
Finger Search Trees with ConstantInsertion TimeGerth St�lting Brodal�Max-Planck-Institut f�ur InformatikIm StadtwaldD-66123 Saarbr�uckenGermanyEmail: brodal@mpi-sb.mpg.deSeptember 26, 1997AbstractWe consider the problem of implementing �nger search trees on the pointer machine,i.e., how to maintain a sorted list such that searching for an element x, starting thesearch at any arbitrary element f in the list, only requires logarithmic time in thedistance between x and f in the list.We present the �rst pointer-based implementation of �nger search trees allowingnew elements to be inserted at any arbitrary position in the list in worst case constanttime. Previously, the best known insertion time on the pointer machine was O(log� n),where n is the total length of the list. On a unit-cost RAM, a constant insertion timehas been achieved by Dietz and Raman by using standard techniques of packing smallproblem sizes into a constant number of machine words.Deletion of a list element is supported in O(log� n) time, which matches the previousbest bounds. Our data structure requires linear space.1 IntroductionA �nger search tree is a data structure which stores a sorted list of elements in such a waythat searches are fast in the vicinity of a �nger, where a �nger is a pointer to an arbitraryelement of the list.The list operations supported are the following. We let n denote the length of the involvedlist.�Supported by the Carlsberg foundation (Grant No. 96-0302/20). Partially supported by the ESPRITLong Term Research Program of the EU under contract No. 20244 (ALCOM-IT).1



� CreateList creates a new list only containing one element, say, �1. A �nger to thesingle element is returned.� Search(f; x) searches for element x, starting the search at the element of the list givenby the �nger f . Returns a �nger to x if x is contained in the list, otherwise a �nger tothe largest element less than x in the list.� Insert(f; x) inserts element x immediately to the right of the �nger f . Returns a�nger to x.� Delete(f) deletes the element pointed to by the �nger f .Brown and Tarjan [2] observed that by level-linking (2; 4){trees, �nger searches can bedone in worst case O(log �) time, where � is the distance between the �nger and the searchelement. The distance between two elements is the di�erence between their ranks in the list.In the following, we denote a data structure having O(log �) search time a �nger search tree.Huddleston and Mehlhorn [10] showed that (2; 4){trees support insertions and deletions inamortized constant time, assuming that the position of the element to be inserted or deletedis known.The question we consider is, if it is possible to remove the amortization from the resultof Huddleston and Mehlhorn [10], i.e., if �nger search trees exist which support insertionsand deletions in worst case constant time.By assuming a unit-cost RAM, Dietz and Raman [3] have presented a �nger search treeimplementation supporting insertions and deletions in worst case constant time. The datastructure of Dietz and Raman is based on standard RAM techniques of packing small problemsizes into a constant number of machine words. For the weaker pointer machine model nosimilar result is known. The results obtained for the pointer machine are as follows.Search trees with constant insertion and deletion time on the pointer machine have beenpresented by Levcopoulos and Overmars [13] and Fleischer [6], but neither of them support�nger searches.Finger search trees with worst case constant insertion and deletion time for the restrictedcase where there are only a constant number of �xed �ngers have been given by Guibas etal. [7], Kosaraju [12] and Tsakalidis [17].Finger search trees which allow any element of the list to be a �nger and which obtainworst case O(log� n) insertion and deletion time have been given by Harel and Lueker [8, 9].In this paper we present the �rst �nger search tree implementation for the pointer machinewhich supports arbitrary �nger searches and which supports insertions in worst case constanttime. The data structure can be extended to support deletions in worst case O(log� n) timewhich matches the previous best bounds of Harel and Lueker [8, 9]. The space requirementfor the data structure is O(n).The technical contribution of this paper is a new approach to select the nodes to splitin a search tree. The previous approaches by Levcopoulos and Overmars [13] and Dietz andRaman [3] were based on a global splitting lemmawhich guaranteed that each of the recursivesubstructures would have polylogarithmic size. For a detailed discussion and applicationsof this lemma we refer to the thesis of Raman [16]. Our approach is, in contrast, a localbottom-up approach based on a functional implementation of binary counting to select the2



nodes to split in a search tree. A weakly related bottom-up approach has been presented byBrodal [1] to remove the amortization from the partial persistence technique of Driscoll etal. [5].The structure of this paper is as follows. Section 2 describes the basic idea of the construc-tion, Section 3 describes how to maintain ancestor pointers in a tree by using a functionalstack implementation, and Section 4 describes how to achieve constant time splitting of nodesof arbitrary degree. How to support �nger searches is described in Section 5. In Section 6the data structure is extended to support deletions in worst case O(log� n) time. In Section 7we describe how to make the space requirement linear. Finally some concluding remarks aregiven in Section 8.2 A new splitting algorithmIn this section we present a new algorithm for splitting nodes in a search tree when newleaves are created. The trees generated by this algorithm do not have logarithmic heightand do not support insertions in worst case constant time, but the algorithm presented isthe essential new idea required to obtain the claimed result.Throughout this paper we implicitly assume that each node in a search tree has asso-ciated the interval of elements spanned by the node. This is standard for all search treeimplementations and we therefore take this as an implicit assumption for the remaining ofthis paper.In this section we assume that the ancestor of height d of a leaf can be found in worstcase constant time, and that a node of arbitrary degree can be split in worst case constanttime. In Section 3 and Section 4 we show how to avoid these assumptions, and in Section 5we show how to extend the data structure to support �nger searches.In the following, T is a tree where all leaves have equal depth. We de�ne leaves to haveheight zero, the parents of the leaves to have height one, and so on. To each leaf ` 2 T weassociate a counter c` � 0. Initially the tree consists only of a single leaf storing the element�1 and having a counter equal to zero, and the parent node of the leaf.Let �1;�2; : : : be a list of integers satisfying �d � 22d�1. Theorem 1 gives the resultingrelation between �d and the degrees of the nodes of height d.The implementation of the insertion of an element e into the list next to a �nger f is asfollows. Let ` denote the leaf given by the �nger f , and p the parent of `. First we create anew leaf `0 storing the new element e below p and to the right of `. Next we increment c` byone and assign the resulting value to c`0 too. Let d be the unique value satisfyingc` mod 2d = 2d�1;i.e., d is the position of the rightmost bit equal to one in the binary representation of c`.Let v be the ancestor of ` and `0 of height d. The third and last step we perform is to splitv, provided the degree of v is at least 2�d. We assume v is split into two nodes v0 and v00,each having a degree of at least �d. If we split the root, we increase the height of the treeby creating a new root of degree two. 3



