
A Parallel Priority Queue with ConstantTime Operations�Gerth St�lting Brodaly Jesper Larsson Tr�a�z Christos D. ZaroliagisMax-Planck-Institut f�ur InformatikIm StadtwaldD-66123 Saarbr�uckenGermanyEmail: fbrodal,traff,zarog@mpi-sb.mpg.deMay 16, 1997AbstractWe present a parallel priority queue that supports the following operations in con-stant time: parallel insertion of a sequence of elements ordered according to key, paralleldecrease key for a sequence of elements ordered according to key, deletion of the min-imum key element, as well as deletion of an arbitrary element. Our data structureis the �rst to support multi insertion and multi decrease key in constant time. Thepriority queue can be implemented on the EREW PRAM, and can perform any se-quence of n operations in O(n) time and O(m logn) work, m being the total numberof keys inserted and/or updated. A main application is a parallel implementation ofDijkstra's algorithm for the single-source shortest path problem, which runs in O(n)time and O(m logn) work on a CREW PRAM on graphs with n vertices and m edges.This is a logarithmic factor improvement in the running time compared with previousapproaches.Keywords: Parallel data structures, parallel algorithms, graph algorithms, priorityqueues.1 IntroductionA priority queue is a sequential data structure which can maintain a set of elements withkeys drawn from a totally ordered universe subject to the operations of insertion, deletion,�This work was partially supported by the EU ESPRIT LTR Project No. 20244 (ALCOM-IT).ySupported by the Danish Natural Science Research Council (Grant No. 9400044). This work was donewhile the author was with BRICS (Basic Research in Computer Science, a Centre of the Danish NationalResearch Foundation), Dept. of Computer Science, University of Aarhus, Denmark.zSupported by the DFG project SFB 124-D6 (VLSI Entwurfsmethoden und Parallelit�at).1

decrease key, and �nd minimumkey element. There has been a considerable amount of workon parallel priority queues, see for instance [2, 5, 8, 9, 25, 26, 27, 28].There are two di�erent directions for incorporating parallelism into priority queues. The�rst is to speed up the individual queue operations that handle a single element, usinga small number of processors [2, 5, 25, 27, 28]. For instance, the parallel priority queueof Brodal [2] supports �nd minimum in constant time with one processor, and insertion,deletion, and decrease key operations (as well as other operations) in constant time withO(log n0) processors, n0 being the maximum number of elements allowed in the priorityqueue. The other direction is to support the simultaneous insertion of k elements and thesimultaneous deletion of the k smallest elements, k being a constant. Pinotti and Pucciintroduced in [26] the notion of k-bandwidth parallel priority queue implementations, bygiving implementations of k-bandwidth-heaps and k-bandwidth-leftist-heaps for the CREWPRAM. Using the k-bandwidth idea Chen and Hu [5] give an EREW PRAM parallel priorityqueue supporting multi insert and multi delete (of the k smallest elements) in O(log log nk +log k) time. Ranade et al. [28] show how to apply the k-bandwidth technique to achieve aparallel priority queue implementation for a d-dimensional array of processors, and Pinottiet al. [25] and Das et al. [8] give implementations for hypercubes. None of the above datastructures supports the simultaneous deletion of k arbitrary elements.In this paper we present a parallel priority queue which supports simultaneous insertionand simultaneous decrease key of an arbitrary sequence of elements ordered according to key,in addition to �nd minimum and single element delete operations. These operations can allbe performed in constant time. Our main result is that any sequence of n queue operationsinvolving m elements in total can be performed in O(n) time using O(m log n) operations onthe EREW PRAM. The basic idea in the implementation is to perform a pipelined mergingof keys. With the aid of our parallel priority queue we can give a parallel implementation onthe CREW PRAM of Dijkstra's single-source shortest path algorithm running in O(n) timeand O(m log n) work on digraphs with n nodes and m edges. This improves the runningtime of previous implementations [11, 24] by a logarithmic factor, while sacri�cing only alogarithmic factor in the work. This is the fastest, work-e�cient parallel algorithm for thesingle-source shortest path problem.The rest of the paper is organized as follows. In Section 2 we de�ne the operationssupported by our parallel priority queue. The main application to Dijkstra's single-sourceshortest path algorithm is presented in Section 3. In Section 4 we give a simple imple-mentation of the priority queue which illustrates the basic idea of the pipelined merge, butrequires O(n2 +m log n) work for a sequence of n queue operations. In Section 5 we showhow to reduce the work to O(m log n) by dynamically restructuring the pipeline in a tree likefashion. Further applications are discussed in Section 6. A preliminary version of the paperappeared as [4]. In that version a parallel priority data structure was proposed supporting asomewhat di�erent set of operations, more directly tailored to the parallel implementationof Dijkstra's algorithm. 2

