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minimum in constant time with one processor, and insertion, deletion, and decrease key operations(as well as other operations) in constant time with O(logn0) processors, n0 being the maximumnumber of elements allowed in the priority queue. The other direction is to support the simulta-neous insertion of k elements and the simultaneous deletion of the k smallest elements, k being aconstant. Pinotti and Pucci introduced in [27] the notion of k-bandwidth parallel priority queueimplementations, by giving implementations of k-bandwidth-heaps and k-bandwidth-leftist-heapsfor the CREW PRAM. Using the k-bandwidth idea Chen and Hu [5] give an EREW PRAMparallel priority queue supporting multi insert and multi delete (of the k smallest elements) inO(log log nk + log k) time. Ranade et al. [29] show how to apply the k-bandwidth technique toachieve a parallel priority queue implementation for a d-dimensional array of processors, and Pinottiet al. [26] and Das et al. [8] give implementations for hypercubes. None of the above data structuressupports the simultaneous deletion of k arbitrary elements.In this paper we present a parallel priority queue which supports simultaneous insertion andsimultaneous decrease key of an arbitrary sequence of elements ordered according to key, in additionto �nd minimum and single element delete operations. These operations can all be performed inconstant time. Our main result is that any sequence of n queue operations involving m elementsin total can be performed in O(n) time using O(m logn) operations on the EREW PRAM. Thebasic idea in the implementation is to perform a pipelined merging of keys. With the aid of ourparallel priority queue we can give a parallel implementation on the CREW PRAM of Dijkstra'ssingle-source shortest path algorithm running in O(n) time and O(m logn) work on digraphs withn nodes and m edges. This improves the running time of previous implementations [12, 25] bya logarithmic factor, while sacri�cing only a logarithmic factor in the work. This is the fastest,work-e�cient parallel algorithm for the single-source shortest path problem.The rest of the paper is organized as follows. In Section 2 we de�ne the operations supported byour parallel priority queue. The main application to Dijkstra's single-source shortest path algorithmis presented in Section 3. In Section 4 we give a simple implementation of the priority queue whichillustrates the basic idea of the pipelined merge, but requires O(n2 +m logn) work for a sequenceof n queue operations. In Section 5 we show how to reduce the work to O(m logn) by dynamicallyrestructuring the pipeline in a tree like fashion. Further applications are discussed in Section 6. Apreliminary version of the paper appeared as [4]. In that version a parallel priority data structurewas proposed supporting a somewhat di�erent set of operations, more directly tailored to theparallel implementation of Dijkstra's algorithm.2 A parallel priority queueIn this section we specify the operations supported by our parallel priority queue. We will beworking on the PRAM [19, 20], and for the description of the queue operations and the simpleimplementation assume that successively numbered processors P1; : : : ; Pi; : : :, are available as weneed them. In Section 5 we will then show how to work with a reduced number of processors.Consider a set of up to n0 elements e1; : : : ; en0 , each with a key drawn from a totally orderedset. We emphasize that an element ei has key di by writing ei(di). Keys do not uniquely identifyelements, that is e(d0) and e(d00) are di�erent occurrences of the same element e. The priority queuemaintains a set Q of elements subject to the operations described below. At any given instant a setof successively numbered processors P1; : : : ; Pi will be associated with Q. We use jQj to denote thenumber of processors currently associated with Q. The priority queue operations are executed bythe available processors in parallel, with the actual work carried out by the jQj processors associatedwith the queue. The operations may assign new processors to Q and/or change the way processors2



are associated with Q. The result (if any) returned by a queue operation is stored at a designatedlocation in the shared memory.� Init(Q): initializes Q to the empty set.� Update(Q;L): updates Q with a list L = e1(d1); : : : ; ek(dk) of (di�erent) elements in non-decreasing key order, i.e., d1 � � � � � dk. If element ei was not in the queue before the update,ei is inserted into Q with key di. If ei was already in Q with key d0i, the key of ei is changedto di if di < d0i, otherwise ei remains in Q with its old key d0i.� DeleteMin(Q): deletes and returns the minimum key element from Q in location MinElt.� Delete(Q; e): deletes element e from Q.