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CREW-PRAM model, the best-known heap construction algorithm was given by Ramanand Dietz and takes O(log log n) time [6]. The same time performance holds for the parallelcomparison tree model [5]. Finally Dietz showed that O(�(n)), where �(n) is the inverseof Ackerman's function, is the expected time required to build a heap in the randomizedparallel comparison tree model [5]. All the above parallel algorithms achieve optimal workO(n), and the time optimality of the deterministic algorithms can be argued by reductionfrom the selection of the minimum element in a set.In this paper we address the heap construction problem for the simplest parallel model ofcomputation, namely comparator networks. Comparator networks perform only comparisonoperations, which may occur simultaneously. The most studied comparator networks aresorting and merging networks. In the early 1960's, Batcher proposed the odd-even mergealgorithm to merge two sequences of n and m elements, n � m, which can be implementedby a merging network of size O((m+ n) logm). In the early 1970's Floyd [12] and Yao [18]proved the asymptotic optimality of Batcher's networks. The lower bound has recently beenimproved by Miltersen, Paterson and Tarui [13], closing the long-standing factor-of-two gapbetween upper and lower bounds. It is noteworthy to recall, that merge can be solved in thecomparison tree model with a tree of depth m+ n� 1.Batcher also showed how his merge algorithm could be used to implement sorting net-works with size O(n log2 n) and depth O(log2 n) to sort n inputs [12]. For a long time,the question remained open as to whether sorting networks with size O(n log n) and depthO(log n) existed. In 1983, Ajtai, Koml�os and Szemer�edi [1] presented sorting networks withsize O(n log n) and depth O(log n) to sort n items. This result, although partially unsatisfy-ing due to big constants hidden by the O-notation, reveals that the sorting problem requiresthe same amount of work in both comparison tree and comparator network models.Selection, sorting and merging are strictly related problems. Several sequential algorithmswith linear work have been discussed for selection. The �rst is due to Blum et al. [4] andrequires 5:43n comparisons. This result was later improved by Sch�onhage et al. to 3n [16]and by Dor and Zwick to 2:95n [7, 8]. Bent and John proved a lower bound of 2n for thisproblem [3]. Dor and Zwick [9] improved it to (2+ �)n [9]. For a survey of previous work onlower bounds in the comparison tree model, see the paper by Dor and Zwick [9].For comparator networks Alekseyev [2] proved that an (n; t)-selection network, whichselects the t smallest item in a set of n elements, has at least size (n � t)dlog(t + 1)e.1 Fort = 
(n�) and 0 < � � 1, the existence of a work optimal selection network immediatelyfollows by the sorting networks of Ajtai et al.. However, since selection networks do notneed to do as much as sorting networks, and due to the big constant hidden by the sortingnetworks in [1], selection networks with improved constant factors in both depth and sizehave been developed. In particular, Pippenger proposes a (n; bn=2c)-selection network withsize 2n log n and depth O(log2 n) [15]. More recently, Jimbo and Marouka have constructeda (n; bn=2c)-selection network of depth O(log n) and of size at most Cn log n+O(n), for anyarbitrary C > 3= log 3 � 1:89, which improves Pippenger's construction by a constant factorin size and at the same time by an order in depth [11].The preceding summary shows that work optimal comparator networks have been studiedfor merging, sorting, and selection. Although the heap data structure has historically been1All logarithms throughout this paper have basis 22