Theorem 1 The above algorithm guarantees that all nodes of height d have degree at most22�2d�d and at least �d, except for the root which only has degree at least two.Proof Essential to the proof is the following notion of potential. We de�ne the potential ofa leaf ` with respect to height d as:�d̀ = 22d�1�((c`+2d�1) mod 2d):Notice that 1 � �d̀ � 22d�1. If v is an internal node of T of height d, we let T dv denote thesubtree rooted at v and jT dv j the number of leaves in T dv . We de�ne the potential of T dv tobe the sum of the potentials of the leaves in T dv with respect to height d, i.e.,�dv = X`2T dv �d̀:We now consider how an insert operation in the subtree T dv a�ects �dv. Let d0 denote theheight of the node to be split. If d0 6= d, then c` mod 2d 6= 2d�1 and by increasing c` by onethe value of �d̀ is halved. We conclude that the new value of �d̀ + �d̀0 equals the old valueof �d̀, and �dv remains unchanged. Otherwise d0 = d, then the old value of �d̀ is one and thenew values of �d̀ and �d̀0 are 22d�1. We conclude that �dv increases by 2 � 22d�1 � 1 = 22d � 1before we try to split v.By induction we now prove that for all heights d and nodes v of height d,�dv � 22�2d dYi=1�i: (1)Initially the tree consists only of a single leaf with a counter equal to zero and the parent ofthe leaf as the single internal node. The potential of the single internal node is two and itfollows that (1) is true for the initial tree.As argued above, the only node which increases its potential when creating a new leaf isthe node v of height d which is the candidate to be split. Recall that �dv increases by 22d�1.If v is split into two nodes, v0 and v00, then each of the two nodes have a degree of at least�d � 22d � 1, and therefore also potential of at least 22d � 1. We conclude that�dv0 � �dv + 22d � 1 � �dv00 � �dv � 22�2d dYi=1�i;and similarly for �dv00 , and (1) is satis�ed.If v is not split we �rst consider the case d = 1. Then the degree of v is at most 2�1� 1,implying �1v � 4�1 � 2 � 22�21�1 and (1) is satis�ed. Otherwise d > 1 and we have�dv � 2�d22�2d�1 d�1Yi=1�i22d�1 � 22�2d dYi=1�i;because v has a degree of less than 2�d, and each child of v spans at most 22�2d�1 Qd�1i=1 �ileaves (by the induction hypothesis (1) and each leaf has a potential of at least one with4



respect to height d�1), and each leaf has a potential of at most 22d�1 with respect to heightd. We conclude that (1) is satis�ed, and is indeed an invariant.Because a node at level d is �rst split when the node has degree 2�d it follows that allnodes of height d have a degree of at least �d (except for the root), implying that all nodesv (except for the root) satisfy jT dv j � Qdi=1�i.Together with (1) we get the result that the degree of a node v of height d is at most�dv=Qd�1i=1 �i � 22�2d�d, and the theorem follows. 2Corollary 1 If �d = 22d the algorithm maintains a tree of height log log n�O(1) where allnodes of height d have degree O(23�2d).3 Maintaining pointers to ancestorsOne of the main di�culties in giving an e�cient implementation of the algorithm describedin Section 2 is that we cannot �nd the level d ancestor of leaf ` that should be split in worstcase constant time. In this section we describe how to solve this problem so that we can �ndthe ancestor in constant time while still having constant insertion time, assuming that wecan split a node of arbitrary degree in constant time. How to remove the assumption aboutsplitting is postponed to Section 4.The basic idea is to extend the information stored at each leaf so that in addition to thecounter c` we also store a pointer to each of the log log n ancestors of `. In fact we only storea relevant subset of the pointers. The details are as follows.With leaf ` we store a stack S` of triples (i; j; uj) where i � j are positions in the binaryrepresentation of c` and uj is a pointer to the ancestor of ` of height j + 1,1 so that thetriples on S` represents the intervals [i; j] of positions in the binary representation of c` allcontaining a one. If c` = 0011100110102 then S` = (1; 1; �); (3; 4; �); (7; 9; �). To clarify this,we require all intervals to be disjoint, nonadjacent, sorted with respect to i, and their unionto be exactly the set of positions in the binary representation of c` which equals one.Because S` implicitly represents the value of c` we do not need to store c`. In the followingwe let c` refer to the value implicitly represented by S`.An important detail of the algorithm described in the previous section is that whencreating leaf `0, we assign c`0 the new value of c`. Similarly we now assign S`0 the stack S`.To avoid copying the whole stack (which would require �(log log n) time), we implement thestacks S` as purely functional stacks. A purely functional stack is just a standard LISP list.This allows us to assign S`0 the value of S` in worst case constant time. Recent work onfunctional data structures can be found in [11, 14].We now describe how to update S` corresponding to incrementing c` and how to determinethe node v at level d that should be split. In the following, px denotes the parent of theleaf or internal node x. If S` is empty, we just push (0; 0; p`) onto S`. Otherwise let (i; j; uj)denote the triple at the top of S`. If i � 1 we push (0; 0; p`) onto S`, otherwise i = 0 and wereplace the top triple of S` by (j + 1; j + 1; puj ). The node v to split is now the last �eld in1Due to the splitting of ancestors of `, uj can also point to a node of height j+1 which is not an ancestorof `, but this turns out to be a minor problem. 5



