
.2

1.2

Cache Oblivious Algorithms for Computing the Triplet
Distance Between Trees

GERTH STØLTING BRODAL, Aarhus University, Denmark

KONSTANTINOS MAMPENTZIDIS, Aarhus University, Denmark

We consider the problem of computing the triplet distance between two rooted unordered trees with 𝑛

labeled leaves. Introduced by Dobson in 1975, the triplet distance is the number of leaf triples that induce

different topologies in the two trees. The current theoretically fastest algorithm is an O(𝑛 log𝑛) algorithm
by Brodal et al. (SODA 2013). Recently Jansson and Rajaby proposed a new algorithm that, while slower in

theory, requiring O(𝑛 log3 𝑛) time, in practice it outperforms the theoretically faster O(𝑛 log𝑛) algorithm.

Both algorithms do not scale to external memory.

We present two cache oblivious algorithms that combine the best of both worlds. The first algorithm is for

the case when the two input trees are binary trees, and the second is a generalized algorithm for two input

trees of arbitrary degree. Analyzed in the RAM model, both algorithms require O(𝑛 log𝑛) time, and in the

cache oblivious model O(𝑛
𝐵
log

2

𝑛
𝑀
) I/Os. Their relative simplicity and the fact that they scale to external

memory makes them achieve the best practical performance. We note that these are the first algorithms that

scale to external memory, both in theory and in practice, for this problem.

CCS Concepts: • Theory of computation→ Design and analysis of algorithms.

Additional Key Words and Phrases: Phylogenetic tree, tree comparison, triplet distance, cache oblivious

algorithm

ACM Reference Format:
Gerth Stølting Brodal and Konstantinos Mampentzidis. 2021. Cache Oblivious Algorithms for Computing the

Triplet Distance Between Trees. ACM J. Exp. Algor. 26, 1, Article 1.2 (April 2021), 44 pages. https://doi.org/10.
1145/3433651

1 INTRODUCTION
Trees are data structures that are often used to represent relationships. For example in the field of

Biology, a tree can be used to represent evolutionary relationships, with the leaves corresponding

to species that exist today, and internal nodes to ancestor species that existed in the past. For a

fixed set of 𝑛 species, different data (e.g., DNA, morphological) or construction methods (e.g., Q* [4],

neighbor joining [17]) can lead to trees that are structurally different. An interesting question that

arises then is, given two trees 𝑇1 and 𝑇2 over 𝑛 species, how different are they? An answer to this

question could potentially be used to determine whether the difference is statistically significant or

not, which in turn could help with evolutionary inferences.

Several distance measures have been proposed in the past to compare two trees that are unordered,
i.e., trees inwhich the order of the siblings is not taken into account. A class of them includes distance

Authors’ addresses: Gerth Stølting Brodal, Aarhus University, Department of Computer Science, Åbogade 34, 8200 Aarhus N,

Denmark, gerth@cs.au.dk; Konstantinos Mampentzidis, Aarhus University, Department of Computer Science, Åbogade 34,

8200 Aarhus N, Denmark, kmampent@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1084-6654/2021/4-ART1.2 $15.00

https://doi.org/10.1145/3433651

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

https://doi.org/10.1145/3433651
https://doi.org/10.1145/3433651
https://doi.org/10.1145/3433651

1.2:2 G. S. Brodal and K. Mampentzidis

x y z

(a) 𝑥𝑦 |𝑧
x z y

(b) 𝑥𝑧 |𝑦
y z x

(c) 𝑦𝑧 |𝑥
x y z

(d) 𝑥𝑦𝑧

Fig. 1. All possible topologies of a triplet with leaves 𝑥 , 𝑦, and 𝑧.

measures that are based on how often certain features are different in the two trees. Common

distance measures of this kind are the Robinson-Foulds distance [16], the triplet distance [9] for

rooted trees and the quartet distance [11] for unrooted trees. The Robinson-Foulds distance counts

howmany leaf bipartitions are different, where a bipartition in a given tree is generated by removing

a single edge from the tree. The triplet distance is only defined for rooted trees, and counts how

many leaf triples induce different topologies in the two trees. The counterpart of the triplet distance

for unrooted trees, is the quartet distance, which counts how many leaf quadruples induce different

topologies in the two trees.

Algorithms exist that can efficiently compute these distance measures. The Robinson-Foulds dis-

tance can be optimally computed inO(𝑛) time [8]. The triplet distance can be computed inO(𝑛 log𝑛)
time [5]. The quartet distance can be computed in O(𝑑𝑛 log𝑛) time [5], where 𝑑 is the maximal

degree of any node in the two input trees, or for trees with unbounded degree in O(𝑛1.48) time [10].

The above bounds are in the RAM model [21]. Previous work did not consider any other models,

for example external memory models like the I/O model [1] and the cache oblivious model [12]. In

the external memory model one assumes that the data transfer between two levels of the memory

hierarchy is the bottleneck of the computation, e.g., between disk and RAM, or between RAM and

cache. External memory algorithms aim at minimizing the data transfer between these two levels.

In the cache-oblivious model, algorithms try to optimize for an unknown memory hierarchy, and

will therefore automatically adapt to multi-level memory hierarchies. A cache oblivious algorithm,

if built and implemented correctly, can take advantage of the L1, L2, and L3 caches that exist in

the vast majority of computers and give a significant performance improvement even for small

inputs [2, 6].

The algorithm in [8] for computing the Robinson-Foulds distance can easily be adapted to

external memory to achieve the sorting bound of O(𝑛
𝐵
log𝑀

𝐵

𝑛
𝐵
) I/Os instead of O(𝑛) I/Os for the

standard implementation: The main bottleneck is the transfer of labels between the two trees,

which can be done I/O efficiently using a cache oblivious sorting routine [12]. For the triplet and

quartet distance measures, no such trivial modifications exist.

In this paper we focus on the triplet distance computation and present non-trivial algorithms for

computing the triplet distance between two rooted trees, that for the first time for this problem,

also scale to external memory.

1.1 Problem Definition
For a given rooted unordered tree 𝑇 where each leaf has a unique label, a triplet is defined by a set

of three leaf labels (leaf triple) 𝑥 , 𝑦, and 𝑧 and their induced topology in 𝑇 (the induced topology of

a set of leaves Λ in a tree 𝑇 is achieved first by removing all nodes from 𝑇 without any leaf from Λ
in its subtree, and then by repeatedly contracting edges between nodes and their parents if the

parent only has one child, see Figure 4). The four possible topologies are illustrated in Figure 1.

The notation 𝑥𝑦 |𝑧 is used to describe a triplet where the lowest common ancestor of 𝑥 and 𝑦 is at a

lower depth than the lowest common ancestor of 𝑧 with either 𝑥 or 𝑦. Note that the triplet 𝑥𝑦 |𝑧

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:3

is the same as the triplet 𝑦𝑥 |𝑧 because 𝑇 is considered to be unordered. Similarly, notation 𝑥𝑦𝑧 is

used to describe a triplet for which every pair of leaves has the same lowest common ancestor. This

triplet can only appear if we allow nodes with degree three or larger in 𝑇 . From here on, when

using the word “tree” we imply a “rooted unordered tree”.

For two given trees 𝑇1 and 𝑇2 that are built on 𝑛 identical leaf labels, the triplet distance 𝐷 (𝑇1,𝑇2)
is the number of leaf triples that induce different topologies in𝑇1 and𝑇2. Let 𝑆 (𝑇1,𝑇2) be the number

of shared triplets in the two trees, i.e., leaf triples with identical topologies in the two trees. We

then have the relationship 𝐷 (𝑇1,𝑇2) + 𝑆 (𝑇1,𝑇2) =
(
𝑛
3

)
.

Previous and new results for computing the triplet distance are shown in Table 1. Note that the

papers [3, 5, 7, 14, 18] do not provide an analysis of the algorithms in the cache oblivious model, so

here we provide an upper bound. From here on and unless otherwise stated, any asymptotic bound

refers to time.

Year Reference Time I/Os Space Non-Binary Trees

1996 Critchlow et al. [7] O(𝑛2) O(𝑛2) O(𝑛2) no

2011 Bansal et al. [3] O(𝑛2) O(𝑛2) O(𝑛2) yes

2013 Sand et al. [18] O(𝑛 log2 𝑛) O(𝑛 log2 𝑛) O(𝑛) no

2013 Brodal et al. [5] O(𝑛 log𝑛) O(𝑛 log𝑛) O(𝑛 log𝑛) yes

2015 Jansson and Rajaby [14] O(𝑛 log3 𝑛) O(𝑛 log3 𝑛) O(𝑛 log𝑛) yes

new O(𝑛 log𝑛) O(𝑛
𝐵
log

2

𝑛
𝑀
) O(𝑛) yes

Table 1. Previous and new results for computing the triplet distance between two trees that are built on the
same leaf label set of size 𝑛.

1.2 Related Work
The triplet distance was first suggested as a method of comparing the shapes of trees by Dobson

in 1975 [9]. The first non-trivial algorithmic result dates back to 1996, when Critchlow et al. [7]
proposed an O(𝑛2) algorithm that however works only for binary trees. Bansal et al. [3] introduced
an O(𝑛2) algorithm that works for general (binary and non-binary) trees. Both of these algorithms

use O(𝑛2) space. Sand et al. [18] introduced a new O(𝑛2) algorithm using only O(𝑛) space for

the case of binary trees, that they showed how to optimize to reduce the time to O(𝑛 log2 𝑛).
This algorithm was also implemented and shown to be the most efficient in practice. Soon af-

ter, Brodal et al. [5] managed to extend the O(𝑛 log2 𝑛) algorithm to work for general trees,

and at the same time brought the time down to O(𝑛 log𝑛) but now with the space increased

to O(𝑛 log𝑛). The space for binary trees was still O(𝑛). The algorithms from [18] and [5] were

implemented and added to the library tqDist [19]. Interestingly, it was shown in [13] that for binary

trees the O(𝑛 log2 𝑛) algorithm had a better practical performance than the O(𝑛 log𝑛) algorithm.

Jansson and Rajaby [14, 15] showed that an theoretically even slower algorithm requiring worst

case O(𝑛 log3 𝑛) time and O(𝑛 log𝑛) space could give the best practical performance, both for

binary and non-binary trees. A survey of previous results until 2013 can be found in [20].

1.3 Contribution
The common main bottleneck with all previous approaches is that the data structures used rely

intensively on Ω(𝑛 log𝑛) random memory accesses. This means that all algorithms are penalized

by cache performance and thus do not scale to external memory. We address this limitation by

proposing new O(𝑛 log𝑛) algorithms for computing the triplet distance on binary and non-binary

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

1.2:4 G. S. Brodal and K. Mampentzidis

trees that use O(𝑛) space in the RAM model. Our results are the first to scale to external memory

and achieve O(𝑛) space for non-binary trees. More specifically, in the cache oblivious model, the

total number of I/Os required isO(𝑛
𝐵
log

2

𝑛
𝑀
). The basic idea is to essentially replace the dependency

of random access to data structures by scanning contracted versions of the input trees. A careful

implementation of the algorithms is shown to achieve the best performance in practice, thus

essentially documenting that the theoretical results carry over to practice.

1.4 Outline of the Paper
In Section 2 we provide an overview of previous approaches. In Section 3 we describe the new

algorithm for the case where𝑇1 and𝑇2 are binary trees. In Section 4 we extend the algorithm to also

work for general trees. In Section 5 we provide some implementation details. Section 6 contains our

experimental evaluation. The Appendix contains more experimental results. Finally, in Section 7

we provide our concluding remarks.

2 PREVIOUS APPROACHES
A naive approach would enumerate over all

(
𝑛
3

)
sets of three leaf labels and find for each set whether

the induced topologies in 𝑇1 and 𝑇2 differ or not, giving an O(𝑛3) algorithm. This algorithm does

not exploit the fact that the triplets are not completely independent. For example, the triplets 𝑥𝑦 |𝑧
and 𝑦𝑥 |𝑢 share the leaves 𝑥 and 𝑦 and the fact that the lowest common ancestor of 𝑥 and 𝑦 is at

a lower depth than the lowest common ancestor of 𝑧 with either 𝑥 or 𝑦 and the lowest common

ancestor of 𝑢 with either 𝑥 or 𝑦. Dependencies like this can be exploited to count shared triplets

faster.

Critchlow et al. [7] exploit the depth of the leaves’ ancestors to achieve the first improvement

over the naive approach. Bansal et al. [3] exploit the shared leaves between subtrees and reduce

the problem to computing the intersection size (number of shared leaves) of all pairs of subtrees,

one from 𝑇1 and one from 𝑇2, which can be solved with dynamic programming.

2.1 The O(𝑛2) Algorithm for Binary Trees in [18]
The algorithm for binary trees in [18] is the basis for all subsequent improvements [5, 14, 18],

including ours as well, so we will describe it in more detail here. The dependency that was exploited

is the same as in [3] but the procedure for counting the shared triplets is completely different.

More specifically, each triplet in any given tree 𝑇 , defined by three leaf labels 𝑖 , 𝑗 , and 𝑘 , is

implicitly anchored in the lowest common ancestor of 𝑖 , 𝑗 , and 𝑘 . The set of triplets that are

anchored at the different nodes in 𝑇 forms a partition of all

(
𝑛
3

)
triplets of 𝑇 . For two nodes 𝑢 in 𝑇1

and 𝑣 in 𝑇2, let 𝑠 (𝑢) and 𝑠 (𝑣) be the set of triplets that are anchored in 𝑢 and 𝑣 respectively. For the

number of shared triplets 𝑆 (𝑇1,𝑇2) we then have

𝑆 (𝑇1,𝑇2) =
∑
𝑢∈𝑇1

∑
𝑣∈𝑇2

|𝑠 (𝑢) ∩ 𝑠 (𝑣) | .

For the algorithm to be O(𝑛2) the value |𝑠 (𝑢) ∩ 𝑠 (𝑣) | must be computed in O(1) time. This is

achieved by a leaf colouring procedure as follows: Fix an internal node 𝑢 in 𝑇1 and color the leaves

in the left subtree of 𝑢 red, the leaves in the right subtree of 𝑢 blue, let every other leaf have no

color and then transfer this coloring to the leaves in 𝑇2, i.e., identically labeled leaves get the same

color. For each node 𝑤 in 𝑇2 we compute 𝑤red and 𝑤blue, which are the number of red and blue

leaves in the subtree rooted at𝑤 , respectively. This can be done in a bottom-up traversal of 𝑇2 in

time O(𝑛). The triplets anchored at 𝑢 are exactly the triplets 𝑥𝑦 |𝑧 where 𝑥 , 𝑦 are blue and 𝑧 is red,

or 𝑥 , 𝑦 are red and 𝑧 is blue. To compute |𝑠 (𝑢) ∩ 𝑠 (𝑣) | we do as follows: let 𝑙 and 𝑟 be the left and

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:5

right children of 𝑣 . We then have

|𝑠 (𝑢) ∩ 𝑠 (𝑣) | =
(
𝑙red

2

)
𝑟blue +

(
𝑙blue

2

)
𝑟red +

(
𝑟red

2

)
𝑙blue +

(
𝑟blue

2

)
𝑙red . (1)

2.2 Subquadratic Algorithms
To reduce the time, Sand et al. [18] applied the smaller half trick, which specifies a depth-first order

to visit the nodes 𝑢 of 𝑇1, so that each leaf in 𝑇1 changes color at most O(log𝑛) times. To count

shared triplets efficiently without scanning𝑇2 completely for each node 𝑢 in𝑇1, the tree𝑇2 is stored

in a data structure denoted a hierarchical decomposition tree (HDT). This HDT of 𝑇2 maintains for

the current visited node 𝑢 in 𝑇1, according to (1) the sum

∑
𝑣∈𝑇2 |𝑠 (𝑢) ∩ 𝑠 (𝑣) |, so that each leaf color

change in 𝑇1 can be updated efficiently in 𝑇2. In [18] the HDT is a binary tree of height O(log𝑛)
and every update can be done by a leaf to root path traversal in the HDT, which in total gives

O(𝑛 log2 𝑛) time. In [5] the HDT is generalized to also handle non-binary trees, each query operates

the same, and now due to a contraction scheme of the HDT the total time is reduced to O(𝑛 log𝑛).
Finally, in [14] as an HDT the so called heavy-light tree decomposition is used. Note that the only

difference between all O(𝑛 polylog𝑛) results that are available right now is the type of HDT used.

