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Abstract

This progress report presents the work accomplished by the author during part A of the
Ph.D. programme at the University of Aarhus.

We consider the complexity of different data structures, and introduce the distinction
between query and restructuring complexity of data structures. In the light of three
different computational frameworks we argue that data structures should be designed to
have minimal restructuring complexity.

The main result is the result of [3] where we show how to make bounded degree data
structures partially persistent with worst case slowdown in O(1). We also give a restricted
result for the case of fully persistent data structures.

Reference [3] is appended at the end of the report.
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Chapter 1

Introduction

In this progress report we consider the complexity of data structures. Many existing
data structures are characterised by updates consisting of cascades of local restructurings.
Typical local restructurings are copying or splitting of nodes, linking or cutting of trees
or rotations in a tree. We are interested in how to avoid or control these cascades of local
restructurings. In this report we review known approaches to improving the restructur-
ing complexity of data structures. The results obtained by the author are presented in
Chap. 3, Chap. 4, Chap. 5 and [3].

In the following we assume that data structures are described in the pointer machine
model [26]. So our view of a data structure is a directed graph of bounded out-degree
where each node contains a fixed amount of information. We also assume that a single
operation on a data structure consists of one or more of the following three independent
steps:

i) Perform a search in the data structure to locate a given position.

it) Perform an update at the position found in 7).

i11) Reorganise the data structure such that it satisfies some structural constraints.

As a concrete example consider an insertion into an (a, b)-tree [18]. Here 7) is a search
in the tree, it) is the creation of a new leaf containing the element to be inserted and ¢¢)
is the splitting of a sequence of nodes so that all internal nodes (except possibly for the
root) have degree between a and b.

Table 1.1 gives a short list of data structures that satisfies these assumptions.

In general the first step can often be done by an ordinary search or is trivial because
the relevant position is already known. This is true for all data structures in Table 1.1. As
an example step ¢) of insertions into binomial heaps and Fibonacci heaps will just be to do
nothing because new elements are always inserted at the same place. The second step can
often be done in time O(1), as in all the given examples. What actually can take time, is to
perform step 7¢7) which can be regarded as maintaining the constraints on the structure.
It we look at the data structures in Table 1.1 we see that restructurings are actually
sequences of local restructuring transformations which can be performed independently of
each other. Table 1.1 mentions which local restructurings are performed on the different
data structures and how large the worst case times of performing step i) and 7:¢) are.



| Data structure | Local restructuring | Step it) & i) |

(2,3)-trees, B-trees, (2,4)-trees Splitting-, fusion- and O(logn)
and (a,b)-trees [2, 18] | sharing-steps

Red-black-trees [27] | Rotations O(logn)
Dynamic fractional cascading [21] | Insertion/deletion of bridges O(n)
Partially persistent BID! [13] | Node copying O(n)
Fully persistent BID! [13] | Node splitting O(n)
Binomial heaps [29] | Linking binomial trees O(logn)
Fibonacci heaps [15] | Linking/cutting trees O(logn)
Catenable min-dequeues [4] | Path compression O(n)

Table 1.1: Local restructuring operations on different data structures

The above examples and the constraints that we have forced on the considered data
structures give us that a data structure is characterised by two different kinds of com-
plexities:

e The complexity of performing searches in the data structure.

e The complexity of maintaining the structural constraints on the data structure.

In the following, the query complexity of a data structure refers to the complexity of
performing step ¢) and the restructuring complexity to the complexity of performing step
i1) and 71).

Below we give three applications of data structures where it is important that we make
a distinction between the query and the restructuring complexity. We present two parallel
environments and one sequential environment.

In the first parallel environment we have a number of processes that share a data
structure. Here it is often the restructuring steps that are expensive because they need
to lock the data structure (or parts of the data structure) to be able to perform the
updates safely. There is no problem when performing searches, because processes can
read the same nodes of the data structure concurrently without blocking each other. So
in this parallel environments it is important that the restructuring complexity is as small
as possible.

Another parallel environment is the following (of Smid [25]). Instead of having only one
data structure we maintain several copies of a data structure in a network of processes
where all processes have their own memory. There is one central structure on which
updates are performed and which is maintained by a special process. All other processes
have copies of the central structure (or a restricted version of it) which are called the client
structures. The processes are only allowed to perform queries on the client structures,
updates have to be done via the central structure. An update is performed by the process
having the central structure. After having updated the central structure the necessary
information is broadcasted to all the processes. We are interested in the client update time,
which is defined as the time a client needs to perform the corresponding update plus the

IBID = bounded in-degree data structures



Data structure Approach
Original Improved?

Search trees [2, 18, 27] | unnamed [14, 20] | Bucketing
Finger search trees [17] | unnamed [9] | Bucketing + RAM model
Dynamic fractional cascading [21] | unnamed [10] | Bucketing
Partially persistent BID [13] | unnamed [22] | Bucketing + RAM model

unnamed [3] | Regularity constraint
Fully persistent BID [13] | unnamed [10] | Bucketing
Binomial heaps [29] | unnamed? [6] | Regularity constraint
Fibonacci heaps [15] | Relaxed heaps®[12] | Structural relaxation
Catenable min-dequeues [4] | unnamed [19] | Regularity constraint

Table 1.2: Improvement of restructuring complexities

number of bits in the information broadcasted [25]. For a given data structure there is a
simple protocol that bounds the clients update time by the restructuring complexity of the
data structure — the central process just has to broadcast the locations of the different
modifications and the modifications done (this assumes that the index of a memory cell
has size O(1) and that the clients have random access to their data structures). A simple
example of this strategy is to maintain a balanced binary search tree. If we let the central
structure be a red-black tree [27], the client structures can be copies of the red-black tree
without the colour information, because only the central structure needs this information
for restructuring the tree. Because updates only involve a constant number of rotations
the client update times will be worst case O(1). The central update time is of course still
O(logn). In Chap. 5 we give a similar result for bounded degree fully persistent data
structures.