the top triple of S`. Finally we check if the two top triples of S` have become adjacent, i.e.,if they are of the form (i; k; �) and (k + 1; j; uj) in which case the two triples are replacedby (i; j; uj).The correctness of the implementation with respect to i and j is obvious, because it isjust binary counting. The interesting property is how we handle the pointers to the nodesuj. If after updating S`, c` mod 2 = 1 then the node returned is the correct node p` and theonly pointer which can be added to the stack is p`. If c` mod 2d = 2d�1 for d > 1, then thereturned and only new node on the stack is pud�1 which is exactly the ancestor of ` of heightd+ 1 | provided that before updating S`, ud�1 is in fact the ancestor of ` of height d.If no nodes were ever split, the above argument could be used to give an inductiveargument that a uj stored in a stack S` would always be the ancestor of ` of height j + 1.Unfortunately we split nodes, and cannot guarantee that this property is satis�ed (at leastnot without doing a nontrivial update of a nonconstant number of purely functional S` stackswhen doing a split). In the following we argue that we do not need to care about \wrong"pointers, provided that splitting a node does not introduce too many wrong pointers.The insertion algorithm is now the following. First we update in constant time the setS` as described above. Let v be the node of height d which is returned to be split. We thencreate the new leaf `0 and assign S` to S`0 in constant time. If the degree of v is � 2�d wesplit v into two nodes as follows. First we create a new node v0 to the right of v with pv0 = pv,and then we move the rightmost �d children of v to v0. It is essential to the algorithm thatsplittings are done nonsymmetrically. The details of how to perform a split in worst caseconstant time is described in Section 4.In the following we prove that this modi�ed algorithm basically achieves the same boundson the degrees of the nodes as the algorithm in Section 2.Theorem 2 The above algorithm guarantees that all nodes of height d have a degree of atmost 23�2d�d and at least �d, except for the root.Proof The proof is basically the same as for Theorem 1, except that we now have toincorporate the \wrong" pointers into the potentials.Let ` be a leaf, d a �xed height, and v the ancestor of ` of height d. If 1 � c` mod 2d <2d�1, let uj be given by j = maxfj 0 < dj(�; j 0; �) 2 S`g and (�; j; uj) 2 S`.We now de�ne the potential �d̀ of ` with respect to height d. The potential is basicallyequal to two raised to the number of times we have to increment c` before we split v.�d̀ = 8>>>><>>>>: 22d+2d�1�1�(c` mod 2d) if (1 � c` mod 2d < 2d�1) ^ (uj =2 T dv ),22d+2d�1�1�(c` mod 2d) if 2d�1 � c` mod 2d,22d�1�1 if c` mod 2d = 0,22d�1�1�(c` mod 2d) if (1 � c` mod 2d < 2d�1) ^ (uj 2 T dv ). (2)Notice that 1 � �d̀ � 22d+2d�1�2. We similarly de�ne the potential of T dv to be�dv = X`2T dv �d̀:6