In terms of external memory efficiency, every O(𝑛 polylog𝑛) algorithm performs Θ(𝑛 log𝑛)
updates to an HDT data structure, whichmeans that for sufficiently large input trees every algorithm

requires Ω(𝑛 log𝑛) I/Os.

3 THE NEW ALGORITHM FOR BINARY TREES
In this section, we provide a cache oblivious algorithm that for two binary trees 𝑇1 and 𝑇2, built

on the same leaf label set of size 𝑛, computes 𝐷 (𝑇1,𝑇2) using O(𝑛 log𝑛) time and O(𝑛) space in
the RAM model, and O(𝑛

𝐵
log

2

𝑛
𝑀
) I/Os in the cache oblivious model.

3.1 Overview
We use the O(𝑛2) algorithm from Section 2.1 as a basis. The main difference between this algorithm

and our new algorithm is in the order that we visit the nodes of𝑇1, and how we process𝑇2 when we

count. We propose a new order of visiting the nodes of𝑇1, which is found by applying a hierarchical

decomposition on 𝑇1. Every component in this decomposition corresponds to a connected part

of 𝑇1 and a contracted version of 𝑇2. In simple terms, if Λ is the set of leaves in a component of 𝑇1,

the contracted version of 𝑇2 is a binary tree on Λ that preserves the topologies induced by Λ in 𝑇2
and has size O(|Λ|). To count shared triplets, every component of 𝑇1 has a representative node 𝑢

that we use to scan the corresponding contracted version of 𝑇2 in order to find

∑
𝑣∈𝑇2 |𝑠 (𝑢) ∩ 𝑠 (𝑣) |.

Unlike previous algorithms, we do not store 𝑇2 in a data structure. We process 𝑇2 by contracting

and counting, both of which can be done by scanning. At the same time, even though we apply

a hierarchical decomposition on 𝑇1, the only reason why we do so, is so we can find the order in

which to visit the nodes of 𝑇1. This means that we do not need to store 𝑇1 in a data structure either.

Hence, we completely remove the need for data structures (and thereby random memory accesses),

and scanning becomes the basic primitive in the algorithm. To make our algorithm I/O efficient, all

that remains to be done is to use a proper layout to store the contracted trees in memory, so that

every time we scan a tree of size 𝑠 we spend O(𝑠/𝐵) I/Os.

3.2 Modified Centroid Decomposition
For a given binary tree 𝑇 let |𝑇 | denote the number of nodes in 𝑇 (internal nodes and leaves). For

a node 𝑢 in 𝑇 let 𝑙 and 𝑟 be the left and right children of 𝑢, and 𝑝 the parent of 𝑢. Removing 𝑢

from 𝑇 partitions 𝑇 into three (possibly empty) connected components 𝑇𝑙 , 𝑇𝑟 , and 𝑇𝑝 containing 𝑙 , 𝑟 ,

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

1.2:6 G. S. Brodal and K. Mampentzidis

T

c1

(a) Picking the first centroid 𝑐1 of 𝑇1.

c1

c2

T

(b) Recursing to the component defined by the
right child of 𝑐1 and picking the centroid 𝑐2 of

that component.

c1

c2

T

c3

(c) Recursing to the component defined by the
parent of 𝑐2 and picking the centroid 𝑐3 of that

component.

c1

c2

T

c3
A

B C

D

E F

G

(d) Recursing to the component defined by the
parent of 𝑐3.

c1

c2
c3

A
B C

G

E F D

CD(T)

(e) The centroid decomposition CD(𝑇).

Fig. 2. (a) - (d) Generating a component 𝐷 , outlined by a solid line in (d), that has two edges crossing its
boundary from below. (e) The corresponding centroid decomposition CD(𝑇).

and 𝑝 , respectively. A centroid is a node 𝑢 in 𝑇 such that max{|𝑇𝑙 |, |𝑇𝑟 |, |𝑇𝑝 |} ≤ |𝑇 |/2. A centroid

always exists and can be found by starting from the root of 𝑇 and iteratively visiting the child

with a largest subtree, eventually we will reach a centroid. Finding the size of every subtree and

identifying 𝑢 takes O(|𝑇 |) time in the RAM model. By recursively finding centroids in each of the

three components, we in the end get a ternary tree of centroids, which is called the centroid de-
composition of 𝑇 , denoted CD(𝑇). The internal nodes of CD(𝑇) are internal nodes of 𝑇 (centroids),

and the leaves of CD(𝑇) are components of size one in 𝑇 , which can be either leaves or internal

nodes of 𝑇 . We order the children of an internal node 𝑢 of CD(𝑇), such that the children from left

to right are the components containing the left child, right child, and parent of 𝑢 in 𝑇 . We can

construct a level of CD(𝑇) in O(|𝑇 |) time, given the decomposition of 𝑇 into components by the

previous level. Since CD(𝑇) has at most 1 + log
2
(|𝑇 |) levels, the total time required to construct

CD(𝑇) is O(|𝑇 | log |𝑇 |), thus we get Lemma 3.1.

Lemma 3.1. For any given binary tree𝑇 with𝑛 leaves, there exists an algorithm that constructsCD(𝑇)
using O(𝑛 log𝑛) time and O(𝑛) space in the RAM model.

A component in a centroid decomposition CD(𝑇), might have several edges crossing its bound-

aries (connecting nodes inside and outside the component). An example of creating a component

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:7

c1

c2

T

c

a

x

(a) The solid line shows a component with an
edge from below to 𝑥 and centroid 𝑐 . The

component is split at the common ancestor 𝑎 of
𝑥 and 𝑐 .

c1

c2

T

c3

a

A B C D F H I

x

E G

(b) Recursing to the component defined by the
right child of 𝑎 in (a). Notice that 𝑐3 might be

different from 𝑐 in (a).

c1

c2

a
A

B C

I

D H

MCD(T)

c3

E F G

(c) The modified centroid decomposition MCD(𝑇) corresponding to (b).

Fig. 3. Modified centroid decomposition. Generating a component𝐷 inMCD(𝑇), outlined by a solid line in (d),
that has two edges crossing its boundary from below. (e) The corresponding centroid decompositionMCD(𝑇).

that has two edges crossing its boundary from below can be found in Figure 2 (an edge from below
is an edge between a node 𝑢 inside the component and a node 𝑣 outside the component where 𝑣 is

a child of 𝑢). By following the same pattern of generating components as depicted in Figure 2d,

CD(𝑇) can have a component with an arbitrary number of edges from below. The below modified
centroid decomposition, denoted MCD(𝑇), generates components with at most two edges crossing

the boundary, one going towards the root and one down to exactly one subtree.

An MCD(𝑇) is built as follows: The first component is defined by 𝑇 , just like in CD(𝑇). To find

recursively the rest of the components, if a component 𝐶 has no edge from below, we select the

centroid 𝑐 of 𝐶 as a splitting node, just like when constructing CD(𝑇). Otherwise, let (𝑥,𝑦) be the
edge that crosses the boundary from below, where 𝑥 is in 𝐶 and 𝑦 the child of 𝑥 not in 𝐶 . Let 𝑐 be

the centroid of 𝐶 (possibly 𝑥 = 𝑐). As a splitting node choose the lowest common ancestor 𝑎 of 𝑥

and 𝑐 , possibly 𝑥 or 𝑐 (see Figure 3). By induction every component has at most one edge from

below and one edge from above. A useful property of MCD(𝑇) is captured by the following lemma:

Lemma 3.2. For a binary tree 𝑇 , the height of MCD(𝑇) is at most 2 + 2 log
2
|𝑇 |.

Proof. In MCD(𝑇) if a component 𝐶 does not have an edge from below then the centroid of 𝐶

is used as a splitting node, thus generating three components 𝐶𝑙 , 𝐶𝑟 , and 𝐶𝑝 such that |𝐶𝑙 | ≤ |𝐶 |
2
,

|𝐶𝑟 | ≤ |𝐶 |
2
, and |𝐶𝑝 | ≤ |𝐶 |

2
. Otherwise, 𝐶 has one edge (𝑥,𝑦) from below, with 𝑥 being the node

that is part of 𝐶 . Let 𝑐 be a centroid of 𝐶 . We have to consider the following two cases: if 𝑐 happens

to be the lowest common ancestor of 𝑐 and 𝑥 , then our algorithm will split 𝐶 according to the

actual centroid, so we will have that |𝐶𝑙 | ≤ |𝐶 |
2
, |𝐶𝑟 | ≤ |𝐶 |

2
, and |𝐶𝑝 | ≤ |𝐶 |

2
. Otherwise, the splitting

node will produce components 𝐶𝑙 , 𝐶𝑟 , and 𝐶𝑝 , where 𝐶𝑙 contains 𝑥 and 𝐶𝑟 contains 𝑐 , i.e., we have

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

1.2:8 G. S. Brodal and K. Mampentzidis

|𝐶𝑙 | + |𝐶𝑝 | ≤ |𝐶 |
2

and |𝐶𝑟 | ≥ |𝐶 |
2
. From the first inequality, we have that |𝐶𝑙 | ≤ |𝐶 |

2
and |𝐶𝑝 | ≤ |𝐶 |

2
.

Notice that 𝐶𝑟 is going to be a component corresponding to a full subtree of 𝑇 , so it will have

no edges from below. This means that in the next recursion level when working with 𝐶𝑟 the

actual centroid of 𝐶𝑟 will be chosen as a splitting node, thus in the following recursion level the

three components produced from 𝐶𝑟 will be such that their sizes are at most half the size of 𝐶 . It

follows that for a component of size |𝐶 | with one edge from below, we will need at most two levels

in MCD(𝑇) before having components with size at most
|𝐶 |
2
. □

Similarly to the construction of CD(𝑇), we can construct in O(|𝑇 |) time a level ofMCD(𝑇) given
the decomposition of 𝑇 into components by the previous level of MCD(𝑇). Hence, every level

of MCD(𝑇) can be constructed in O(|𝑇 |) time. Since we have |𝑇 | = 2𝑛 − 1, we then obtain the

following:

Theorem 3.3. For any given binary tree 𝑇 with 𝑛 leaves, there exists an algorithm that con-
structs MCD(𝑇) using O(𝑛 log𝑛) time and O(𝑛) space in the RAM model.

3.3 The Main Algorithm
There is a preprocessing step and a counting (of shared triplets between 𝑇1 and 𝑇2) step.

In the preprocessing step, first we apply a depth-first traversal on 𝑇1 to make 𝑇1 left-heavy, by
swapping children so that for every node 𝑢 in 𝑇1 the left subtree is larger than the right subtree.

This ensures that the additional centroids required by the MCD are on leftmost paths, and allows

for an I/O efficient memory layout of the tree. Second, we change the leaf labels of 𝑇1, which can

also be done by a depth-first traversal of𝑇1, so that the leaves are numbered 1 to 𝑛 from left to right.

Both steps take O(𝑛) time in the RAM model. The new labels are then transferred to𝑇2 using either

hashing or sorting in expected O(𝑛) time or O(𝑛 log𝑛) time in the RAM model, respectively. The

relabelling is performed to simplify the process of transferring the leaf colors between 𝑇1 and 𝑇2.

The coloring of a subtree in𝑇1 will correspond to assigning the same color to a contiguous range of

leaf labels. Determining the color of a leaf in𝑇2 will then require one if-statement to find in what

range (red or blue) its label belongs to. Finally, we construct MCD(𝑇1) as described in Section 3.2.

In the counting step, we visit the nodes of 𝑇1, given by the depth-first traversal of the ternary

tree MCD(𝑇1), where the children of every node 𝑢 in MCD(𝑇1) are visited from left to right. For

every such node 𝑢 we compute

∑
𝑣∈𝑇2 |𝑠 (𝑢) ∩ 𝑠 (𝑣) |. We achieve this by processing 𝑇2 in two phases,

the contraction phase and the counting phase.

3.3.1 Contraction Phase of𝑇2. Let 𝐿(𝑇2) denote the set of leaves in𝑇2 and Λ ⊆ 𝐿(𝑇2) be a subset of
the leaves of 𝑇2. In the contraction phase, 𝑇2 is compressed into a binary tree of size O(|Λ|) whose
leaf set is Λ and all internal nodes have two children. The contraction is done such that all the

topologies induced by Λ in 𝑇2 are preserved in the compressed binary tree (see Figure 4). This is

achieved by the following three steps, which can be done in a single depth-first traversal of 𝑇2 in

time O(|𝑇2 |):
• Prune all leaves of 𝑇2 that are not in Λ,
• repeatedly prune all internal nodes of 𝑇2 with no children, and

• repeatedly contract unary internal nodes, i.e., nodes having exactly one child.

Let𝑢 be a node ofMCD(𝑇1) and𝐶𝑢 the corresponding component of𝑇1. For every such node𝑢 we

have a contracted version of𝑇2, from now on referred to as𝑇2 (𝑢), where 𝐿(𝑇2 (𝑢)) = 𝐿(𝐶𝑢). The goal
is to augment𝑇2 (𝑢) with counters (see counting phase below), so that we can find

∑
𝑣∈𝑇2 |𝑠 (𝑢) ∩ 𝑠 (𝑣) |

by traversing 𝑇2 (𝑢) instead of 𝑇2. One can imagine MCD(𝑇1) as being a tree where each node 𝑢 is

augmented with 𝑇2 (𝑢).

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:9

3 7

6 4

2

1 5

4 2

3

Fig. 4. Contraction of a tree for the leaf set Λ = {2, 3, 4}.

To generate all contractions of 𝑇2 for level 𝑖 of MCD(𝑇1), which correspond to a set of disjoint

connected components in 𝑇1, we can reuse the contractions of 𝑇2 at level 𝑖 − 1 in MCD(𝑇1), with
total size O(|𝑇1 |). For each component𝐶𝑢 at level 𝑖 − 1 we contract𝑇2 (𝑢) up to three times, once for

each child𝑢 ′
of𝑢 inMCD(𝑇1), where we apply the above contraction to𝑇2 (𝑢) with Λ = 𝐿(𝐶𝑢′). This

means that we can generate the contractions of 𝑇2 for level 𝑖 in O(𝑛) time, thus we can generate

all contractions of 𝑇2 in O(𝑛 log𝑛) time. Note that by explicitly storing all contractions, we would

also need to use O(𝑛 log𝑛) space. For our problem, because we traverse MCD(𝑇1) in a depth-first

manner, we only need to store the contractions corresponding to the stack of nodes of MCD(𝑇1)
that we have to remember during the traversal of MCD(𝑇1). Since the components at every second

level of MCD(𝑇1) have at most half the size of the components two levels above, Lemma 3.4 states

that the size of this stack is always O(𝑛).

Lemma 3.4. Let 𝑇1 and 𝑇2 be two binary trees with 𝑛 leaves and 𝑢1, 𝑢2, . . . , 𝑢𝑘 a root to leaf path of
MCD(𝑇1). For the sizes of the corresponding contracted versions 𝑇2 (𝑢1), 𝑇2 (𝑢2), . . ., 𝑇2 (𝑢𝑘) we have
that

∑𝑘
𝑖=1 |𝑇2 (𝑢𝑖) | = O(𝑛).

Proof. For the root 𝑢1 we have 𝑇2 (𝑢1) = 𝑇2, thus |𝑇2 (𝑢1) | ≤ 2𝑛. From the proof of Lemma 3.2

we have that for every component of size 𝑥 , we need at most two levels in MCD(𝑇1) before
producing components all of which have a size of at most

𝑥
2
. This means that

∑𝑘
𝑖=1 |𝑇2 (𝑢𝑖) | ≤

2𝑛 + 2𝑛 + 2𝑛
2
+ 2𝑛

2
+ 2𝑛

4
+ 2𝑛

4
+ · · · + 2𝑛

2
𝑖 + 2𝑛

2
𝑖 + · · · = 2

∑∞
𝑗=0

2𝑛
2
𝑗 ≤ 8𝑛 = O(𝑛). □

3.3.2 Counting Phase of𝑇2. In the counting phase, we find the value of
∑

𝑣∈𝑇2 |𝑠 (𝑢) ∩ 𝑠 (𝑣) | by travers-
ing 𝑇2 (𝑢) instead of 𝑇2. This makes the total time of the algorithm in the RAM model O(𝑛 log𝑛),
with the space being O(𝑛) because of Lemma 3.4. We consider the following two cases:

• 𝐶𝑢 has no edges from below.
In this case𝐶𝑢 corresponds to a full subtree of𝑇1. We act exactly like in theO(𝑛2) algorithm

(Section 2) but now instead of traversing𝑇2 we do a bottom up traversal of𝑇2 (𝑢) and compute

for each node 𝑣 in 𝑇2 (𝑢) the values 𝑣blue and 𝑣red, and the number of shared anchored

triplets (1) rooted at 𝑢 and 𝑣 .