2 A parallel priority queueIn this section we specify the operations supported by our parallel priority queue. We willbe working on the PRAM [18, 19], and for the description of the queue operations andthe simple implementation assume that successively numbered processors P1; : : : ; Pi; : : :, areavailable as we need them. In Section 5 we will then show how to work with a reducednumber of processors.Consider a set of up to n0 elements e1; : : : ; en0, each with a key drawn from a totallyordered set. We emphasize that an element ei has key di by writing ei(di). Keys do notuniquely identify elements, that is e(d0) and e(d00) are di�erent occurrences of the sameelement e. The priority queue maintains a set Q of elements subject to the operationsdescribed below. At any given instant a set of successively numbered processors P1; : : : ; Piwill be associated withQ. We use jQj to denote the number of processors currently associatedwith Q. The priority queue operations are executed by the available processors in parallel,with the actual work carried out by the jQj processors associated with the queue. Theoperations may assign new processors to Q and/or change the way processors are associatedwith Q. The result (if any) returned by a queue operation is stored at a designated locationin the shared memory.� Init(Q): initializes Q to the empty set.� Update(Q;L): updates Q with a list L = e1(d1); : : : ; ek(dk) of (di�erent) elements innon-decreasing key order, i.e., d1 � � � � � dk. If element ei was not in the queue beforethe update, ei is inserted into Q with key di. If ei was already in Q with key d0i, thekey of ei is changed to di if di < d0i, otherwise ei remains in Q with its old key d0i.� DeleteMin(Q): deletes and returns the minimum key element from Q in locationMinElt.� Delete(Q; e): deletes element e from Q.� Empty(Q): returns true if Q is empty in location Status.TheUpdate(Q;L) operation provides for (combined)multi insert and multi decrease keyfor a sequence of elements ordered according to key. For the implementation, it is importantthat the sequence be given as a list, enabling one processor to retrieve, starting from the �rstelement, the next element in constant time. We will represent such a list of elements as anobject with operations L:�rst, L:rem�rst for accessing and removing the head (�rst element)of the list, operations L:curr and L:advance for returning a current element and advancingto the next element, and L:remove(e) for removing the element (pointed to by) e. When theend of the list is reached by operation L:advance, L:curr returns a special element ?. A listobject can easily be built to support these operations in constant time (with one processor).In Sections 4 and 5 we present two di�erent implementations of the priority queue. Inparticular, we establish the following two main results:Theorem 1 The operations Init(Q) and Empty(Q) take constant time with one processor.The DeleteMin(Q) and Delete(Q; e) operations can be done in constant time by jQj3

processors. The operation Update(Q;L) can be done in constant time by 1+ jQj processors,and assigns one new processor to Q. The priority queue can be implemented on the EREWPRAM. Space consumption per processor is O(n0), where n0 is the maximum number ofelements allowed in the queue.Theorem 2 The operations Init(Q) and Empty(Q) take constant time with one processor.After initialization, any sequence of n queue operations involving m elements in total can beperformed in O(n) time with O(m log n) work. The priority queue can be implemented onthe EREW PRAM. Space consumption per processor is O(n0), where n0 is the maximumnumber of elements allowed in the queue.Before giving the proofs of Theorems 1 and 2 in Sections 4 and 5 respectively we presentour main application of the parallel priority queue.3 The main applicationThe single-source shortest path problem is a notorious example of a problem which despitemuch e�ort has resisted a very fast (i.e., NC), work-e�cient parallel solution. Let G = (V;E)be an n-vertex, m-edge directed graph with real-valued, non-negative edge weights c(v;w),and let s 2 V be a distinguished source vertex. The single-source shortest path problem isto compute for all vertices v 2 V the length of a shortest path from s to v, where the lengthof a path is the sum of the weights of the edges on the path.The best sequential algorithm for the single-source shortest path problem on directedgraphs with non-negative real valued edge weights is Dijkstra's algorithm [10]. The algorithmmaintains for each vertex v 2 V a tentative distance d(v) from the source, and a set ofvertices S for which a shortest path has been found. The algorithm iterates over the set ofvertices of G, in each iteration selecting a vertex of minimum tentative distance which canbe added to S. The algorithm can be implemented to run in O(m + n log n) operations byusing e�cient priority queues like Fibonacci heaps [12] for maintaining tentative distances,or other priority queue implementations supporting deletion of the minimum key elementin amortized or worst case logarithmic time, and decrease key in amortized or worst caseconstant time [3, 11, 17].The single-source shortest path problem is in NC (by virtue of the all-pairs shortest pathproblem being in NC), and thus a fast parallel algorithm exists, but for general digraphs nowork-e�cient algorithm in NC is known. The best NC algorithm runs in O(log2 n) time andperforms O(n3(log log n= log n)1=3) work on an EREW PRAM [16]. Moreover, work-e�cientalgorithms which are (at least) sublinearly fast are also not known for general digraphs.Dijkstra's algorithm is highly sequential, and can probably not be used as a basis fora fast (NC) parallel algorithm. However, it is easy to give a parallel implementation ofthe algorithm that runs in O(n log n) time [24]. The idea is to perform the distance updateswithin each iteration in parallel by associating a local priority queue with each processor. Thevertex of minimumdistance for the next iteration is determined (in parallel) as the minimumof the minima in the local priority queues. For this parallelization it is important that thepriority queue operations have worst case running time, and therefore the original Fibonacci4

heap cannot be used to implement the local queues. This was �rst observed in [11] wherea new data structure, called relaxed heaps, was developed to overcome this problem. Usingrelaxed heaps, an O(n log n) time and O(m+n log n) work(-optimal) parallel implementationof Dijkstra's algorithm is obtained. This seems to have been the previously fastest work-e�cient parallel algorithm for the single-source shortest path problem. The parallel timespent in each iteration of the above implementation of Dijkstra's algorithm is determined bythe (processor local) priority queue operations of �nding a vertex of minimum distance anddeleting an arbitrary vertex, plus the time to �nd and broadcast a global minimum amongthe local minima. Either or both of the priority queue operations take O(log n) time, asdoes the parallel minimum computation; for the latter
(log n) time is required, even on aCREW PRAM [7]. Hence, the approach with processor local priority queues does not seemto make it possible to improve the running time beyond O(n log n) without resorting to amore powerful PRAM model. This was considered in [24] where two faster (but not work-e�cient) implementations of Dijkstra's algorithm were given on a CRCW PRAM: the �rstalgorithm runs in O(n log log n) time, and performs O(n2) work; the second runs in O(n)time and performs O(n2+�) work for 0 < � < 1.An alternative approach would be to use a parallel global priority queue supporting someform of multi-decrease key operation. As mentioned in the introduction none of the parallelpriority queues proposed so far support such an operation; they only support a multi-deleteoperation which assumes that the k elements to be deleted are the k elements with smallestkeys in the priority queue. This does not su�ce for a faster implementation of Dijkstra'salgorithm.Using our new parallel priority queue, we can give a linear time parallel implementation ofDijkstra's algorithm. Finding the vertex of minimum distance and decreasing the distancesof its adjacent vertices can obviously be done by the priority queue, but preventing thata vertex, once selected and added to the set S of correct vertices, is ever selected againrequires a little extra work. The problem is that when vertex v is selected by the �ndminimum operation, some of its adjacent vertices may have been selected at a previousiteration. If care is not taken, our parallel update operation would reinsert such vertices intothe priority queue, which would then lead to more than n iterations. Hence, we must makesure that we can remove such vertices from the adjacency list of v in constant time uponselection of v. We �rst sort the adjacency list of each vertex v 2 V according to the weightof its adjacent edges. Using a sublinear time work-optimal mergesort algorithm [6, 15] thisis done with O(m log n) work on the EREW PRAM. This su�ces to ensure that priorityqueue updates are performed on lists of vertices of non-decreasing tentative distance. Tomake it possible to remove in constant time any vertex w from the adjacency list of v wemake the sorted adjacency lists doubly linked. For each v 2 V we also construct an arrayconsisting of the vertices w to which v is adjacent, (w; v) 2 E, together with a pointer tothe position of v in the sorted adjacency list of w. This preprocessing can easily be carriedout in O(log n) time using linear work on the EREW PRAM.Let Lv be the sorted, doubly linked adjacency list of vertex v 2 V , and Iv the array ofvertices to which v is adjacent. As required in the speci�cation of the priority queue, werepresent each Lv as an object with operations Lv:�rst, Lv:rem�rst, Lv:curr, Lv:advance andLv:remove(e). In the iteration where v is selected the object for Lv will be initialized with a5