strictly related to these problems, we are not aware of any comparator network for theheap construction problem. In this scenario, we show that heap construction can be doneby comparator networks of size O(n log log n) and depth O(log n), and that our networksreach optimal size by reducing the problem of selecting the smallest log n elements to heapconstruction. Finally, since �nding the minimum requires at least a network of size n � 1and depth dlog ne, our heap construction networks also have optimal depth.1 PreliminariesLet us review some de�nitions, and agree on some notations used throughout the paper.A binary tree of size n is a tree with n nodes, each of degree at most two. A node x of abinary tree belongs to level k if the longest simple path from the root to x has k edges. Theheight of the tree is the number of edges in the longest simple path starting at the root ofthe tree. The subtree Tx rooted at node x at level k is the tree induced by the descendantsof x.A complete binary tree is a binary tree in which all the leaves are at the same level andall the internal nodes have degree two. Clearly, it has height blog nc.A heap shaped binary tree of height h is a binary tree whose h� 1 uppermost levels arecompleted �lled and the h-th level is �lled from the left to the right.In a heap ordered binary tree, each node contains one element which is greater or equalto the element at its parent.Finally, a binary heap is de�ned as a heap-shaped and heap-ordered binary tree [17],which can be stored in an array H as an implicit tree of size n, as depicted in Figure 1.The element of the root of the tree is at index 1 of the array, (i.e., root is stored in H[1]),and given an index i of a node x, the indices of its left and right children are 2i and 2i+ 1,respectively.A comparator network with n inputs and size s is a collection of n horizontal lines, one foreach input, and s comparators. A comparator between line i and j, briey i : j, compares thecurrent values on lines i and j and is drawn as a vertical line connecting lines i and j. Afterthe comparison i : j, the minimum value is put on line i, while the maximum ends up on linej. Finally, a comparator network has depth d, if d is the largest number of comparators thatany input element can pass through. Assuming that each comparator produces its outputin constant time, the depth of a comparator network is the running time of such a network.From now on, let us refer to comparator networks simply as networks. For a comprehensiveaccount of comparator networks, see [12, pp. 220-246].2 Sequential heap constructionIt is well known that an implicit representation of a binary heap H of size n can be builtin linear sequential time by the heap construction algorithm of Floyd [10]. Because we baseour heap construction networks on Floyd's algorithm, we rephrase it as follows:Assuming that the two binary trees rooted at the children of a node i are heaps, theheap-order property in the subheap rooted at i can be reestablished simply by bubbling3
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Figure 1: A binary heap of size 15 and its implicit representation.down the element H[i]. We let the bubbling down procedure be denoted Siftdown. At eachstep, Siftdown determines the smallest of the elements H[i];H[2i], and H[2i + 1]. If H[i]is the smallest, then the subtree rooted at node i is a heap and the Siftdown procedureterminates. Otherwise, the child with the smallest element and H[i] are exchanged. Thenode exchanged with H[i], however, may violate the heap order at this point. Therefore, theSiftdown procedure is recursively invoked on that subtree.We can now apply Siftdown in a bottom-up manner to convert an array H storing nelements into a heap. Since the elements in the subarray H[(bn=2c + 1) ::n] are all leaves,each is a 1-element heap to begin with. Then, the remaining nodes of the tree are visitedto run the Siftdown procedure on each one. Since the nodes are processed level by level ina bottom up fashion, it is guaranteed that the subtrees rooted at the children of the node iare heaps before Siftdown runs at that node.In conclusion, observe that the Siftdown routine invoked on a subheap of height i per-forms 2i comparisons in the worst case, and that the worst case running time of the heapconstruction algorithm of Floyd described above is Pblognci=0 n2i � 2i = O(n), which is optimal.3 Heap construction networks of size n lognIn this section we present heap construction networks which have size at most nblog nc anddepth 4blog nc�2. Notice that any sorting network could also be used as a heap constructionnetwork. The networks presented in this section are used in Section 4 to construct improvedheap construction networks of size O(n log log n), and in Section 5 to give a reduction fromselection to heap construction.Lemma 1 gives a network implementation of the sifting down algorithm used in the heapconstruction algorithm by Floyd [10]. 4