When returning to Table 1.1 we see that for four of the data structures the restructur-
ing time can be as bad as ©(n). But in the amortised sense (see Chap. 2) the restructuring
complexities of all the four data structures are O(1), so in off-line applications of the data
structures the restructuring complexity does not affect the overall complexity. In on-line
applications the worst case restructuring complexity is unsatisfying, especially because
the worst case restructuring complexity is worse than the query complexity. The query
complexity of the persistence techniques of [13] is worst case O(1). If possible, we would
like to have the restructuring complexity bounded by the query complexity. There can of
course be a lower bound that makes this impossible, as for priority queues where at least
one of the operations has to take time Q(logn).

A lot of work has been done in the past to improve the restructuring complexity of
different existing data structures where the restructuring complexity dominates the query
complexity. Table 1.2 summarises the approaches done on the data structures mentioned
in Table 1.1. In Chap. 2 the different approaches will be considered in more detail.

In the following chapters we consider the different ideas used to improve the restruc-
turing complexity of data structures. Often, the goal is to remove the amortisation from
an existing data structure. In Chap. 2 we review existing approaches to remove the

Zunnamed = the improved data structure is just an extension of the original data structure

3The improvements do not affect the delete operations



amortisation from data structures.

In Chap. 3 we present a counter which supports addtion/subtraction of an arbitrary
power of two and test for zero in worst case constant time. This problem is of interest
because a number of data structures use ideas that come from considering redundant
counter representations.

In Chap. 4 and Chap. 5 we describe a new approach to improving the restructuring
complexity of data structures. We consider a pebble game on graphs, that in [3] enables
us to remove the amortisation from the restructuring complexity of the partial persistence
technique of [13] with query complexity slowdown in O(1). We also present a restricted
result for the full persistence technique of [13].



Chapter 2

Elimination of Amortisation

As mentioned in Chap. 1 the restructuring complexities of the data structures we con-
sider are characterised by being bad in the worst case sense, but often good (i.e. O(1)) in
the amortised sense. In this chapter we briefly review the definitions of amortised com-
plexity, give typical examples of data structures with good amortised performance and
review known approaches to remove the amortisation from the restructuring complexity
of different data structures.

2.1 Amortised Complexity

The concept of amortised complexity was introduced by Tarjan in [28] as an alternative to
the worst case complexity measure. Tarjan defined amortised complexity as “to average
the running time of operations in a sequence over the sequence” [28]. We shall view
amortised complexity as the banker view, i.e. the computer is coin-operated, and coins are
deposited in the data structure. One coin can pay for a fixed number of operations. At
the beginning the data structure contains no coins. The amortised time of an operation is
the number of coins we add to the data structure when we perform the operation. Unused
coins can be used by latter operations to make the amortised cost less than the actual
cost for these operation.

The power of amortised complexity is best illustrated by the idea of splaying. In [24]
splay trees were introduced as an alternative to the well known variants of search trees
with good worst case performance. Splay trees are characterised by being very simple,
with no balancing information in the nodes, good amortised performance but bad worst
case performance.

Examples of data structures where a simple coin deposit argument can give a good
and very tight bound on the amortised performance are many, we just mention a list of
references [13, 15, 16, 18, 21, 27, 29]. They all use the same idea to have small local buffers
which ensure that potential cascades or local restructurings are prepayed in advance by
implicitly placing coins in the buffers. An example is the cutting of trees in Fibonacci
heaps [15] where it is allowed to cut off one son of a node without implying a cascaded
cut. So in Fibonacci heaps each node has a buffer that allows one son to be cut off, and
if a node has had a son cut off it contains coins to pay for a latter cut.

In the following sections we consider the approaches that have been developed to avoid
cascades of local restructurings.



2.2 Global rebuilding

The simplest example of an application of the global rebuilding technique is min-dequeues.
A min-dequeue is a double ended queue that supports insertion and deletion of elements
at both ends of the queue, and which can return — but not delete — the current minimum
element in the queue.

In [16] two different implementations are given. One with amortised O(1) restruc-
turing complexity and one with worst case O(1). The amortised solution is based on
two min-stacks whose concatenation is equal to the queue. When one of the min-stacks
becomes empty two new min-stacks of about the same size are constructed. The con-
version to a worst-case variant is done by the global rebuilding technique, where a new
(more) “balanced” version is build incrementally by a process in the background. Here
the measure of balance is the difference of the sizes of the two min-stacks. The main
requirement to get global rebuilding to work appropriately is that the data structure does
not degenerate faster than it can be rebuild.

In Sect. 2.4 we summerise the further work that has been done on min-dequeues the
recent years.

2.3 Bucketing

Raman considered in his Ph.D. thesis several techniques to eliminate amortisation from
different data structures [22]. The techniques are based on the following combinatorial
continuous zeroing game (and various variations of the game). The game is played by
two players I and D on n variables xq,...,x,. Initially the variables are all zero. The
two players-line alternate to perform the following moves:

Player I: Chooses n non negative real numbers ¢y, ..., ¢, such that >°7" ; ¢; = 1, and sets
x; — x;+q fore=1,...,n.

Player D: Chooses an integer ¢ € {1,...,n} and sets z; « 0.