We now show that incrementing c` by updating S` we either are allowed to split v or �d̀is halved. We do this by considering each of the cases in (2).First we consider the case where 1 � c` mod 2d < 2d�1 and uj =2 T dv . We split this intotwo cases. If c` mod 2d = 2d�1� 1, then the new value of c` mod 2d = 2d�1 and �d̀ is halved.If c` mod 2d < 2d�1 � 1, then c` is increased by one and uj remains on the stack S` or isreplaced by puj =2 T dv implying that �d̀ is halved.If 2d�1 � c` mod 2d, then we consider two cases. If c` mod 2d < 2d�1, then �d̀ is halved.If c` mod 2d = 2d � 1, then the new value of c` mod 2d = 0 and again �d̀ is halved.If c` mod 2d = 0, then the new value of c` mod 2d = 1 and uj = p` 2 T dv and the value of�d̀ is halved.The last case to be considered is where 1 � c` mod 2d < 2d�1 and uj 2 T dv . If c` mod 2d =2d�1 � 1 then the new value of c` mod 2d = 2d�1 and the node we split is puj = pud�2 = v.The new potential of �d̀ = 22d�1. Finally if 1 � c` mod 2d < 2d�1 � 1, then c` is increasedby one and uj remains on the stack S` or is replaced by puj 2 T dv implying that �d̀ is halved.We conclude that incrementing c` either halves �d̀ and a node di�erent from v is to besplit, or �d̀ changes from one to 22d�1 and v is the node to be split. This is exactly the samestatement as in the proof of Theorem 1, except that we now use di�erent potentials.We now make the observation that when an insertion creates a new leaf `0 next to ` afterhaving incremented c`, then �d̀0 = �d̀ and �dv does not change for any d and node v at leveld, except for the node to be split which increases its potential by at most 22d � 1.We now give an inductive argument that�dv � 23�2d dYi=1�i: (3)But �rst we have to observe that a uj pointer at leaf ` either points to the ancestor v of` of height j + 1 or is a node of height j + 1 to the left of v. This is true because whenevera node is split the new internal node is created to the right of the old node.The above observation implies that when splitting node v, no leaf in T dv points to a nodein T dv0 and therefore no leaf in T dv changes its potential with respect to height d when splittingv, but for the leaves in T dv0 this is not true. No potential with respect to heights di�erentfrom d changes due to the splitting.That (3) is true for the initial tree is obvious. We know from the above arguments thatthe only potential that can change due to incrementing c` and adding a new leaf `0 is thenode v of height d that is to be split.If v has degree less than 2�d then we do not split v, and�dv � 2�d23�2d�1 d�1Yi=1 �i22d+2d�1�2 � 23�2d dYi=1�i;because v has at most 2�d children each spanning 23�2d�1 Qd�1i=1 �i leaves (by the inductionhypothesis), and each leaf has a potential of at most 22d+2d�1�2 with respect to height d.If v is split, then the increase of �dv due to the increase of c` and the leaf `0 is canceledout by the potential moved to v0 of at least �d, because each subtree has a potential of at7



least one. For the new vertex v0 we have�dv0 � �d23�2d�1 d�1Yi=1�i22d+2d�1�2 � 23�2d dYi=1�i: (4)We conclude that (3) is satis�ed, and is indeed an invariant. From (3) and that jT dv j �Qdi=1�i, for v di�erent from the root, the theorem follows. 24 Incremental node splittingThe basic assumption in the previous section was that we could split a node v of arbitrarydegree in constant time. In this section we show how to achieve this by basically maintainingthe parent pointers as trees of height two.We let all children of node v be maintained in a double linked list. Instead of letting allchildren have parent pointers directly to v, we introduce an intermediate level of indirection.We partition the children of v into blocks of size at least �d and at most 2�d� 1, such thatthere is one node in the intermediate level for each of the blocks. In the following the nodesin the intermediate level are denoted intermediate nodes.The information maintained at each of the above mentioned nodes is the following. Atv we just maintain a pointer to the leftmost and rightmost intermediate node below v. Thechildren maintain pointers to their left and right sibling and a pointer to the intermediatenode corresponding to the block the child belongs to. An intermediate node maintains apointer to v, and pointers to the leftmost and rightmost child of v in the block spanned bythe intermediate node.Whenever a child u of v is split, we add the new child u0 next to u in the double linklist of children of v and let it belong to the same block as u. To avoid having too manychildren belong to the same block, which would imply that the block should be split, wedo the splitting of the block incrementally as follows. Whenever an intermediate node wspans more than �d children, we instead represent w by a pair of nodes w0 and w00 suchthat w0 spans the leftmost �d children and w00 spans the remaining at most �d� 1 children.The additional information we associate with each intermediate node to achieve this is thenumber of children spanned by each intermediate node, and if a node is part of a pair, apointer to the other node in the pair. The number of children spanned by an intermediatenode immediately reveals whether the node is the left or right node in the pair. See Figure 1.Whenever a new leaf is added to the block spanned by w we check if w is part of a pair.If w is not part of a pair, then w now has degree �d + 1. To satisfy the above constraints,we create a new intermediate node w0 that, together with w, make a pair, and move therightmost child of w to w0 by appropriately updating the pointers. If w is part of a pair wecheck if w is the left node of the pair. If w is the left node, then w now spans �d+1 childrenand we move the rightmost child of w to the other node of the pair to satisfy the conditionthat w has degree �d. If both nodes of the pair now have degree �d (the initial degree boundof 2�d � 1 is violated) we split the pair by simply setting the two pair pointers to nil. Theabove updating when v gets a new child can clearly be done in worst case constant time.We now describe how the above substructure can be used to solve the splitting problemof the algorithm in Section 3. The algorithm is exactly the same as in Section 3, except for8