� Empty(Q): returns true if Q is empty in location Status.The Update(Q;L) operation provides for (combined) multi insert and multi decrease key fora sequence of elements ordered according to key. For the implementation, it is important that thesequence be given as a list, enabling one processor to retrieve, starting from the �rst element, thenext element in constant time. We will represent such a list of elements as an object with operationsL:�rst, L:rem�rst for accessing and removing the head (�rst element) of the list, operations L:currand L:advance for returning a current element and advancing to the next element, and L:remove(e)for removing the element (pointed to by) e. When the end of the list is reached by operationL:advance, L:curr returns a special element ?. A list object can easily be built to support theseoperations in constant time (with one processor).In Sections 4 and 5 we present two di�erent implementations of the priority queue. In particular,we establish the following two main results:Theorem 1 The operations Init(Q) and Empty(Q) take constant time with one processor. TheDeleteMin(Q) and Delete(Q; e) operations can be done in constant time by jQj processors. Theoperation Update(Q;L) can be done in constant time by 1 + jQj processors, and assigns one newprocessor to Q. The priority queue can be implemented on the EREW PRAM. Space consumptionper processor is O(n0), where n0 is the maximum number of elements allowed in the queue.Theorem 2 The operations Init(Q) and Empty(Q) take constant time with one processor. Afterinitialization, any sequence of n queue operations involving m elements in total can be performedin O(n) time with O(m logn) work. The priority queue can be implemented on the EREW PRAM.Space consumption per processor is O(n0), where n0 is the maximum number of elements allowedin the queue.Before giving the proofs of Theorems 1 and 2 in Sections 4 and 5 respectively we present ourmain application of the parallel priority queue.3 The main applicationThe single-source shortest path problem is a notorious example of a problem which despite muche�ort has resisted a very fast (i.e., NC), work-e�cient parallel solution. Let G = (V;E) be ann-vertex, m-edge directed graph with real-valued, non-negative edge weights c(v; w), and let s 2 Vbe a distinguished source vertex. The single-source shortest path problem is to compute for allvertices v 2 V the length of a shortest path from s to v, where the length of a path is the sum ofthe weights of the edges on the path. 3



The best sequential algorithm for the single-source shortest path problem on directed graphswith non-negative real valued edge weights is Dijkstra's algorithm [11]. The algorithm maintainsfor each vertex v 2 V a tentative distance d(v) from the source, and a set of vertices S for which ashortest path has been found. The algorithm iterates over the set of vertices of G, in each iterationselecting a vertex of minimum tentative distance which can be added to S. The algorithm can beimplemented to run in O(m+ n logn) operations by using e�cient priority queues like Fibonacciheaps [13] for maintaining tentative distances, or other priority queue implementations supportingdeletion of the minimum key element in amortized or worst case logarithmic time, and decreasekey in amortized or worst case constant time [3, 12, 18].The single-source shortest path problem is in NC (by virtue of the all-pairs shortest pathproblem being in NC), and thus a fast parallel algorithm exists, but for general digraphs no work-e�cient algorithm in NC is known. The best NC algorithm runs in O(log2 n) time and performsO(n3(log logn= logn)1=3) work on an EREW PRAM [17]. Moreover, work-e�cient algorithms whichare (at least) sublinearly fast are also not known for general digraphs.Dijkstra's algorithm is highly sequential, and can probably not be used as a basis for a fast (NC)parallel algorithm. However, it is easy to give a parallel implementation of the algorithm that runsin O(n logn) time [25]. The idea is to perform the distance updates within each iteration in parallelby associating a local priority queue with each processor. The vertex of minimum distance for thenext iteration is determined (in parallel) as the minimum of the minima in the local priority queues.For this parallelization it is important that the priority queue operations have worst case runningtime, and therefore the original Fibonacci heap cannot be used to implement the local queues.This was �rst observed in [12] where a new data structure, called relaxed heaps, was developed toovercome this problem. Using relaxed heaps, an O(n logn) time and O(m+n logn) work(-optimal)parallel implementation of Dijkstra's algorithm is obtained. This seems to have been the previouslyfastest work-e�cient parallel algorithm for the single-source shortest path problem. The paralleltime spent in each iteration of the above implementation of Dijkstra's algorithm is determined bythe (processor local) priority queue operations of �nding a vertex of minimum distance and deletingan arbitrary vertex, plus the time to �nd and broadcast a global minimum among the local minima.Either or both of the priority queue operations take O(logn) time, as does the parallel minimumcomputation; for the latter 
(logn) time is required, even on a CREW PRAM [7]. Hence, theapproach with processor local priority queues does not seem to make it possible to improve therunning time beyond O(n logn) without resorting to a more powerful PRAM model. This wasconsidered in [25] where two faster (but not work-e�cient) implementations of Dijkstra's algorithmwere given on a CRCW PRAM: the �rst algorithm runs in O(n log logn) time, and performs O(n2)work; the second runs in O(n) time and performs O(n2+�) work for 0 < � < 1.An alternative approach would be to use a parallel global priority queue supporting some formof multi-decrease key operation. As mentioned in the introduction none of the parallel priorityqueues proposed so far support such an operation; they only support a multi-delete operationwhich assumes that the k elements to be deleted are the k elements with smallest keys in thepriority queue. This does not su�ce for a faster implementation of Dijkstra's algorithm.Using our new parallel priority queue, we can give a linear time parallel implementation ofDijkstra's algorithm. Finding the vertex of minimum distance and decreasing the distances of itsadjacent vertices can obviously be done by the priority queue, but preventing that a vertex, onceselected and added to the set S of correct vertices, is ever selected again requires a little extrawork. The problem is that when vertex v is selected by the �nd minimum operation, some of itsadjacent vertices may have been selected at a previous iteration. If care is not taken, our parallelupdate operation would reinsert such vertices into the priority queue, which would then lead to4



