time O(1) | this is one of the problems we want toconsider in future work.We �rst give a strategy for player S to �nd the nodes on which to perform Split. Thestrategy is quite similar to the strategy that we give in [3].The idea is to start controlled searches at the places where edge insertions are beingperformed. Where the searches end we perform Split operations. How to performsearches is described in the following.To each node v we associate a queue Qv (or any other set data structure where itis possible to delete an arbitrary element), which contains a subset of the nodes that isconnected to v by an edge. We let a node u 2 Qv be represented by the edge fu; vg inQv, so that if the edge fu; vg is moved to fu0; vg during a Split operation u indirectly isreplaced by u0 in Qv.The following procedure describes the central idea of the strategy of S. The proceduredescribes how to �nd a node in the graph to perform Split on.procedure pass(v)while Qv 6= ; do v  pop(Qv) odif d(v) � � then(v0; v00)  Split(v)Qv0  Qv00  fujfu; v0g 2 E ^ fu; v00g 2 Eg�end.When player I inserts the edge fu; vg the strategy of player S is very simple. Weassume that s � 2, but as Theorem 7 shows this is no restriction because s is always � 2whenever M is bounded by a constant.The strategy of player Spass(u)pass(v).We now analyse this strategy. First we show that the amortised complexity of imple-menting this strategy is O(1).Theorem 5 The strategy of player S can be implemented to perform the moves in amor-tised time O(1).Proof: The amortised analysis is based on the simple coin deposit invariant that eachnode contains as many coins as there are elements in the node's queue. Each coin can payfor one iteration of the while{loop in the procedure pass, that for each iteration removesa node from one of the queues. Each time we split a node we have to add at most 2kcoins to the data structure so the move of player S at most have to add 4k coins to thedata structure. It is clear that the rest of the operations can be done in constant time.So the moves of player S can be implemented to run in amortised time O(1). 217



Theorem 6 shows that the strategy achieves that the value of M is bounded by aconstant. If we let � = 1=2 and � = 0 we get that M is bounded by 27k+15. We have noreason to believe that this is an optimal bound but we only want to show that M = O(1).Theorem 6 The given strategy for player S of the splitting game achievesM � maxf(12k + 6)=�; 2�g + 3k + 3:Proof: The analysis of the strategy is based on the following function, de�ned on thenodes in V : P (v) = d(v) + jfujfu; vg 2 E ^ v =2 Qugj+ jQvj:If we can show that for all v, P (v) will be bounded by a constant we immediately get abound on M .We will �rst consider how large the value of P (v) can become. Fix an arbitrary nodev | where P (v) � 2� + k, so that d(v) � � . Let n0 denote the size of P (v). We willnow �nd a bound on how large P (v) is when v is split into two nodes v0 and v00 | let n1denote this bound.When v is created jQvj � k. Each time player I adds an edge to v we see that jQvjdecreases by at least one, because player S calls pass(v) | so at most k + 1 new edgesadjacent to v can be added by player I before v will split. Hence, the edges added byplayer I increase P (v) by at most 2(k + 1).Now, we will consider how the procedure pass a�ects the value of P (v). There are twopossible reasons why P (v) can increase. The �rst is when d(v) increases. This happenswhen a neighbour, u, of v is split into two nodes u0; u00 such that fu0; vg; fu00; vg 2 E. Butin this case v =2 Qu and v 2 Qu0 \ Qu00 so the second term in P (v) will decrease by oneand therefore the value of P (v) will not be changed by Split(u).The second case we have to consider is when the second term of P (v) increases byone. This will only happen when pass removes v from Qu for some node u adjacent to v.But then the next action pass will remove an element from Qv and we again have thatP (v) will maintain unchanged | because fv; vg =2 E. If Qv = ;, pass can not remove anelement from Qv so P (v) will be increased by one. This is the last time P (v) is changedbecause the next operation will be Split(v). We conclude that n1 � n0 + 2(k + 1) + 1.When v splits into the nodes v0 and v00, jQv0j; jQv00j � k and at most k new edges willbe introduced, so we get:P (v0) + P (v00) � P (v) + 2k + 2k � n0 + 2(k + 1) + 1 + 2k + 2k = n0 + 6k + 3:If we can guarantee that d(v0); d(v00) � 6k+3 after the split, we have that P (v0); P (v00) �n0. Because d(v0) � b�d(v)c we will make the constraint that b�d(v)c � 6k + 3. When vis split we now have that P (v0); P (v00) � n0. That b�d(v)c � 6k + 3 is a consequence ofthe constraint n0 � 2(6k +3)=�+ k. Remember that we have assumed that n0 � 2� + k.Let p denote maxf2(6k+3)=�+k; 2� +kg. The above considerations show that if n0 � pthen P (v0) � n0 and P (v00) � n0. Notice also that d(v) � � implies that P (v) � p.By induction on the order of the splittings we can now show that a newly created nodev will satisfy P (v) � p. This gives us that M � p + 2(k + 1) + 1. 