Note that to find shared triplets between 𝑇1 and 𝑇2 anchored at 𝑢 in 𝑇1 and 𝑣 in 𝑇2, it is

sufficient to consider triplets anchored at a node 𝑣 in 𝑇2 (𝑢), since a node 𝑣 removed from 𝑇2
by the contraction has at most one child containing leaves from 𝐶𝑢 .

• 𝐶𝑢 has one edge from a subtree 𝑋𝑢 from below.
In this case 𝐶𝑢 does not correspond to a full subtree of 𝑇1, since 𝑋𝑢 is outside of 𝐶𝑢 (see

Figure 5). Note that because in the preprocessing step 𝑇1 was made left-heavy, it follows by

induction on the MCD construction steps that 𝑋𝑢 is always rooted at a node on the leftmost

path from 𝑢, i.e., all leaves in 𝑋𝑢 are red and can be part of triplets that are anchored in 𝑢.

Acting in the exact same manner as in the previous case is not sufficient because we need to

count these triplets as well.

To address this problem, every edge (𝑝𝑣, 𝑣) in 𝑇2 (𝑢) between a node 𝑣 and its parent 𝑝𝑣 , is

augmented with counters 𝑣𝑡𝑠 and 𝑣𝑝𝑠 about the leaves from 𝑋𝑢 that were contracted away

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

1.2:10 G. S. Brodal and K. Mampentzidis

u
T1 Cu

Xu

u
T1 Cu

Xu

u
T1 Cu

Xu

Fig. 5. MCD(𝑇1): Triplets (red and blue) that can be anchored in 𝑢 with the leaves not being in the compo-
nent 𝐶𝑢 .

v

pv

T2(u)

v

pv

s1
s2

s3

sk−1

sk
v

pv

s1
s2

s3

sk−1

sk

v

pv

s1
s2

s3

sk−1

sk

Fig. 6. Contracted subtrees on edges in 𝑇2 (𝑢) and shared triplets rooted at contracted nodes.

in 𝑇2. If 𝑣 is the root of 𝑇2 (𝑢), we add an extra edge to store this information. For every such

edge (𝑝𝑣, 𝑣), let 𝑠1, 𝑠2, . . . , 𝑠𝑘 be the contracted subtrees rooted at the edge (see Figure 6). Every
such subtree contains either leaves with no color (leaves outside the subtree rooted at 𝑢 in𝑇1)

or red leaves from 𝑋𝑢 . For every node 𝑣 in 𝑇2 (𝑢) we compute the following counters while

contracting 𝑇2 (𝑢 ′) to 𝑇2 (𝑢), where 𝑢 ′
is the parent of 𝑢 in MCD(𝑇1):

– 𝑣red: total number of red leaves in the subtree of 𝑣 (including those coming from 𝑋𝑢).

– 𝑣blue: total number of blue leaves in the subtree of 𝑣 .

– 𝑣𝑡𝑠 : total number of red leaves in 𝑠1, 𝑠2, . . . , 𝑠𝑘 .

– 𝑣𝑝𝑠 : total number of pairs of red leaves in 𝑠1, 𝑠2, . . . , 𝑠𝑘 such that each pair comes from the

same contracted subtree, i.e.,

∑𝑘
𝑖=1

(
𝑟𝑖
2

)
where 𝑟𝑖 is the number of red leaves in 𝑠𝑖 .

During the traversal of 𝑇2 (𝑢 ′) we compute for each node 𝑣 the number of leaves 𝑥𝑣 in the

subtree that are in 𝑋𝑢 , including adding the 𝑤𝑡𝑠 counters for all 𝑤 in the subtree below 𝑣 .

If an internal node 𝑣 is pruned, we add 𝑥𝑣 to 𝑝𝑡𝑠 and add

(
𝑥𝑣
2

)
to 𝑝𝑝𝑠 , where 𝑝 is the parent

of 𝑣 . Whenever a unary node 𝑝 is contracted with its child 𝑐 , we set 𝑐𝑡𝑠 = 𝑐𝑡𝑠 + 𝑝𝑡𝑠 and

𝑐𝑝𝑠 = 𝑐𝑝𝑠 + 𝑝𝑝𝑠 . For the initial tree, i.e., 𝑇2 (𝑢 ′) = 𝑇2, we have all 𝑣𝑡𝑠 and 𝑣𝑝𝑠 counters equal to

zero.

The number of shared triplets that are anchored in a non-contracted node 𝑣 of 𝑇2 (𝑣) can
be found like in the O(𝑛2) algorithm using the counters 𝑣red and 𝑣blue in (1). As for the

number of shared triplets that are anchored in a contracted node on edge (𝑝𝑣, 𝑣), this value is
exactly

(
𝑣blue
2

)
· 𝑣𝑡𝑠 + 𝑣blue · 𝑣𝑝𝑠 .

Note that the first case can be treated as a special case of the second case, where 𝑋𝑢 = ∅ and

all 𝑣𝑡𝑠 and 𝑣𝑝𝑠 counters are zero.

3.4 Scaling to External Memory
We now describe how to make the algorithm scale to external memory. The tree 𝑇1 is stored in

an array of size 2𝑛 − 1 in a preorder layout, i.e., if a node 𝑤 of 𝑇1 is stored in position 𝑝 , the left

child of𝑤 is stored in position 𝑝 + 1 and if 𝑥 is the size of the left subtree of𝑤 , the right child of𝑤

is stored in position 𝑝 + 𝑥 + 1. In general a component 𝐶𝑢 in 𝑇1 with missing subtree 𝑋𝑢 on the

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:11

leftmost path, in this layout will consist of the nodes on the leftmost path to 𝑋𝑢 , followed by the

recursive layout of 𝑋𝑢 , and then the remaining subtrees of 𝐶𝑢 left to right, i.e., the layout of 𝐶𝑢

consists of two consecutive pieces of the layout. For 𝑇2 and its contractions, we use the proof of

Lemma 3.4 to initialize a large enough array that can fit 𝑇2 and every contraction of 𝑇2 that we

need to remember while traversing MCD(𝑇1). This array is used as a stack that we use to push and

pop the contractions of 𝑇2. To maintain a consecutive layout of 𝑇2 during the contraction phase,

the tree 𝑇2 and its contractions are stored in memory following a postorder layout, i.e., if a node𝑤

is stored in position 𝑝 and 𝑦 is the size of the right subtree of 𝑤 , the left child of 𝑤 is stored in

position 𝑝 − 𝑦 − 1 and the right child of𝑤 is stored in position 𝑝 − 1.

In the preprocessing step, 𝑇1 can be made left-heavy with two depth-first traversals. The first

traversal computes for every node 𝑢 in 𝑇1 the size of the subtree rooted at 𝑢. The second traversal

starts from the root of 𝑇1, recursively visits the children by first visiting a largest child, and prints

all nodes visited along the way to an output array. This output array will at the end of the traversal

contain the left-heavy version of 𝑇1 in a preorder layout. From the following Lemma 3.5 we have

that both the first and second depth-first traversal of 𝑇1 require O(𝑛/𝐵) I/Os in the cache oblivious

model, i.e., making 𝑇1 left-heavy requires O(𝑛/𝐵) I/Os in the cache oblivious model.

In Lemma 3.5 we consider the I/Os required to apply a depth-first traversal on a binary tree 𝑇

that is stored in memory following a local layout, i.e., the nodes of every subtree of 𝑇 are stored

consecutively in memory and every node has at most three occurrences in memory: possibly before,

after, and/or between the layout of the children (see Figure 7). From here on, when we refer to

an edge (𝑢, 𝑣), we imply that 𝑢 is the parent of 𝑣 in 𝑇 . During a depth-first traversal of 𝑇 , an edge

(𝑢, 𝑣) is processed to either visit 𝑣 from 𝑢 or to backtrack from 𝑣 to 𝑢. W.l.o.g. we assume that when

an edge (𝑢, 𝑣) is processed, both 𝑢 and 𝑣 are visited, i.e., all blocks of memory containing copies of

𝑢 and 𝑣 must be in cache.

Lemma 3.5. Let 𝑇 be a binary tree with 𝑛 leaves that is stored in an array following a local layout,
i.e., the nodes of every subtree of 𝑇 are stored consecutively in memory and every node has at most
three occurrences in memory. Any depth-first traversal that starts from the root of 𝑇 , and in which for
every internal node 𝑢 in 𝑇 the children of 𝑢 are traversed in any order, requires O(𝑛/𝐵) I/Os in the
cache oblivious model.

u u u · · ·· · ·
Tul

Tur{ {

Fig. 7. Positions of the occurrences of a node 𝑢 in memory with respect to the two children subtrees of 𝑢.

Proof. For a node 𝑢 in 𝑇 , let 𝑇𝑢 denote the set of nodes in the subtree of 𝑇 rooted at 𝑢. Let 𝑢𝑙
and 𝑢𝑟 be the two children of 𝑢. We assume that 𝑢 is stored at all the three possible occurrences

in memory with respect to the layout of 𝑇𝑢𝑙 and 𝑇𝑢𝑟 , as illustrated in Figure 7. This assumption is

w.l.o.g. because in any local layout one or more of these positions is used, thus the number of I/Os

is upper bounded by the number of I/Os incurred. This placement of 𝑢 in memory implies that

when 𝑢 is visited in a depth-first traversal of 𝑇 , all the three copies of 𝑢 are accessed in memory.

Note that according to the definition of a local layout, 𝑇𝑢𝑙 and 𝑇𝑢𝑟 can be interchanged in Figure 7.

In the following, the aim is to bound the number of I/Os implied.

Define a node 𝑢 in 𝑇 to be 𝐵-light if 3|𝑇𝑢 | ≤ 𝐵 − 2, otherwise the node is said to be 𝐵-heavy.
Observe that the children of a 𝐵-light node are all 𝐵-light. We consider the following disjoint sets

of nodes from 𝑇 :

𝑆1: 𝐵-light nodes,

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

1.2:12 G. S. Brodal and K. Mampentzidis

a

b

c

d

e

f

g

h

i
j

k

l

m

n

o p

q

1

2

3

4

5 6 7

8 9

T

11
12

10

18

13 14

15 16

17

(a)

a

h

i k

n

o q

T ′

(b)

a b 1 b c d 2 d e f 3 f g 4 g h i 5 6i i h j 7 j k 8 k 9 k j h g f e 10 e d c 11 c b a l m 12 m n o 13 o 14 o n p q 15 q 16 q p 17 p nm l l18 a

b b c d d e f f g g· · · · · · g f e e d c c b · · ·1 2 4 10 113

L RTh

(c)

Fig. 8. (a) A tree𝑇 . The gray subtrees are 𝐵-light subtrees and every node not in a 𝐵-light subtree is a 𝐵-heavy
node. (b) The corresponding tree 𝑇 ′ according to the proof of Lemma 3.5. (c) How 𝑇 is stored in memory,
the two segments of memory (in dashed lines) that correspond to the edge (𝑎, ℎ) in 𝑇 ′ and how the nodes
in 𝑃 (𝑎,ℎ) are visited (defined by the one directional lines) during a depth-first traversal of 𝑇 .

𝑆2: 𝐵-heavy nodes with only 𝐵-light children,

𝑆3: 𝐵-heavy nodes with two 𝐵-heavy children, and

𝑆4: 𝐵-heavy nodes with one 𝐵-heavy child and one 𝐵-light child.

For a 𝐵-light node 𝑢 in 𝑆1, let 𝑤 be the first 𝐵-heavy node we reach in the path from 𝑢 to the

root of 𝑇 . Any I/O incurred by visiting the node 𝑢 in 𝑇 is charged to𝑤 . This node𝑤 can be either

in 𝑆2 or 𝑆4. Let 𝑤
′
be the 𝐵-light child of 𝑤 such that 𝑇𝑤′ contains 𝑢. Since a subtree is stored in

a contiguous piece of memory and each node has at most three occurrences, then 3|𝑇𝑤′ | ≤ 𝐵 − 2

implies that at most O(1) I/Os are sufficient to visit all nodes in 𝑇𝑤′ . We say that 𝑇𝑤′ is a subtree

that is 𝐵-light (see Figure 8a).

We now argue that 𝑆2 and 𝑆3 have size O(𝑛/𝐵). Let 𝑇 ′
be the binary tree created by pruning

every 𝐵-light node and their incident edges from 𝑇 , and subsequently contracting unary nodes.

Observe that 𝑆2 are the leaves of 𝑇
′
, 𝑆3 the internal nodes of 𝑇

′
, and 𝑆1 ∪ 𝑆4 are the nodes pruned

from 𝑇 to achieve 𝑇 ′
. An example for 𝑇 and the corresponding tree 𝑇 ′

can be found in Figures 8a

and 8b. Since the leaves of 𝑇 ′
correspond to disjoint subtrees of 𝑇 of size larger than

𝐵−2
3
, we have

|𝑆2 | < 3|𝑇 |/(𝐵 − 2) = O(𝑛/𝐵). Since 𝑇 ′
is a binary tree, the number of internal nodes equals the

number of leaves minus one, and we have |𝑆3 | = |𝑆2 | − 1 = O(𝑛/𝐵).

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:13

We now argue that the total number of I/Os incurred by the nodes in 𝑆1 and 𝑆4 is O(𝑛/𝐵), thus
proving the statement. Let 𝑣 be a node in 𝑇 ′

and 𝑢 the parent of 𝑣 . The edge (𝑢, 𝑣) corresponds
to the path from 𝑢 to 𝑣 in 𝑇 except 𝑢 and 𝑣 , denoted 𝑃 (𝑢,𝑣) , containing 𝐵-heavy nodes from 𝑆4.

For example the edge (𝑎, ℎ) in Figure 8b corresponds to 𝑃 (𝑎,ℎ) = (𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔). Let 𝐶 (𝑢,𝑣) be 𝑃 (𝑢,𝑣)
together with all 𝐵-light subtrees rooted at a child of a node in 𝑃 (𝑢,𝑣) . By the local layout of 𝑇 ,

the nodes in 𝐶 (𝑢,𝑣) are stored in two segments of memory 𝐿 and 𝑅 on the left and right side of

the layout of 𝑇𝑣 , respectively (see Figure 8c). The layout of 𝑇𝑢 can be obtained by starting with

the layout of 𝑇𝑣 , and then considering the 𝐵-light subtrees hanging of from the path from 𝑣 to 𝑢

bottom-up, and then incrementally adding the layout of these 𝐵-light subtrees either to the left or

the right of the current layout.

A general depth-first traversal of𝑇 will visit the nodes on the path from𝑢 to 𝑣 , first top-down and

then bottom-up. The 𝐵-light subtrees hanging of from a node on the path will then be recursively

visited either on the way down or on the way up, i.e., a subset of the trees will be visited on the way

down, and the remaining subtrees on the way up. On the way down the subtrees will be considered

left to right in 𝐿 and right to left in 𝑅, alternating between the two sides depending on the layout.

Similarly, on the way up we will alternate to consider subtrees in 𝐿 right to left and 𝑅 left to right.

