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ABSTRACT:A pair in a string is the occurrence of the same substring twice. A pair is maximal
if the two occurrences of the substring cannot be extended tothe left and right without making
them different, and the gap of a pair is the number of characters between the two occurrences
of the substring. In this paper we present methods for findingall maximal pairs under various
constraints on the gap. In a string of lengthn we can find all maximal pairs with gap in an upper
and lower bounded interval in timeO(n log n+ z), wherez is the number of reported pairs. If
the upper bound is removed the time reduces toO(n+ z). Since a tandem repeat is a pair with
gap zero, our methods is a generalization of finding tandem repeats. The running time of our
methods also equals the running time of well known methods for finding tandem repeats.
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1 Introduction

A pair in a string is the occurrence of the same substring twice. A pair is left-maximal
(right-maximal) if the characters to the immediate left (right) of the two occurrences of
the substring are different. A pair is maximal if it is both left- and right-maximal. The
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gap of a pair is the number of characters between the two occurrences of the substring,
e.g. the two occurrences of the substringmain the stringmaximalform a maximal pair
of mawith gap two. Gusfield in [11, Section 7.12.3] describes how to use a suffix tree
to report all maximal pairs in a string of lengthn in timeO(n + z) and spaceO(n),
wherez is the number of reported pairs. The algorithm presented by Gusfield allows
no restrictions on the gaps of the reported maximal pairs, somany of the reported
pairs probably describe occurrences of substrings that areeither overlapping or far
apart in the string. In many applications this is unfortunate because it leads to a lot
of redundant output. The problem of finding occurrences of similar substrings not too
far apart has been studied in several papers, e.g. [15, 19, 25].

In the first part of this paper we describe how to find all maximal pairs in a string
with gap in an upper and lower bounded interval in timeO(n logn+z) and spaceO(n).
The interval of allowed gaps can be chosen such that we reporta maximal pair only
if the gap is between two constants1 and2; but more generally, the interval can
be chosen such that we report a maximal pair only if the gap is betweeng1(j�j)
andg2(j�j), whereg1 andg2 are functions that can be computed in constant time
andj�j is the length of the repeated substring. This, for example, makes it possible
to find all maximal pairs with gap between zero and some fraction of the length of
the repeated substring. In the second part of this paper we describe how removing the
upper boundg2(j�j) on the allowed gaps makes it possible to reduce the running time
to O(n + z). The methods we present all use the suffix tree as the fundamental data
structure combined with efficient merging of search trees and heap-ordered trees.

Finding occurrences of repeated substrings in a string is a widely studied problem.
Much work has focused on constructing efficient methods for finding occurrences of
contiguously repeated substrings. An occurrence of a substring of the form�� is
called an occurrence of a square or a tandem repeat. Several methods have been pre-
sented that in timeO(n logn+z) find allz occurrences of tandem repeats in a string of
lengthn, e.g. [2, 5, 17, 20, 26]. Methods that in timeO(n) decide if a string of lengthn
contains an occurrence of a tandem repeat have also been presented, e.g. [6, 21]. Ex-
tending on the ideas presented in [6], two methods [12, 16] have been presented that
find a compact representation of all tandem repeats in a string of lengthn in timeO(n).
The problem of finding occurrences of contiguous repeats of substrings that are within
some Hamming- or edit-distance of each other is considered in e.g. [18].

In biological sequence analysis searching for tandem repeats is used to reveal struc-
tural and functional information [11, pp. 139–142]. However, searching for exact
tandem repeats can be too restrictive because of sequencingand other experimental
errors. By searching for maximal pairs with small gaps (maybe depending on the
length of the substring) it could be possible to compensate for these errors. Finding
maximal pairs with gap in a bounded interval is also a generalization of finding oc-
currences of tandem repeats. Stoye and Gusfield in [26] say that an occurrence of the
tandem repeat�� is a branching occurrence of the tandem repeat�� if and only if
the characters to the immediate right of the two occurrencesof � are different, and
they explain how to deduce the occurrence of all tandem repeats in a string from the
occurrences of branching tandem repeats in time proportional to the number of tan-
dem repeats. Since a branching occurrence of a tandem repeatis just a right-maximal
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pair with gap zero, the methods presented in this paper can beused to find all tandem
repeats in timeO(n logn + z). This matches the time bounds of previous published
methods for this problem, e.g. [2, 5, 17, 20, 26].