The goal of the game is to give a strategy for player D that bounds the values of the
x;’s as much as possible. Let M be a number such that x; < M for all i. We have the
following theorem:

Theorem 1 (Dietz and Sleator [11]) If player D picks © such that x; = max;{x;},
then will M = O(logn) and this strategy is optimal.

The upper bound is obtained by showing that z; < H,_; + 1 for all ¢, where Hj is the
k’th hamonic number. The lower bound is obtained by letting player I uniformly increase
all variables not zeroed. This leads to a situation where M > H,, — 1.

A variation of the zeroing game is the halving game where z; is halved instead of
being zeroed, x; < x,;/2. That this game also has M = O(logn) is an easy consequence
of Theorem 1, because playing the halving game on x4,...,z, corresponds to playing the
zeroing game on y; = max{0,z;, — H,_1 — 2}.

The theorem is essential to the idea of bucketing [9, 11, 20, 22]. We will not go
into the details of the technique but just sketch the main idea. A set of n elements is
partitioned into buckets of polylogarithmic size and, at regular intervals, with frequency



f, the largest bucket of elements is split into two smaller buckets. By using the above
theorem it is possible to show that the size of the largest bucket will be bounded by
O(flogn), because the number of buckets is less than n and we have a variation of the
halving game scaled up with a factor of f. In [9, 20] f is O(logn) so the buckets are of
size O(log” n). The representation and implementation of the buckets, as well as the value
of f, are specific to the given problem to which the bucketing technique is applied. The
resulting data structures are hybrid or two-level data structures. The interval f between
two zeroings or splittings can be used to perform a lazy update on the top level data
structure as in the search trees of [20].

By appropriate representations of the buckets [22] they can in some situations be
implemented on the RAM such that they can be manipulated in time O(1). The idea is
to put sets of size O(logn) into a constant number of words on the RAM and to store a
number of incrementally built tables [1, 9].

Two implementations of search trees that use this lemma are the search trees of [14]
and [20], where it is possible to perform updates in worst case time O(1), when it is known
where to insert/delete an element. Different representations of the buckets are used that

do not need the RAM model.

2.4 Data Structural Bootstrapping

Recently a new approach has been taken to develop data structures — data structural boot-
strapping [5]. Given an implementation of a data structure that has a limited repertoire
of operations, a new implementation of the data structure can be constructed by recur-
sively applying the old data structure and thereby extending the repertoire of supported
operations. The new data structure is a tree where all nodes correspond to instances of
the original data structure.

In [4] catenable heap ordered double ended queues (catenable min-dequeues) are con-
structed in this way by recursively using min-dequeues. The main operation is a pull
operation which pulls a subtree towards the root of the tree of min-dequeues. In a com-
plex analysis it is shown that the number of pulls is linear in the number of operations,
which gives an amortised performance in O(1).

Kosaraju has recently shown [19] that the amortised bound can be made worst case.
Again the approach is data structural bootstrapping. But in contrast with the orig-
inal construction the new construction uses two levels of bootstrapping. First a new
implementation of min-dequeues is constructed. These are then extended to restricted
catenable min-dequeues, where catenations of min-dequeues are performed lazily over the
subsequent sequence of insertions and deletions, and finally catenable min-dequeues are
constructed by using data structural bootstrapping. The interesting idea of the applied
form of bootstrapping is that it is based on an explicit regularity constraint, which guar-
antees that nodes can always be removed in worst case time O(1). The idea is to consider
a left-to-right Euler walk of the tree of restricted min-dequeues and then to maintain the
invariant that to the left of the ¢’th node in the Euler walk there is at least () elements.
More precisely that the potential to the left of the ¢’th node is Q(¢) where the potential
is defined as the number of elements minus the heights of the restricted min-dequeues in
the leafs and minus the missing amount of lazy melding which still remains to be per-
formed on these restricted min-dequeues. The symmetric invariant is maintained on the



right-to-left Euler walk of the tree.

2.5 Regularity Constraints and Structural Relaxing

As mentioned above, a regularity condition is used in [19] to achieve the worst case bound
of O(1) of the restructuring complexity of catenable min-dequeues. We give two other
applications of this idea.

The first is the maintenance of a priority queue. A simple and elegant implementation
is the binomial heap [29], that supports the operations INSERT and DELETE in time
O(log n) (INSERT amortised O(1)) and FINDMIN in time O(1). Binomial heaps were later
extended to Fibonacci heaps [15], which also supports a DECREASEKEY in amortised time
O(1). As mentioned in Sect. 2.1 the amortised bound on DECREASEKEY is reached by
relaxing the structural constraint on the data structure. The restructuring complexity
of Fibonacci heaps was improved to worst case O(1) for all operations, except for delete
which costs O(logn), by relaxed heaps [12]. The general idea is to relax the heap order
at O(log n) nodes in the Fibonacci heaps. This enables the data structure to be improved
lazily with worst case work O(1) per update. Another approach to improve the insertion
time in binomial heaps to worst case O(1) is taken in [6]. Here the idea is to relax the
number of binomial trees of height h to be between zero and two. It is shown that by
repeating the step of linking the two smallest binomial trees of the same height three times
per insertion, the number of binomial trees of the same height is between zero and two
and the number of heights where two binomial trees are of the same height is O(log™ n).