2Theorem 7 shows that the assumption s � 2 is necessary for all S strategies that canguarantee that M = O(1). 18



Theorem 7 For s = 1 will M be unbounded.Proof: For all N we show that M � N . For a �xed N let 2N be the initial number ofnodes. We give a simple adversary strategy for player I that takes N rounds to create anode with at least N neighbours. In each round we connect the nodes that have not beensplit pairwise by edges. In each round at most half of the remaining nodes can be split soafter N rounds at least one node is not split. More formally, we can show by induction,that after round i at least 2N�i nodes are not split. We have that the degree of the noderemaining after N rounds is at least N . 2

19



Chapter 5Persistent Data StructuresIn this chapter we consider the consequences of the results in Chap. 4 on persistence ofdata structures. At the end of the chapter we mention di�erent data structural problemsthat are related to the problems involved in making data structures fully persistent.5.1 Partial PersistenceIn [13] Driscoll et al. presented a general node copying technique to make data structuresof bounded degree partially persistent. This is a generalisation of the ideas of [23] wherepartially persistent trees are applied to solve a planar point location problem. The over-head of making data structures partially persistent in [13, 23] is worst case slowdown O(1)on the query steps and amortised slowdown O(1) on the update steps. The worst caseupdate slowdown can be as bad as �(n) where n is the size of the data structure (fortrees it is the size of the longest path in the tree).An application of the technique of Driscoll et al. is shown in Fig. 5.1, where a tree ismade partially persistent. The idea is that for each node in the ephemeral data structure(i.e. the data structure we want to make persistent) we have a family of nodes in thepartially persistent data structure (indicated by dashed boxes). Each update is added tothe last node in the family with the current version stamp. Each node in the persistentdata structure contains a �xed number of �elds. When a node gets full we create a newnode in the family containing only the information that exists in the current version ofthe ephemeral data structure. When copying a node we recursively have to update thepredecessors of the node in the current version of the ephemeral data structure, so thatthey point to the newly created node. In Fig. 5.1 we see that by updating the rightmostleaf of the tree we imply that three nodes have to be copied. Grey nodes are nodes thatcontain the information that exists in the current version of the ephemeral data structure,and the numbers are version numbers.By using the bucketing technique and putting small sets of polylogarithmic size intoa constant number of words on the RAM model, Raman improved the update slowdownto worst case O(1) [22].In [3] we give a much simpler data structure that only needs the power of the pointermachine, and still achieves a worst case slowdown of O(1) on both the query and theupdate steps. This is a consequence of applying Theorem 3 in Chap. 4 to the nodecopying technique of Driscoll et al. The number of �elds we need in each node of the20