Algorithm Parallel-Dijkstra/* Initialization */Sort the adjacency lists of G after edge weight, and make doubly linked lists Lv;For each v build array Iv of vertices to which v is adjacent;Init(Q);d(s) 0; S fsg;Update(Q;Ls(0));/* Main loop */while :Empty(Q) dov(d) DeleteMin(Q);d(v) d; S S [fvg;Update(Q;Lv(d));forall w 2 Iv pardoif w =2 S then remove v from Lw �;odparod Figure 1: An O(n) time parallel implementation of Dijkstra's algorithm.constant value d representing the distance of v from the source. We denote this initializationof the object by Lv(d). The operations Lv:�rst and Lv:curr return a vertex w on the sortedadjacency list of v (�rst, respectively current) with key c(v;w) o�set by the value d, i.e.d + c(v;w). The initialization step is completed by initializing the priority queue Q, andinserting the object Ls(0) representing the vertices adjacent to the source vertex s with o�set0 into Q.We now iterate as in the sequential algorithm until the priority queue becomes empty,in each iteration deleting a vertex v with minimum key (tentative distance) from Q. As inthe sequential algorithm the distance d of v will be equal to the length of a shortest pathfrom s to v, so v is added to S and should never be considered again. The adjacency listobject Lv(d) representing the vertices adjacent to v o�set with v's distance from s is insertedinto the priority queue, and will in turn produce the tentative distances d + c(v;wi) of v'sadjacent vertices wi. Since the adjacency lists were initially sorted, the tentative distancesproduced by the Lv object will appear in non-decreasing order as required in the speci�cationof the priority queue. To guarantee that the selected vertex v is never selected again, v mustbe removed from the adjacency lists of all vertices w =2 S. This can be done in parallel inconstant time by using the array Iv to remove v from the adjacency lists Lw of vertices towhich v is adjacent for all w =2 S. Note that this step requires concurrent reading, since thejIvj processors have to know the starting address of the Iv array of the selected vertex v.However, the concurrent reading required is of the restricted sort of broadcasting the sameconstant-size information to a set of processors. A less informal description of the aboveimplementation of Dijkstra's algorithm is given in Figure 1.6

Theorem 3 The parallel Dijkstra algorithm runs: (i) in O(n) time and O(m log n) work onthe CREW PRAM; (ii) in O(n log(m=n)) time and O(m log n) work on the EREW PRAM.Proof. (i) The initialization takes sublinear time and O(m log n) work on an EREW PRAM,depending on the choice of parallel sorting algorithm. Since one vertex is put into S in eachiteration, at most n� 1 iterations of the while loop are required. Each iteration (excludingthe priority queue operations) can obviously be done in constant time with a total amountof work bounded by O(Pv2V jLvj+Pv2V jIvj) = O(m). We have a total of n priority queueoperations involving a total number of elements equal to Pv2V jLvj = m. Now, the boundsof part (i) follow from Theorem 2.(ii) Concurrent reading was needed only for removing the selected vertex v from theadjacency lists of vertices w =2 S using the Iv array. This step can be done on an EREWPRAM if we broadcast the information that v was selected to jIvj processors. In eachiteration this can be done in O(log jIvj) time and O(jIvj) work. Summing over all iterationsgives O(Pv2V log jIvj) = O(log(�v2V jIvj) = O(n log(m=n)) time and O(m) work. 24 Linear pipeline implementationIn this section we present a simple implementation of the priority queue as a linear pipelineof processors, thereby giving a proof of Theorem 1.At any given instant the processors associated with Q are organized in a linear pipeline.When an Update(Q;L) operation is performed a new processor becomes associated withQ and is put at the front of the pipeline. Elements of the list L may already occur in Q,possibly with di�erent keys; it is the task of the implementation to ensure that only theoccurrences with the smallest keys are output by the DeleteMin(Q) operation. An arrayis used to associate processors with Q. Let Pi denote the ith processor to become associatedwith Q. The task of Pi will be to perform a stepwise merging of the elements of the listL = e1(d1); : : : ; ek(dk) with the output from the previous processor Pi�1 in the pipeline(where i > 1). Since L becomes associated with Pi at the Update(Q;L) call, we shall referto it as the element list Li of Pi when we describe actions at Pi. Processor Pi produces outputto an output queue Qi; Qi is either read by the next processor, or, if Pi is the last processor inthe pipeline, Qi contains the output to be returned by the next DeleteMin(Q) operation.The pipeline after 4 Update(Q;L) operations is shown in Figure 2. Each Qi is a standardFIFO queue with operations Qi:�rst, which returns the �rst element of Qi, Qi:rem�rst, whichdeletes the �rst element of Qi, and Qi:append(e), which appends the element e to the rear ofQi. Furthermore, each Qi must support deletion of an element (pointed to by) e in constanttime, Qi:remove(e). Implementation of each Qi as a doubly linked list su�ces.The Init(Q) operation marks all processors as not associated withQ, and can therefore bedone in constant time by initializing the association array. The operations DeleteMin(Q),Delete(Q; e) and Update(Q;L) are all implemented by a procedure MergeStep(Q),which, for each processor Pi associated with Q, performs one step of a merge of the elementlist Li of Pi and the elements in the output queue Qi�1 of the previous processor.Let Q(i) denote the contents of the priority queue after the ith Update(Q;L) operation.The purpose of procedure MergeStep(Q) is to output, for each processor Pi associated7