The second example of a data structure where a relaxation improves the restructuring
complexity is the finger search trees of [17]. The basic structure used to represent a sorted
list is an (a,b)-tree where a finger is a pointer to a leaf. To be able to insert/delete an
element in the neighbourhood of a finger in time O(log d), where d is the distance between
the finger and the node to insert, a regularity constraint is maintained on the path from
the finger to the the root of the (a,b)-tree. The regularity constraint implies that it is
sufficient to split only one node on the path per insertion. The idea is related to the idea
of using redundant counters, a problem we consider in Chap. 3. The regularity condition
is very simple. Each node on the path has at least two and at most six sons. Between
two nodes with six sons on the path there will be at least one node with at most four
sons, and between two nodes with two sons at least one node has at least four sons. The
only secondary data structures needed on the path are two double linked lists of nodes,
containing the nodes with respectively two and six sons.

An important property we will mention is that the explicitly stated regularity con-
straint only involves one path and therefore only works for a single finger. To our knowl-
edge no corresponding regularity constraints exist for trees that would enable multiple
fingers. Multiple fingers are also considered in [17] but the idea is just to maintain a path
for each finger and the constants in the construction increase with the number of fingers
to maintain.



2.6 Summary

The ideas to improve the restructuring complexity of data structures that have been used
in the past can be summarised by the following list:

o Global rebuilding of the data structure.

e Partition the elements into buckets.

Place small arrays into a single word on the RAM model.

Relaxation of the structure constraints.

Regularity conditions on the structure of the data structure.

10



Chapter 3

A Counter

The result of this chapter is a new counter where it is possible to increase and decrease
an arbitrary “bit”. More precisely we implement a data type over Z that supports the
following three operations.

e ADD(7) adds 2° to the counter,
e SUB(:) subtracts 2' from the counter,
e ZERO tests if the counter is equal to zero.

We assume that the length (i.e. the number of bits in the binary representation) of the
counter is bounded by N. Our result is:

Theorem 2 A data structure exists that implements ADD(7), SUB(¢) and ZERO in worst
case time O(1).

The motivation to study this problem is that a number of data structures involve ideas
that come from considering redundant counter representations [6, 17]. Our counter shows
how to avoid the predecessor problem on a subset of the set {1,..., N}, which seemed
fundamental to the redundant counter that Guibas et al. used in the construction of finger
search trees [17]. We have sketched the redundant counter of [17] in Sect. 2.5 in terms
of a regularity constraint on a path in a tree. In terms of a redundant counter, the idea
is to have a redundant counter representation where the digits are allowed to be between
—2 and 2. Between two digits of value 2 there will at least be one digit that is less than
or equal to zero, and similarly for —2. The main problem with this counter is that when
adding or subtracting 2° for an arbitrary 7, the implementation needs to find the nearest
digit that is 2 or —2.

The solution we sketch is based on the power of shared indirect pointers.

The usual binary representation of a number n is a string of digits (a[iogn|,- -, @0)

such that a; € {0,1} and n = z}fg“ a;2'. In our redundant representation we allow
a; € {—2,—1,0,1,2}. When using this representation n can have many different repre-
sentations: (1,0,1),(2,—1,—1) and (1,1, —1) all represent the value 5.

When performing ADD(¢) (SUB(¢z)) the first step is to increment (decrement) a,.
To guarantee that the digits are in the given bounds we have to do some additional
value preserving transformations on the digits. The transformations that we allow are:
(aj1,0;) «— (aj41 + 1,a; —2) and (aj41,a;) «— (a;41 — 1,a; + 2). Compared to binomial

11



heaps this corresponds to joining two binomial trees of height ¢ to obtain a new tree of
height ¢ + 1 or splitting a tree of height ¢ + 1 into two trees of height ;. When performing
an ADD or SUB operation we only want to do O(1) transformations of this type. For
simplicity we allow that temporary while performing the transformations the values of
the a;s to become outside the given bounds.

The main idea in our data structure is the following observation about a sequence of
Is in the representation of a value (in the following we underline such sequences):

(1,1,1,1,1) = (1,0,0,0,0,—1) = (2,0,0,0, —1).

A similar observation holds for a sequence of —1s. We will call maximal sequences of
I’s 1-blocks (respectively —1-blocks). For each index we will maintain information about
which block it is contained in. In the following we describe how to do that.

The situation we want to avoid is the following where two 1-blocks get joined because
of an ADD operation (the italic digits indicate the position where we perform ADD):

(1,1,1,0,1,1,0,0) & (1,1,1,1,1,1,0,0).

Instead we want the result of the transformation to be (1,0,0,—1,7,1,1,0,0), where we
use one of the above identities on the leftmost block in the original counter. Because a
I-block can be arbitrary long we can not do this transformation in time O(1). This can
be avoided if we instead do the transformation in advance by using the other identity
mentioned. The above mentioned example will instead become the following transforma-
tion:

(2,0,—1,0,2,—1,0,0) & (1,0,0,—1,2,0,—1,0,0).

The only non trivial information we need to store for each digit is whether it belongs
to a £1-block and, if so, the leftmost and rightmost digit in the block (remember that
(2,0,0,0,—1) is a 1-block). This problem we solve in a way that resembles the partial
persistence problem [3] by using the power of shared indirect pointers. Each digit contains
a pointer to a block-record that contains pointers to both the extremes of a +1-block. If
these pointers are NULL the digits do not belong to a block. It is now clear how to append
a new +1 to an existing block — we just have to set the block pointer of the new digit
to the block pointer of its neighbour digit and update one of the extreme pointers in the
block-record.

There are a number of cases to consider when performing ADD and SUB. We mention
only two cases of ADD, which capture the central idea of the construction:

(170727070707 _17 072707 1) > (27 _1707070707__17 270707 1)7

(2,—1,-2,0,1,2,0,—1) & (1,0,0,2,0,0,0,1).