more than n iterations. Hence, we must make sure that we can remove such vertices from theadjacency list of v in constant time upon selection of v. We �rst sort the adjacency list of eachvertex v 2 V according to the weight of its adjacent edges. Using a sublinear time work-optimalmergesort algorithm [6, 16] this is done with O(m logn) work on the EREW PRAM. This su�cesto ensure that priority queue updates are performed on lists of vertices of non-decreasing tentativedistance. To make it possible to remove in constant time any vertex w from the adjacency list ofv we make the sorted adjacency lists doubly linked. For each v 2 V we also construct an arrayconsisting of the vertices w to which v is adjacent, (w; v) 2 E, together with a pointer to theposition of v in the sorted adjacency list of w. This preprocessing can easily be carried out inO(logn) time using linear work on the EREW PRAM.Let Lv be the sorted, doubly linked adjacency list of vertex v 2 V , and Iv the array of vertices towhich v is adjacent. As required in the speci�cation of the priority queue, we represent each Lv as anobject with operations Lv:�rst, Lv:rem�rst, Lv :curr, Lv :advance and Lv:remove(e). In the iterationwhere v is selected the object for Lv will be initialized with a constant value d representing thedistance of v from the source. We denote this initialization of the object by Lv(d). The operationsLv:�rst and Lv:curr return a vertex w on the sorted adjacency list of v (�rst, respectively current)with key c(v; w) o�set by the value d, i.e. d + c(v; w). The initialization step is completed byinitializing the priority queue Q, and inserting the object Ls(0) representing the vertices adjacentto the source vertex s with o�set 0 into Q.We now iterate as in the sequential algorithm until the priority queue becomes empty, in eachiteration deleting a vertex v with minimum key (tentative distance) from Q. As in the sequentialalgorithm the distance d of v will be equal to the length of a shortest path from s to v, so v isadded to S and should never be considered again. The adjacency list object Lv(d) representingthe vertices adjacent to v o�set with v's distance from s is inserted into the priority queue, andwill in turn produce the tentative distances d + c(v; wi) of v's adjacent vertices wi. Since theadjacency lists were initially sorted, the tentative distances produced by the Lv object will appearin non-decreasing order as required in the speci�cation of the priority queue. To guarantee thatthe selected vertex v is never selected again, v must be removed from the adjacency lists of allvertices w =2 S. This can be done in parallel in constant time by using the array Iv to remove vfrom the adjacency lists Lw of vertices to which v is adjacent for all w =2 S. Note that this steprequires concurrent reading, since the jIvj processors have to know the starting address of the Ivarray for the selected vertex v. However, the concurrent reading required is of the restricted sort ofbroadcasting the same constant-size information to a set of processors. A less informal descriptionof the above implementation of Dijkstra's algorithm is given in Figure 1.Theorem 3 The parallel Dijkstra algorithm runs: (i) in O(n) time and O(m logn) work on theCREW PRAM; (ii) in O(n log(m=n)) time and O(m logn) work on the EREW PRAM.Proof. (i) The initialization takes sublinear time and O(m logn) work on an EREW PRAM,depending on the choice of parallel sorting algorithm. Since one vertex is put into S in eachiteration, at most n � 1 iterations of the while loop are required. Each iteration (excluding thepriority queue operations) can obviously be done in constant time with a total amount of workbounded by O(Pv2V jLvj +Pv2V jIvj) = O(m). We have a total of n priority queue operationsinvolving a total number of elements equal to Pv2V jLvj = m. Now, the bounds of part (i) followfrom Theorem 2.(ii) Concurrent reading was needed only for removing the selected vertex v from the adjacencylists of vertices w =2 S using the Iv array. This step can be done on an EREW PRAM if webroadcast the information that v was selected to jIvj processors. In each iteration this can be5



Algorithm Parallel-Dijkstra/* Initialization */Sort the adjacency lists of G after edge weight, and make doubly linked lists Lv;For each v build array Iv of vertices to which v is adjacent;Init(Q);d(s) 0; S  fsg;Update(Q;Ls(0));/* Main loop */while :Empty(Q) dov(d) DeleteMin(Q);d(v) d; S  S [ fvg;Update(Q;Lv(d));forall w 2 Iv pardoif w =2 S then remove v from Lw �;odparod Figure 1: An O(n) time parallel implementation of Dijkstra's algorithm.done in O(log jIvj) time and O(jIvj) work. Summing over all iterations gives O(Pv2V log jIvj) =O(log(�v2V jIv j) = O(n log(m=n)) time and O(m) work. 24 Linear pipeline implementationIn this section we present a simple implementation of the priority queue as a linear pipeline ofprocessors, thereby giving a proof of Theorem 1.At any given instant the processors associated with Q are organized in a linear pipeline. Whenan Update(Q;L) operation is performed a new processor becomes associated with Q and is putat the front of the pipeline. Elements of the list L may