Since each of the 𝐵-light subtrees in 𝐿 and 𝑅 uses at most 𝐵 − 2 positions in memory, by accessing

all three copies of a node 𝑤 in 𝑃 (𝑢,𝑣) every time 𝑤 is visited in a depth-first traversal of 𝑇 , we

guarantee that the corresponding 𝐵-light subtree rooted at𝑤 is in cache, i.e., it can be accessed in

memory for free. We bound the I/O cost for accessing 𝐶 (𝑢,𝑣) by the cost of scanning 𝐿 and 𝑅 on

the way down and up, i.e., the cost of scanning 𝐿 and 𝑅 once in both directions. Hence, the total

number of I/Os that are sufficient to pay for traversing all nodes in𝐶 (𝑢,𝑣) is 4+ 2 · 3|𝐶 (𝑢,𝑣) |/𝐵, where
the +4 comes from the 4 I/Os we need to pay (in the worst case) to visit the first and last block

of 𝐿 and 𝑅. The total number of I/Os we need to spend for all O(𝑛/𝐵) paths of 𝑇 that correspond

to edges of 𝑇 ′
is

∑
(𝑢,𝑣) ∈𝑇 ′ (4 + 6|𝐶 (𝑢,𝑣) |/𝐵) = O(𝑛/𝐵). Together with the fact that for each of the

O(𝑛/𝐵) nodes in 𝑆2 and 𝑆3 we only spend O(1) I/Os, the statement follows. □

Changing the labels of𝑇1 can be done in O(𝑛
𝐵
log

2

𝑛
𝑀
) I/Os with a cache oblivious sorting routine,

e.g., with binary merge sort. Making 𝑇1 left-heavy can be done by two depth-first traversals of 𝑇1:

In the first traversal we for each node compute the size of the subtree, and in the second traversal

we traverse the heaviest subtrees first, and output the new left-heavy layout of 𝑇1. By Lemma 3.5

each traversal requires O(𝑛/𝐵) I/Os – assuming the initial layout of 𝑇1 is a local layout. Overall,

the preprocessing step requires O(𝑛
𝐵
log

2

𝑛
𝑀
) I/Os.

When constructing MCD(𝑇1), we can find the splitting node of a component 𝐶𝑢 by a top-

down traversal from the root of 𝐶𝑢 in 𝑇1 in O(1 + |𝐶𝑢 |/𝐵) I/Os (by Lemma 3.5). In 𝑇2 (𝑢) we spend
Θ(1+|𝑇2 (𝑢) |/𝐵) I/Os for the contraction and counting phase (by Lemma 3.5). Since |𝑇2 (𝑢) | = Θ(|𝐶𝑢 |),
the overall cost to construct a (𝐶𝑢,𝑇2 (𝑢)) pair and to count the shared triplets anchored in 𝑢

is Θ(1 + |𝐶𝑢 |/𝐵) I/Os. To account for the total I/O cost for constructing all pairs, we need a refined

analysis. Assign to each node 𝑢 of MCD(𝑇1) the rank ⌊log
2
|𝐶𝑢 |⌋. The ranks of the nodes are non-

increasing on a root to leaf path in MCD(𝑇1), and similarly to the proof of Lemma 3.2, at most two

consecutive nodes on the path have equal rank, since the component sizes decrease by at least a factor

two for every second node on the path. For a given rank 𝑟 , consider all components of rank 𝑟 , where

all child components have smaller rank. There are at most 𝑛/2𝑟 such components in 𝑇1, since these

are disjoint components in 𝑇1 and have size at least 2
𝑟
. Since only the parent components of these

rank 𝑟 components could also have rank 𝑟 , there are at most 𝑛/2𝑟−1 rank 𝑟 components inMCD(𝑇1).
Since a component of size at least𝑀 has rank at least ⌊log

2
𝑀⌋, it follows that the total number of

components in MCD(𝑇1) of size at least𝑀 is at most

∑∞
𝑟= ⌊log

2
𝑀 ⌋ 𝑛/2𝑟−1 = 𝑛/2 ⌊log2 𝑀 ⌋−2 = O(𝑛/𝑀).

Furthermore atmostO(𝑛/𝑀) components of size less than𝑀 are constructed as the result of splitting

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

1.2:14 G. S. Brodal and K. Mampentzidis

T1

· · ·c

black blackred blue green

u

· · ·
i j k k′′k′

Fig. 9. Coloring of 𝑇1 with respect to edge (𝑢, 𝑐). The unresolved triplet 𝑖 𝑗𝑘 and the resolved triplets 𝑖 𝑗 |𝑘 ′
and 𝑖 𝑗 |𝑘 ′′ will be anchored in (𝑢, 𝑐).

a component of size at least𝑀 . Similarly to the proof of Lemma 3.4, the recursion stack to store the

recursive contractions of 𝑇2 (𝑢) for a component 𝐶𝑢 of size at most𝑀 requires size at most O(𝑀)
and fits into cache, i.e, the total I/O cost for the recursive handling of 𝐶𝑢 is O(1 + |𝐶𝑢 |/𝐵) I/Os.
Summing over all the O(𝑛/𝑀) maximal disjoint components of MCD(𝑇1) of size at most𝑀 , gives

total cost O(𝑛/𝑀 + 𝑛/𝐵) = O(𝑛/𝐵) I/Os. For handling the O(𝑛/𝑀) components of size at least𝑀 ,

we observe that each leaf of𝑇1 can be in at most 2⌈log
2

𝑛
𝑀
⌉ recursive components of size at least𝑀 ,

before it is in a component of size at most𝑀 . It follows that the total I/O cost for the components

of size at least 𝑀 is O(𝑛/𝑀 + 𝑛/𝐵 · log
2

𝑛
𝑀
). Overall, the algorithm requires O(𝑛

𝐵
log

2

𝑛
𝑀
) I/Os in

the cache oblivious model.

4 THE NEW ALGORITHM FOR GENERAL TREES
Unlike a binary tree, a general tree can have internal nodes with an arbitrary number of children.

By anchoring the triplets of𝑇1 and𝑇2 in edges instead of nodes, we show that with only four colors

we can count all the shared triplets between the two trees. We start by describing a new O(𝑛2)
algorithm for general trees. We then show how we can use the same ideas presented in the previous

section to extend the O(𝑛2) algorithm and reduce the time to O(𝑛 log𝑛).

4.1 Quadratic Algorithm
To anchor the triplets in the edges of a general tree 𝑇 , we assume an arbitrary left to right ordering

of 𝑇 . Three leaves of 𝑇 induce a triplet 𝑡 . If 𝑡 is an unresolved triplet 𝑖 𝑗𝑘 , assume 𝑖 is to the left

of 𝑗 , and 𝑗 is to the left of 𝑘 . Let 𝑢 be the lowest common ancestor of 𝑖 , 𝑗 , and 𝑘 , and (𝑢, 𝑐) the edge
from 𝑢 to the child 𝑐 whose subtree contains 𝑗 . We anchor 𝑡 in the edge (𝑢, 𝑐). If 𝑡 is a resolved
triplet 𝑖 𝑗 |𝑘 , assume 𝑖 is to the left of 𝑗 , and 𝑘 is either to the left of 𝑖 or to the right of 𝑗 (but 𝑘 cannot

be between 𝑖 and 𝑗). Let 𝑢 be the lowest common ancestor of 𝑖 and 𝑗 and (𝑢, 𝑐) the edge from 𝑢 to

the child 𝑐 whose subtree contains 𝑗 . We anchor 𝑡 in the edge (𝑢, 𝑐) (see Figure 9).
Let 𝑠 ′(𝑢, 𝑐) be the set containing all triplets anchored in edge (𝑢, 𝑐). For the number of shared

triplets 𝑆 (𝑇1,𝑇2) we have

𝑆 (𝑇1,𝑇2) =
∑

(𝑢,𝑐) ∈𝑇1

∑
(𝑣,𝑐′) ∈𝑇2

|𝑠 ′(𝑢, 𝑐) ∩ 𝑠 ′(𝑣, 𝑐 ′) | .

For the efficient computation of 𝑆 (𝑇1,𝑇2) we use the following coloring procedure: Fix a node 𝑢

in 𝑇1 and a child 𝑐 . Color the leaves of every child subtree of 𝑢 to the left of 𝑐 red, the leaves of

the subtree defined by 𝑐 blue, the leaves of every child subtree to the right of 𝑐 green and give

the color black to every other leaf of 𝑇1 (see Figure 9). We then transfer this coloring to the leaves

of 𝑇2. For the resolved triplet 𝑖 𝑗 |𝑘 , 𝑖 corresponds to the red color, 𝑗 corresponds to the blue color

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:15

and 𝑘 corresponds to the black color. For the unresolved triplet 𝑖 𝑗𝑘 , 𝑖 corresponds to the red color, 𝑗

corresponds to the blue color and 𝑘 corresponds to the green color.

Suppose that the node 𝑣 in 𝑇2 has 𝑘 children. We are going to compute all shared triplets that

are anchored in the 𝑘 children edges of 𝑣 in O(𝑘) time. This will give an O(𝑛2) total running time,

because for every edge in 𝑇1 we spend O(𝑛) time in 𝑇2 and there are O(𝑛) edges in 𝑇1. In 𝑣 we have

the following counters:

• 𝑣red: total number of red leaves in the subtree of 𝑣 .

• 𝑣blue: total number of blue leaves in the subtree of 𝑣 .

• 𝑣green: total number of green leaves in the subtree of 𝑣 .

• 𝑣black: total number of black leaves not in the subtree of 𝑣 .

While scanning the 𝑘 children edges of 𝑣 from left to right, for the child 𝑐 ′ that is the𝑚-th child

of 𝑣 , we also maintain the following:

• 𝑎red: total number red leaves from the first𝑚 − 1 children subtrees.

• 𝑎blue: total number blue leaves from the first𝑚 − 1 children subtrees.

• 𝑎green: total number of green leaves from the first𝑚 − 1 children subtrees.

• 𝑝red,green: total number of pairs of leaves from the first𝑚 − 1 children subtrees, where one is

red, the other is green, and they both come from different subtrees.

• 𝑝red,blue : total number of pairs of leaves from the first𝑚 − 1 children subtrees, where one is

red, the other is blue, and they both come from different subtrees.

• 𝑝blue,green : total number of pairs of leaves from the first𝑚 − 1 children subtrees, where one

is blue, the other is green, and they both come from different subtrees.

• 𝑡red,blue,green: total number of leaf triples from the first𝑚 − 1 children subtrees, where one is

red, one is blue and one is green, and all three leaves come from different subtrees.

Before scanning the children edges of 𝑣 , every variable is initialized to 0. Then for the child 𝑐 ′ every
variable is updated in O(1) time as follows:

• 𝑎red = 𝑎red + 𝑐 ′red
• 𝑎blue = 𝑎blue + 𝑐 ′blue
• 𝑎green = 𝑎green + 𝑐 ′green
• 𝑝red,green = 𝑝red,green + 𝑎green · 𝑐 ′red + 𝑎red · 𝑐 ′green
• 𝑝red,blue = 𝑝red,blue + 𝑎blue · 𝑐 ′red + 𝑎red · 𝑐 ′blue
• 𝑝blue,green = 𝑝blue,green + 𝑎green · 𝑐 ′blue + 𝑎blue · 𝑐 ′green
• 𝑡red,blue,green = 𝑡red,blue,green + 𝑝red,green · 𝑐 ′blue + 𝑝red,blue · 𝑐 ′green + 𝑝blue,green · 𝑐 ′red

After finishing scanning the 𝑘 children edges of 𝑣 , we can compute the shared triplets that

are anchored in every child edge of 𝑣 as follows: for the total number of shared resolved triplets,

denoted totres, we have that totres = 𝑝red,blue ·𝑣black and for the total number of shared unresolved

triplets, denoted totunres, we have that totunres = 𝑡red,blue,green. We are now ready to describe the

O(𝑛 log𝑛) algorithm.

4.2 Subquadratic Algorithm
Similarly to the case of binary trees in Section 3, there is a preprocessing step and a counting step.

The counting step is divided into two phases, the contraction and counting phase of 𝑇2.

In a preprocessing step we first rearrange the children of each node in 𝑇1 such that the leftmost

child has the most leaves. The remaining children are kept in the original order. Next, we recursively

transform𝑇1 into a binary tree 𝑏 (𝑇1) (see Figure 10). Let𝑤 be an internal node of𝑇1 with 𝑘 children.

We replace𝑤 by a binary left path of𝑤 followed by 𝑘 − 2 orange nodes. We denote𝑤 the root of

the orange path. The leaves below this path are the 𝑘 children of𝑤 from𝑇1, in the same left to right

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

1.2:16 G. S. Brodal and K. Mampentzidis

a
b c d

e
f g

T1 w1 w2

b

c
d

f

g

b(T1)

a

e

w1 w2

Fig. 10. Transformation of 𝑇1 to 𝑏 (𝑇1).

u

b(T1)
up

ul

Cu

XuYu Yu

y

x
ul

T1

Xu

Cu

YuYu

u

up

Fig. 11. How a component in 𝑏 (𝑇1) translates to a component in 𝑇1.

order. We let node𝑤 and its 𝑘 children from 𝑇1 have the color black. Since the preprocessing of 𝑇1
ensures the leftmost child of each node of 𝑇1 has the most most leaves, the resulting tree 𝑏 (𝑇1) is
left-heavy.

Let𝑢 be a node in 𝑏 (𝑇1) and 𝑐 its right child. By construction, 𝑐 must be a black node. If𝑢 is orange,

then let 𝑢root be the root of the orange path that 𝑢 is part of. If 𝑢 is black, then let 𝑢root = 𝑢. Again

by construction, 𝑢root must be the parent of 𝑐 in 𝑇1. For the edge (𝑢, 𝑐) in 𝑏 (𝑇1), we define 𝑠 ′′(𝑢, 𝑐)
to be the set of triplets that are anchored in the edge (𝑢root, 𝑐) of𝑇1, i.e., 𝑠 ′′(𝑢, 𝑐) = 𝑠 ′(𝑢root, 𝑐). Note
that for an edge (𝑢 ′, 𝑐 ′) in 𝑏 (𝑇1) connecting 𝑢 ′

with its left child 𝑐 ′, we have 𝑠 ′′(𝑢 ′, 𝑐 ′) = 0.

For the number of shared triplets we then have:

𝑆 (𝑇1,𝑇2) =
∑

(𝑢,𝑐) ∈𝑏 (𝑇1)

∑
(𝑣,𝑐′) ∈𝑇2

|𝑠 ′′(𝑢, 𝑐) ∩ 𝑠 ′(𝑣, 𝑐 ′) | .

We can capture all triplets in 𝑇1 by coloring 𝑏 (𝑇1) instead of 𝑇1. For the nodes 𝑢 and 𝑐 where 𝑐 is

the right child of 𝑢, the leaves of 𝑏 (𝑇1) are colored according to edge (𝑢, 𝑐) as follows: the leaves in
the left subtree of 𝑢 are colored red, the leaves in the right subtree of 𝑢 are colored blue. If 𝑢 is an

orange node, then the black leaves in the remaining subtrees of the orange path that 𝑢 is part of

are colored green. All other leaves of 𝑏 (𝑇1) maintain their color black.

The reason behind transforming 𝑇1 into the binary tree 𝑏 (𝑇1), is because now we can use exactly

the same core ideas described in Section 3. The tree 𝑏 (𝑇1) is a binary tree, so we apply the same

preprocessing step, except we do not need to make it left-heavy because by construction it already

is. However, we change the labels of the leaves in 𝑏 (𝑇1) and 𝑇2, so that the leaves in 𝑏 (𝑇1) are
numbered 1 to 𝑛 from left to right. The order in which we visit the nodes of 𝑏 (𝑇1) is determined

by a depth-first traversal of MCD(𝑏 (𝑇1)), where the children of every node 𝑢 in MCD(𝑏 (𝑇1)) are
visited from left to right.

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:17

v

pv v

pv

1 2 k

T2(u)

Fig. 12. 𝑇2 (𝑢): Contracted children subtrees rooted at node 𝑣 and contracted subtrees rooted at contracted
nodes (gray color) on the edge (𝑝𝑣, 𝑣).

Figure 11 shows a component 𝐶𝑢 as the result of applying the MCD algorithm of Section 3

to 𝑏 (𝑇1) and the corresponding component in 𝑇1. For an edge (𝑥,𝑦) in 𝑏 (𝑇1) crossing the boundary

of 𝐶𝑢 from below, the node 𝑦 can either be orange or black. If 𝑦 is black, the subtree rooted at 𝑦

corresponds to the leftmost subtree of a node 𝑢𝑙 in 𝑇1, whereas if 𝑦 is orange, the subtree of 𝑏 (𝑇1)
corresponds to a prefix of the children of 𝑢𝑙 in 𝑇1.