����P1Q1 F1� 6L1����P2Q2 F2� 6L2����P3Q3 F3� 6L3����P4Q4 F4� 6L4Figure 2: The linear processor pipeline with associated data structures.with Q, the next element of Q(i), if non-empty, in non-decreasing order to the output queueQi. This is achieved as follows. Recall that Li is a list of elements, some of which mayalready have been in the priority queue before the ith update (possibly with di�erent keys).The elements output to each output queue will be in non-decreasing order, so the merge stepof processor Pi simply consists in choosing the �rst element of either Qi�1 or Li, whicheveris smaller (with ties broken arbitrarily), deleting this element and outputting it to Qi. Themerge step must also ensure that an element is output from Q at most once. There can beoccurrences of an element in di�erent lists Li corresponding to a number of updates on thiselement; the occurrence with the smallest key must be output. In order to guarantee thatan element is output from Q(i) (by Pi) at most once, an element is marked as forbiddenby processor Pi once it is output. Each processor maintains a set Fi of forbidden elements,represented as a Boolean array indexed by elements: Fi[e] = true i� e has been output andmade forbidden by Pi. This ensures that each Qi always contains di�erent elements. Inorder that the merge step can be performed in constant time, it must furthermore hold thatneither Qi�1 nor Li contain elements that are forbidden for Pi. We maintain the invariantsthat Fi \ Qi�1 = ; and Fi \ Li = ;:The merge step for processor Pi now proceeds as follows: the smaller element is chosen fromeither Qi�1 or Li (with ties broken arbitrarily), presuming neither is empty. If either Qi�1or Li is empty the element is taken unconditionally from the other sequence, and when bothare empty, Pi has no more work to do. If the chosen element is not forbidden for the nextprocessor Pi+1, it is output to Qi, and made forbidden for Pi. If it also occurs in eitherQi�1 or Li it must be deleted so that the above invariants are maintained. To this end, eachprocessor maintains two arrays of pointers Qi and Li into Qi and Li, respectively, indexedby the elements. When an element e is inserted into Qi, a pointer Qi[e] to e in Qi is created;when e is removed from Qi (by processor Pi+1) Qi[e] is reset to ?. The pointers Li[e] intoLi should be set, conceptually, when the update Update(Q;L) is performed. However, thiswould require concurrent reading, so instead we initialize the Li pointer array in a pipelinedfashion. Since at most one element from Li is \consumed" at each merge step, it su�ces to8

Procedure MergeStep(Q)forall Pi, i 2 jQj pardo /* for all processors associated with Q */if Li:curr 6= ? then /* lazy Li pointer update */if Fi[Li:curr] = true then Li:remove(Li:curr); /* current element is forbidden */else Li[Li:curr] Li:curr; �;Li:advance; /* advance to next element */�;e0(d0) Qi�1:�rst;e00(d00) Li:�rst;if d00 < d0 thene0(d0) e00(d00);Li:rem�rst;/* remove e0 from Qi�1 using Qi�1[e0] */if Qi�1[e0] 6= ? then Qi�1:remove(Qi�1[e0]);elseQi:rem�rst;/* remove e0 from Li using Li[e0] */if Li[e0] 6= ? then Li:remove(Li[e0]);�;Fi[e0] true;if :Fi+1[e0] thenQi:append(e0(d0));Update Qi[e0] to the position of e0 in Qi;�;odpar;End of Procedure Figure 3: The MergeStep(Q) procedure.let each merge step initialize the pointer for the next element of Li. When an element e ischosen from Qi�1 and has to be deleted from Li, either Li[e] already points to e's positionin Li, or it has not yet been set. In the latter case e is deleted later when reached by thecorresponding merge step because Fi[e] = true. The MergeStep(Q) procedure is shownin Figure 3.It is now easy to implement the remainder of the priority queue operations. The oper-ations Update(Q;L) should associate a new processor Pi with the pipeline whose task isto merge L with the elements already in the queue. In order to guarantee that the newprocessor has something to merge, aMergeStep(Q) is performed to bring at least one newelement into Qi�1. The new processor then associates itself with the pipeline, and initializesthe set of forbidden elements and the pointer arrays Qi and Li. The operation is shown inFigure 4.A DeleteMin(Q) is even easier. A call to MergeStep(Q) brings a new element into9

Procedure Update(Q;L)MergeStep(Q); /* perform a merge step to ensure that last queue is non-empty */;Associate a new processor Pi with Q and connect it to the pipeline;Li L;Initialize Fi, Li and Qi;End of Procedure Figure 4: The Update(Q;L) operation.Procedure DeleteMin(Q)MergeStep(Q);if Pi is the last processor thenMinElt Qi:�rst; Qi:rem�rst;�;End of ProcedureProcedure Delete(Q; e)MergeStep(Q);if Pi is the last processor thenFi[e] true;/* Remove e from Qi using Qi[e] */if Qi[e] 6= ? then Qi:remove(Qi[e]);�;End of ProcedureFigure 5: The DeleteMin(Q) and Delete(Q; e) operations.the output queue of the last processor Pi. The smallest element of Q is the �rst element ofQi which is removed and copied to the return cell MinElt. The operation Delete(Q; e)just makes e forbidden for the last processor. To ensure that the last output queue doesnot become empty, one call to MergeStep is performed. The code for these operations isshown in Figure 5. The �nal operation Empty(Q) simply queries the output queue of thelast processor, and writes true into the Status cell if empty.For the correctness of the queue operations it only remains to show that processor Pi+1only runs out of elements to merge when Q(i), the queue after the ith update, has becomeempty. We establish the following:Lemma 1 The output queue Qi of processor Pi is non-empty, unless Q(i) is empty.Proof. It su�ces to show that as long as Q(i) is non-empty, the invariant jQij > jFi+1nFij �0 holds. Consider the work of processor Pi+1 at some MergeStep. Either jFi+1 n Fij isincreased by one, or jQij is decreased by one, but not both, since in the case where Pi+110