Lemma 1 Let T be a binary tree of size n and height h. If the subtrees rooted at the childrenof the root satisfy heap order, then the elements of T can be rearranged to satisfy heap orderwith a network of size n � 1 and depth 2h. At depth 2i + 1 and 2i + 2 of the network thecomparators are only between nodes at level i and i+ 1 in T . All comparators correspond toedges of T , and for each edge there is exactly one comparator.Proof. If the tree has height zero, no comparator is required. Otherwise let r be the rootand u and v the children of r. If u or v is not present, the steps below which would involvev or u are skipped.First we apply the comparators r : u and r : v. Because Tu and Tv were assumed to beheap ordered subtrees, r now has the minimum. After the two comparators the heap ordercan be violated at the roots of both Tu and Tv. We therefore recursively apply the above tothe subtrees Tu and Tv. Notice that the two recursively constructed networks involve disjointnodes and therefore can be performed in parallel. If r only has one child we still charge thenetwork depth two to compare r with its children to guarantee that all comparisons done inparallel by the network correspond to edges between nodes at the same levels in T .The depth of the network is two plus the depth of the deepest recursively constructednetwork. By induction it follows that the depth of the network is 2h, and that the networkat depth 2i + 1 and 2i+ 2 only performs comparisons between nodes at level i and i+ 1 inT . Furthermore, the network contains exactly one comparator for each edge of T . 2Notice that the network has n � 1 comparators while the corresponding algorithm ofFloyd only needs h comparisons. By replacing the sifting down algorithm in Floyd's heapconstruction algorithm by the sifting down networks of Lemma 1, we get the following lemma.Lemma 2 Let T be a binary tree of size n and height h which does not satisfy heap order,and let ni be the number of nodes at level i in T . Then a network exists of size Phi=0 i � niand depth 4h� 2 which rearranges the elements of T to satisfy heap order. All comparatorscorrespond to edges of T .Proof. Initially all nodes at level h of T by de�nition are heap ordered binary trees of heightzero. Iteratively for each level i = h�1; : : : ; 0 we apply the sifting down networks of Lemma 1in parallel to the 2i subtrees rooted at level i of T , to make these subtrees satisfy heap order.The resulting tree then satis�es heap order. By Lemma 1 all comparators correspond toedges of T .The edge between a node v at level i and its parent corresponds to a set of comparatorsin the resulting network. These comparators are performed exactly when we apply thesifting down networks of Lemma 1 to an ancestor of v, i.e., there are exactly i comparatorscorresponding to this edge. The total number of comparators is Phi=0 i � ni.By Lemma 1 the depth of the network is Phi=0 2i = h2 + h. But because the networksconstructed by Lemma 1 proceeds top-down on T , having exactly depth two for each levelof T , the applications of Lemma 1 can be pipelined. After the �rst two comparators ofthe applications of Lemma 1 to subtrees rooted at level i, the applications of Lemma 1 tosubtrees rooted at level i � 1 can be initiated. The application of Lemma 1 to the root ofthe tree can therefore be initiated at depth 2(h� 1)+1 of the network, i.e., the network hasdepth 2(h � 1) + 2h = 4h � 2. 2 5
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Figure 2: A heap construction network for n = 15. All comparators are of the form i : j,where i < j.Theorem 3 There exists a heap construction network of size at most nblog nc and depth4blog nc � 2. All comparators correspond to edges of T .Proof. Let the n input lines represent a heap shaped binary tree of height blog nc. Thetheorem then follows from Lemma 2. 