already occur in Q, possibly with di�erentkeys; it is the task of the implementation to ensure that only the occurrences with the smallestkeys are output by the DeleteMin(Q) operation. An array is used to associate processors withQ. Let Pi denote the ith processor to become associated with Q. The task of Pi will be to performa stepwise merging of the elements of the list L = e1(d1); : : : ; ek(dk) with the output from theprevious processor Pi�1 in the pipeline (when i > 1). Since L becomes associated with Pi at theUpdate(Q;L) call, we shall refer to it as the element list Li of Pi when we describe actions atPi. Processor Pi produces output to an output queue Qi; Qi is either read by the next processor,or, if Pi is the last processor in the pipeline, Qi contains the output to be returned by the nextDeleteMin(Q) operation. The pipeline after four Update(Q;L) operations is shown in Figure 2.Each Qi is a standard FIFO queue with operations Qi:�rst, which returns the �rst element of Qi,Qi:rem�rst, which deletes the �rst element of Qi, and Qi:append(e), which appends the element eto the rear of Qi. Furthermore, each Qi must support deletion of an element (pointed to by) e inconstant time, Qi:remove(e). Implementation of each Qi as a doubly linked list su�ces.The Init(Q) operation marks all processors as not associated with Q, and can therefore bedone in constant time by initializing the association array. The operations DeleteMin(Q),Delete(Q; e) and Update(Q;L) are all implemented by a procedure MergeStep(Q), which,6



���P1Q1 F1� 6L1���P2Q2 F2� 6L2���P3Q3 F3� 6L3���P4Q4 F4� 6L4Figure 2: The linear processor pipeline with associated data structures.for each processor Pi associated with Q, performs one step of a merge of the element list Li of Piand the elements in the output queue Qi�1 of the previous processor.Let Q(i) denote the contents of the priority queue after the ith Update(Q;L) operation. Thepurpose of procedure MergeStep(Q) is to output, for each processor Pi associated with Q, thenext element of Q(i), if non-empty, in non-decreasing order to the output queue Qi. This is achievedas follows. Recall that Li is a list of elements, some of which may already have been in the priorityqueue before the ith update (possibly with di�erent keys). The elements output to each outputqueue will be in non-decreasing order, so the merge step of processor Pi simply consists in choosingthe �rst element of either Qi�1 or Li, whichever is smaller (with ties broken arbitrarily), deletingthis element and outputting it to Qi. The merge step must also ensure that an element is outputfrom Q at most once. There can be occurrences of an element in di�erent lists Li correspondingto a number of updates on this element; the occurrence with the smallest key must be output. Inorder to guarantee that an element is output from Q(i) (by Pi) at most once, an element is markedas forbidden by processor Pi once it is output. Each processor maintains a set Fi of forbiddenelements, represented as a Boolean array indexed by elements: Fi[e] = true i� e has been outputand made forbidden by Pi. This ensures that each Qi always contains di�erent elements. In orderthat the merge step can be performed in constant time, it must furthermore hold that neither Qi�1nor Li contain elements that are forbidden for Pi. We maintain the invariants thatFi \ Qi�1 = ; and Fi \ Li = ;:The merge step for processor Pi now proceeds as follows: the smaller element is chosen from eitherQi�1 or Li (with ties broken arbitrarily), presuming neither is empty. If either Qi�1 or Li is emptythe element is taken unconditionally from the other sequence, and when both are empty, Pi has nomore work to do. If the chosen element is not forbidden for the next processor Pi+1, it is output toQi, and made forbidden for Pi. If it also occurs in either Qi�1 or Li it must be deleted so that theabove invariants are maintained. To this end, each processor maintains two arrays of pointers Qiand Li into Qi and Li, respectively, indexed by the elements. When an element e is inserted intoQi, a pointer Qi[e] to e in Qi is created; when e is removed from Qi (by processor Pi+1) Qi[e] is resetto ?. The pointers Li[e] into Li should be set, conceptually, when the update Update(Q;L) isperformed. However, this would require concurrent reading, so instead we initialize the Li pointerarray in a pipelined fashion. Since at most one element from Li is \consumed" at each merge step,it su�ces to let each merge step initialize the pointer for the next element of Li. When an element7



Procedure MergeStep(Q)forall Pi, i 2 jQj pardo /* for all processors associated with Q */if Li:curr 6= ? then /* lazy Li pointer update */if Fi[Li:curr] = true then Li:remove(Li:curr); /* current element is forbidden */else Li[Li:curr] Li:curr; �;Li:advance; /* advance to next element */�;e0(d0) Qi�1:�rst;e00(d00) Li:�rst;if d00 < d0 thene0(d0) e00(d00);Li:rem�rst;/* remove e0 from Qi�1 using Qi�1[e0] */if Qi�1[e0] 6= ? then Qi�1:remove(Qi�1[e0]);elseQi:rem�rst;/* remove e0 from Li using Li[e0] */if Li[e0] 6= ? then Li:remove(Li[e0]);�;Fi[e0] true;if :Fi+1[e0] thenQi:append(e0(d0));Update Qi[e0] to the position of e0 in Qi;�;odpar;End of Procedure Figure 3: The MergeStep(Q) procedure.e is chosen from Qi�1 and has to be deleted from Li, either Li[e] already points to e's position in Li,or it has not yet been set. In the latter case e is deleted later when reached by the correspondingmerge step because Fi[e] = true. The MergeStep(Q) procedure is shown in Figure 3.It is now easy to implement the remainder of the priority queue operations. The operationsUpdate(Q;L) should associate