outputs an element fromQi this element has been put into Fi at some previous operation, andin the case where Pi+1 outputs an element from Li+1 which was also in Qi, this element hasagain been put into Fi at some previous operation. In both cases jFi+1 nFij does not changewhen Pi+1 puts the element into Fi+1. The work of Pi+1 therefore maintains jQij � jFi+1nFij;strict inequality is reestablished by considering the work of Pi which either increases jQij or,in the case where Pi is not allowed to put its element e into Qi (because e 2 Fi+1), decreasesjFi+1 n Fij (because e is inserted into Fi). 2In procedure Update(Q;L) we need to initialize the array of forbidden elements Fi tofalse for all elements, and each of the pointer arrays Li and Qi to ?. There is a well-knownsolution to do this sequentially in constant time (see for instance [21, pp. 289{290]). Theinitialization is done in a lazy fashion, and requires two extra arrays of the same size for eacharray, respectively. The �rst array will be treated as an array of pointers into the secondarray which will be a stack of array indices actually \seen". The stack is initially madeempty by setting a stack pointer to the bottom of the stack array. Apart from this nothinghas to be done for either of the three arrays. When an element is accessed, we can check asfollows whether it is encountered for the �rst time and thus has to be initialized. We lookup the pointer of the element in the pointer array. If this is not a valid pointer into thestack, the element has not been seen before (likewise, if the pointer points to a position inthe stack above the stack pointer, the element has not been seen before). In this case theelement is initialized, its index pushed on the stack, and the pointer in the pointer array setto this position. Only in the case where the pointer points to a valid position in the stackbelow the stack pointer may the element have been encountered before, and this is the caseonly if the index which is on the stack actually equals the index of the element.This completes the proof of Theorem 1.4.1 A linear space implementationFor the linear pipeline implementation as described above it is possible to reduce the O(n0)space required per processor for the forbidden sets and the arrays of pointers into the outputqueues to a total of O(n0+m) for a sequence of queue operations involvingm elements, if weallow concurrent reading. Instead of maintaining the forbidden sets Fi and arrays Li and Qiexplicitly, we let each occurrence of an element in the priority queue carry information aboutits position (whether in some queue Qj or in Li), whether it has been forbidden and if so,by which processor. Maintaining for each element a doubly linked list of its occurrences inthe data structure makes it possible for processor Pi to determine in constant time whethera given element has been forbidden for processor Pi+1, and to remove it in constant timefrom Qi�1 whenever it is output from Li, and from Li whenever it is output from Qi�1. Inorder to insert new elements on these occurrence lists in constant time an array of size O(n0)is needed. For element e this array will point to the most recently inserted occurrence of e(which is still in Q). Occurrences of e appear in the occurrence list of e in the order in whichupdate operations involving e were performed.At the ith Update(Q;L) operation, each element e of Li (i.e., of L which is now asso-ciated with the new processor Pi) is linked to the front of the occurrence list of e with alabel that it belongs to Li and pointers which allows it to be removed from Li in constant11

time. Let us now consider a merge step of processor Pi. When an element e is chosen fromQi�1, Pi looks at the next occurrence of e in e's occurrence list. If this occurrence is in Li,it is removed, both from Li and from the list of e-occurrences. This eliminates the needfor the Li array. It is now checked whether e is forbidden for Pi+1 by looking at the nextoccurrence of e; if it not marked as forbidden by Pi+1, e is output to Qi, marked as forbiddenby Pi. If e was forbidden by Pi+1 this occurrence is still marked as forbidden by Pi, but notoutput. If e is chosen from Li, Pi looks at the previous occurrence of e. If this is in Qi�1 itis removed from both Qi�1 and from the list of e-occurrences. This eliminates both the needfor forbidden sets and the pointer arrays Qi. It should be clear that consecutive occurrencesof e are never removed in the same merge step, so the doubly linked lists of occurrencesare properly maintained also when di�erent processors work on di�erent occurrences of e.Note, however, that all elements in Li have to be linked into their respective occurrence listsbefore subsequent merge steps are performed, so concurrent reading is needed. This givesthe following variant of the priority queue.Lemma 2 The operations Init(Q) and Empty(Q) take constant time with one processor.The DeleteMin(Q) and Delete(Q; e) operations can be done in constant time by jQjprocessors. The operation Update(Q;L) can be done in constant time by 1 + jQj + jLjprocessors, and assigns one new processor to Q. The priority queue can be implemented onthe CREW PRAM. The total space consumption is O(n0 + m), where n0 is the maximumnumber of elements allowed in the queue, and m the total number of elements updated.5 Dynamically restructuring tree pipelineIn this section we describe how to decrease the work done by the algorithm in Section 4such that we achieve the result stated in Theorem 2. Before describing the modi�ed datastructure, we �rst make an observation about the work done in Section 4.Intuitively, the work done by processor Pi is to output elements by incrementallymergingits list Li with the queue Qi�1 of elements output by processor Pi�1. Processor Pi terminateswhen nothing is left to be merged. An alternative bound on the work done is the sum of thedistance each element e(d) belonging to a list Li travels, where we de�ne the distance to bethe number of processors that output e(d). Since the elements e(d) in Li can be output onlyby a pre�x of the processors Pi; Pi+1; : : : ; Pn, the distance e(d) travels is at most n � i+ 1.This gives a total bound on the work done by the processors of O(mn). The work canactually be bounded by O(n2) due to the fact that elements get annihilated by forbiddensets.In this section we describe a variation of the data structure in Section 4 that intuitivelybounds the distance an element can travel by O(log n), i.e., bounds the work by O(m log n).The main idea is to replace the linear pipeline of processors by a binary tree pipeline ofprocessors of height O(log n).We start by describing how to arrange the processors in a tree and how to dynamicallyrestructure this tree while adding new processors for each Update-operation. We thendescribe how the work can be bounded by O(m log n) and �nally how to perform the requiredprocessor scheduling. 12