Like in the case of binary input trees, while traversing MCD(𝑏 (𝑇1)) we process 𝑇2 in two phases,

the contraction phase and the counting phase. The only difference after this point between the

algorithm for binary trees and the algorithm for general trees, is in the counters that we have to

maintain in the contracted versions of 𝑇2. Otherwise, the same analysis from Section 3 holds.

4.2.1 Contraction Phase of 𝑇2. The contraction of 𝑇2 with respect to a set of leaves Λ ⊆ 𝐿(𝑇2),
happens in the exact same way as described in Section 3, i.e., we start by pruning all leaves of 𝑇2
that are not in Λ, then we prune all internal nodes of 𝑇2 with no children, and finally, we contract

the nodes that have exactly one child.

Let 𝑢 be a node of MCD(𝑏 (𝑇1)) and 𝐶𝑢 the corresponding component of 𝑏 (𝑇1). For every such

node 𝑢 we have a contracted version of 𝑇2, denoted 𝑇2 (𝑢), with leaf sets 𝐿(𝑇2 (𝑢)) = 𝐿(𝐶𝑢). Like
in the binary algorithm of Section 3, to count the shared triplets anchored in an edge (𝑢, 𝑐) in 𝑇1,
the goal is to augment 𝑇2 (𝑢) with counters, so that we can find

∑
(𝑣,𝑐′) ∈𝑇2 |𝑠 ′′(𝑢, 𝑐) ∩ 𝑠 ′(𝑣, 𝑐 ′) | by

scanning 𝑇2 (𝑢) instead of 𝑇2.

The colors of the leaves that were contracted when constructing 𝑇2 (𝑢) will all be stored in

counters (details are in Section 4.2.2). The color of each contracted leaf depends on the type of

the corresponding component that we have in 𝑏 (𝑇1) and the splitting node that is used for that

component. For example, in Figure 11 the contracted leaves from 𝑋𝑢 will be red because 𝑏 (𝑇1) is
left-heavy. The contracted leaves from the children subtrees of 𝑢𝑝 in𝑇1 can either be green or black:

If 𝑢 in 𝑏 (𝑇1) happens to be orange and part of the orange path that 𝑢𝑝 is the root of, then the color

must be green, otherwise black. Finally, every leaf that is not in the subtree defined by 𝑢𝑝 , and thus

is in 𝑌𝑢 , must have the color black. The way we store this information is described in the counting

phase below.

4.2.2 Counting Phase of 𝑇2. In Figure 12 we illustrate how a node 𝑣 in 𝑇2 (𝑢) can look like. The

contracted subtrees are illustrated with the dark gray color. Every such subtree contains some

number of red, green, and black leaves. The counters that we maintain should be so that if 𝑣

has 𝑘 children in 𝑇2 (𝑢), then we can count all shared triplets that are anchored in every child

edge (including those of the contracted children subtrees) of 𝑣 in O(𝑘) time. At the same time,

in O(1) time we should be able to count all shared triplets that are anchored in every child edge of

every contracted node that lies on the edge (𝑝𝑣, 𝑣). Then, the time required by the counting phase

becomes O(|𝑇2 (𝑢) |), giving the same time bounds as in the binary algorithm of Section 3. In 𝑣 we

have the following counters:

• 𝑣red: total number of red leaves (including the contracted leaves) in the subtree of 𝑣 .

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

1.2:18 G. S. Brodal and K. Mampentzidis

• 𝑣blue: total number of blue leaves in the subtree of 𝑣 .

• 𝑣green: total number of green leaves (including the contracted leaves) in the subtree of 𝑣 .

• 𝑣black: total number of black leaves (including the contracted leaves) not in the subtree of 𝑣 .

We divide the rest of the counters into two categories: Category 𝐴 corresponds to the leaves

in the contracted children subtrees of 𝑣 and each counter is stored in a variable of the form 𝑣𝐴.𝑥 .

Category 𝐵 corresponds to the leaves in the contracted subtrees on the edge (𝑝𝑣, 𝑣), and each

counter is stored in a variable of the form 𝑣𝐵.𝑥 .

For category 𝐴 we have the following counters:

• 𝑣𝐴.red: total number of red leaves in the contracted children subtrees of 𝑣 .

• 𝑣𝐴.green: total number of green leaves in the contracted children subtrees of 𝑣 .

• 𝑣𝐴.black: total number of black leaves in the contracted children subtrees of 𝑣 .

• 𝑣𝐴.red,green: total number of pairs of leaves where one is red, the other is green, and one

leaf comes from one contracted child subtree of 𝑣 and the other leaf comes from a different

contracted child subtree of 𝑣 .

While scanning the 𝑘 children edges of 𝑣 from left to right, for the child 𝑐 ′ that is the𝑚-th child

of 𝑣 , we also maintain the following:

• 𝑎red: total number of red leaves from the first𝑚−1 children subtrees, including the contracted
children subtrees.

• 𝑎blue: total number of blue leaves from the first𝑚 − 1 children subtrees.

• 𝑎green: total number of green leaves from the first 𝑚 − 1 children subtrees, including the

contracted children subtrees.

• 𝑝red,green: total number of pairs of leaves from the first𝑚 − 1 children subtrees, including the

contracted children subtrees, where one is red, the other is green, and they both come from

different subtrees (one might be contracted and the other non-contracted).

• 𝑝red,blue : total number of pairs of leaves from the first𝑚 − 1 children subtrees, including the

contracted children subtrees, where one is red, the other is blue, and they both come from

different subtrees (one might be contracted and the other non-contracted).

• 𝑝blue,green : total number of pairs of leaves from the first𝑚 − 1 children subtrees, including

the contracted children subtrees, where one is blue, the other is green, and they both come

from different subtrees (one might be contracted and the other non-contracted).

• 𝑡red,blue,green: total number of leaf triples from the first𝑚 − 1 children subtrees, including the

contracted children subtrees, where one is red, one is blue and one is green, and all three leaves

come from different subtrees (some might be contracted, some might be non-contracted).

Every variable is updated in O(1) time in exactly the same manner like in the O(𝑛2) algorithm
of Section 4.1. The main difference is in the values of the variables before we begin scanning the

children edges of 𝑣 . Every variable is initialized as follows:

• 𝑎red = 𝑣𝐴.red
• 𝑎blue = 0

• 𝑎green = 𝑣𝐴.green
• 𝑝red,green = 𝑣𝐴.red,green
• 𝑝red,blue = 𝑝blue,green = 𝑡red,blue,green = 0

After finishing scanning the 𝑘 children edges of 𝑣 , we can compute the shared triplets that

are anchored in every child edge of 𝑣 (including the children edges pointing to contracted sub-

trees) as follows: for the total number of shared resolved triplets, denoted tot𝐴.res, we have

that tot𝐴.res = 𝑝red,blue · 𝑣black and for the total number of shared unresolved triplets, denoted

tot𝐴.unres, we have that totunres = 𝑡red,blue,green.

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:19

The category 𝐵 counters helps us count triplets involving leaves (contracted and non-contracted)

from the subtree of 𝑣 and leaves from the contracted subtrees rooted at the edge (𝑝𝑣, 𝑣). We maintain

the following:

• 𝑣𝐵.red: total number of red leaves in all contracted subtrees rooted at the edge (𝑝𝑣, 𝑣).
• 𝑣𝐵.green: total number of green leaves in all contracted subtrees rooted at the edge (𝑝𝑣, 𝑣).
• 𝑣𝐵.black: total number of black leaves in all contracted subtrees rooted at the edge (𝑝𝑣, 𝑣).
• 𝑣𝐵.red,green: total number of pairs of leaves where one is red and the other is green such that

one leaf comes from a contracted child subtree of a contracted node 𝑣 ′ and the other leaf

comes from a different contracted child subtree of the same contracted node 𝑣 ′.
• 𝑣𝐵.red,black: total number of pairs of leaves where one is red and the other is black such that

the red leaf comes from a contracted child subtree of a contracted node 𝑣 ′ and the black

leaf comes from a contracted child subtree of a contracted node 𝑣 ′′, where 𝑣 ′′ is closer to 𝑝𝑣
than 𝑣 ′.

For the total number of shared unresolved triplets, denoted tot𝐵.unres, that are anchored in

the children edges of every contracted node that exists in edge (𝑝𝑣, 𝑣), we have that tot𝐵.unres =
𝑣blue · 𝑣𝐵.red,green. For the total number of shared resolved triplets, denoted tot𝐵.res, that are
anchored in the children edges of every contracted node that exists in edge (𝑝𝑣, 𝑣), we have

that tot𝐵.res = 𝑣blue · 𝑣𝐵.red,black + 𝑣blue · 𝑣𝐵.red · (𝑣black − 𝑣𝐵.black).

4.3 Scaling to External Memory
The analysis is the same as in Section 3, except for minor details. The proof of Lemma 3.4 can be

trivially modified to apply to general trees as well. Finally, Lemma 3.5 is generalized to non-binary

trees in the following Lemma 4.1. In Lemma 4.1, we consider the I/Os required to apply a depth-first

traversal on a non-binary tree 𝑇 that is stored in memory following a local layout, i.e., the nodes of

every subtree of𝑇 are stored consecutively in memory and every node has at most two occurrences

in memory, before the first child subtree and/or after the last child subtree (see Figure 13). Similarly

to the assumptions we made for Lemma 3.5, w.l.o.g. we assume that when an edge (𝑢, 𝑣) of 𝑇 is

processed in a depth-first traversal of 𝑇 , both 𝑢 and 𝑣 are visited, i.e., both 𝑢 and 𝑣 are in cache.

Lemma 4.1. Let 𝑇 be a non-binary tree with 𝑛 leaves that is stored in an array following a local
layout, i.e., the nodes of every subtree of 𝑇 are stored consecutively in memory and every node has
at most two occurrences in memory. Any depth-first traversal that starts from the root of 𝑇 and in
which for every internal node 𝑢 in 𝑇 , after the traversal of the first child of 𝑢 the remaining children
are traversed in the order that they appear in memory from left to right, requires O(𝑛/𝐵) I/Os in the
cache oblivious model.

· · · · · ·
Tu1

Tu2
Tu3

Tu6
Tu7

u u

Tu4{ { { { {

w w

{ {Tu8{ Tu5

Fig. 13. Position of a node 𝑢 in memory with respect to the 8 subtrees defined by the children of 𝑢, with 𝑇𝑢5

being a largest subtree.

Proof. This proof is an extension of the proof of Lemma 3.5. For a node 𝑢 in𝑇 , let𝑇𝑢 denote the

set of nodes in the subtree rooted at 𝑢, and 𝑇𝑢1
, . . . ,𝑇𝑢𝑖 the subtrees rooted at the children 𝑢1, . . . , 𝑢𝑖

of 𝑢. We assume that these subtrees are ordered from left to right in order that they appear in

memory, and 𝑢 is stored before the first child subtree and after the last child subtree (see Figure 13).

In the proof of Lemma 3.5, we implicitly assumed that the positions of the two children of 𝑢 are

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

1.2:20 G. S. Brodal and K. Mampentzidis

a

b

c

e

f

g h

i

j

k

l

1 2

4

5

6 7

9

11 12

8

3

10

T

d

(a)

a

f

g h

k l

T ′

(b)

c d e· · · f1 2 3 4 5 6 7 8 · · · c b9 10 11 12 · · ·b f e d

RL Tf

(c)

Fig. 14. (a) A general tree 𝑇 . The gray subtrees are 𝐵-light subtrees and every node not in a 𝐵-light subtree is
a 𝐵-heavy node. (b) The corresponding tree 𝑇 ′ according to the proof of Lemma 4.1. (c) How 𝑇 is stored in
memory and the two segments of memory that correspond to the edge (𝑎, 𝑓) in 𝑇 ′.

stored together with 𝑢 in memory. For general trees, together with 𝑢 we need to store a list of

arbitrary size 𝑖 containing the positions in memory of every child of 𝑢. To avoid complicating the

presentation of the proof, we assume that we can find the position in memory of every child of 𝑢

without this list, i.e., this list is not stored together with 𝑢, thus finding the position of any child

of 𝑢 incurs no I/Os. An easy way to support this is to store in every node 𝑢 in 𝑇 , one pointer to the

first child and one pointer to the sibling appearing next in memory.

Define a node 𝑢 in 𝑇 to be 𝐵-light if 2|𝑇𝑢 | ≤ 𝐵 − 2, otherwise the node is said to be 𝐵-heavy (see

Figure 14a). Observe that the children of a 𝐵-light node are all 𝐵-light. We consider the following

disjoint partition of the sets of nodes from 𝑇 :

𝑆1: 𝐵-light nodes,

𝑆2: 𝐵-heavy nodes with no 𝐵-heavy child,

𝑆3: 𝐵-heavy nodes with at least two 𝐵-heavy children, and

𝑆4: 𝐵-heavy nodes with exactly one 𝐵-heavy child.

For a 𝐵-light node 𝑤 ′
with 𝐵-heavy parent 𝑤 in 𝑇 , we say that 𝑇𝑤′ is a 𝐵-light subtree. The

node𝑤 can be either in 𝑆2, 𝑆3, or 𝑆4. Since 2|𝑇𝑤′ | ≤ 𝐵 − 2, at most O(1) I/O are sufficient to visit all

nodes in 𝑇𝑤′ . Below we charge these I/Os to visiting𝑤 .

Similarly to the proof of Lemma 3.5, we have that |𝑆2 | = O(𝑛/𝐵) and |𝑆3 | = O(𝑛/𝐵). Let 𝑇 ′
be

defined as in the proof of Lemma 3.5, as well as 𝑃 (𝑢,𝑣) and 𝐶 (𝑢,𝑣) for an edge (𝑢, 𝑣) in 𝑇 ′
. Since 𝑇 is

non-binary, we have to argue that the number of I/Os spent traversing the 𝐵-light subtrees that

are rooted at every node in 𝑆2 and 𝑆3 is O(𝑛/𝐵). For a node 𝑢 in 𝑇 , let 𝐺𝑢 be the size of all 𝐵-light

subtrees rooted at a child of 𝑢. For every node 𝑢 in 𝑆2, all children are 𝐵-light subtrees. We spend at

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:21

ParserInput

T1

T2

Algorithm

Fig. 15. Implementation overview.

mostO(1) I/Os to traverse the first child subtree of𝑢 andO(1+𝐺𝑢/𝐵) I/Os to traverse the remaining

𝐵-light subtrees left to right, thus O(1 +𝐺𝑢/𝐵) I/Os in total to traverse 𝑇𝑢 . Since |𝑆2 | = O(𝑛/𝐵) and
the 𝐵-light subtrees in𝑇 are disjoint, i.e.,

∑
𝑢∈𝑇 𝐺𝑢 = O(𝑛), we spend in total O(𝑛/𝐵) I/Os traversing

the subtrees rooted at the nodes in 𝑆2. For a node 𝑢 in 𝑆3, let 𝑑𝐻 (𝑢) denote the number of 𝐵-heavy

children of 𝑢. For a 𝐵-heavy node 𝑢, the number of consecutive groups of 𝐵-light subtrees rooted at

a child of 𝑢 are at most 1 + 𝑑𝐻 (𝑢). The I/O cost of traversing the 𝐵-light subtrees rooted at a child

of 𝑢 is O(1 + 𝑑𝐻 (𝑢) +𝐺𝑢/𝐵), where the +1 comes from the I/Os to traverse the first 𝐵-light child (if

the first child visited is 𝐵-light, then this can by anywhere in the layout of the children), +𝑑𝐻 (𝑢)
for traversing the first 𝐵-light subtree in each group, and +𝐺𝑢/𝐵 to traverse the remaining 𝐵-light

trees from left to right. Since |𝑆3 | = O(𝑛/𝐵), we have ∑𝑢∈𝑇 ′ 𝑑𝐻 (𝑢) = O(𝑛/𝐵). Together with the

fact that

∑
𝑢∈𝑇 𝐺𝑢 = O(𝑛), we spend O(𝑛/𝐵) I/Os traversing the 𝐵-light subtrees rooted at every

node in 𝑆3.

We now argue that the total number of I/Os incurred by the nodes in 𝑆4 and the 𝐵-light subtrees

rooted at the children of nodes in 𝑆4 is O(𝑛/𝐵), thus proving the statement. By the local layout,

the nodes in 𝐶 (𝑢,𝑣) are stored in two segments of memory 𝐿 and 𝑅 to the left and right of the

layout of 𝑇𝑣 , respectively (see Figure 14c). Let𝑤 be a node in 𝑃 (𝑢,𝑣) and 𝐺𝑤 be the total size of the

𝐵-light subtrees rooted at a child of𝑤 . We say that𝑤 is𝐺-light if 2𝐺𝑤 ≤ 𝐵 − 2, otherwise𝐺-heavy.