The rest of this paper is organized in two parts which can be read independently. In
Section 2 we present the preliminaries necessary to read either of the two parts; we
define pairs and suffix trees and describe how in general to findpairs using the suffix
tree. In the first part, Section 3, we present the methods to find all maximal pairs in a
string with gap in an upper and lower bounded interval. This part also presents facts
about efficient merging of search trees which are essential to the formulation of the
methods. In the second part, Section 4, we present the methods to find all maximal
pairs in a string with gap in a lower bounded interval. This part also includes the pre-
sentation of two novel data structures, the heap-tree and the colored heap-tree, which
are essential to the formulation of the methods. Finally, inSection 5 we summarize
our work and discuss open problems.

2 Preliminaries

Throughout this paperS will denote a string of lengthn over a finite alphabet�. We
will useS[i℄, for i = 1; 2; : : : ; n, to denote theith character ofS, and useS[i :: j℄ as
notation for the substringS[i℄S[i+1℄ � � �S[j℄ of S. To be able to refer to the characters
to the left and right of every character inS without worrying about the first and last
character, we defineS[0℄ andS[n + 1℄ to be two distinct characters not appearing
anywhere else inS.

In order to formulate methods for finding repetitive structures inS, we need a proper
definition of such structures. An obvious definition is to findall pairs of identical
substrings inS. This, however, leads to a lot of redundant output, e.g. in the string that
consists ofn identical characters there are�(n3) such pairs. To limit the redundancy
without sacrificing meaningful structures Gusfield in [11] proposes maximal pairs.

DEFINITION 2.1 (Pair)
We say that(i; j; j�j) is a pair of � in S formed byi andj if and only if 1 � i <j � n � j�j + 1 and� = S[i :: i + j�j � 1℄ = S[j :: j + j�j � 1℄. The pair is
left-maximal(right-maximal) if the characters to the immediate left (right) of two
occurrences of� are different, i.e. left-maximal ifS[i � 1℄ 6= S[j � 1℄ and right-
maximal ifS[i+ j�j℄ 6= S[j+ j�j℄. The pair ismaximalif it is right- and left-maximal.
The gap of a pair(i; j; j�j) is the number of charactersj � i � j�j between the two
occurrences of� in S.

The indicesi andj in a right-maximal pair(i; j; j�j) uniquely determinej�j. Hence,
a string of lengthn contains in the worst caseO(n2) right-maximal pairs. The
stringan contains the worst case number of right-maximal pairs but only O(n) max-
imal pairs. However, the string(aab)n=3 contains�(n2) maximal pairs. This shows
that the worst case number of maximal pairs and right-maximal pairs in a string are
asymptotically equal.

Figure 1 illustrates the occurrence of a pair. In some applications it might be inter-
esting only to find pairs that obey certain restrictions on the gap, e.g. to filter out pairs
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gapi � �j
FIG. 1. An occurrence of a pair(i; j; j�j) with gapj � i� j�j.

of substrings that are either overlapping or far apart and thus reduce the number of
pairs to report. Using the “smaller-half trick” (see Section 3.1) and Lemma 2.3 it can
be shown that a string of lengthn in the worst case contains�(n logn) right-maximal
pairs with gap in an interval of constant size.

In this paper we present methods for finding all right-maximal and maximal pairs(i; j; j�j) in S with gap in a bounded interval. These methods all use the suffix tree
of S as the fundamental data structure. We briefly review the suffix tree and refer
to [11] for a more comprehensive treatment.

DEFINITION 2.2 (Suffix tree)
The suffix treeT (S) of the stringS is the compressed trie of all suffixes ofS$,
where$ =2 �. Each leaf inT (S) represents a suffixS[i :: n℄ of S and is annotated
with the indexi. We refer to the set of indices stored at the leaves in the subtree rooted
at nodev as theleaf-list of v and denote itLL(v). Each edge inT (S) is labelled with
a nonempty substring ofS such that the path from the root to the leaf annotated with
index i spells the suffixS[i :: n℄. We refer to the substring ofS spelled by the path
from the root to nodev as thepath-labelof v and denote itL(v).