j1 j2j1 j1���� j3j2j1 j1���� j2j1 j1�������� j4j3j2j1 j1���� j2j1 j1�������� j3j2j1 j1���� j2j1 j1�������������*Figure 6: The tree arrangement of processors. Numbers denote processor ranks.5.1 Tree structured processor connectionsTo arrange the processors in a tree we slightly modify the information stored at each proces-sor. The details of how to handle the queues and the forbidden sets are given in Section 5.2.Each processor Pi still maintains a list Li and a set of forbidden elements Fi. The output ofprocessor Pi is still inserted into the processor's output queue Qi, but Pi now receives inputfrom two processors instead of one processor. As for the linear pipeline we associate twoarrays Qi and Li with the queue Qi and list Li. The initialization of the array Li is done inthe same pipelined fashion as for the linear pipeline.The processors are arranged as a sequence of perfect binary trees. We represent the treesas shown in Figure 6. A left child has an outgoing edge to its parent, and a right child anedge to its left sibling. The incoming edges of a node v come from the left child of v andthe right sibling of v. Figure 6 shows trees of size 1, 3, 7 and 15. Each node corresponds toa processor and the unique outgoing edge of a node corresponds to the output queue of theprocessor (and an input queue of the parent processor). The rank of a node is the heightof the node in the perfect binary tree and the rank of a tree is the rank of the root of thetree. A tree of rank r + 1 can be constructed from two trees of rank r plus a single node,by connecting the two roots with the new node. It follows by induction that a tree of rankr has size 2r � 1.The processors are arranged in a sequence of trees of rank rk; rk�1; : : : ; r1, where the ithroot is connected to the i + 1st root as shown in Figure 7. For the sequence of trees wemaintain the invariant that rk � rk�1 < rk�2 < � � � < r2 < r1: (1)When performing an Update-operation a new processor is initialized. If rk < rk�1 the newprocessor is inserted as a new rank one tree at the front of the sequence of trees as for thelinear pipeline. That (1) is satis�ed follows from 1 � rk < rk�1 < � � � < r1. If rk = rk�1 welink the kth and k � 1st tree with the node corresponding to the new processor to form atree of rank 1 + rk�1. That (1) is satis�ed follows from 1 + rk�1 � rk�2 < rk�3 < � � � < r1.Figure 7 illustrates the relinking for the case where rk = rk�1 = 2 and rk�2 = 4. Note thatthe only restructuring of the pipeline required is to make the edge e an incoming edge of thenew node w.The described approach for relinking has been applied in a di�erent context to constructpurely functional random-access lists [23]. In [23] it is proved that a sequence of trees13

jxj j���� jyj j���� jzjjj j���� jj j�������� jjj j���� jj j�������������*e� � � jwjxj j���� jyj j�������� jzjjj j���� jj j�������� jjj j���� jj j�������������*e� �Figure 7: How to restructure the tree when performing Update.satisfying (1) is unique for a given number of nodes.5.2 Queues and forbidden setsWe now give the details of how to handle the output queues and the forbidden sets and howto implement the MergeStep-operation. Let Pj be a processor connected to a processorPi, i > j, by the queue Qj. For the tree pipeline processor Pj is only guaranteed to outputa subset of the elements in Q(j) in non-decreasing order. For the linear pipeline processorPj outputs exactly the set Q(j).Assume that processors Pi and Pj were created as a result of the ith and jth, respectively,Update operations. Let Jj denote the set of elements deleted by Delete and DeleteMinoperations between the jth and ith Update operations. The important property of Jj isthat Jj are the elements that can be output by Pj but are illegal as input to Pi, because theyalready have been deleted prior to the creation of Pi. We represent each Jj as a Booleanarray. How to handle Jj when restructuring the pipeline is described later in this section.To guarantee that Qj does not contain any illegal input to Pi we maintain the invariantQj \ (Fi [Jj) = ;: (2)Our main invariant for the connection between processors Pj and Pi while processor Pjstill has input left to be considered is (3), which intuitively states that Pj has output moreelements than the number of elements output by Pi plus the elements deleted before theconnection between Pj and Pi is created.j(Fi [Jj) n Fjj < jFj n (Fi [Jj)j: (3)We now describe how to implement the MergeStep-operation such that the invariants(3) and (2) remain satis�ed. The basic idea of the implementation is the same as for thelinear pipeline. Processor Pj �rst selects the element v with smallest key in Lj and theinput queues of Pj in constant time. If no v exists processor Pj terminates. Otherwise, alloccurrences of v are removed from Lj and the input queues Q` of Pj using the arrays Lj andQ` respectively, and v is added to Fj. If Qj is an input queue of Pi and v =2 Fi [Jj, thenv is inserted in Qj. If v 2 Fi [Jj, then v is not inserted into Qj, since otherwise (2) wouldbe violated. If v 2 Fi, then v has already been output by processor Pi and we can safelyannihilate v. If v 2 Jj, then v has been deleted from Q(k), j � k < i, and we can again safely14