What happens is that we destroy a +1-block by performing O(1) transformations at
the ends of the block, exploiting that we have an alternative representation of the block
and that we have access to where the ends of the block are. The transformations at the
ends of the block either expand or shrink the neighbouring blocks or create new blocks
containing only one digit. By doing these block transformations in an appropriate way
we can avoid joining two neighbouring +1-blocks with the same digits when we perform
ADD and SUB as illustrated by the first example.

12



We skip further details of the implementation; the above discussion should give a clear
idea of the implementation. We just have to maintain the invariant that we do not have
two adjacent blocks with the same digits.

The ZERO test is very simple. We just count how many digits are different from zero.
The counter is zero if and only if all digits are zero. This is because the least significant
non zero digit is always a £1 (strings like (1, —2) are not possible, because we maintain
+1-blocks).

The counter presented here is a good example of the power of indirect pointers com-
bined with structural relaxation?.

We conclude this chapter by mentioning two problems where the ideas perhaps can be
used. It is data structural problems, where there are gaps between the best known worst
case bounds and the amortised bounds on the update complexities.

e Is it possible to construct heaps, such that INSERT, FINDMIN and MERGE can be
done in worst case time O(1) and DELETE in time O(logn)? Binomial heaps [29]
do it in the amortised sense.

By using the ideas of the described counter we can modify binomial heaps such that
they can support the insertion of a binomial tree of arbitrary height in worst case
constant time and that the number of binomial trees of every height at most is a
constant.

e Does an extension of (a, b)—trees [18] exist, where it is enough to do one split oper-
ation per insertion, and the place to split can be found in worst case time O(1) (on
the pointer machine model)? This is the simplest version of the splitting game of

Chap. 4.

This problem can also be viewed as the problem to maintain finger search trees with
an arbitrary number of fingers. It was this problem that originally motivated the
study of the counter. If we only have to maintain O(1) fingers we can just replace
the counter in Guibas et al. [17] by our counter.

Here the redundancy of the representation

13



Chapter 4

Games on Graphs

In Chap. 2 we presented a general technique to remove the amortisation from the restruc-
turing complexity of data structures. One draw back of this idea is that it introduces the
idea of bucketing that does not necessarily have natural relation to the original problem.
An example is the construction of finger search trees in [9] where it becomes necessary to
use the power of the RAM model to put small arrays into a single word. Another example
is the removing of the amortisation from the update steps of the full persistency technique
of [13]. The original persistency technique could perform query steps with slowdown in
O(1) whereas by using the bucketing technique the slowdown is in O(loglogn) [10].

In the following we take a completely different approach, that is based on the local
properties of the data structure. The problem with techniques based on the combinatorial
lemma in Chap. 2 is that it does not use the topology of the data structure at all, so the
fact that restructurings are local is neglected completely.

If we consider data structures to be graphs we can use the notion of on-line two player
games on graphs where the moves of the first player correspond to performing step i¢) of
updates and the moves of the second player correspond to the local restructurings on a
data structure. The goal of the games is to find strategies for the second player which:

e guarantee that some structural constraints on the graphs are satisfied,
o do as few local restructurings as possible,

o helps locating the position to perform the restructurings as fast as possible.

It we are interested in maintaining multiple versions of a data structure in a parallel
environment [25] the last item is not as important as the first two, because it is the number
of restructurings that is expensive.

Two different games will be considered. The first game is strongly related to the
partial persistence technique [13] and the second game is related to the full persistence
technique [13], finger search trees [14] and dynamic fractional cascading [21].

4.1 Zeroing Game

The first game is played on a directed graph G = (V, E) of bounded out-degree d and
bounded in-degree b. On each node of the graph we place a number of pebbles. The

14



Player I:

a) adds a pebble to an arbitrary node v of the graph or

b) removes an existing edge (v,u) and creates a new edge (v,w) without
violating the degree constraints, and places a pebble on the node v.

Player D:

¢) does nothing or

d) picks a node v and removes all pebbles from v and places a new pebble
on all the predecessors of v.

Figure 4.1: Zeroing game.

two players I and D alternate to do one of the moves described in Fig. 4.1. We call this
game the zeroing game on graphs. The goal of the game is to find a strategy for player
D that can guarantee that the number of pebbles on all nodes is bounded by a constant
M. The game was defined by Dietz and Raman in [10] to capture the essential problem
of removing the amortisation from the partial persistence technique of [13]. They gave a
strategy for player D, that achieved M < 2b+2d+ O(\/E) But they could not implement
their strategy efficiently (they could not find the appropriate node in constant time).

In [3] we give a new strategy which improves the upper bound on the number of
pebbles to M = b+ 2d. But we are not able to implement this efficiently either. However
we can implement another strategy that achieves a reasonable bound. The result is the
following:

Theorem 3 (Brodal [3]) There exists a strategy for player D that achieves a bound on
the number of pebbles of M = 2bd 4+ 1. Furthermore the strategy can be implemented to
find the node where to remove the pebbles in time O(1) on the pointer machine model.

The important consequence of this theorem is that we can make data structures of
bounded degree partially persistent with worst case slowdown O(1), see Chap. 5 and [3].
The hidden constants in the secondary data structure we give are very small, we only
need one indirect pointer per node to find the node where to remove the pebbles.

We have also considered a lower bound for the game. By fixing three different graphs
we get the following lower bound on M. We have not been able to obtain the detailed
dependence of M on b and d.