Several algorithms construct the suffix treeT (S) in timeO(n), e.g. [7, 22, 28, 30].
It follows from the definition of a suffix tree that all internal nodes inT (S) have out-
degree between two andj�j. We can turn the suffix treeT (S) into the binary suffix
treeTB(S) by replacing every nodev in T (S) with out-degreed > 2 by a binary tree
with d � 1 internal nodes andd � 2 internal edges in which thed leaves are thed
children of nodev. We label each new internal edge with the empty string such that
thed� 1 nodes replacing nodev all have the same path-label as nodev has inT (S).
SinceT (S) hasn leaves, constructing the binary suffix treeTB(S) requires adding at
mostn�2 new nodes. Since each new node can be added in constant time, the binary
suffix treeTB(S) can be constructed in timeO(n).

The binary suffix tree is an essential component of our methods. Definition 2.2
implies that there is an internal nodev in T (S) with path-label� if and only if � is
the longest common prefix ofS[i :: n℄ andS[j :: n℄ for some1 � i < j � n. In other
words, there is a nodev with path-label� if and only if (i; j; j�j) is a right-maximal
pair in S. SinceS[i + j�j℄ 6= S[j + j�j℄ the indicesi andj cannot be elements in
the leaf-list of the same child ofv. Using the binary suffix treeTB(S) we can thus
formulate the following lemma.

LEMMA 2.3
There is a right-maximal pair(i; j; j�j) in S if and only if there is a nodev in the
binary suffix treeTB(S) with path-label� and distinct childrenw1 andw2, wherei 2 LL(w1) andj 2 LL(w2).
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The lemma implies an approach to find all right-maximal pairsin S; for every inter-
nal nodev in the binary suffix treeTB(S) consider the leaf-lists at its two childrenw1
andw2, and for every element(i; j) in LL(w1) � LL(w2) report a right-maximal
pair (i; j; j�j) if i < j and (j; i; j�j) if j < i. To find all maximal pairs inS the
problem remains to filter out all right-maximal pairs that are not left-maximal.

3 Pairs with upper and lower bounded gap

We want to find all maximal pairs(i; j; j�j) in S with gap betweeng1(j�j) andg2(j�j),
i.e. g1(j�j) � j � i � j�j � g2(j�j), whereg1 andg2 are functions that can be
computed in constant time. An obvious approach to solve thisproblem is to generate
all maximal pairs inS but only report those with gap betweeng1(j�j) andg2(j�j).
However, as explained in the previous section there might beasymptotically fewer
maximal pairs inS with gap betweeng1(j�j) andg2(j�j) than maximal pairs inS in
total. We therefore want to find all maximal pairs(i; j; j�j) in S with gap betweeng1(j�j) andg2(j�j) withoutgenerating and considering all maximal pairs inS. A step
towards finding all maximal pairs with gap betweeng1(j�j) andg2(j�j) is to find all
right-maximal pairs with gap betweeng1(j�j) andg2(j�j).

Figure 2 shows that if one occurrence of� in a pair with gap betweeng1(j�j)
andg2(j�j) is at positionp, then the other occurrence of� must be at a positionq in
one of the two intervals:L(p; j�j) = [ p� j�j � g2(j�j) :: p � j�j � g1(j�j) ℄ (3.1)R(p; j�j) = [ p+ j�j+ g1(j�j) :: p + j�j+ g2(j�j) ℄ (3.2)

Combined with Lemma 2.3 this gives an approach to find all right-maximal pairs inS
with gap betweeng1(j�j) andg2(j�j): for every internal nodev in the binary suffix
treeTB(S)with path-label� and childrenw1 andw2, we report for everyp in LL(w1)
the pairs(p; q; j�j) for all q in LL(w2) \ R(p; j�j) and the pairs(q; p; j�j) for all q
in LL(w2) \ L(p; j�j).

To report the right-maximal pairs efficiently we must be ableto find for everyp
in LL(w1) the proper elementsq in LL(w2) to report it against, without looking at all
the elements inLL(w2). It turns out that search trees make this possible. In this paper
we use AVL trees, but other types of search trees, e.g.(a; b)-trees [13] or red-black
trees [10], can also be used as long as they obey Lemmas 3.1 and3.2 stated below.
Before we can formulate algorithms we review some useful facts about AVL trees.