annihilate v. That (3) is satis�ed after a MergeStep-operation follows from an argumentsimilar to the one given in the proof of Lemma 1 for the linear pipeline: the work done byprocessor Pi, when inserting a new element into Fi, either increases the left-hand side of(3) by one or decreases the right-hand side of (3) by one and thereby makes the inequality�. The < is reestablished by processor Pj which inserts a new element into Fj (this eitherdecreases the left-hand side of (3) by one or increases the right-hand side of (3) by one).Invariant (3) allows us to let Qj become empty throughout a MergeStep-operation,without violating the correctness of the operation and without Pj being terminated. Thereason is that Fj n (Fi [Jj) 6= ; implies that there exists an element v that has been outputby Pj (v 2 Fj) that neither has been deleted from the data structure before Pi was created(v =2 Jj) nor has been output by Pi (v =2 Fi). If Qj becomes empty, v can only be stored inan output queue of a processor in the subtree rooted at Pi due to how the dynamic relinkingis performed, i.e., v appears in a Qk, j < k < i. It follows that v has to be output by Pi(perhaps with a smaller key because v gets annihilated by an appearance of v with a smallerkey) before the next element to be output by Pj can be output by Pi. This means that Pican safely skip to consider input from the empty input queue Qj, even if Qj later can becomenon-empty. Note that (3) guarantees that a queue between Pi�1 and Pi always is non-empty.We now describe how to implement the Update-operation. The implementation is asfor the linear pipeline, except for the dynamic relinking of a single connection (edge e inFigure 7) which is done after the MergeStep-operation and the initialization of the newprocessor. Assume that Pi is the newly created processor. That Qi�1 satis�es (3) and (2)follows from the fact that Ji�1 � Fi�1 (the MergeStep-operation at the beginning of theUpdate-operation implies that at least one element output by Pi�1 has not been deleted)and Fi = ;. What remains to be shown is how to satisfy the invariants for the node Pj whenQj, j < i, is relinked to become an input queue of Pi.When Qj is relinked, Pj has output at least jJjj+1 elements in total (jJjj for delete oper-ations and one from theMergeStep-operation at the beginning of the Update-operation).Because Fi = ; and i > j, it follows that (3) is satis�ed after the relinking. To guaranteethat (2) is satis�ed we have to update Jj according to the de�nition and to update the queueQj as follows Qj Qj n Jj:Since Qj and Jj can be arbitrary sets it seems hard to do this updating in constant timewithout some kind of precomputation. Note that the only connections which can be relinkedare the connections between the tree roots. Our solution to this problem is as follows: ForeachMergeStep-operation, we mark the deleted element v as dirty in all the output queuesQj where Pj is a root and mark v dirty in Jj. Whenever a queue Qj is relinked we just needto be able to delete all elements marked dirty from Qj in constant time. When insertinga new element into a queue Qj it can be checked if it is dirty or not by examining if theelement is in Jj.A reasonably simple solution to the marking problem, as well as to the insertion of thedirty elements in Jj, is the following. First, note that each timeQj is relinked it is connectedto a node having rank one higher, i.e., we can use this rank as a time stamp t. We representa queue Qj as a linked list of vertices, where each vertex v has two time stamped links tovertices in each direction from v. The link with the highest time stamp � t is the current15

link in a direction. A link with time stamp t+1 is a link that will become active when Qj isrelinked, i.e., we implicitly maintain two versions of the queue: The current version and theversion where all the dirty vertices have been removed. The implementation of the markingprocedure is straightforward. To handle the Boolean array Jj , it is su�cient for each trueentry to associate a time stamp. A time stamp equal to t+ 1 implies that the entry in Jj isdirty. As described here the marking of dirty vertices requires concurrent read to know thedeleted element, but by pipelining the dirty marking process along the tree roots from leftto right, concurrent read can be avoided. This is possible because the relinking of the treepipeline only a�ects the three leftmost roots in the tree pipeline.We now argue that the described data structure achieves the time bounds claimed inTheorem 2, i.e., that the work done by the processors for the MergeStep-operations isO(m log n). Elements can travel a distance of at most 2 log n in a tree (in the sense mentionedin the beginning of this section) before they reach the root of the tree. The problem is thatthe root processors move elements to lower ranked nodes, but the total distance to travelincreases at most by 2 log n for each of the n MergeStep-operations. This is true, becausethe increase in the total distance to travel along the root path results in the telescoping sum2(r1 � r2) + 2(r2 � r3) + � � �+ 2(rk�1 � rk)which is bounded by 2 log n. We conclude that the actual merging work is bounded byO(2m log n+ 2n log n), i.e., O(m log n).5.3 Processor schedulingWhat remains is to divide the O(m log n) work among the available processors on an EREWPRAM. Assuming that O(m lognn) processors are available, the idea is to simulate the treestructured pipeline for O(log n) time steps, after which we stop the simulation and inO(log n)time eliminate the (simulated) terminated processors, and reschedule. By this scheme aterminated processor is kept alive for only O(log n) time steps, and hence no superuouswork is done. In total the simulation takes linear time.6 Further applications and discussionThe improved single-source shortest path algorithm immediately gives rise to correspondingimprovements in algorithms in which the single-source shortest path problem occurs as asubproblem. We mention here the assignment problem, the minimum-cost ow problem,(for de�nitions see [1]), and the single-source shortest path problem in planar digraphs. Asusual, n and m denote the number of vertices and edges of the input graph, respectively.Note that the minimum-cost ow problem is P-complete [14] (i.e., it is very unlikely thatit has a very fast parallel solution), while the assignment problem is not known to be inNC (only an RNC algorithm is known in the special case of unary weights [20, 22], and aweakly polynomial CRCW PRAM algorithm that runs in O(n2=3 log2 n log(nC)) time withO(n11=3 log2 n log(nC)) work [13] in the case of integer edge weights in the range [�C;C]).The assignment problem can be solved by n calls to Dijkstra's algorithm (see e.g. [1,Section 12.4]), while the solution of the minimum-cost ow problem is reduced to O(m log n)16