m m m m m m m m mm m mmv mm m m�������� QQQQAAAK���� ���� QQQQ ��� AAA���� ZZZZ}����������� XXXXXXXXXXX 6@@@���: : : : : :Figure 1: The implementation of the children of v. Undirected edges represent pointers inboth directions. The dashed edge is the pair pointers of two intermediate nodes.the constraints on how to split node v. The original constraint was that we split v if it hasa degree of at least 2�d and that the new node v0 has a degree equal to �d.We replace this by the following. We split v if it spans at least two intermediate nodesnot belonging to the same pair (which is exactly the same as requiring that v should have adegree of at least 2�d). We split v by �rst creating a new node v0 to the right of v (in worstcase constant time as described above), and then by moving the rightmost intermediate nodeof v to v0. If the intermediate node is part of a pair we move both nodes of the pair to v0.The degree of v0 after the splitting is at least �d and at most 2�d � 1.That the behavior of the algorithm remains the same is captured by the following theorem.Theorem 3 The above algorithm guarantees that all nodes of height d have degree at most23�2d�d and at least �d, except for the root. New leaves can be created in worst case constanttime.Proof The proof is exactly the same as for Theorem 2, except for (4) which is replaced by(5) below. Because v0 after splitting has a degree of at most 2�d � 1, we get�dv0 � (2�d � 1)23�2d�1 d�1Yi=1�i22d+2d�1�2 � 23�2d dYi=1�i: (5)The time bound for updating the tree follows immediately from the previous discussions,and the time for updating the S` stacks only increases by a constant factor due to theintroduced level of indirection. 25 A semi-dynamic �nger search treeWe now describe how the data structure of Section 4 can be extended to support �ngersearches. In this section we assume �d = 22d. The basic idea is to replace each node of thetree in Section 4 by a balanced tree allowing constant time updates. By appropriately levellinking the resulting data structure we get a �nger search tree that supports insertions inworst case constant time.By level linking [10] the search tree of Section 2 a �nger search for element x startingat leaf ` can be done as follows, which is basically the same as in [10]. We without loss of9



generality assume x is contained in the tree. Notice that level linking does not introduce anynew data �elds in the nodes, because each node already stores a pointer to its right and leftsibling. We just have to maintain the corresponding pointers for the leftmost and rightmostchild of a node too.If x is contained in a neighbor leaf of ` we are done. Otherwise we look at the parent pof `. If x is contained in the subtree rooted at p or one of the neighbors of p we search for xin the corresponding subtree, otherwise we recursively consider the parent of p.Before giving the details of how to search for x in a subtree of height d we give a lowerbound for the distance between x and `. If we are going to search for x in a subtree rootedat node v of height d, we know that x is not contained in the subtree below v containing `or the neighbor subtrees. By Theorem 3 we have that the distance between ` and x is atleast 22d�1. We conclude that we can use O(2d) time for the search for x.If we could search for which subtree rooted at a child of v contained x in time logarithmicin the degree of v, we could recursively �nd x in timedXi=1 log 23�2i+2i = dXi=1 2i+2 � 2d+3 = O(2d):To achieve the logarithmic search time we add the following structure to the data struc-ture of Section 4. With v we associate a search tree which stores each of v's intermediatenodes, and with each of the intermediate nodes we associate a search tree which stores thechildren of v. By choosing the search trees of Levcopoulos and Overmars [13] or Fleischer [6]we can add and remove new leaves to these search trees in worst case constant time, implyingthat the overhead introduced for splitting a node as described in Section 4 is only a constant.To summarize we get the following theorem.Theorem 4 There exists a pointer-based implementation of �nger search trees which sup-ports arbitrary �nger searches in O(log �) time and neighbor insertions in worst case constanttime.6 DeletionsIn the following we describe how to extend the data structure of the previous sections to sup-port deletions in worst case O(log� n) time. We basically implement delete as for (a; b){treesby performing a sequence of fusion and sharing steps [10]. Due to the ancestor pointers intro-duced in Section 3, fusion and sharing steps need to be implemented carefully to guaranteethat the potentials �dv remain bounded.The �rst step towards achieving O(log� n) deletion time is to decrease the height of thetree to O(log� n). Let 2(d) recursively be given by 2(1) = 2 and 2(d+1) = 22(d). By letting�d = 2(d), it follows by Theorem 3 that the resulting tree of Section 4 has a height ofO(log� n) and that new leaves can be added in worst case constant time. In the following we�rst describe how to support deletions in worst case O(log� n) time and then how to support�nger searches in worst case O(log �) time (for the �nger search implementation presentedin Section 5 it is crucial that �d = 22d). 10



The basic idea of how to delete a leaf ` is as follows. First the leaf ` is deleted. If theparent v of the leaf ` has at least �1 children left we are done. Otherwise we fuse v with theleft or right sibling v0 of v, by moving the children of v to v0 and removing the node v. If v0now has too large a degree we split v0 by creating a new node v00 to the right of v and movinga fraction of the children of v0 to v00.2 We postpone the exact thresholds to the discussionbelow. Otherwise pv has lost one child and we recursively fuse pv if it has obtained too lowa degree.There are two problems which should be considered when implementing deletions asoutlined above.The �rst involves the ancestor stacks stored at the leaves. Assume v is fused with v0, andv is removed from the child list of pv. Unfortunately many leaves can have ancestor pointersstored in their S` stacks pointing to v, and we cannot a�ord to update all these pointers.And it is even more complicated because a pointer to v from a leaf ` can be the essentialuj pointer in the potential de�nition (2) of ` with respect to a height larger than the heightof v.Our solution is very simple. We just let v become a dead child of pv. For a dead child ofheight d we only maintain a pointer from the child to its parent of height d+ 1. No pointerfrom the parent to the child is required. A dead child is never moved to another node, anda node can have an arbitrary number of dead children. The parent of a dead child can alsobe dead (due to a fusion step).Because of the parent pointers of the dead nodes, a dead node uj of height j + 1 in anatural way belongs to a subtree T dv if and only if there is an ancestor path from uj to v.This allows us to de�ne the potential of a leaf ` with respect to height d as given by (2) inTheorem 2 and to replace uj by puj on a S` stack when incrementing c`.The second problem to be considered is the change in the potential of �dv0 when we fusev with v0. We fuse v with v0 if the degree of v becomes �d � 1, implying that the potential�dv0 increases. If v0 now has too large a degree, we split v0 to insure that the childrenmoved from v0 to the new node v00 cancel out the increase in potential. Unfortunately itis not su�cient to move �(�d) children to v00, because the children we add below v0 canhave high potential whereas the children we remove below v0 can have low potential. Let�d = 23(d�1)2d�1 � 22d+2d�1�2. It turns out that if we move at least �d ��d children to v00, thepotential of v0 is guaranteed not to increase.3To support the splitting of nodes in worst case constant time, we introduce an additionalintermediate level at each node v, such that the intermediate nodes introduced in Section 4(of degree at least �d and at most 2�d � 1) are partitioned into blocks of size at least �dand at most 2�d�1 (provided that there are at least �d intermediate nodes). The additionalintermediate level only increases the cost of �nding a parent node puj by a constant.Each node of the original intermediate level, in the following referred to as intermediatelevel 1, points to a node in the new intermediate level, intermediate level 2. Nodes inintermediate level 2 point to v and the leftmost and rightmost node in the corresponding2Intuitively we should move one child of v0 to v, but this does not work due to the ancestor pointersintroduced in Section 3.3�d is the maximumpotential of a node of height d�1 divided byQd�1i=1 �i, times the maximumpotentialof a leaf with respect to to height d. 11