There can be O(𝑛/𝐵) 𝐺-heavy nodes in𝑇 , thus by the same argument as in the previous paragraph,

scanning the 𝐵-light subtrees for all 𝐺-heavy nodes together incurs O(𝑛/𝐵) I/Os. For the 𝐺-light
nodes we follow a similar argument as in the proof of Lemma 3.5. and w.l.o.g. assume that every

node in 𝑃 (𝑢,𝑣) is𝐺-light. During the depth-first traversal we on the way down along 𝑃 (𝑢,𝑣) alternate
to visit 𝐿 from left to right and 𝑅 from right to left, and then on the way up along 𝑃 (𝑢,𝑣) alternate to
visit 𝐿 from right to left and 𝑅 and from left to right. Let 𝑐 be the child of𝑤 that is 𝐵-heavy. Since

for every node 𝑤 in 𝑃 (𝑢,𝑣) we have 2𝐺𝑤 ≤ 𝐵 − 2, by accessing both copies of 𝑤 and 𝑐 when 𝑐 is

visited in a depth-first traversal of 𝑇 , we guarantee that all the 𝐵-light subtrees rooted at𝑤 are in

cache, i.e., they can be accessed in memory for free. Hence, O(𝑛/𝐵) I/Os are sufficient to pay to

traverse the 𝐵-light subtrees of all 𝐺-light nodes. □

5 IMPLEMENTATION
The algorithms of Sections 3 and 4 have been implemented in the C++ programming language. A

high level overview of each implementation is illustrated in Figure 15. The source code is publicly

available and can be found at https://github.com/kmampent/CacheTD.

5.1 Input
The two input trees 𝑇1 and 𝑇2 are stored in two separate text files following the Newick format

(that is a local layout). Both trees have 𝑛 leaves and the label of each leaf is assumed to be a number

in {1, 2, . . . , 𝑛}. Two leaves cannot have the same label.

5.2 Parser
The parser receives the files that store 𝑇1 and 𝑇2 in Newick format, and returns 𝑇1 and 𝑇2 but now

with 𝑇1 stored in an array following the preorder layout and 𝑇2 in an array following the postorder

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

https://github.com/kmampent/CacheTD

1.2:22 G. S. Brodal and K. Mampentzidis

layout. The parser takes O(𝑛) time and space in the RAM model and O(𝑛/𝐵) I/Os in the cache

oblivious model.

5.3 Algorithm
Having 𝑇1 and 𝑇2 stored in memory following the desired layouts, we proceed with the main part

of the algorithm. Both implementations (binary, general) follow the same approach. There exists

an initialization step and a distance computation step.

5.3.1 Initialization. In the initialization step, the preprocessing parts of the algorithms are per-

formed (see Sections 3.3 and 4.2), where the first component of 𝑇1 is built, and the corresponding

contracted version of 𝑇2, from now on referred to as corresponding component of 𝑇2, is built as well.
After this step, the first component of 𝑇1 is stored in an array (different than the one produced by

the parser) following the preorder layout. Similarly, the corresponding component of𝑇2 is stored in

an array following the postorder layout.

5.3.2 Distance Computation. Let comp(𝑇1) and comp(𝑇2) be the component of 𝑇1 and the corre-

sponding component of 𝑇2 produced by the initialization step. Having these two components

available, we can begin counting shared triplets in order to compute 𝑆 (𝑇1,𝑇2). The following steps

are recursively applied:

• Starting from the root of comp(𝑇1) and according to Section 3.2, scan the leftmost path

of comp(𝑇1) to find the splitting node 𝑢.

• Scan comp(𝑇2) to compute for the binary algorithm

∑
𝑣∈𝑇2 |𝑠 (𝑢) ∩ 𝑠 (𝑣) | (see counting phase

of 𝑇2 in Section 3.3), or for the general algorithm

∑
(𝑣,𝑐′) ∈𝑇2 |𝑠 ′′(𝑢, 𝑐) ∩ 𝑠 ′(𝑣, 𝑐 ′) | (see counting

phase of 𝑇2 in Section 4.2).

• Using the splitting node 𝑢, generate the next three components of 𝑇1. Let comp(𝑇1 (𝑢𝑙)),
comp(𝑇1 (𝑢𝑟)), and comp(𝑇1 (𝑢𝑝)) be the components determined by the left child, right child,

and parent of 𝑢 respectively. Let comp(𝑇2 (𝑢𝑙)), comp(𝑇2 (𝑢𝑟)) and comp(𝑇2 (𝑢𝑝)) be the corre-
sponding contracted versions of 𝑇2 with all the necessary counters properly maintained (see

contraction phase of 𝑇2 in Section 3.3 for the binary case and in Section 4.2 for the general

case).

• Scan and contract comp(𝑇2) to generate comp(𝑇2 (𝑢𝑙)) and then recurse on the pair defined by

comp(𝑇1 (𝑢𝑙)) and comp(𝑇2 (𝑢𝑙)).
• Scan and contract comp(𝑇2) to generate comp(𝑇2 (𝑢𝑟)) and then recurse on the pair defined

by comp(𝑇1 (𝑢𝑟)) and comp(𝑇2 (𝑢𝑟)).
• Scan and contract comp(𝑇2) to generate comp(𝑇2 (𝑢𝑝)) and then recurse on the pair defined

by comp(𝑇1 (𝑢𝑝)) and comp(𝑇2 (𝑢𝑝)).
As a final step, print

(
𝑛
3

)
− 𝑆 (𝑇1,𝑇2), which is equal to the triplet distance 𝐷 (𝑇1,𝑇2).

5.3.3 Correctness. The correctness of our implementations was extensively tested by generating

hundreds of thousands of random trees of varying size and varying degree and comparing the output

of our implementations against the output of the implementations of the O(𝑛 log3 𝑛) algorithm
in [14] and the O(𝑛 log𝑛) algorithm in [19].

5.3.4 Changing the Leaf Labels. To get the right theory bounds, changing the leaf labels of 𝑇1
and 𝑇2 must be done with a cache oblivious sorting routine, e.g., merge sort. In the RAM model

this approach takes O(𝑛 log𝑛) time and in the cache oblivious model O(𝑛
𝐵
log

2

𝑛
𝑀
) I/Os. A second

approach is to exploit the fact that each label is between 1 and 𝑛 and use an auxiliary array in

the preprocessing step that stores the new labels of the leaves in 𝑇1, which we then use to update

the leaf labels of 𝑇2. In the RAM model this second approach takes O(𝑛) time but in the cache

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:23

oblivious model O(𝑛) I/Os. For the input sizes tested, the array of labels easily fits into RAM, so in

our implementation of both algorithms we use the second approach.

6 EXPERIMENTS
In this section we provide an extensive experimental evaluation of the practical performance of the

algorithms described in Sections 3 and 4.

6.1 The Setup
The experiments were performed on a machine with 8GB RAM, Intel(R) Core(TM) i5-3470 CPU

@ 3.20GHz, 32K L1 cache, 256K L2 cache and 6144K L3 cache. The operating system was Ubuntu

16.04.2 LTS. The compilers used were g++ 5.4 and g++ 4.7 with optimization level -O3, together

with cmake 3.5.1. The experiments were performed in text mode, i.e., by booting into the terminal

of Ubuntu, to minimize the interference from other programs running at the same time.

6.1.1 Generating Random Trees. We use two different models for generating input trees. The first

model is called the random model. A tree 𝑇 with 𝑛 leaves in this model is generated as follows:

• Create a binary tree 𝑇 with 𝑛 leaves as follows: start with a binary tree 𝑇 with two leaves.

Iteratively pick 𝑛−1 times a leaf 𝑙 uniformly at random. Make 𝑙 an internal node by appending

a left child node and a right child node to 𝑙 , thus increasing the number of leaves in 𝑇 by

exactly 1.

• With probability 𝑝 contract every internal node 𝑢 of 𝑇 , i.e., make the children of 𝑢 be the

children of 𝑢’s parent and remove 𝑢.

Jansson et al. used similar input by contracting nodes of a random binary tree, although their initial

random binary trees were generated using the uniform model [15].

The second model is called the skewed model. In this model, we can control more directly the

shape of the input trees. A tree 𝑇 with 𝑛 leaves in this model is generated as follows:

• Create a binary tree 𝑇 with 𝑛 leaves as follows: let 0 ≤ 𝛼 ≤ 1 be a parameter, 𝑢 some internal

node in𝑇 , 𝑙 and 𝑟 the left and right children of 𝑢, and𝑇 (𝑢),𝑇 (𝑙), and𝑇 (𝑟) the subtrees rooted
at 𝑢, 𝑙 , and 𝑟 respectively. Create 𝑇 so that for every internal node 𝑢 we have

|𝑇 (𝑙) |
|𝑇 (𝑢) | ≈ 𝛼 ,

i.e., if 𝑛′
is the number of leaves below 𝑇 (𝑢), and |Λ𝑙 | and |Λ𝑟 | are the number of leaves

in 𝑇 (𝑙) and 𝑇 (𝑟) respectively, first choose |Λ𝑙 | = max(1,min(⌊𝛼 · 𝑛′⌋, 𝑛′ − 1)) and then let

|Λ𝑟 | = 𝑛′ − |Λ𝑙 |.
• With probability 𝑝 contract every internal node 𝑢 of 𝑇 ′

like in the random model.

Holt et al. [13] only considered perfectly balanced input trees, i.e., the special case 𝛼 = 0.5.

In both models and after creating 𝑇 , we shuffle the leaf labels by using std::shuffle1 together
with std::default_random_engine2.

6.1.2 Implementations Tested. Let 𝑝1 and 𝑝2 denote the contraction probability of 𝑇1 and 𝑇2 respec-

tively. When 𝑝1 = 𝑝2 = 0, the trees 𝑇1 and 𝑇2 are binary trees, so in the experiments we use the

algorithm from Section 3. In every other case, the algorithm from Section 4 is used. Note that the

algorithm from Section 4 can handle binary trees just fine, however there is an extra overhead

(factor 1.8 slower, see Figure 16) compared to the algorithm from Section 3 that comes due to the

additional counters that we maintain in the contractions of 𝑇2.

We compared our implementation with previous implementations of [14] and [5, 18] available at

http://sunflower.kuicr.kyoto-u.ac.jp/~jj/Software/Software.html and http://users-cs.au.dk/cstorm/

1
http://www.cplusplus.com/reference/algorithm/shuffle/

2
http://www.cplusplus.com/reference/random/default_random_engine/

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

http://sunflower.kuicr.kyoto-u.ac.jp/~jj/Software/Software.html
http://users-cs.au.dk/cstorm/software/tqdist/
http://users-cs.au.dk/cstorm/software/tqdist/
http://www.cplusplus.com/reference/algorithm/shuffle/
http://users-cs.au.dk/cstorm/software/tqdist/
http://www.cplusplus.com/reference/random/default_random_engine/
http://users-cs.au.dk/cstorm/software/tqdist/

1.2:24 G. S. Brodal and K. Mampentzidis

software/tqdist/ respectively. The implementation of the O(𝑛 log3 𝑛) algorithm in [14] has two ver-

sions, one that uses unordered_map3, which we refer to as CPDT, and another that uses sparsehash4,
which we refer to as CPDTg. For binary input trees the hash maps are not used, thus CPDT and CPDTg
are the same. The tqDist library [19], which we refer to as tqDist, has an implementation of the

binary O(𝑛 log2 𝑛) algorithm from [18] and the general O(𝑛 log𝑛) algorithm from [5]. If the two

input trees are binary the O(𝑛 log2 𝑛) algorithm is used (since [13] showed that for binary trees

the O(𝑛 log2 𝑛) algorithm had a better practical performance than the O(𝑛 log𝑛) algorithm). We

refer to our new algorithm as CacheTD.

6.1.3 Statistics. We measured the execution time of the algorithms with the clock_gettime
function in C++. Due to the different parser implementations, we do not include the time taken to

parse the input trees in our plots. We used the PAPI library
5
for statistics related to instructions, L1,

L2, and L3 cache accesses and misses. Finally, we count the space of the algorithms by considering

the Maximum resident set size returned by /usr/bin/time -v.
On typical input the parsing time of our algorithm CacheTD was about 50% the parsing time of

tqDist on the same input, and 75% of the parsing time of CPDT and CPDTg. On input trees with

more than 1000 nodes the parsing time of CacheTD was about 20 – 25% of the total running time.

The initial relabelling (using a lookup table for the relabelling that fits into internal memory) and

construction of the components at the root of MCD(𝑇1) took about 10% of the computation time

of CacheTD.

6.2 Results
The experiments are divided into two parts. In the first part, we consider the performance of

the algorithms when their memory requirements do not exceed the available main memory (8G

RAM). In the second part, we consider the performance when the memory requirements exceed the

available main memory (by limiting the available RAM to the operating system to be 1GB), thus

forcing the operating system to start using the swap space, which in turn yields the very expensive

disk I/Os. All figures can be found in Appendix A.

6.2.1 RAM experiments in the Random Model. In Figure 17 we illustrate a time comparison of all

implementations for trees of up to 2
21
leaves (∼ 2 million) with varying contraction probabilities.

Every experiment is run 10 times, and each time on a different tree. All 10 data points are depicted

together with a line that goes over their median. The compilers used were g++ 5.4 with cmake 3.5.1

for tqDist and g++ 5.4 for CPDT, CPDTg, and CacheTD. In all cases, CacheTD achieves the best

performance. We note that for the case where 𝑝1 = 0.95 and 𝑝2 = 0.2, CPDT behaves in a different

way compared to the experiments in [14]. The same can be observed for the case where 𝑝1 = 0.8

and 𝑝2 = 0.8. The reason is of the differences in the implementation of unordered_map that exist
between the different versions of the g++ compilers. In Figure 18 we compare the performance

of CPDT when compiled with g++ 4.7 and g++ 5.4. When 𝑝1 is large, i.e., 𝑝1 = 0.8 and 𝑝1 = 0.95,

we observe that the older version of g++ achieves a better performance. For all other values of 𝑝1,

the version of the compiler has no effect on the performance. In Figure 19 we have another time

comparison of all implementations but now with CPDT compiled in g++ 4.7. The new algorithm

achieves the best performance again, but now the behaviour of CPDT is more stable when 𝑝1 is

large. From now on, in every RAM experiment CPDT is compiled in g++ 4.7.

3
http://en.cppreference.com/w/cpp/container/unordered_map

4
https://github.com/sparsehash/sparsehash

5
http://icl.utk.edu/papi/

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

http://users-cs.au.dk/cstorm/software/tqdist/
http://users-cs.au.dk/cstorm/software/tqdist/
http://en.cppreference.com/w/cpp/container/unordered_map
https://github.com/sparsehash/sparsehash
http://icl.utk.edu/papi/

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:25

In Figure 20 we show the space consumption of the algorithms. CacheTD is the only algorithm that

uses O(𝑛) space for both binary and general trees. In theory we expect that the space consumption

is better and this is also what we get in practice.

In Figures 21 and 22 we can see how the contraction parameter affects the running time and the

space consumption of the algorithms respectively.

Finally, in Figures 23, 24 and 25 we compare the cache performance of the algorithms, i.e.,

how many cache misses (L1, L2 and L3 respectively) the algorithms perform for increasing input

sizes and varying contraction parameters. As expected, the new algorithm achieves a significant

improvement over all previous algorithms.

6.2.2 RAM experiments in the Skewed Model. The main interesting experimental results are illus-

trated in Figure 26, where we plot the alpha parameter against the execution time of the algorithms,

when 𝑛 = 2
21
. The alpha parameter has the least effect on CacheTD, with the maximum running

time in every graph of Figure 26 being only a factor of 1.15 larger than the minimum. As mentioned

in Section 2, CPDT and CPDTg use the heavy-light decomposition for 𝑇2. For binary trees, when 𝛼

approaches 0 or 1, the number of heavy paths that have to be updated because of a leaf color change

decreases, thus the total number of operations of the algorithm decreases as well. We can verify

this in Figure 27, where we have the plots of the alpha parameter against the instructions. The

same cannot be said for all general trees, since the contraction parameters have an effect on the

shape of the trees as well. In Figures 28, 29, and 30 we have the same graphs but for L1, L2, and L3

cache misses respectively.