3.1 Data structures

An AVL tree T is a balanced search tree that stores an ordered set of elements. AVL
trees were introduced in [1], but are explained in almost every textbook on data struc-
tures. We say that an elemente is in T , or e 2 T , if it is stored at a node inT . For
short notation we usee to denote both the element and the node at which it is stored
in T . We can keep links between the nodes inT in such a way that we in constant time
from the nodee can find the nodesnext(e) andprev (e) storing the next and previous
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FIG. 2: If (p; q; j�j) (respectively(q; p; j�j)) is a pair with gap betweeng1(j�j)
andg2(j�j), then one occurrence of� is at positionp and the other occurrence is
at a positionq in the intervalR(p; j�j) (respectivelyL(p; j�j)) of positions.

element. We usejT j to denote the size ofT , i.e. the number of elements stored inT .
Efficient merging of two AVL trees is essential to our methods. Hwang and Lin [14]

show how to merge two sorted lists using the optimal number ofcomparisons. Brown
and Tarjan [4] show how to implement merging of two height-balanced search trees,
e.g. AVL trees, in time proportional to the optimal number ofcomparisons. Their
result is summarized in Lemma 3.1, which immediately implies Lemma 3.2.

LEMMA 3.1
Two AVL trees of size at mostn andm can be merged in timeO(log �n+mn �).
LEMMA 3.2
Given a sorted list of elementse1; e2; : : : ; en and an AVL treeT of size at mostm,
wherem � n, we can findqi = min�x 2 T �� x � ei	 for all i = 1; 2; : : : ; n in
timeO(log �n+mn �).
PROOF. Construct the AVL tree of the elementse1; e2; : : : ; en in timeO(n). Merge
this AVL tree with T according to Lemma 3.1, except that whenever the merge-
algorithm would insert one of the elementse1; e2; : : : ; en into T , we change the
merge-algorithm to report the neighbor of the element inT instead. This modifi-
cation does not increase the running time.

The “smaller-half trick” is used in several methods for finding tandem repeats,
e.g. [2, 5, 26]. It says that the sum over all nodesv in an arbitrary binary tree of sizen
of terms that areO(n1), wheren1 � n2 are the numbers of leaves in the subtrees
rooted at the two children ofv, isO(n logn). Our methods for finding maximal pairs
rely on a stronger version of the “smaller-half trick” hinted at in [23, Exercise 35] and
used in [24, Chapter 5, page 84]; we summarize it in the following lemma.

LEMMA 3.3
Let T be an arbitrary binary tree withn leaves. The sum over all internal nodesv
in T of termslog �n1+n2n1 �

, wheren1 andn2 are the numbers of leaves in the subtrees
rooted at the two children ofv, isO(n logn).
PROOF. We will by induction in the number of leaves of the binary tree prove that the
sum is upper bounded bylogn!. If T is a leaf then the upper bound holds vacuously.
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Now assume inductively that the upper bound holds for all trees with at mostn � 1
leaves. LetT be a tree withn leaves where the number of leaves in the subtrees
rooted at the two children of the root aren1 < n andn2 < n. According to the
induction hypothesis the sum over all nodes in these two subtrees, i.e. the sum over all
nodes ofT except the root, is bounded bylogn1! + logn2! and thus the entire sum is
bounded bylogn1! + logn2! + log�n1 + n2n1 �= logn1! + logn2! + log(n1 + n2)!� logn1!� logn2!= logn! :
As logn! = O(n logn) the lemma follows.

3.2 Algorithms

We first describe an algorithm that finds all right-maximal pairs inS with bounded gap
using AVL trees to keep track of the elements in the leaf-lists during a traversal of the
binary suffix treeTB(S). We then extend it to find all maximal pairs inS with bounded
gap using an additional AVL tree to filter out efficiently all right-maximal pairs that are
not left-maximal. Both algorithms run in timeO(n logn+z) and spaceO(n), wherez
is the number of reported pairs. In the following we assume, unless stated otherwise,
that v is a node in the binary suffix treeTB(S) with path-label� and childrenw1
andw2 named such thatjLL(w1)j � jLL(w2)j. We say thatw1 is the small child ofv
and thatw2 is the big child ofv.