Theorem 4 (Brodal [3]) For all strategies of player D where b,d > 1

log 2d
M > max{b+ 1, [min{b,d} +/2min{b,d} — 7/4 — 1/2], hﬁﬁ - 1} 1.
3

4.2 Splitting game

The second game we consider is the on-line splitting game on graphs that we define below.
The main difference to the zeroing game is that the graphs involved in the splitting game

15



split(v)
—

Figure 4.2: The effect of performing SPLIT on a node v. Notice that the degree of two
adjacent nodes increase by one.

Player I: Selects two nodes u,v € V' and inserts the edge {u,v} into the graph.

Player S: A number of times selects a node v and performs SPLIT(v). The
number of times is between 0 and s, where s € N is a constant.

Figure 4.3: Splitting game.

are much more dynamic and that there is no explicitly stated degree constraint on the
nodes.

The game is motivated by data structures where splittings are involved. In Chap. 5 we
mention a list of such data structures and show the technical details in the relationship
between the data structures and the splitting game. Again the main motivation for using
the terminology of games is to avoid the tedious details of the related data structures.
The game is defined as simply as possible to concentrate on the main problem — cascades
of splittings in a graph.

The game is played on an undirected graph G = (V, E') without self loops and multiple
edges. We assume that initially £ = @) and |V| can be infinite. The last assumption allows
us to get new nodes for free. The number of nodes connected to v is denoted by d(v).
Let k,7 € N and « €]0,1[ be constants and SPLIT be a function that can split a node
v € V into two nodes v’,v"” — provided that d(v) > 7. Let ' = (V', E’) be the graph
after a SPLIT(v) has been performed. The function SPLIT shall guarantee that the edges
adjacent to v € V and to v’',v” € V' are related by the following equations. All other
edges remain unchanged.

{u,v} € K & {u,v'} € E'"V{u,v"} € F,
H{ul{u,v'} € E" ANu,v"} € B'}| <k,
d(v"),d(v") > |ad(v)].

The constant « is a measure on how evenly the edges connected to v are distributed
between v' and v”, and k is a measure on how many new edges can be introduced when
v is split. Figure 4.2 shows the effect of performing SPLIT on a node v. We see that in
the example k& > 2.

The game is played by the two players I and S. Player I inserts edges into the graph
and player S splits the nodes of the graph. More precisely the two players alternate to
perform the moves in Fig. 4.3.

The goal of the game is to find a strategy for player S which guarantees, that whatever
player I and the function SPLIT do, the degree of all nodes will be bounded by a constant
M. This bound will of course depend on «a, k, 7 and s.
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Results on The Splitting Game

We have been able to give a strategy for the game that can be implemented to find the
node to split in amortised time O(1), but we have not found a data structure that can
find the node to split in worst case time O(1) — this is one of the problems we want to
consider in future work.

We first give a strategy for player S to find the nodes on which to perform SPLIT. The
strategy is quite similar to the strategy that we give in [3].

The idea is to start controlled searches at the places where edge insertions are being
performed. Where the searches end we perform SPLIT operations. How to perform
searches is described in the following.

To each node v we associate a queue (), (or any other set data structure where it
is possible to delete an arbitrary element), which contains a subset of the nodes that is
connected to v by an edge. We let a node u € @), be represented by the edge {u,v} in
(., so that if the edge {u, v} is moved to {u’,v} during a SPLIT operation u indirectly is
replaced by u' in @,

The following procedure describes the central idea of the strategy of S. The procedure
describes how to find a node in the graph to perform SPLIT on.

procedure pass(v)
while @), # 0 do v « pop(Q.) od
if d(v) > 7 then
(v',v") «— SPLIT(v)
Qv — Qur — {ul{u,v'} € EA{u,v"} € F}
fi

end.

When player I inserts the edge {u,v} the strategy of player S is very simple. We
assume that s > 2, but as Theorem 7 shows this is no restriction because s is always > 2
whenever M is bounded by a constant.

The strategy of player S
pass(u)
pass(v).

We now analyse this strategy. First we show that the amortised complexity of imple-
menting this strategy is O(1).

Theorem 5 The strategy of player S can be implemented to perform the moves in amor-
tised time O(1).

Proof: The amortised analysis is based on the simple coin deposit invariant that each
node contains as many coins as there are elements in the node’s queue. Each coin can pay
for one iteration of the while-loop in the procedure pass, that for each iteration removes
a node from one of the queues. Each time we split a node we have to add at most 2k
coins to the data structure so the move of player S at most have to add 4% coins to the
data structure. It is clear that the rest of the operations can be done in constant time.
So the moves of player S can be implemented to run in amortised time O(1). O
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Theorem 6 shows that the strategy achieves that the value of M is bounded by a
constant. If welet @« = 1/2 and 7 = 0 we get that M is bounded by 27k 4+ 15. We have no
reason to believe that this is an optimal bound but we only want to show that M = O(1).

Theorem 6 The given strateqy for player S of the splitting game achieves
M < max{(12k +6)/ca, 27} + 3k + 3.

Proof: The analysis of the strategy is based on the following function, defined on the
nodes in V:

P(v) = d(v) + {ul{u,v} € EAv & Qui| + Q]
If we can show that for all v, P(v) will be bounded by a constant we immediately get a
bound on M.

We will first consider how large the value of P(v) can become. Fix an arbitrary node
v — where P(v) > 27 4 k, so that d(v) > 7. Let no denote the size of P(v). We will
now find a bound on how large P(v) is when v is split into two nodes v’ and v” — let ny
denote this bound.

When v is created |Q,| < k. Each time player I adds an edge to v we see that |Q,|
decreases by at least one, because player S calls pass(v) — so at most k + 1 new edges
adjacent to v can be added by player I before v will split. Hence, the edges added by
player I increase P(v) by at most 2(k + 1).