Table 2. Random model: Time performance when limiting the available RAM to be 1GB. For the left table we
have 𝑝1 = 𝑝2 = 0 and for the right table 𝑝1 = 𝑝2 = 0.5.

𝑛 CPDT tqDist CacheTD

2
15

0m:01s 0m:01s 0m:01s

2
16

0m:01s 0m:02s 0m:01s

2
17

0m:01s 0m:04s 0m:01s

2
18

0m:02s 1m:03s 0m:01s

2
19

0m:04s 1h:21m 0m:01s

2
20

0m:09s 0% 0m:01s

2
21

13m:12s - 0m:03s

2
22 0% - 0m:09s

2
23

- - 3m:37s

2
24

- - 10m:35s

𝑛 CPDT CPDTg tqDist CacheTD

2
15

0m:01s 0m:01s 0m:01s 0m:01s

2
16

0m:01s 0m:01s 0m:01s 0m:01s

2
17

0m:01s 0m:01s 0m:03s 0m:01s

2
18

0m:03s 0m:03s 0m:07s 0m:01s

2
19

0m:07s 0m:07s 5m:20s 0m:01s

2
20

3m:43s 1h:13m 0% 0m:02s

2
21 15% 0% - 0m:20s

2
22

- - - 2m:02s

2
23

- - - 10m:42s

2
24

- - - 42m:06s

6.2.3 I/O experiments. In Figures 31 and 32 we illustrate the time, space, and I/O performance in

the random and skewed model respectively. Every implementation was compiled with g++ 5.4.

Every experiment is run 5 times, each on a different tree. Like in the RAM experiments, all 5 data

points are displayed together with a line that passes through the median. To measure the execution

time, we used the time function of Ubuntu and thus also took into account the time taken to parse

the input trees. For the input trees of size 2
23
and 2

24
we used the 128 bit implementation of the

new algorithms in order to avoid overflows.

Unlike CacheTD, the performance of CPDT, CPDTg, and tqDist deteriorates significantly from the

moment they start performing disk I/Os. Only CacheTD managed to finish running in a reasonable

amount of time for all input sizes. For every other algorithm, some data points are missing because

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

1.2:26 G. S. Brodal and K. Mampentzidis

Table 3. Skewed model: Time performance when limiting the available RAM to be 1GB. For both tables we
have 𝛼 = 0.5. For the left table we have 𝑝1 = 𝑝2 = 0 and for the right table 𝑝1 = 𝑝2 = 0.5.

𝑛 CPDT tqDist CacheTD

2
15

0m:01s 0m:01s 0m:01s

2
16

0m:01s 0m:02s 0m:01s

2
17

0m:01s 0m:05s 0m:01s

2
18

0m:02s 0m:54s 0m:01s

2
19

0m:05s 50m:38s 0m:01s

2
20

0m:13s 0% 0m:01s

2
21

20m:02s - 0m:03s

2
22 0% - 0m:09s

2
23

- - 3m:46s

2
24

- - 13m:36s

𝑛 CPDT CPDTg tqDist CacheTD

2
15

0m:01s 0m:01s 0m:01s 0m:01s

2
16

0m:01s 0m:01s 0m:01s 0m:01s

2
17

0m:01s 0m:01s 0m:03s 0m:01s

2
18

0m:03s 0m:03s 0m:06s 0m:01s

2
19

0m:07s 0m:07s 3m:21s 0m:01s

2
20

6m:24s 2h:31m 7h:51m 0m:02s

2
21 12% 0% - 0m:19s

2
22

- - - 1m:58s

2
23

- - - 9m:42s

2
24

- - - 38m:19s

the execution time required was too big. To get an idea of how big, in Tables 2 and 3 we again

have the time performance of the algorithms in the random and skewed models respectively. This

is the exact same time performance as depicted in Figures 31 and 32, however we also include

some information about how well the algorithms performed on the extra data point that is missing

from the figures. We set a time limit of 10 hours, and only for one pair of input trees 𝑇1 and 𝑇2 we

measured for how many nodes of 𝑇1 the value of
∑

𝑣∈𝑇2 |𝑠 (𝑢) ∩ 𝑠 (𝑣) | was found. Some algorithms

managed to process only 0% of the total nodes in 𝑇1, which means that they had to spend most

of the time in the preprocessing step (e.g. constructing the HDT of 𝑇2). The only algorithm that

managed to produce a result was tqDist, requiring close to 8 hours for trees with 2
20
leaves (see

Table 3).

7 CONCLUSION
In this paper we presented two cache oblivious algorithms for computing the triplet distance

between two rooted unordered trees, one that works for binary trees and one that works for

arbitrary degree trees. Both require O(𝑛 log𝑛) time in the RAM model and O(𝑛
𝐵
log

2

𝑛
𝑀
) I/Os in

the cache oblivious model. We implemented the algorithms in C++ and showed with experiments

that their performance surpasses the performance of previous implementations for this problem. In

particular, our algorithms are the first to scale to external memory.

Future work and open problems involve the following:

• Could the new algorithms be improved so that in the analysis, the base of the logarithm

becomes 𝑀/𝐵, thus giving the sorting bound in the cache oblivious model? Would the

resulting algorithm be even more efficient in practice?

• Is it possible to compute the triplet distance in O(𝑛) time?

• For the quartet distance computation, could we apply similar techniques to those described

in Section 3 and 4 in order to get an algorithm with better time bounds in the RAM model

that also scales to external memory?

REFERENCES
[1] A. Aggarwal and J. S. Vitter. 1988. The Input/Output Complexity of Sorting and Related Problems. Commun. ACM 31,

9 (1988), 1116–1127. https://doi.org/10.1145/48529.48535

[2] Lars Arge, Gerth Stølting Brodal, Jakob Truelsen, and Constantinos Tsirogiannis. 2013. An Optimal and Practical

Cache-Oblivious Algorithm for Computing Multiresolution Rasters. In Proceedings 21st Annual European Symposium on

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

https://doi.org/10.1145/48529.48535

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:27

Algorithms (Lecture Notes in Computer Science), Hans L. Bodlaender and Giuseppe F. Italiano (Eds.), Vol. 8125. Springer,

61–72. https://doi.org/10.1007/978-3-642-40450-4_6

[3] M. S. Bansal, J. Dong, and D. Fernández-Baca. 2011. Comparing and Aggregating Partially Resolved Trees. Theoretical
Computer Science 412, 48 (2011), 6634–6652. https://doi.org/10.1016/j.tcs.2011.08.027

[4] V. Berry and O. Gascuel. 2000. Inferring Evolutionary Trees with Strong Combinatorial Evidence. Theoretical Computer
Science 240, 2 (2000), 271–298. https://doi.org/10.1016/S0304-3975(99)00235-2

[5] G. S. Brodal, R. Fagerberg, C. N. S. Pedersen, T. Mailund, and A. Sand. 2013. Efficient Algorithms for Computing

the Triplet and Quartet Distance Between Trees of Arbitrary Degree. In Proceedings of the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 1814–1832. https://doi.org/10.

1137/1.9781611973105.130

[6] Gerth Stølting Brodal, Rolf Fagerberg, and Kristoffer Vinther. 2007. Engineering a cache-oblivious sorting algorithm.

ACM Journal of Experimental Algorithmics 12, Article No. 2.2 (2007), 1–23. https://doi.org/10.1145/1227161.1227164

[7] D. E. Critchlow, D. K. Pearl, and C. L. Qian. 1996. The Triples Distance for Rooted Bifurcating Phylogenetic Trees.

Systematic Biology 45, 3 (1996), 323–334. https://doi.org/10.1093/sysbio/45.3.323

[8] W. H. E. Day. 1985. Optimal Algorithms for Comparing Trees with Labeled Leaves. Journal of Classification 2, 1 (1985),

7–28. https://doi.org/10.1007/BF01908061

[9] A. J. Dobson. 1975. Comparing the shapes of trees. In Combinatorial Mathematics III, A. P. Street and W. D. Wallis

(Eds.). Lecture Notes in Mathematics, Vol. 452. Springer Berlin Heidelberg, 95–100. https://doi.org/10.1007/BFb0069548

[10] Bartlomiej Dudek and Pawel Gawrychowski. 2019. Computing quartet distance is equivalent to counting 4-cycles. In

Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC, Moses Charikar and Edith

Cohen (Eds.). ACM, 733–743. https://doi.org/10.1145/3313276.3316390

[11] G. F. Estabrook, F. R. McMorris, and C. A. Meacham. 1985. Comparison of Undirected Phylogenetic Trees Based on

Subtrees of Four Evolutionary Units. Systematic Zoology 34, 2 (1985), 193–200. https://doi.org/10.2307/2413326

[12] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. 1999. Cache-Oblivious Algorithms. In Proceedings of the
40th Annual Symposium on Foundations of Computer Science. IEEE Computer Society, 285–297. https://doi.org/10.1109/

SFFCS.1999.814600

[13] M. K. Holt, J. Johansen, and G. S. Brodal. 2014. On the Scalability of Computing Triplet and Quartet Distances.

In Proceedings of the 16th Workshop on Algorithm Engineering and Experiments. Society for Industrial and Applied

Mathematics, 9–19. https://doi.org/10.1137/1.9781611973198.2

[14] J. Jansson and R. Rajaby. 2015. A More Practical Algorithm for the Rooted Triplet Distance. In Proceedings of the
2nd International Conference on Algorithms for Computational Biology. Springer International Publishing, 109–125.
https://doi.org/10.1007/978-3-319-21233-3_9

[15] J. Jansson and R. Rajaby. 2017. A More Practical Algorithm for the Rooted Triplet Distance. Journal of Computational
Biology 24, 2 (2017), 106–126. https://doi.org/10.1089/cmb.2016.0185

[16] D. F. Robinson and L. R. Foulds. 1981. Comparison of Phylogenetic trees. Mathematical Biosciences 53, 1 (1981), 131–147.
https://doi.org/10.1016/0025-5564(81)90043-2

[17] N. Saitou and M. Nei. 1987. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees.

Molecular Biology and Evolution 4, 4 (1987), 406. https://doi.org/10.1093/oxfordjournals.molbev.a040454

[18] A. Sand, G. S. Brodal, R. Fagerberg, C. N. S. Pedersen, and T. Mailund. 2013. A practical𝑂 (𝑛 log
2 𝑛) time algorithm

for computing the triplet distance on binary trees. BMC Bioinformatics 14, 2 (2013), S18. https://doi.org/10.1186/

1471-2105-14-S2-S18

[19] A. Sand, M. K. Holt, J. Johansen, G. S. Brodal, T. Mailund, and C. N. S. Pedersen. 2014. tqDist: A Library for Computing

the Quartet and Triplet Distances Between Binary or General Trees. Bioinformatics 30, 14 (2014), 2079. https:

//doi.org/10.1093/bioinformatics/btu157

[20] A. Sand, M. K. Holt, J. Johansen, R. Fagerberg, G. S. Brodal, C. N. S. Pedersen, and T. Mailund. 2013. Algorithms for

Computing the Triplet and Quartet Distances for Binary and General Trees. Biology - Special Issue on Developments in
Bioinformatic Algorithms 2, 4 (2013), 1189–1209. https://doi.org/10.3390/biology2041189

[21] J. von Neumann. 1993. First Draft of a Report on the EDVAC. IEEE Annals of the History of Computing 15, 4 (1993),

27–75. https://doi.org/10.1109/85.238389

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

https://doi.org/10.1007/978-3-642-40450-4_6
https://doi.org/10.1016/j.tcs.2011.08.027
https://doi.org/10.1016/S0304-3975(99)00235-2
https://doi.org/10.1137/1.9781611973105.130
https://doi.org/10.1137/1.9781611973105.130
https://doi.org/10.1145/1227161.1227164
https://doi.org/10.1093/sysbio/45.3.323
https://doi.org/10.1007/BF01908061
https://doi.org/10.1007/BFb0069548
https://doi.org/10.1145/3313276.3316390
https://doi.org/10.2307/2413326
https://doi.org/10.1109/SFFCS.1999.814600
https://doi.org/10.1109/SFFCS.1999.814600
https://doi.org/10.1137/1.9781611973198.2
https://doi.org/10.1007/978-3-319-21233-3_9
https://doi.org/10.1089/cmb.2016.0185
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1186/1471-2105-14-S2-S18
https://doi.org/10.1186/1471-2105-14-S2-S18
https://doi.org/10.1093/bioinformatics/btu157
https://doi.org/10.1093/bioinformatics/btu157
https://doi.org/10.3390/biology2041189
https://doi.org/10.1109/85.238389

1.2:28 G. S. Brodal and K. Mampentzidis

A EXPERIMENT FIGURES

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●
●●●

0

1

2

3

4

5

6

7

8

4 6 8 10 12 14 16 18 20 22

log2n

se
co

nd
s

● general binary

p1 = 0, p2 = 0

Fig. 16. CacheTD: performance of binary (Section 3) and general (Section 4) implementation on binary trees.
All data points of the 10 runs are visible in the figure. Each run is on a different tree and the line connects the
median of the runs.

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:29

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

2e−05

4e−05

6e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●
●
●
●
●●●●
●
● ●●●●●●●●●● ●●

●●
●
●
●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0e+00

2e−05

4e−05

8 10 12 14 16 18 20

log2n
se

co
nd

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●
●
●●●●●● ●

●
●
●●●
●
●
●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0e+00

2e−05

4e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●
● ●●●●●●●●●● ●●●●

●
●●●●● ●●●●●●●●

●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
0e+00

2e−05

4e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
0e+00

2e−05

4e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0.0e+00

2.5e−05

5.0e−05

7.5e−05

1.0e−04

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Fig. 17. Random model: Time performance, where CPDT is compiled in g++ version 5.4.

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

1.2:30 G. S. Brodal and K. Mampentzidis

●
●
●

●

●

●

●●
●
●

●●●●●●●●●●

●●●
●●●●●●●

●●●●

●●
●●●●

●●●
●
●
●
●
●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●

●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

0.0e+00

2.5e−05

5.0e−05

7.5e−05

1.0e−04

8 10 12 14 16 18 20

log2(n)

se
co

nd
s

/ n

● v4.7 v5.4

p1 = 0, p2 = 0

●
●
●
●

●

●
●
●

●

●

●●
●●●●●●●●

●●●●●

●

●●●●

●

●
●

●
●

●●●●● ●
●●●
●
●
●
●
●●

●●
●●
●●
●●●●

●
●●●●●●●●● ●●●●●●●

●
●● ●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

2.5e−05

5.0e−05

7.5e−05

1.0e−04

8 10 12 14 16 18 20

log2(n)
se

co
nd

s
/ n

● v4.7 v5.4

p1 = 0.95, p2 = 0.2

●

●●●●

●

●●
●
●

●●●●●●●●
●
●

●●●●●●●

●●

●

●

●
●

●
●
●
●●●●

●●●
●
●●●

●●
● ●●●●●●●

●●
● ●

●

●●●●●●●● ●●●●●●●
●
●
● ●

●
●●●●●●●● ●●●

●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●

●●●●
●
●●●●●

2e−05

4e−05

6e−05

8 10 12 14 16 18 20

log2(n)

se
co

nd
s

/ n

● v4.7 v5.4

p1 = 0.5, p2 = 0.5 ●●●●
●
●●●●
●

●

●

●●●●●●●●

●

●
●●
●
●●●●

●

●●●●●●●●●● ●
●
●
●
●
●●
●●
●

●●●
●
●●●
●
●● ●

●
●●●
●
●
●●
● ●

●●●●●●●
●● ●●●

●●●●●●
● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

1e−05

2e−05

3e−05

4e−05

5e−05

8 10 12 14 16 18 20

log2(n)

se
co

nd
s

/ n

● v4.7 v5.4

p1 = 0.8, p2 = 0.8

●●●

●
●

●●

●●●

●
●

●

●●●●●●●

●
●●●●●●●●● ●

●
●
●

●●

●●
●

●

●●●
●●●●●●●

●●
●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0.0e+00

2.5e−05

5.0e−05

7.5e−05

1.0e−04

8 10 12 14 16 18 20

log2(n)

se
co

nd
s

/ n

● v4.7 v5.4

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●

0

50

100

150

200

8 10 12 14 16 18 20

log2(n)

se
co

nd
s

/ n

● v4.7 v5.4

p1 = 0.95, p2 = 0.2

Fig. 18. Random model: Time performance of CPDT when compiled with g++ 4.7 and g++ 5.4.