a new processor Pi with the pipeline whose task is to merge L withthe elements already in the queue. In order to guarantee that the new processor has somethingto merge, a MergeStep(Q) is performed to bring at least one new element into Qi�1. The newprocessor then associates itself with the pipeline, and initializes the set of forbidden elements andthe pointer arrays Qi and Li. The operation is shown in Figure 4.A DeleteMin(Q) is even easier. A call to MergeStep(Q) brings a new element into theoutput queue of the last processor Pi. The smallest element of Q is the �rst element of Qi which isremoved and copied to the return cellMinElt. The operationDelete(Q; e) just makes e forbiddenfor the last processor. To ensure that the last output queue does not become empty, one call toMergeStep is performed. The code for these operations is shown in Figure 5. The �nal operationEmpty(Q) simply queries the output queue of the last processor, and writes true into the Statuscell if empty. 8



Procedure Update(Q;L)MergeStep(Q); /* perform a merge step to ensure that last queue is non-empty */;Associate a new processor Pi with Q and connect it to the pipeline;Li  L;Initialize Fi, Li and Qi;End of Procedure Figure 4: The Update(Q;L) operation.Procedure DeleteMin(Q)MergeStep(Q);if Pi is the last processor thenMinElt Qi:�rst; Qi:rem�rst;�;End of ProcedureProcedure Delete(Q; e)MergeStep(Q);if Pi is the last processor thenFi[e] true;/* Remove e from Qi using Qi[e] */if Qi[e] 6= ? then Qi:remove(Qi[e]);�;End of ProcedureFigure 5: The DeleteMin(Q) and Delete(Q; e) operations.For the correctness of the queue operations it only remains to show that processor Pi+1 onlyruns out of elements to merge when Q(i), the queue after the ith update, has become empty. Weestablish the following:Lemma 1 The output queue Qi of processor Pi is non-empty, unless Q(i) is empty.Proof. It su�ces to show that as long as Q(i) is non-empty, the invariant jQij > jFi+1 n Fij � 0holds. Consider the work of processor Pi+1 at some MergeStep. Either jFi+1 n Fij is increasedby one, or jQij is decreased by one, but not both, since in the case where Pi+1 outputs an elementfrom Qi this element has been put into Fi at some previous operation, and in the case where Pi+1outputs an element from Li+1 which was also in Qi, this element has again been put into Fi atsome previous operation. In both cases jFi+1 n Fij does not change when Pi+1 puts the elementinto Fi+1. The work of Pi+1 therefore maintains jQij � jFi+1 nFij; strict inequality is reestablishedby considering the work of Pi which either increases jQij or, in the case where Pi is not allowed toput its element e into Qi (because e 2 Fi+1), decreases jFi+1 nFij (because e is inserted into Fi). 2In procedure Update(Q;L) we need to initialize the array of forbidden elements Fi to false forall elements, and each of the pointer arrays Li and Qi to ?. There is a well-known solution to do9



Li Qi FiP1 5(15) 4(17) 7(19) 2(12) 1(14) 1 2 3P2 4(13) 2(14) 5(11) 3 5P3 1(10) 5(14) 4(18) 2(19)P1 4(17) 7(19) 1(14) 1 2 3 5P2 4(13) 5(11) 2(12) 2 3 5P3 5(14) 4(18) 2(19) 1(10) 1P4 4(13) 6(15)Figure 6: A sequential pipeline before and after Update(Q; 4(13) 6(15)).this sequentially in constant time, see for instance [22, pp. 289{290]. This completes the proof ofTheorem 1.In Figure 6 we show the situation of a sequential pipeline before and after applying Update.In the MergeStep-operation processors P1; P2 and P3 select respectively 5(15), 2(12) and 1(10)to output. Note that 5(15) is not output to Q1 by P1 because 5 2 F2, and 2(14) is removed fromL2 by P2 too. As seen, the global minimum is the smaller of the �rst elements in L4 and Q3.4.1 A linear space implementationFor the linear pipeline implementation as described above it is possible to reduce the O(n0) spacerequired per processor for the forbidden sets and the arrays of pointers into the output queues to atotal of O(n0+m) for a sequence of queue operations involving m elements, if we allow concurrentreading. Instead of maintaining the forbidden sets Fi and arrays Li and Qi explicitly, we let eachoccurrence of an element in the priority queue carry information about its position (whether insome queue Qj or in Li), whether it has been forbidden and if so, by which processor. Maintainingfor each element a doubly linked list of its occurrences in the data structure makes it possiblefor processor Pi to determine in constant time whether a given element has been forbidden forprocessor Pi+1, and to remove it in constant time from Qi�1 whenever it is output from Li, andfrom Li whenever it is output from Qi�1. In order to insert new elements on these occurrence listsin constant time an array of size O(n0) is needed. For element e this array will point to the mostrecently inserted occurrence of e (which is still in Q). Occurrences of e appear in the occurrencelist of e in the order in which update operations involving e were performed.At the ith Update(Q;L) operation, each element e of Li (i.e., of L which is now associatedwith the new processor Pi) is linked to the front of the occurrence list of e with a label that itbelongs to Li and pointers which allows it to be removed from Li in constant time. Let us nowconsider a merge step of processor Pi. When an element e is chosen from Qi�1, Pi looks at thenext occurrence of e in e's occurrence list. If this occurrence is in Li, it is removed, both from Liand from the list of e-occurrences. This eliminates the need for the Li array. It is now checkedwhether e is forbidden for Pi+1 by looking at the next occurrence of e; if it not marked as forbiddenby Pi+1, e is output to Qi, marked as forbidden by Pi. If e was forbidden by Pi+1 this occurrenceis still marked as forbidden by Pi, but not output. If e is chosen from Li, Pi looks at the previousoccurrence of e. If this is in Qi�1 it is removed from both Qi�1 and from the list of e-occurrences.This eliminates both the need for forbidden sets and the pointer arrays Qi. It should be clear thatconsecutive occurrences of e are never removed in the same merge step, so the doubly linked lists of10