calls to Dijkstra's algorithm (see e.g. [1, Section 10.7]). The best previous (strongly polyno-mial) algorithms for these problems are given in [11]. They run on an EREW PRAM andare based on their implementation of Dijkstra's algorithm: the algorithm for the assignmentproblem runs in O(n2 log n) time using O(nm + n2 log n) work, while the algorithm for theminimum-cost ow problem runs in O(nm log2 n) time using O(m2 log n + nm log2 n) work.Using the implementation of Dijkstra's algorithm presented in this paper, we can speedupthe above results on a CREW PRAM. More speci�cally, we have a parallel algorithm forthe assignment problem that runs in O(n2) time using O(nm log n) work, and a parallel al-gorithm for the minimum-cost ow problem that runs in O(nm log n) time and O(m2 log2 n)work.Greater parallelism for the single-source shortest path problem in the case of planardigraphs can be achieved by plugging our implementation of Dijkstra's algorithm (Theo-rem 3(ii)) into the algorithm of [29] resulting in an algorithm which runs in O(n2� + n1��)time and performs O(n1+�) work on an EREW PRAM, for any 0 < � < 1=2. With respectto work, this gives the best (deterministic) parallel algorithm known for the single-sourceshortest path problem in planar digraphs that runs in sublinear time.Acknowledgements. We are grateful to Volker Priebe for his careful reading of the paperand his insightful comments.References[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows. Prentice-Hall, 1993.[2] Gerth St�lting Brodal. Priority queues on parallel machines. In Proc. 5th ScandinavianWorkshop on Algorithm Theory (SWAT), volume 1097 of Lecture Notes in ComputerScience, pages 416{427. Springer Verlag, Berlin, 1996.[3] Gerth St�lting Brodal. Worst-case e�cient priority queues. In Proc. 7th ACM-SIAMSymposium on Discrete Algorithms (SODA), pages 52{58, 1996.[4] Gerth St�lting Brodal, Jesper Larsson Tr�a�, and Christos D. Zaroliagis. A parallel pri-ority data structure with applications. In Proceedings of the 11th International ParallelProcessing Symposium (IPPS'97), pages 689{693, 1997.[5] Danny Z. Chen and Xiaobo Hu. Fast and e�cient operations on parallel priority queues(preliminary version). In Algorithms and Computation: 5th International Symposium,ISAAC '93, volume 834 of Lecture Notes in Computer Science, pages 279{287. SpringerVerlag, Berlin, 1994.[6] Richard Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770{785, 1988.[7] Stephen Cook, Cynthia Dwork, and R�udiger Reischuk. Upper and lower time boundsfor parallel random access machines without simultaneous writes. SIAM Journal onComputing, 15(1):87{97, 1986. 17

[8] Sajal K. Das, Maria C. Pinotti, and Falguni Sarkar. Optimal and load balanced mappingof parallel priority queues in hypercubes. IEEE Transactions on Parallel and DistributedSystems, 7:555{564, 1996. Correction ibid. p. 896.[9] Paul F. Dietz and Rajeev Raman. Very fast optimal parallel algorithms for heap con-struction. In Proc. 6th Symposium on Parallel and Distributed Processing, pages 514{521, 1994.[10] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Math-ematik, 1:269{271, 1959.[11] James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E. Tarjan. Relaxedheaps: An alternative to Fibonacci heaps with applications to parallel computation.Communications of the ACM, 31(11):1343{1354, 1988.[12] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses inimproved network optimization algorithms. Journal of the ACM, 34(3):596{615, 1987.[13] Andrew V. Goldberg, Serge A. Plotkin, and Pravin M. Vaidya. Sublinear-time parallelalgorithms for matching and related problems. Journal of Algorithms, 14(2):180{213,1993.[14] L.M. Goldschlager, R. Shaw, and J. Staples. The maximumow problem is LOGSPACEcomplete for P. Theoretical Computer Science, 21:105{111, 1982.[15] Torben Hagerup and Christine R�ub. Optimalmerging and sorting on the EREWPRAM.Information Processing Letters, 33:181{185, 1989.[16] Y. Han, V. Pan, and J. Reif. Algorithms for computing all pair shortest paths in directedgraphs. In Proc. 4th ACM Symposium on Parallel Algorithms and Architectures (SPAA),pages 353{362, 1992.[17] Peter H�yer. A general technique for implementation of e�cient priority queues. InProc. 3rd Israel Symposium on Theory of Computing and Systems, pages 57{66, 1995.[18] Joseph J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.[19] Richard M. Karp and Vijaya Ramachandran. Parallel Algorithms for Shared-MemoryMachines, volume A of Handbook of Theoretical Computer Science, chapter 17, pages869{942. Elsevier, 1990.[20] R. Karp, E. Upfal, and A. Wigderson. Constructing a maximummatching is in RandomNC. Combinatorica, 6:35{38, 1986.[21] Kurt Mehlhorn. Data Structures and Algorithms, volume 1 of EATCS Monographs onTheoretical Computer Science. Springer-Verlag, 1984.[22] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy asmatrix inversion. Combinatorica, 7(1):105{113, 1987.18

[23] Chris Okasaki. Purely functional random-access lists. In Functional Programming Lan-guages and Computer Architecture, pages 86{95, 1995.[24] Richard C. Paige and Clyde P. Kruskal. Parallel algorithms for shortest path problems.In Int. Conference on Parallel Processing, pages 14{20, 1985.[25] Maria Cristina Pinotti, Sajal K. Das, and Vincenzo A. Crupi. Parallel and distributedmeldable priority queues based on binomial heaps. In Int. Conference on Parallel Pro-cessing, 1996.[26] Maria Cristina Pinotti and Geppino Pucci. Parallel priority queues. Information Pro-cessing Letters, 40:33{40, 1991.[27] Maria Cristina Pinotti and Geppino Pucci. Parallel algorithms for priority queue oper-ations. Theoretical Computer Science, 148(1):171{180, 1995.[28] A. Ranade, S. Cheng, E. Deprit, J. Jones, and S. Shih. Parallelism and locality inpriority queues. In Proc. 6th Symposium on Parallel and Distributed Processing, pages490{496, 1994.[29] Jesper L. Tr�a� and Christos D. Zaroliagis. Simple parallel algorithm for the single-sourceshortest path problem on planar digraphs. In A Parallel Algorithms for IrregularlyStructured Problems (IRREGULAR'96), volume 1117 of Lecture Notes in ComputerScience, pages 183{194. Springer Verlag, Berlin, 1996.

19