Now, we will consider how the procedure pass affects the value of P(v). There are two
possible reasons why P(v) can increase. The first is when d(v) increases. This happens
when a neighbour, u, of v is split into two nodes u’, u” such that {v’, v}, {u” v} € E. But
in this case v ¢ @), and v € Qv N Qyr so the second term in P(v) will decrease by one
and therefore the value of P(v) will not be changed by SPLIT(u).

The second case we have to consider is when the second term of P(v) increases by
one. This will only happen when pass removes v from (), for some node u adjacent to v.
But then the next action pass will remove an element from (), and we again have that
P(v) will maintain unchanged — because {v,v} ¢ E. If Q, = 0, pass can not remove an
element from @), so P(v) will be increased by one. This is the last time P(v) is changed
because the next operation will be SPLIT(v). We conclude that ny < ng+2(k+ 1)+ 1.

When v splits into the nodes v" and v”, |Q |, |Qu| < k and at most k new edges will
be introduced, so we get:

P+ P(v") < P(v) 4+ 2k +2k <ng+2(k+1)+ 1+ 2k+ 2k =ng+ 6k + 3.

If we can guarantee that d(v'), d(v"”) > 6k 4 3 after the split, we have that P(v’), P(v") <
ng. Because d(v') > |ad(v)] we will make the constraint that |ad(v)| > 6k 4+ 3. When v
is split we now have that P(v’), P(v") < ng. That |ad(v)] > 6k + 3 is a consequence of
the constraint ng > 2(6k + 3)/a 4+ k. Remember that we have assumed that ng > 27 + k.
Let p denote max{2(6k +3)/a + k,27 + k}. The above considerations show that if ng > p
then P(v") < ng and P(v"”) < ng. Notice also that d(v) < 7 implies that P(v) < p.

By induction on the order of the splittings we can now show that a newly created node

v will satisfy P(v) < p. This gives us that M < p+2(k+1)+ 1. O

Theorem 7 shows that the assumption s > 2 is necessary for all S strategies that can
guarantee that M = O(1).
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Theorem 7 For s =1 will M be unbounded.

Proof: For all N we show that M > N. For a fixed N let 2V be the initial number of
nodes. We give a simple adversary strategy for player I that takes N rounds to create a
node with at least NV neighbours. In each round we connect the nodes that have not been
split pairwise by edges. In each round at most half of the remaining nodes can be split so
after NV rounds at least one node is not split. More formally, we can show by induction,
that after round i at least 2V~% nodes are not split. We have that the degree of the node

remaining after NV rounds is at least V. O
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Chapter 5

Persistent Data Structures

In this chapter we consider the consequences of the results in Chap. 4 on persistence of
data structures. At the end of the chapter we mention different data structural problems
that are related to the problems involved in making data structures fully persistent.

5.1 Partial Persistence

In [13] Driscoll et al. presented a general node copying technique to make data structures
of bounded degree partially persistent. This is a generalisation of the ideas of [23] where
partially persistent trees are applied to solve a planar point location problem. The over-
head of making data structures partially persistent in [13, 23] is worst case slowdown O(1)
on the query steps and amortised slowdown O(1) on the update steps. The worst case
update slowdown can be as bad as ©(n) where n is the size of the data structure (for
trees it is the size of the longest path in the tree).

An application of the technique of Driscoll ef al. is shown in Fig. 5.1, where a tree is
made partially persistent. The idea is that for each node in the ephemeral data structure
(i.e. the data structure we want to make persistent) we have a family of nodes in the
partially persistent data structure (indicated by dashed boxes). Each update is added to
the last node in the family with the current version stamp. Each node in the persistent
data structure contains a fixed number of fields. When a node gets full we create a new
node in the family containing only the information that exists in the current version of
the ephemeral data structure. When copying a node we recursively have to update the
predecessors of the node in the current version of the ephemeral data structure, so that
they point to the newly created node. In Fig. 5.1 we see that by updating the rightmost
leaf of the tree we imply that three nodes have to be copied. Grey nodes are nodes that
contain the information that exists in the current version of the ephemeral data structure,
and the numbers are version numbers.

By using the bucketing technique and putting small sets of polylogarithmic size into
a constant number of words on the RAM model, Raman improved the update slowdown
to worst case O(1) [22].

In [3] we give a much simpler data structure that only needs the power of the pointer
machine, and still achieves a worst case slowdown of O(1) on both the query and the
update steps. This is a consequence of applying Theorem 3 in Chap. 4 to the node
copying technique of Driscoll et al. The number of fields we need in each node of the
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Figure 5.1: A tree made partially persistent by the technique of Driscoll et al. [13]. The
effect of updating the rightmost leaf in the tree is shown.

persistent data structure is given by the value of M from the zeroing game. If we keep the
current version of the ephemeral data structure separately, we just have to copy the node
that the zeroing strategy would have zeroed, because the number of pebbles on a node
corresponds to the number of fields we have used in the last node in the corresponding
persistent family of nodes.

Theorem 8 (Brodal [3]) A data structure with bounded in- and out-degree can be made
partially persistent with worst case slowdown O(1) on the pointer machine model.

Because the data structure we present for the zeroing game is simple and easy to
implement, the data structure obtained in this way would also be very efficient in practice.

5.2 Full Persistence

Two general techniques exist to make data structures fully persistent: In [8] Dietz gives
a technique to make arrays (and therefore all data structures) fully persistent. The slow-
down of the given technique is expected amortised O(loglogn), where n is the number
of operations performed and the size of the array (the complexity is expected amortised
because the data structure involves dynamic perfect hashing).