intermediate level 1 blocks. If a block at intermediate level 2 has a size larger than �dwe similarly to the intermediate level 1 represent the block by a pair of nodes to supportincremental splitting and fusion of intermediate level 2 nodes.If a intermediate level 1 block is of size �d�1 we consider fusing the block with a neighborblock. If the neighbor block has is larger than �d we just move one child of the neighborblock to the block and are done. Otherwise we fuse the two blocks to a pair of size 2�d� 1.If the corresponding intermediate level 2 block now is of size �d � 1 we similarly fuse theintermediate level 2 block with a neighbor block (if a level 2 neighbor block exists). Thenecessary pointer updating is straightforward.The implementation of insert remains unchanged, except that nodes are �rst split whenthere are two level 2 blocks, implying that a node not split can have degree (2�d�1)(2�d�1).Dead nodes are never split. When splitting a node v we now just move the rightmostintermediate level 2 block to the new node.We are now ready to give the remaining details of how to perform deletions in worst caseO(log� n) time. If a node v di�erent from the root reaches degree �d � 1 we move all thechildren of v to one of its neighbor siblings. Let v0 denote this sibling. Because v is of degree�d�1 all children of v belong to a single intermediate level 1 block. So we just have to movethis block to v0 and fuse it with a intermediate level 1 neighbor block as described above.This can clearly be done in worst case constant time. The node v becomes a dead child ofpv. If v0 now has at least two level 2 blocks we split v0 by creating a new node v00 to the rightof v0 and move the rightmost level 2 block of v0 to v00. Otherwise we recursively consider theparent pv of v which has lost one child.Because we always fuse a node when it has a degree of less than �d and always split anode into two nodes of a degree of at least �d, the above algorithm guarantees that all nodesof height d (except for the root) have a degree of at least �d, and therefore span at leastQdi=1�i leaves. Because delete spends only constant time for each height we get the resultthat delete can be implemented in worst case O(log� n) time.Theorem 5 The above algorithm guarantees that all nodes of height d have degree at most23d2d�d and at least �d, except for the root. New leaves can be created in worst case constanttime and existing leaves can be deleted in worst case O(log� n) time.Proof The time bounds and the lower bound on the degrees follow immediately from theprevious discussion. What remains to be shown is the upper bound on the degrees.Let �d̀ and �dv be de�ned as in Theorem 2. We are going to prove that the potentials ofthe nodes are bounded by �dv � 23d2d dYi=1�i: (6)That the initial con�guration satis�es (6) is obvious. We �rst consider inserting a newleaf `0 next to a leaf `. When incrementing the c` counter by updating a S` stack and addingthe new leaf `0 it follows as for Theorem 2 that no potentials change except for the node atlevel d that is going to be split. This is true because if uj 6= v, then uj 2 Tv if and only ifpuj 2 Tv | also if uj refers to a dead node. 12