occurrences are properly maintained also when di�erent processors work on di�erent occurrencesof e. Note, however, that all elements in Li have to be linked into their respective occurrencelists before subsequent merge steps are performed, so concurrent reading is needed. This gives thefollowing variant of the priority queue.Lemma 2 The operations Init(Q) and Empty(Q) take constant time with one processor. TheDeleteMin(Q) and Delete(Q; e) operations can be done in constant time by jQj processors. Theoperation Update(Q;L) can be done in constant time by 1+ jQj+ jLj processors, and assigns onenew processor to Q. The priority queue can be implemented on the CREW PRAM. The total spaceconsumption is O(n0 + m), where n0 is the maximum number of elements allowed in the queue,and m the total number of elements updated.5 Dynamically restructuring tree pipelineIn this section we describe how to decrease the work done by the algorithm in Section 4 such thatwe achieve the result stated in Theorem 2. Before describing the modi�ed data structure, we �rstmake an observation about the work done in Section 4.Intuitively, the work done by processor Pi is to output elements by incrementally merging itslist Li with the queue Qi�1 of elements output by processor Pi�1. Processor Pi terminates whennothing is left to be merged. An alternative bound on the work done is the sum of the distanceeach element e(d) belonging to a list Li travels, where we de�ne the distance to be the number ofprocessors that output e(d). Since the elements e(d) in Li can be output only by a pre�x of theprocessors Pi; Pi+1; : : : ; Pn, the distance e(d) travels is at most n� i+ 1. This gives a total boundon the work done by the processors of O(mn). The work can actually be bounded by O(n2) dueto the fact that elements get annihilated by forbidden sets.In this section we describe a variation of the data structure in Section 4 that intuitively boundsthe distance an element can travel by O(logn), i.e., bounds the work by O(m logn). The mainidea is to replace the linear pipeline of processors by a binary tree pipeline of processors of heightO(logn).We start by describing how to arrange the processors in a tree and how to dynamically restruc-ture this tree while adding new processors for each Update-operation. We then describe how thework can be bounded by O(m logn) and �nally how to perform the required processor scheduling.5.1 Tree structured processor connectionsTo arrange the processors in a tree we slightly modify the information stored at each processor.The details of how to handle the queues and the forbidden sets are given in Section 5.2. Eachprocessor Pi still maintains a list Li and a set of forbidden elements Fi. The output of processor Piis still inserted into the processor's output queue Qi, but Pi now receives input from two processorsinstead of one processor. As for the linear pipeline we associate two arrays Qi and Li with thequeue Qi and list Li. The initialization of the array Li is done in the same pipelined fashion as forthe linear pipeline.The processors are arranged as a sequence of perfect binary trees. We represent the trees asshown in Figure 7. A left child has an outgoing edge to its parent, and a right child an edge to itsleft sibling. The incoming edges of a node v come from the left child of v and the right sibling of v.Figure 7 shows trees of size 1, 3, 7 and 15. Each node corresponds to a processor and the uniqueoutgoing edge of a node corresponds to the output queue of the processor (and an input queue ofthe parent processor). The rank of a node is the height of the node in the perfect binary tree and11



i1 i2i1 i1���� i3i2i1 i1���� i2i1 i1�������� i4i3i2i1 i1���� i2i1 i1�������� i3i2i1 i1���� i2i1 i1�������������*Figure 7: The tree arrangement of processors. Numbers denote processor ranks.ii� 1i i���� iki i���� ijiii i���� ii i�������� iii i���� ii i�������������*e� � � iiii� 1i i���� iki i�������� ijiii i���� ii i�������� iii i���� ii i�������������*e� �Figure 8: How to restructure the tree when performing Update. Node names denote processorindices.the rank of a tree is the rank of the root of the tree. A tree of rank r + 1 can be constructed fromtwo trees of rank r plus a single node, by connecting the two roots with the new node. It followsby induction that a tree of rank r has size 2r � 1.The processors are arranged in a sequence of trees of rank rp; rp�1; : : : ; r1, where the ith rootis connected to the i + 1st root as shown in Figure 8. For the sequence of trees we maintain theinvariant that rp � rp�1 < rp�2 < � � � < r2 < r1: (1)When performing an Update-operation a new processor is initialized. If rp < rp�1 the newprocessor is inserted as a new rank one tree at the front of the sequence of trees as for the linearpipeline. That (1) is satis�ed follows from 1 � rp < rp�1 < � � � < r1. If rp = rp�1 we link the pthand p� 1st tree with the node corresponding to the new processor to form a tree of rank 1 + rp�1.That (1) is satis�ed follows from 1 + rp�1 � rp�2 < rp�3 < � � � < r1. Figure 8 illustrates therelinking for the case where rp = rp�1 = 2 and rp�2 = 4. Note that the only restructuring of thepipeline required is to make the edge e an incoming edge of the new node associated with processorPi. The described approach for relinking has been applied in a di�erent context to construct purelyfunctional random-access lists [24]. In [24] it is proved that a sequence of trees satisfying (1) isunique for a given number of nodes.5.2 Queues and forbidden setsWe now give the details of how to handle the output queues and the forbidden sets and how toimplement the MergeStep-operation. Let Pj be a processor connected to a processor Pi, i > j,by the queue Qj . For the tree pipeline processor Pj is only guaranteed to output a subset of theelements in Q(j) in non-decreasing order. For the linear pipeline processor Pj outputs exactly theset Q(j). 12