3.2.1 Right-maximal pairs with upper and lower bounded gap
To find all right-maximal pairs inS with gap betweeng1(j�j) andg2(j�j) we consider
every nodev in the binary suffix treeTB(S) in a bottom-up fashion, e.g. during a
depth-first traversal. At every nodev we use AVL trees storing the leaf-listsLL(w1)
andLL(w2) at the two children ofv to report the proper right-maximal pairs of the
path-label� of v. The details are given in Algorithm 1 and explained next.

At every nodev in TB(S) we construct an AVL tree, aleaf-list treeT , that stores
the elements inLL(v). If v is a leaf then we constructT directly in Step 1. Ifv is an
internal node thenLL(v) is the union of the disjoint leaf-listsLL(w1) andLL(w2).
By assumptionLL(w1) andLL(w2) are stored in the already constructedT1 andT2.
We constructT by mergingT1 andT2 using Lemma 3.1, wherejT1j � jT2j. Be-
fore constructingT in Step 2c we useT1 andT2 to report right-maximal pairs from
nodev by reporting everyp in LL(w1) against everyq in LL(w2) \ L(p; j�j) andLL(w2) \ R(p; j�j), whereL(p; j�j) andR(p; j�j) are the intervals defined by (3.1)
and (3.2). This is done in two steps. In Step 2a we find for everyp in LL(w1) the
minimum elementqr(p) in LL(w2) \ R(p; j�j) and the minimum elementq`(p) inLL(w2) \ L(p; j�j) by searching inT2 using Lemma 3.2. In Step 2b we report pairs(p; q; j�j) and(q; p; j�j) for everyp in LL(w1) and increasingq’s in LL(w2), starting
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with qr(p) andq`(p) respectively, until the gap violates the upper or lower bound.
To argue that Algorithm 1 finds all right-maximal pairs with gap betweeng1(j�j)

andg2(j�j) by Lemma 2.3 it is sufficient to show that we for everyp in LL(w1) report
all right-maximal pairs(p; q; j�j) and(q; p; j�j) with gap betweeng1(j�j) andg2(j�j).
The rest follows because we at every nodev in TB(S) consider everyp in LL(w1).
Consider the callReport(qr(p); p + j�j + g2(j�j)) in Step 2b. The implementation
of Report implies thatp is reported against everyq in LL(w2) \ [qr(p) :: p + j�j +g2(j�j)℄. The construction ofqr(p) and the definition ofR(p; j�j) implies that the
setLL(w2) \ [qr(p) :: p + j�j + g2(j�j)℄ is equal toLL(w2) \ R(p; j�j). Hence,
the call toReport reports all right-maximal pairs(p; q; j�j) with gap betweeng1(j�j)
and g2(j�j). Similarly the callReport(q`(p); p � j�j � g1(j�j)) reports all right-
maximal pairs(q; p; j�j) with gap betweeng1(j�j) andg2(j�j).

Now consider the running time of Algorithm 1. Building the binary suffix treeTB(S)
takes timeO(n) [7, 22, 28, 30], and creating an AVL tree of size one at each leaf in
Step 1 also takes timeO(n). At every internal node inTB(S) we perform Step 2.
Since jT1j � jT2j, the searching in Step 2a and the merging in Step 2c take timeO(log �jT1j+jT2jjT1j �) by Lemmas 3.2 and 3.1 respectively. The reporting of pairs in
Step 2b takes time proportional tojT1j, because we consider everyp in LL(w1), plus
the number of reported pairs. Summing this over all nodes gives by Lemma 3.3 that
the total running time isO(n logn + z), wherez is the number of reported pairs.
Constructing and keepingTB(S) requires spaceO(n). Since no element at any time
is stored in more than one leaf-list tree, Algorithm 1 requires spaceO(n) in total.

THEOREM 3.4
Algorithm 1 finds all right-maximal pairs(i; j; j�j) in a stringS of lengthn with gap
betweeng1(j�j) andg2(j�j) in spaceO(n) and timeO(n logn + z), wherez is the
number of reported pairs.