If a node v cannot be split, then for d = 1 we have�1v � (2�1 � 1)(2�1 � 1)221+21�1�2 � 2�1 � 3 � 2 � 23�1�21�1; (7)and for d � 2 we have�dv � (2�d � 1)(2�d � 1)23(d�1)2d�1 d�1Yi=1�i22d+2d�1�2� 23(d�1)2d�1+2d+2d�1�2+3(d�1)2d�1+2d+2d�1 dYi=1�i � 23d2d dYi=1�i: (8)If v is split it similarly follows that the new node v0 satis�es (6). Because nodes of heightd have a degree of at least �d, v0 spans at least �dQdi=1�i leaves.Finally we have to consider the potential of v when v is split. We know that the potentialof v can at most increase by 22d � 1 by the new leaf added, and that the potential moved tov0 is at least �dQdi=1�i � 22d � 1. This guarantees that the potential �dv does not increasedue to the insertion | provided that splitting v does not increase the potential of any leafof T dv with respect to height d.To guarantee this, we again need the observation that uj stored at leaf ` points to theancestor of ` of height j + 1 or a node to the left of the ancestor of height j + 1. Thisguarantees that no leaf in T dv maintains a pointer into the new subtree T dv0. Unfortunately auj pointer can point to a dead node, and dead nodes do not belong to the tree. By de�ningthe dead children of a node to always be the leftmost children of the node (in any arbitraryorder), the above constraint will be satis�ed. This is true because splitting a node alwaysmoves the children to a new node to the right of the node. For deletions we only have toargue that when we fuse v with a sibling v0 to the right or left of v, the constraint is alsosatis�ed. When we fuse v and v0 all leaves in T dv are moved to T dv0. But because v becomes adead node we, by de�nition, let v (and its dead subtree) be a node to the left of v0, implyingthat uj pointers to v in T dv0 points to a node to the left of their level d ancestor. We concludethat (6) is true for insertions.For deletions we have to argue that (6) is satis�ed. Let v be a node we consider to fusewith v0 because v gets degree �d � 1. This implies �dv0 increases by at most(�d � 1)23(d�1)2d�1 d�1Yi=1�i22d+2d�1�2 � �d dYi=1�i:If v0 is not split we know from (7) and (8) that v0 satis�es (6). If v0 is split we similarly knowthat v00 satis�es (6), and because v00 spans at least �dQdi=1�i leaves v0 also satis�es (6).From (6) we conclude that all nodes at height d have a degree of at most23d2d Qdi=1�iQd�1i=1 �i � 23d2d�d;and the theorem follows. 2Unfortunately the modi�ed trees do not support �nger searches as described in Section 5,because the degree of a node of height d is exponential in the maximumsize of a child subtree13



root at height d� 1. Except for the searching at each of the ancestor nodes of the �nger f ,the implementation of a �nger search remains the same as described in Section 5.We need the following lemma to achieve O(log �) time for �nger searches.Lemma 1 There exists a pointer-based implementation of �nger search trees which supportsarbitrary �nger searches in O(log log n + log �) time, and neighbor insertions and deletionsin worst case constant time.Proof The lemma is obtained by combining the �nger search trees of Dietz and Raman [3]and the search trees of Levcopoulos and Overmars [15].The basic data structure of Dietz and Raman [3] is a (2; 3){tree where each leaf storesa bucket of �(log2 n) elements. By level-linking the (2; 3){tree a �nger search can easilybe done on this part of the data structure as described by Brown and Tarjan [2]. Dietzand Raman [3] implement the buckets by using the RAM model. This is the only part oftheir construction requiring the RAM. They show that, if buckets of size O(log2 n) supportinsertions and deletions in worst case constant time and buckets can be split and joined inO(log n) time, it is possible to support leaf insertions and deletions in worst case constanttime and �nger searches in O(log �) time plus the time for a �nger search in a bucket.Whereas Dietz and Raman support �nger searches in a bucket in time O(log �) by using theRAM, we show how to obtain O(log log n) time by using the weaker pointer machine.Our bucket representation is quite similar to that of [3, 4, 13]. We represent a bucket bya tree of height two where all nodes of height one have a degree between log n and 2 log n�1.If a node of height one has a degree of at least log n+ 1 we, as with the intermediate nodesin Section 4, represent the node by a pair of nodes (see Figure 1). Adding or deleting a leafis handled in a similar way a as for the intermediate nodes. By using the search trees ofLevcopoulos and Overmars [13] to store the children of each node in a bucket, we can insertand delete leaves from a bucket of size O(log2 n) in worst case constant time and supportsearches in worst case O(log log n) time. A bucket can be split in worst case O(log n) timeby simply incrementally moving O(log n) nodes of height one to a new bucket.The lemma follows from [3]. 2If we represent each intermediate level 1 node of our data structure by the search tree ofLemma 1, a �nger search can be implemented as follows.The �rst search at node v of height d is performed as follows. If x is spanned by thesame or a neighboring intermediate level 1 block of the block spanning f , we perform a�nger search for the child of v spanning x in time at most O(log �+ log log 2(d)) as describedin Lemma 1. Otherwise � � 2(d) and we sequentially �nd the intermediate level 1 blockspanning x and perform a search in this block. Because there are at most 23d2d intermediatelevel 1 blocks this can be done in O(23d2d + log 2(d)) = O(log �) time. We conclude thatthe search at height d can be performed in O(log � + log log 2(d)) time. For each recursivesearch we �nd the intermediate level 1 block spanning x sequentially as described aboveand perform a search in the block to �nd the child spanning x. For level i this requiresO(23i2i + log 2(i)) time.The total time for a �nger search therefore becomeslog � + log log 2(d) + d�1Xi=1 �23i2i + log 2(i)� = O(log � + log log 2(d)) = O(log �);14