As for partial persistence [13] also contains a general technique for making bounded
degree data structures fully persistent with amortised slowdown O(1) per operation. The
best known result on the worst case slowdown is by Dietz and Raman [10] that achieves
a worst case slowdown of O(loglogn) for both query and update steps, by a simple
application of the bucketing technique to the technique in [13]. Both these results only
need the pointer machine model.

As mentioned in Chap. 4 the splitting game we consider is strongly related to [13].
Figure 5.2 and Fig. 5.3 show a “simple” example of a fully persistent data structure by
using the technique of [13]. By [¢,j[ we denote the valid intervals of the nodes and the
edges/pointers and for simplicity we have placed values in special data nodes. Figure 5.3
shows how to modify the persistent data structure and how a node is split into two nodes.
Notice that the number of new edges introduced by a split is bounded by the degree
(in-degree plus out-degree) of the ephemeral data structure. For further details we refer

to [13].
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Version Tree Persistent Data Structure

Version List (32

Ephemeral Data Structures

i

1 2 3 4

Figure 5.2: A simple example of a fully persistent data structure. With [3,2[ we denote
the versions from 3 to 2 in the version list not containing 2, so [3,2[= {3,4}. With x we
denote the rightmost end of the list, so [1,*[= {1,2,3,4}.

5

Version List

[17]

O

Figure 5.3: To the left is shown the effect of inserting a new pointer into version 5 of the
data structure of Fig. 5.2. Version 5 is a modification of version 4. To the right is shown
the effect of splitting a node.
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The splitting game defined in Chap. 4 assumes that there are no multiple edges. But to
apply a splitting game strategy to the full persistence technique we have to allow multiple
edges. By modifying the definition of the game to allow multiple edges and by moditying
the strategy such that a node can appear several times in a queue @),, it is possible to
modify the proof of Theorem 6 and show that the degree of all nodes will still be O(1).
We omit the details and just state the result.

Theorem 9 On the pointer machine model we can make a data structure of bounded
degree fully persistent with worst case query slowdown O(1) and with amortised update
slowdown O(1) and each update requires only worst case O(1) structural changes.

In Chap. 1 we described the parallel framework of Smid [25] where we have to maintain
several client structures of a central structure in a network of processes. When letting the
central structure be the above version of the fully persistence technique applied to a data
structure and the client structures the same structure without the queues at the nodes,
we immediately get the following corollary.

Corollary 1 [t is possible to maintain several copies of a fully persistent data structure
of bounded degree in a network of processes with worst case client update time O(1) and
amortised central update time O(1).

We will mention a technical difference between our result and the result of Driscoll
et al. [13]. Our approach guarantees that the degree of a node is always bounded by a
constant. This is not true in the original technique. Temporarily while splitting nodes
in an update a node can become of arbitrary degree, so the splitting of nodes should be
done carefully to avoid getting amortised update time w(1). We avoid this problem.

5.3 Related Data Structural Problems

The first problem we will mention is fractional cascading. Chazelle and Guibas [7] present
a data structure to handle the static problem. Mehlhorn and Naher [21] extended the
data structure to handle the dynamic case. The problem is to insert bridges into the
data structure such that gaps are of size O(1). In [21] this takes amortised time O(1) per
update. By considering the dual graph where gaps corresponds to nodes and nodes are
connected by an edge if only if the the gaps overlap we again have a splitting problem.
Figure 5.4 shows an example of this relationship. So an efficiently implementable strategy
for the splitting game will also have consequences for the dynamic fractional cascading
data structure. If the gaps are allowed to have polylogarithmic size we can just use the
bucketing technique and insert a bridge in the largest gap for each insertion we perform [9].
With some care, deletions also can be handled by the bucketing technique.

The second and most obvious problem to mention is the restructuring of an (a, b)-tree
when only insertions are allowed. It is not known how to maintain the degrees in the
given bounds by O(1) splittings per insertion if we want to find the nodes to split in time
O(1). Without the time constraint we can just do lazy splitting as in the lazily recoloured

red-black trees of [13].
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Figure 5.4: Dynamic fractional cascading. To the left is shown a dynamic frac-
tional cascading data structure containing the three lists: {3,8,11,14},{2,6,10,16} and
{3,4,7,8,18}. The two figures to the right show the corresponding graphs before and
after the dashed bridge is inserted.
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Chapter 6
Future Work

In this chapter we briefly summerise the open problems that we have encountered and
list a few topics for further work.

o Concerning the zeroing game there are two specific problems that should be ex-
plored. The first is to show a general lower bound for the number of pebbles, that
expresses the relation between b,d and M. We conjecture that M is not linear
in d. This is because it is a consequence of Theorem 1 that if b6 < d and d = n
and player D always picks the node with the most pebbles we get a bound of
M = O(blogd) = o(d).

The second topic that should be considered is to find better implementable strate-
gies, especially whether it is possible to achieve M = O(b + d). This could perhaps

give the insight in how to come up with an efficiently implementable strategy for
the splitting game of Chap. 4.

e For the splitting game the main research should be oriented towards finding an
efficiently implementable strategy. Even a result for the very restricted case of
(a, b)—trees would be interesting.

A few other problems that would be of immediate interest are the following.

e The idea of data structural bootstrapping [5] combined with an explicit regularity
constraint [19] looks very promising. It would be interesting to try to apply these
ideas to other data structuring problems where the update operations are restricted.

o A very specific problem is whether it is possible to construct mergeable priority
queues where FINDMIN, INSERT and MERGE can be performed in worst case time
O(1) and DELETEMIN in worst case time O(logn).
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