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The splitting game de�ned in Chap. 4 assumes that there are no multiple edges. But toapply a splitting game strategy to the full persistence technique we have to allow multipleedges. By modifying the de�nition of the game to allow multiple edges and by modifyingthe strategy such that a node can appear several times in a queue Qv, it is possible tomodify the proof of Theorem 6 and show that the degree of all nodes will still be O(1).We omit the details and just state the result.Theorem 9 On the pointer machine model we can make a data structure of boundeddegree fully persistent with worst case query slowdown O(1) and with amortised updateslowdown O(1) and each update requires only worst case O(1) structural changes.In Chap. 1 we described the parallel framework of Smid [25] where we have to maintainseveral client structures of a central structure in a network of processes. When letting thecentral structure be the above version of the fully persistence technique applied to a datastructure and the client structures the same structure without the queues at the nodes,we immediately get the following corollary.Corollary 1 It is possible to maintain several copies of a fully persistent data structureof bounded degree in a network of processes with worst case client update time O(1) andamortised central update time O(1).We will mention a technical di�erence between our result and the result of Driscollet al. [13]. Our approach guarantees that the degree of a node is always bounded by aconstant. This is not true in the original technique. Temporarily while splitting nodesin an update a node can become of arbitrary degree, so the splitting of nodes should bedone carefully to avoid getting amortised update time !(1). We avoid this problem.5.3 Related Data Structural ProblemsThe �rst problem we will mention is fractional cascading. Chazelle and Guibas [7] presenta data structure to handle the static problem. Mehlhorn and N�aher [21] extended thedata structure to handle the dynamic case. The problem is to insert bridges into thedata structure such that gaps are of size O(1). In [21] this takes amortised time O(1) perupdate. By considering the dual graph where gaps corresponds to nodes and nodes areconnected by an edge if only if the the gaps overlap we again have a splitting problem.Figure 5.4 shows an example of this relationship. So an e�ciently implementable strategyfor the splitting game will also have consequences for the dynamic fractional cascadingdata structure. If the gaps are allowed to have polylogarithmic size we can just use thebucketing technique and insert a bridge in the largest gap for each insertion we perform [9].With some care, deletions also can be handled by the bucketing technique.The second and most obvious problem to mention is the restructuring of an (a; b){treewhen only insertions are allowed. It is not known how to maintain the degrees in thegiven bounds by O(1) splittings per insertion if we want to �nd the nodes to split in timeO(1). Without the time constraint we can just do lazy splitting as in the lazily recolouredred-black trees of [13]. 23
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Chapter 6Future WorkIn this chapter we brie
y summerise the open problems that we have encountered andlist a few topics for further work.� Concerning the zeroing game there are two speci�c problems that should be ex-plored. The �rst is to show a general lower bound for the number of pebbles, thatexpresses the relation between b; d and M . We conjecture that M is not linearin d. This is because it is a consequence of Theorem 1 that if b � d and d = nand player D always picks the node with the most pebbles we get a bound ofM = O(b log d) = o(d).The second topic that should be considered is to �nd better implementable strate-gies, especially whether it is possible to achieve M = O(b+ d). This could perhapsgive the insight in how to come up with an e�ciently implementable strategy forthe splitting game of Chap. 4.� For the splitting game the main research should be oriented towards �nding ane�ciently implementable strategy. Even a result for the very restricted case of(a; b){trees would be interesting.A few other problems that would be of immediate interest are the following.� The idea of data structural bootstrapping [5] combined with an explicit regularityconstraint [19] looks very promising. It would be interesting to try to apply theseideas to other data structuring problems where the update operations are restricted.� A very speci�c problem is whether it is possible to construct mergeable priorityqueues where FindMin, Insert and Merge can be performed in worst case timeO(1) and DeleteMin in worst case time O(log n).AcknowledgementI want to thank the following people for encouraging discussions and for reading drafts ofsections contained in this report: Thore Husfeldt, Gudmund Frandsen, Dany Breslauerand Erik M. Schmidt. Especially I want to thank Peter G. Binderup for the encouragingdiscussions that lead to the lower bounds for the zeroing game.25
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