because � � 2(d�1).We are now ready to state our main theorem.Theorem 6 There exists a pointer-based implementation of �nger search trees which sup-ports arbitrary �nger searches in O(log �) time, neighbor insertions in worst case constanttime, and deletions in worst case O(log� n) time.7 Space requirementIn the previous sections we have not considered the space requirement of our data structure.It immediately follows that if only insertions are allowed, the data structure only requireslinear space because each insertion only requires additional constant space. If deletions areallowed the space requirement can become nonlinear due to the dead nodes and the stacksstored at the leaves. Because deletions take O(log� n) time each deletion only increases thespace requirement by O(log� n). In the following we describe how the space requirementof our data structure can be made linear by applying the global rebuilding technique ofOvermars [15].The details are as follows. Assume the �nger search tree T at some time stores Nelements. Throughout the next �(N) time (not operations) spent on updating T we incre-mentally build a new �nger search tree T 0 storing the same elements as T . For each elementin T we maintain a pointer to its position in both T and T 0. An element not yet insertedinto T 0 stores a null pointer. Initially T 0 is an empty �nger search tree. We build T 0 byincrementally scanning through the list stored by T from left-to-right by having a pointerto the next element in T to be scanned. Whenever a new element is inserted into T we alsoinsert the element into T 0 if the neighbor list elements have been inserted into T 0. For eachinsertion we scan two elements of T and insert the elements into T 0 in constant time. Fordeletions we similarly delete the element from T 0 if the element already has been insertedinto T 0. For each deletion we scan maxf2; log�Ng elements of T and insert the elementsinto T 0 in O(log�N) time. The time required for insertions and deletions only increases by aconstant. After at most N insertions and N= log�N deletions, in total requiring �(N) timeand space, T and T 0 store the same set of elements, and we can discard the �nger searchtree T and let T 0 play the role of T .The discarding of T can be done by applying standard incremental garbage collectingtechniques, provided that no element in T 0 stores a pointer to its position in T . We therefore,before discarding T , perform a second scan through the elements in time �(N) as describedabove where we set all pointers into T to null. Throughout this scan updates and �ngersearches are only performed on T 0.Let N 0 denote the number of elements stored in T 0 when we discard T . The number ofneighbor insertions done during the two scans is at most 3N and the number of deletionsis at most 2N= log�N . Because N(1 � 2= log�N) � N 0 � 4N and there has been at most2N= log�N deletions done on T 0, T 0 requires O(N 0) space. By always starting a new rebuild-ing when the previous rebuilding is �nished, it follows that the data structure requires linearspace. 15



8 ConclusionWe have presented the �rst pointer-based �nger search tree implementation allowing inser-tions to be done in worst case constant time. The previous best bounds were O(log� n) [6,8, 9].It remains an open problem if our data structure can be extended to support deletionsin worst case constant time too. Our data structure can be extended to support deletions inworst case O(log� n) time, matching the bounds of Harel and Lueker [8, 9].An interesting and related question to consider is if some of the presented ideas can beused to remove the amortization from the node splitting technique of Driscoll et al. [5] tomake data structures fully persistent.AcknowledgmentsThanks goes to Leszek G�asieniec and Arne Andersson for patient listening, and RudolfFleischer for comments on the manuscript.References[1] Gerth St�lting Brodal. Partially persistent data structures of bounded degree withconstant update time. Nordic Journal of Computing, 3(3):238{255, 1996.[2] Mark R. Brown and Robert Endre Tarjan. Design and analysis of a data structure forrepresenting sorted lists. SIAM Journal of Computing, 9:594{614, 1980.[3] Paul F. Dietz and Rajeev Raman. A constant update time �nger search tree. Informa-tion Processing Letters, 52:147{154, 1994.[4] Paul F. Dietz and Daniel D. Sleator. Two algorithms for maintaining order in a list. InProc. 19th Ann. ACM Symp. on Theory of Computing (STOC), pages 365{372, 1987.[5] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert Endre Tarjan. Makingdata structures persistent. Journal of Computer and System Sciences, 38:86{124, 1989.[6] Rudolf Fleischer. A simple balanced search tree with O(1) worst-case update time.International Journal of Foundations of Computer Science, 7:137{149, 1996.[7] Leo J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R. Roberts. A newrepresentation for linear lists. In Proc. 9th Ann. ACM Symp. on Theory of Computing(STOC), pages 49{60, 1977.[8] Dov Harel. Fast updates of balanced search trees with a guaranteed time bound perupdate. Technical Report 154, University of California, Irvine, 1980.[9] Dov Harel and George S. Lueker. A data structure with movable �ngers and deletions.Technical Report 145, University of California, Irvine, 1979.16



[10] Scott Huddleston and Kurt Mehlhorn. A new data structure for representing sortedlists. Acta Informatica, 17:157{184, 1982.[11] Haim Kaplan and Robert Endre Tarjan. Persistent lists with catenation via recursiveslow-down. In Proc. 27th Ann. ACM Symp. on Theory of Computing (STOC), pages93{102, 1995.[12] S. Rao Kosaraju. Localized search in sorted lists. In Proc. 13th Ann. ACM Symp. onTheory of Computing (STOC), pages 62{69, 1981.[13] Christos Levcopoulos and Mark H. Overmars. A balanced search tree with O(1) worst-case update time. Acta Informatica, 26:269{277, 1988.[14] Chris Okasaki. Purely Functional Data Structures. PhD thesis, School of ComputerScience, Carnegie Mellon University, 1996. Tech report CMU-CS-96-177.[15] Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of LectureNotes in Computer Science. Springer Verlag, Berlin, 1983.[16] Rajeev Raman. Eliminating Amortization: On Data Structures with Guaranteed Re-sponse Time. PhD thesis, University of Rochester, New York, 1992. Computer ScienceDept., U. Rochester, tech report TR-439.[17] Athanasios K. Tsakalidis. AVL-trees for localized search. Information and Computation,67:173{194, 1985.

17