2In Figure 2 we show the network of Theorem 3 for n = 15. The network has size 34 anddepth 10. Notice that the �rst two comparators of the application of Lemma 1 to the rootof the tree (1 : 2 and 1 : 3) are done in parallel with the third and fourth comparator of theapplications of Lemma 1 to the subtrees rooted at nodes 2 and 3.4 Heap construction networks of size O(n log logn)In the following we give improved heap construction networks of sizeO(n log log n) and depthO(log n). The improved networks are obtained by combining the networks of Theorem 3 withe�cient selection networks.An arbitrary sorting network is obviously also an (n; t)-selection network, e.g., the sortingnetwork of size O(n log n) by Ajtai et al. [1]. Due to the large constants involved in thesorting network of Ajtai et al., Pippenger [15] and Jimbo and Maruoka [11] have developedspecialized (n; bn=2c)-selection networks of size O(n log n) where the involved constants areof reasonable size. The following lemma was developed by Jimbo and Maruoka [11].Lemma 4 (Jimbo and Maruoka) For an arbitrary constant C > 3= log 3 � 1:89, thereexist (n; bn=2c)-selection networks of size at most Cn log n +O(n) and depth O(log n).Unfortunately, neither Pippenger [15] or Jimbo and Maruoka [11] state bounds for general(n; t)-selection networks. The following lemma is a consequence of Lemma 4, and is su�cientfor our purposes. 6



Lemma 5 For an arbitrary constant C > 6= log 3 � 3:79, there exist (n; t)-selection net-works of size Cn log t+O(n) and depth O(log n � log t).Proof. The n input lines are partitioned into dn=te blocks B1; : : : ; Bdn=te of size t each.By applying the selection networks of Lemma 4 to B1 [ B2 we �nd the t least elements ofB1 [B2. By combining the dn=te blocks in a treewise fashion with dn=te � 1 applications ofLemma 4 to 2t elements, we �nd the t least elements of the n inputs. The resulting networkhas size (dn=te � 1)(C � 2t log 2t+O(2t)) = 2Cn log t+O(n) and depth O(log n � log t), forC > 3= log 3. 2We need the following de�nition. Let P be an arbitrary connected subset of nodes of abinary tree T which contains the root of T . Let x1 � x2 � � � � � xjPj be the set of elementsin P, and let x01 � x02 � � � � � x0jPj be the set of elements in P after applying a network N toT . We de�ne a network N to be heap-convergent, if N for all possible inputs, all connectedsubsets P of nodes of T containing the root of T , and i = 1; : : : ; jPj satis�es x0i � xi. Noticethat sorting networks are not heap-convergent. If P is the path to the rightmost node in thelowest level of a tree, then P always contains the maximum element after applying a sortingnetwork, but the maximum element could initially be anywhere in the tree.Lemma 6 A comparator corresponding to an edge in a binary tree T is a heap-convergentnetwork.Proof. Let the comparator be u : v, where v is a child of u in T . If P does not contain u itdoes not contain v either, implying that the elements in P are unchanged. If P contains bothu and v, the set of elements is also unchanged. If P contains u but not v, the comparatoru : v can only replace the element at u with a smaller element from v in which case x0i � xifor all i = 1; : : : ; jPj. 2Because the networks constructed by Theorem 3 only contain comparators correspondingto tree edges and heap convergence is a transitive property we immediately have the followingcorollary:Corollary 7 The networks constructed by Theorem 3 are heap-convergent.Theorem 8 If for some constants C and d, there exist (n; t)-selection networks of sizeCn log t + O(n) and depth O(logd n), then there exist heap construction networks of sizeCn log log n +O(n log log log n) and depth 4 log n+O(logd log n).Proof. Assume without loss of generality that n � 4. Let the n input lines represent a heapshaped binary tree T of height h = blog nc, and let k = dlog he � 1. The heap constructionnetwork proceeds in three phases.1. To each subtree Tv rooted at level h � 2k + 1, apply in parallel (jTvj; 2k � 1)-selectionnetworks, such that all elements at the upper k levels of Tv become less than or equalto all elements at the remaining levels of Tv.2. Apply the heap construction networks of Theorem 3 to the uppermost h� k levels ofT . 7



3. In parallel apply Theorem 3 to each subtree Tv rooted at level h � 2k + 1.It follows immediately from Step 2 that the uppermost h � 2k levels of the tree satisfyheap order and from Step 3 that each subtree rooted at level h� 2k+1 satis�es heap order.What remains to be proven for the correctness of the algorithm is that for all nodes v atlevel h � 2k + 1, the subtree Tv only contains elements which are greater or equal to theelements on the path from the root to v.After Step 1, the 2k�1 least elements e0 � � � � � e2k�2 of Tv are at the uppermost k levelsof Tv, which are exactly the levels of Tv which overlap with Step 2. Let p0 � � � � � ph�2kdenote the elements on the path from the root to v (excluding v) after Step 2. Becausethe network applied in Step 2 is heap-convergent and 2k � 2 � h � 2k, we have pi � ei fori = 0; : : : ; h� 2k by letting P consist of the path from the root to v together with the upperk levels of Tv. We conclude that after Step 2 all elements on the path from the root to v aresmaller than or equal to all the elements in Tv, and that after Step 3, T satis�es heap order.From Theorem 3 we get the following upper bound on the size and depth of the resultingnetwork. The size is bounded by�Cn log 2k +O(n)�+O� n2k log n2k�+ �n log 22k +O(n)� ;which is (C + 2)n log log n +O(n), and the depth is bounded byO �logd 22k�+ (4(h � k)� 2) + (4(2k � 1)� 2) ;which is 4 log n+O(logd log n).The \+2" in the size bound comes from the application of the heap construction networksof Theorem 3 in Step 3. If we instead apply the above construction recursively in Step 3, weget heap construction networks of size Cn log log n+(C+2)n log log log n+O(n) and depth4 log n+O(logd log n). 2Notice that in Steps 1 and 3 we could have used arbitrary sorting networks, but in Step 2it is essential that the heap construction network used is heap-convergent. By applying theconstruction recursively O(log� n) times the asymptotic size could be slightly improved, butthe constant in front of n log log n would still be C. From Lemma 5 we get the followingcorollary:Corollary 9 For an arbitrary constant C > 6= log 3 � 3:79, there exist heap constructionnetworks of size Cn log log n+O(n log log log n) and depth 4 log n +O(log2 log n).5 A lower bound for the size of heap construction net-worksWe now prove that the construction of the previous section is optimal. Let S(n; t) denotethe minimal size of (n; t)-selection networks, and let H(n) denote the minimal size of heapconstruction networks on n inputs. The following lower bound on S(n; t) is due to Alek-seyev [2]. 8



Lemma 10 (Alekseyev) S(n; t) � (n� t)dlog(t+ 1)e.Theorem 11 H(n) � S(n; blog nc)�O(n).Proof. The theorem is proven by giving a reduction from (n; t)-selection to heap construc-tion. We prove that (n; t)-selection can be done by networks with size H(n) + 2t+1 � 2t� 2.First we construct a heap over the n inputs with a network of size H(n), and make theobservation that the t least elements can only be at levels 0; : : : ; t� 1 of the heap.The minimum is at the root, i.e., at output line one. To �nd the second least element weconsider the implicit heap given by the lines n; 2; 3; : : : ; 2t � 1. Notice that the root is nowline n. By applying the sifting down network of Lemma 1 to the levels 0; : : : ; t�1 of this treethe remaining t�1 least inputs are at levels 0; : : : ; t�2 of this tree. The second least elementis now at output line n. By iteratively letting the root be lines n�1; n�2; : : : ; n� t�2, andby applying Lemma 1 to trees of decreasing height, the t least elements will appear in sortedorder at output lines 1; n; n� 1; n� 2; : : : ; n� t+ 2. If the t smallest inputs are required toappear at the �rst t output lines, the network lines are permuted accordingly.The total number of comparators for the t� 1 applications of Lemma 1 ist�1Xi=0(2i+1 � 2) = 2t+1 � 2t� 2 :We conclude that the resulting (n; t)-selection network has sizeH(n)+2t+1�2t�2, implyingH(n) � S(n; t)� 2t+1 + 2t+ 2. By letting t = blog nc the theorem follows. 2By combining Lemma 10 and Theorem 11, we get the following corollary.Corollary 12 H(n) � n log log n�O(n).6 ConclusionThe parallel construction of heaps has been addressed for several parallel models of compu-tation: EREW-PRAM [14], CRCW-PRAM [6], the parallel comparison tree model and therandomized parallel comparison tree model [5]. These algorithms all achieve optimal O(n)work. In this paper we have addressed the problem for the most simple parallel model ofcomputation, namely comparator networks.Opposed to merging and selection, which both can be solved in sequential linear time butrequire networks of size �(n log n), we have shown that heap construction can be done bynetworks of size O(n log log n) and depth O(log n), and that this is optimal. By combiningthe results of Theorem 8 and Theorem 11, we get the following characterization of the leadingconstant in the size of heap construction networks compared to the leading constant in thesize of (n; t)-selection networks.Theorem 13 If for constants C1 and C2,C1n log t�O(n) � S(n; t) � C2n log t+O(n) ;then C1n log log n�O(n) � H(n) � C2n log log n+O(n log log log n) :9
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