Assume that processors Pi and Pj were created as a result of the ith and jth Update opera-tions, respectively, i > j. Let Jj denote the set of elements deleted by Delete and DeleteMinoperations between the jth and ith Update operations. The important property of Jj is that Jjare the elements that can be output by Pj but are illegal as input to Pi, because they already havebeen deleted prior to the creation of Pi. We represent each Jj as a Boolean array. How to handleJj when restructuring the pipeline is described later in this section. To guarantee that Qj does notcontain any illegal input to Pi we maintain the invariantQj \ (Fi [ Jj) = ;: (2)Our main invariant for the connection between processors Pj and Pi while processor Pj still hasinput left to be considered is (3), which intuitively states that Pj has output more elements thanthe number of elements output by Pi plus the elements deleted before the connection between Pjand Pi is created. j(Fi [ Jj) n Fj j < jFj n (Fi [ Jj)j: (3)We now describe how to implement theMergeStep-operation such that the invariants (2) and(3) remain satis�ed. The basic idea of the implementation is the same as for the linear pipeline.Processor Pj �rst selects the element v with smallest key in Lj and the input queues of Pj inconstant time. If no v exists processor Pj terminates. Otherwise, all occurrences of v are removedfrom Lj and the input queues Q` of Pj using the arrays Lj and Q` respectively, and v is addedto Fj . If Qj is an input queue of Pi and v =2 Fi [ Jj , then v is inserted in Qj . If v 2 Fi [ Jj , thenv is not inserted into Qj , since otherwise (2) would be violated. If v 2 Fi, then v has already beenoutput by processor Pi and we can safely annihilate v. If v 2 Jj , then v has been deleted from Q(k),j � k < i, and we can again safely annihilate v. That (3) is satis�ed after aMergeStep-operationfollows from an argument similar to the one given in the proof of Lemma 1 for the linear pipeline:the work done by processor Pi, when inserting a new element into Fi, either increases the left-handside of (3) by one or decreases the right-hand side of (3) by one and thereby makes the inequality�. The < is reestablished by processor Pj which inserts a new element into Fj ; this either decreasesthe left-hand side of (3) by one or increases the right-hand side of (3) by one.Invariant (3) allows us to let Qj become empty throughout a MergeStep-operation, withoutviolating the correctness of the operation and without Pj being terminated. The reason is thatFj n (Fi [ Jj) 6= ; implies that there exists an element v that has been output by Pj (v 2 Fj) thatneither has been deleted from the data structure before Pi was created (v =2 Jj) nor has been outputby Pi (v =2 Fi). If Qj becomes empty, v can only be stored in an output queue of a processor inthe subtree rooted at Pi due to how the dynamic relinking is performed, i.e., v appears in a queueQk, j < k < i. It follows that v has to be output by Pi (perhaps with a smaller key because v getsannihilated by an appearance of v with a smaller key) before the next element to be output by Pjcan be output by Pi. This means that Pi can safely skip to consider input from the empty inputqueue Qj , even if Qj later can become non-empty. Note that (3) guarantees that a queue betweenPi�1 and Pi always is non-empty.We now describe how to implement the Update-operation. The implementation is as for thelinear pipeline, except for the dynamic relinking of a single connection (edge e in Figure 8) which isdone after theMergeStep-operation and the initialization of the new processor. Assume that Pi isthe newly created processor. That Qi�1 satis�es (3) and (2) follows from the fact that Ji�1 � Fi�1(the MergeStep-operation at the beginning of the Update-operation implies that at least oneelement output by Pi�1 has not been deleted) and Fi = ;. What remains to be shown is how tosatisfy the invariants for the node Pj when Qj is relinked to become an input queue of Pi and hence13



ceases to be an input queue of Pk , j < k < i (see Figure 8). When Qj is relinked, Pj has output atleast jJj j+ 1 elements in total (jJj j for delete operations and one from the MergeStep-operationat the beginning of the Update-operation). Because Fi = ; and i > j, it follows that (3) issatis�ed after the relinking. To guarantee that (2) is satis�ed we have to update Jj according tothe de�nition and to update the queue Qj . This is done as follows:Qj  Qj n Jj ; Jj  Jj [ Ji�1 [ Jk :Since Qj and Jj can be arbitrary sets it seems hard to do this updating in constant time withoutsome kind of precomputation. Note that the only connections which can be relinked are theconnections between the tree roots.Our solution to this problem is as follows: For each Deleteor DeleteMinoperation, we markthe deleted element v as dirty in all the output queues Qj , where Pj is a root processor and Qj isan input