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:31

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

2e−05

4e−05

6e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●
●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●
●● ●●●●●●●●●● ●●●

●
●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0e+00

2e−05

4e−05

6e−05

8 10 12 14 16 18 20

log2n
se

co
nd

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●
● ●●●●●●●●

●● ●●●●●●●●●● ●●●●
●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●●
●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0e+00

2e−05

4e−05

6e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

2e−05

4e−05

6e−05

8e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
0e+00

1e−05

2e−05

3e−05

4e−05

5e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●
●●●●●●●● ●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
0e+00

2e−05

4e−05

6e−05

8 10 12 14 16 18 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Fig. 19. Random model: Time performance, where CPDT is compiled in g++ version 4.7.

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

1.2:32 G. S. Brodal and K. Mampentzidis

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

5

10

15

10 12 14 16 18 20

log2(n)

sp
ac

e(
kb

yt
es

)
/ n

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

5

10

15

10 12 14 16 18 20

log2(n)
sp

ac
e(

kb
yt

es
)

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
0

5

10

15

10 12 14 16 18 20

log2(n)

sp
ac

e(
kb

yt
es

)
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
0

5

10

15

10 12 14 16 18 20

log2(n)

sp
ac

e(
kb

yt
es

)
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
0

5

10

15

10 12 14 16 18 20

log2(n)

sp
ac

e(
kb

yt
es

)
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
0

5

10

15

10 12 14 16 18 20

log2(n)

sp
ac

e(
kb

yt
es

)
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Fig. 20. Random model: Space performance.

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:33

●
●

●

●
●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●●

●●●

●
●
●●
●

●
●
●●
●
●
●

●

●●
●
●●●●
●

●

●
●●

●●●●
●●●●●●

●
●
●●●●●

●
●
●

●
●●
●
●
●
●●●●

●●

●

●●
●●●
●
●

●●●●●
●●●●●

5.0e−06

1.0e−05

1.5e−05

2.0e−05

12 14 16 18 20

log2(n)

se
co

nd
s

/ n

p1 : p2
● 0.2 : 0.2

0.5 : 0.5
0.8 : 0.8
0.2 : 0.95

0.95 : 0.2
0 : 0

CPDT

●●

●

●
●

●

●

●
●●

●●●●

●

●

●●

●● ●●

●●

●

●

●
●●●

●
●●
●
●
●●
●●
●

●●
●
●
●
●
●
●●●

●●
●●
●
●●
●
●●

●
●

●●●●●
●●
●

●
●●
●
●
●●●●
●

●●
●

●●●●●

●

●

●●
●●
●
●●
●●●

5.0e−06

1.0e−05

1.5e−05

2.0e−05

12 14 16 18 20

log2(n)
se

co
nd

s
/ n

p1 : p2
● 0.2 : 0.2

0.5 : 0.5
0.8 : 0.8
0.2 : 0.95

0.95 : 0.2
0 : 0

CPDTg

●●●●●

●

●

●●
● ●●●

●

●●

●
●●

●
●
●
●
●●●●●●●

●
●
●
●
●●●
●
●●

●●●●
●●●●●●

●

●
●●●●●
●
●●

●
●●●●●
●●
●●

●●●

●●●●
●
●●

●
●
●
●●●

●●●

●

●
●

●●
●
●

●

●●

●

2e−05

4e−05

6e−05

12 14 16 18 20

log2(n)

se
co

nd
s

/ n

p1 : p2
● 0.2 : 0.2

0.5 : 0.5
0.8 : 0.8
0.2 : 0.95

0.95 : 0.2
0 : 0

tqDist
●

●

●●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●●●●
●
●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●●●
●●●
●

●●●●●●●●●●

●●●●●●●
●
●
●

●●
●
●●●●●●
●

●●●●
●●
●●●●

●●●●●●
●●
●
●

1.0e−06

1.5e−06

2.0e−06

12 14 16 18 20

log2(n)

se
co

nd
s

/ n

p1 : p2
● 0.2 : 0.2

0.5 : 0.5
0.8 : 0.8
0.2 : 0.95

0.95 : 0.2
0 : 0

CacheTD

Fig. 21. Random model: How the contraction parameter affects execution time.

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

1.2:34 G. S. Brodal and K. Mampentzidis

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

1.0

1.5

2.0

2.5

12 14 16 18 20

log2(n)

sp
ac

e(
kb

yt
es

)
/ n

p1 : p2
● 0.2 : 0.2

0.5 : 0.5
0.8 : 0.8
0.2 : 0.95

0.95 : 0.2
0 : 0

CPDT
●●●●●●●●
●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

1.0

1.5

2.0

2.5

12 14 16 18 20

log2(n)
sp

ac
e(

kb
yt

es
)

/ n

p1 : p2
● 0.2 : 0.2

0.5 : 0.5
0.8 : 0.8
0.2 : 0.95

0.95 : 0.2
0 : 0

CPDTg

●●●●●●●●●●

●●●●●●●●●●

●●
●

●●

●

●●
●
●

●

●●●●●
●●●●

●●●●●●●●
●●

●

●●●●●●

●

●●

●●●●
●●●
●●
●

●●

●
●

●

●

●

●

●●

●
●

●
●

●
●

●

●
●

●

●
●
●●
●
●
●

●

●
●

2

3

4

5

6

12 14 16 18 20

log2(n)

sp
ac

e(
kb

yt
es

)
/ n

p1 : p2
● 0.2 : 0.2

0.5 : 0.5
0.8 : 0.8
0.2 : 0.95

0.95 : 0.2
0 : 0

tqDist
●●

●

●
●
●●
●●●

●●●

●●●

●
●

●
●

●
●●
●●●●●●

●

●●●●

●
●

●
●
●●

●
●●
●
●●
●
●
●
● ●

●

●●
●●
●●
●● ●●●●

●
●●●
●●

●
●●
●●●
●●●
● ●

●●●
●
●
●●●●

●
●
●●
●
●
●

●
●
●

0.5

1.0

1.5

12 14 16 18 20

log2(n)

sp
ac

e(
kb

yt
es

)
/ n

p1 : p2
● 0.2 : 0.2

0.5 : 0.5
0.8 : 0.8
0.2 : 0.95

0.95 : 0.2
0 : 0

CacheTD

Fig. 22. Random model: How the contraction parameter affects space.

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:35

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

1000

2000

3000

4000

5000

10 12 14 16 18 20

log2(n)

L1
_m

is
se

s
/ n

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

1000

2000

3000

4000

10 12 14 16 18 20

log2(n)
L1

_m
is

se
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

1000

2000

3000

10 12 14 16 18 20

log2(n)

L1
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

500

1000

10 12 14 16 18 20

log2(n)

L1
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

500

1000

1500

10 12 14 16 18 20

log2(n)

L1
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●

0

250

500

750

10 12 14 16 18 20

log2(n)

L1
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Fig. 23. Random model: L1 cache misses.

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

1.2:36 G. S. Brodal and K. Mampentzidis

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

1000

2000

10 12 14 16 18 20

log2(n)

L2
_m

is
se

s
/ n

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

500

1000

1500

2000

10 12 14 16 18 20

log2(n)
L2

_m
is

se
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

500

1000

1500

10 12 14 16 18 20

log2(n)

L2
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

200

400

600

800

10 12 14 16 18 20

log2(n)

L2
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

250

500

750

1000

10 12 14 16 18 20

log2(n)

L2
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

200

400

10 12 14 16 18 20

log2(n)

L2
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Fig. 24. Random model: L2 cache misses.

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:37

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

500

1000

1500

10 12 14 16 18 20

log2(n)

L3
_m

is
se

s
/ n

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

500

1000

10 12 14 16 18 20

log2(n)
L3

_m
is

se
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

250

500

750

1000

10 12 14 16 18 20

log2(n)

L3
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

100

200

300

400

10 12 14 16 18 20

log2(n)

L3
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

200

400

10 12 14 16 18 20

log2(n)

L3
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
0

100

200

300

10 12 14 16 18 20

log2(n)

L3
_m

is
se

s
/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Fig. 25. Random model: L3 cache misses.

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

1.2:38 G. S. Brodal and K. Mampentzidis

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

50

100

0.2 0.4 0.6 0.8
α

se
co

nd
s

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

30

60

90

0.2 0.4 0.6 0.8
α

se
co

nd
s

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

25

50

75

0.2 0.4 0.6 0.8
α

se
co

nd
s

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

10

20

30

40

0.2 0.4 0.6 0.8
α

se
co

nd
s

● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0

10

20

30

40

50

0.2 0.4 0.6 0.8
α

se
co

nd
s

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

10

20

30

0.2 0.4 0.6 0.8
α

se
co

nd
s

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Fig. 26. Skewed model: Running time (𝑛 = 2
21).

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:39

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0.0e+00

5.0e+10

1.0e+11

1.5e+11

2.0e+11

0.2 0.4 0.6 0.8
α

in
st

ru
ct

io
ns

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

5.0e+10

1.0e+11

1.5e+11

2.0e+11

0.2 0.4 0.6 0.8
α

in
st

ru
ct

io
ns

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

5.0e+10

1.0e+11

1.5e+11

0.2 0.4 0.6 0.8
α

in
st

ru
ct

io
ns

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●

1e+10

2e+10

3e+10

4e+10

5e+10

6e+10

0.2 0.4 0.6 0.8
α

in
st

ru
ct

io
ns

● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

2.5e+10

5.0e+10

7.5e+10

1.0e+11

0.2 0.4 0.6 0.8
α

in
st

ru
ct

io
ns

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●
●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●

●● ●
●●●
●●
●
●●●

●●
●●●●
●●●● ●●

●
●●
●
●●●●

●●●●●●●●●
●

2.0e+10

2.5e+10

3.0e+10

3.5e+10

4.0e+10

4.5e+10

0.2 0.4 0.6 0.8
α

in
st

ru
ct

io
ns

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Fig. 27. Skewed model: Instructions (𝑛 = 2
21).

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

1.2:40 G. S. Brodal and K. Mampentzidis

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

3e+09

6e+09

9e+09

0.2 0.4 0.6 0.8
α

L1
_m

is
se

s

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0.0e+00

2.5e+09

5.0e+09

7.5e+09

1.0e+10

0.2 0.4 0.6 0.8
α

L1
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0e+00

2e+09

4e+09

6e+09

0.2 0.4 0.6 0.8
α

L1
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

1e+09

2e+09

3e+09

0.2 0.4 0.6 0.8
α

L1
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0e+00

1e+09

2e+09

3e+09

4e+09

0.2 0.4 0.6 0.8
α

L1
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

5.0e+08

1.0e+09

1.5e+09

2.0e+09

0.2 0.4 0.6 0.8
α

L1
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Fig. 28. Skewed model: L1 cache misses (𝑛 = 2
21).

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:41

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

2e+09

4e+09

0.2 0.4 0.6 0.8
α

L2
_m

is
se

s

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

1e+09

2e+09

3e+09

4e+09

0.2 0.4 0.6 0.8
α

L2
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

1e+09

2e+09

3e+09

0.2 0.4 0.6 0.8
α

L2
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0.0e+00

5.0e+08

1.0e+09

1.5e+09

2.0e+09

0.2 0.4 0.6 0.8
α

L2
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0.0e+00

5.0e+08

1.0e+09

1.5e+09

2.0e+09

0.2 0.4 0.6 0.8
α

L2
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

0e+00

5e+08

1e+09

0.2 0.4 0.6 0.8
α

L2
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Fig. 29. Skewed model: L2 cache misses (𝑛 = 2
21).

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

1.2:42 G. S. Brodal and K. Mampentzidis

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

1e+09

2e+09

3e+09

0.2 0.4 0.6 0.8
α

L3
_m

is
se

s

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

1e+09

2e+09

3e+09

0.2 0.4 0.6 0.8
α

L3
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.2

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0.0e+00

5.0e+08

1.0e+09

1.5e+09

2.0e+09

0.2 0.4 0.6 0.8
α

L3
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

3e+08

6e+08

9e+08

0.2 0.4 0.6 0.8
α

L3
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.8, p2 = 0.8

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0.00e+00

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

0.2 0.4 0.6 0.8
α

L3
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.2, p2 = 0.95

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0e+00

2e+08

4e+08

6e+08

8e+08

0.2 0.4 0.6 0.8
α

L3
_m

is
se

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.95, p2 = 0.2

Fig. 30. Skewed model: L3 cache misses (𝑛 = 2
21).

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees 1.2:43

● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ●
●

●

0

20

40

60

80

100

120

140

15 16 17 18 19 20 21 22 23 24

log2(n)

m
in

ut
es

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●
●

●

●

0

10

20

30

40

50

60

70

80

15 16 17 18 19 20 21 22 23 24

log2(n)
m

in
ut

es

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

● ●
●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

● ● ●

● ●
●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

● ● ●

0

100

200

300

400

500

600

700

800

15 16 17 18 19 20 21 22 23 24

log2(n)

M
B

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●
●

●

●

●

●

● ● ● ●

●
●

●

●

●

●

● ● ● ●

●
●

●

●

●

●

● ● ● ●

●
●

●

●

●

●

● ● ● ●

●
●

●

●

●

●

● ● ● ●

0

100

200

300

400

500

600

700

800

15 16 17 18 19 20 21 22 23 24

log2(n)

M
B

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

0.0e+00

2.0e+05

4.0e+05

6.0e+05

8.0e+05

1.0e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

15 16 17 18 19 20 21 22 23 24

log2(n)

di
sk

 I/
O

s

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ●
●

●

●

0.0e+00

2.0e+05

4.0e+05

6.0e+05

8.0e+05

1.0e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2.0e+06

15 16 17 18 19 20 21 22 23 24

log2(n)

di
sk

 I/
O

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

Fig. 31. Random model: I/O experiments.

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

1.2:44 G. S. Brodal and K. Mampentzidis

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

0

5

10

15

20

25

30

35

40

45

50

15 16 17 18 19 20 21 22 23 24

log2(n)

m
in

ut
es

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ●
●

●

●

0

20

40

60

80

100

120

140

160

15 16 17 18 19 20 21 22 23 24

log2(n)
m

in
ut

es

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

● ●
●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●
● ●

0

100

200

300

400

500

600

700

800

15 16 17 18 19 20 21 22 23 24

log2(n)

M
B

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

●
●

●

●

●

●

● ●
● ●

●
●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

● ● ● ●

●
●

●

●

●

●

● ● ● ●

●
●

●

●

●

●

● ● ● ●

0

100

200

300

400

500

600

700

800

15 16 17 18 19 20 21 22 23 24

log2(n)

M
B

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

15 16 17 18 19 20 21 22 23 24

log2(n)

di
sk

 I/
O

s

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●
●

●

●

0.0e+00

2.0e+05

4.0e+05

6.0e+05

8.0e+05

1.0e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2.0e+06

15 16 17 18 19 20 21 22 23 24

log2(n)

di
sk

 I/
O

s

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

Fig. 32. Skewed model: I/O experiments with 𝛼 = 0.5.

ACM J. Exp. Algor., Vol. 26, No. 1, Article 1.2. Publication date: April 2021.

	Abstract
	1 Introduction
	1.1 Problem Definition
	1.2 Related Work
	1.3 Contribution
	1.4 Outline of the Paper

	2 Previous Approaches
	2.1 The O(n2) Algorithm for Binary Trees in [BMC13]
	2.2 Subquadratic Algorithms

	3 The New Algorithm for Binary Trees
	3.1 Overview
	3.2 Modified Centroid Decomposition
	3.3 The Main Algorithm
	3.4 Scaling to External Memory

	4 The New Algorithm for General Trees
	4.1 Quadratic Algorithm
	4.2 Subquadratic Algorithm
	4.3 Scaling to External Memory

	5 Implementation
	5.1 Input
	5.2 Parser
	5.3 Algorithm

	6 Experiments
	6.1 The Setup
	6.2 Results

	7 Conclusion
	References
	A Experiment Figures