queue to the root processor Pi. If v 62 Jj , then we insert v into Jj as being marked dirty;otherwise, we do nothing. Whenever a queue Qj is relinked we just need to be able in constant timeto delete all elements marked dirty from Qj and unmark all elements marked dirty in Jj . A newelement u is inserted as being unmarked into Qj , if u 62 Fi [ Jj ; and it is inserted as being markeddirty into Qj , if u 62 Fi and u is marked dirty in Jj . A reasonably simple solution to the markingproblem, as well as to the insertion of the dirty elements in Jj , is the following. First, note thateach time Qj is relinked it is connected to a node having rank one higher, i.e., we can use this rankas a time stamp t. We represent a queue Qj as a linked list of vertices, where each vertex v hastwo time stamped links to vertices in each direction from v. The link with the highest time stamp� t is the current link in a direction. A link with time stamp t+1 is a link that will become activewhen Qj is relinked, i.e., we implicitly maintain two versions of the queue: The current version andthe version where all the dirty vertices have been removed. The implementation of the markingprocedure is straightforward. To handle the Boolean array Jj , it is su�cient for each true entryto associate a time stamp. A time stamp equal to t + 1 implies that the entry in Jj is dirty. Asdescribed here the marking of dirty vertices requires concurrent read to know the deleted element,but by pipelining the dirty marking process along the tree roots from left to right, concurrent readcan be avoided. This is possible because the relinking of the tree pipeline only a�ects the threeleftmost roots in the tree pipeline.We now argue that the described data structure achieves the time bounds claimed in Theo-rem 2, i.e., that the work done by the processors for the MergeStep-operations is O(m logn).Observe that every restructuring of the pipeline takes constant time and the total work done by theprocessors can be charged to the distance (in the sense mentioned in the beginning of this section)the m elements travel. Elements can travel a distance of at most 2 logn in a tree before they reachthe root of the tree. However, there is an additional distance to travel as a result of the fact thatthe root processors move elements to lower ranked nodes. Let Pji and Pji+1 be two root processorshaving rank ri and ri+1 respectively, 1 � i < p. The additional distance the elements, output byPji and taken as input by Pji+1 , should travel is bounded by 2(ri�ri+1). Hence, the increase in thetotal distance to travel along the root path for each of the n MergeStep-operations is boundedby the telescoping sum2(r1 � r2) + 2(r2 � r3) + � � �+ 2(rp�1 � rp) � 2 logn :Consequently, the actual merging work is bounded by O(2m logn + 2n logn) = O(m logn).In Figure 9 we show the situation of a tree pipeline before and after applying Update. In theMergeStep-operation processors P1; : : : ; P5 select respectively 4(23), 6(20), 3(17), 5(14) and 1(11)14



Li Qi Fi Jii5 i4 i3i2 i1������ P1 4(23) 6(20) 9(22) 1 2 3 5 6 7 8 9P2 9(25) 3(17) 8(18) 1 2 3 4 5 7 8P3 3(23) 8(21) 5(14) 7(15) 1 2 4 5 6 7 2 6P4 9(25) 5(26) 1(12) 3(13) 1 3 4P5 1(11) 5(14) 8(18) 4 7 4 7i6i5 i4 i3i2 i1��������� P1 9(22) 1 2 3 4 5 6 7 8 9P2 9(25) 8(18) 6(20) 1 2 3 4 5 6 7 8P3 8(21) 1 2 3 4 5 6 7 2 4 6 7P4 9(25) 3(13) 5(14) 1 3 4 5P5 5(14) 8(18) 1(11) 1 4 7 4 7P6 3(13) 1(15)Figure 9: A tree pipeline before and afterUpdate(Q; 3(13) 1(15)). Node numbers denote processorindices.to output. Processor P3 removes 3(23) from L3 when selecting 3(17) from Q2. Likewise processorP5 removes 1(12) from Q4. Note that 4(23) and 3(17) are not output because 4 2 F2 and 3 2 F4,and that 7(15) is removed from Q3 because after restructuring the pipeline 7 2 J3.5.3 Processor schedulingWhat remains is to divide the O(m logn) work among the available processors on an EREW PRAM.Assuming thatO(m lognn ) processors are available, the idea is to simulate the tree structured pipelinefor O(logn) time steps, after which we stop the simulation and in O(logn) time eliminate the(simulated) terminated processors, and reschedule. By this scheme a terminated processor is keptalive for only O(logn) time steps, and hence no superuous work is done. In total the simulationtakes O(n) time.6 Further applications and discussionThe improved single-source shortest path algorithm immediately gives rise to corresponding im-provements in algorithms in which the single-source shortest path problem occurs as a subproblem.We mention here the assignment problem, the minimum-cost ow problem, (for de�nitions see [1]),and the single-source shortest path problem in planar digraphs. As usual, n and m denote thenumber of vertices and edges of the input graph, respectively. Note that the minimum-cost owproblem is P-complete [15] (i.e., it is very unlikely that it has a very fast parallel solution), whilethe assignment problem is not known to be in NC (only an RNC algorithm is known in the spe-cial case of unary weights [21, 23], and a weakly polynomial CRCW PRAM algorithm that runsin O(n2=3 log2 n log(nC)) time with O(n11=3 log2 n log(nC)) work [14] in the case of integer edgeweights in the range [�C;C]).The assignment problem can be solved by n calls to Dijkstra's algorithm (see e.g. [1, Section12.4]), while the solution of the minimum-cost ow problem is reduced to O(m logn) calls to Di-jkstra's algorithm (see e.g. [1, Section 10.7]). The best previous (strongly polynomial) algorithmsfor these problems are given in [12]. They run on an EREW PRAM and are based on their imple-15
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