3.2.2 Maximal pairs with upper and lower bounded gap
We now turn our attention towards finding all maximal pairs inS with gap betweeng1(j�j) andg2(j�j). Our approach is to extend Algorithm 1 to filter out all right-
maximal pairs that are not left-maximal. A simple solution is to extend the proce-
dureReport to check ifS[p � 1℄ 6= S[q � 1℄ before reporting the pair(p; q; j�j) or(q; p; j�j) in Step 2b. This solution takes time proportional to the number of inspected
right-maximal pairs, and not time proportional to the number of reported maximal
pairs. Even though the maximum number of right-maximal pairs and maximal pairs
in strings of a given length are asymptotically equal, many strings contain significantly
fewer maximal pairs than right-maximal pairs. We thereforewant to filter out all right-
maximal pairs that are not left-maximalwithout inspecting all right-maximal pairs. In
the remainder of this section we describe one approach to achieve this.

Consider the reporting step in Algorithm 1. Assume that we are about to report
from a nodev with childrenw1 andw2. At this point the leaf-list treesT1 andT2,
where jT1j � jT2j, are available and they make it possible to access the elements
in LL(w1) = fp1; p2; : : : ; psg andLL(w2) = fq1; q2; : : : ; qtg in sorted order.
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Algorithm 1 Find all right-maximal pairs in stringS with bounded gap.

1. Initializing: Build the binary suffix treeTB(S) and create at each leaf an AVL tree
of size one that stores the index at the leaf.

2. Reporting and merging:When the AVL treesT1 andT2, wherejT1j � jT2j, at
the two childrenw1 andw2 of a nodev with path-label� are available, we do the
following:

(a) Letfp1; p2; : : : ; psg be the elements inT1 in sorted order. For each elementp
in T1 we find qr(p) = min�x 2 T2 �� x � p+ j�j+ g1(j�j)	q`(p) = min�x 2 T2 �� x � p� j�j � g2(j�j)	
by searching inT2 with the two sorted listsfpi+ j�j+g1(j�j) j i = 1; 2; : : : ; sg
andfpi � j�j � g2(j�j) j i = 1; 2; : : : ; sg using Lemma 3.2.

(b) For each elementp in T1 we call Report(qr(p); p + j�j + g2(j�j)) andReport(q`(p); p� j�j � g1(j�j)) whereReport is the following procedure.Report(from ; to)q = from
while q � to do

report pair(p; q; j�j) if p < q, and(q; p; j�j) otherwiseq = next(q)
(c) Build the leaf-list treeT at nodev by mergingT1 andT2 applying Lemma 3.1.

Our approach is to divide the sorted leaf-listLL(w2) into blocks of contiguous el-
ements, such that the elementsqi�1 and qi are in the same block if and only ifS[qi�1 � 1℄ = S[qi � 1℄. We say that we divide the sorted leaf-list into blocks of
elements with equal left-characters. To filter out all right-maximal pairs that are not
left-maximal we must avoid to reportp in LL(w1) against any elementq in LL(w2)
in a block of elements with left-characterS[p� 1℄. This gives the overall idea of the
extended algorithm; we extend the reporting step in Algorithm 1 such that whenever
we are about to reportp in LL(w1) againstq in LL(w2) whereS[p� 1℄ = S[q � 1℄,
we skip all elements in the current block containingq and continue reportingp against
the first elementq0 in the following block, which by the definition of blocks satisfies
thatS[p� 1℄ 6= S[q0 � 1℄.

To implement this extended reporting step efficiently we must be able to skip all
elements in a block without inspecting each of them. We achieve this by constructing
an additional AVL tree, theblock-start tree, that keeps track of the blocks in the leaf-
list. At each nodev during the traversal ofTB(S) we thus construct two AVL trees;
the leaf-list treeT that stores the elements inLL(v), and the block-start treeB that
keeps track of the blocks in the sorted leaf-list by storing all the elements inLL(v)
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FIG. 3: The data structure constructed at each nodev in TB(S). The leaf-list treeT
stores all elements inLL(v). The block-start treeB stores all elements inLL(v) that
start a block in the sorted leaf-list. We keep links from the elements in the block-start
tree to the corresponding elements in the leaf-list tree.

that start a block. We keep links from the block-start tree tothe leaf-list tree such that
we in constant time can go from an element in the block-start tree to the corresponding
element in the leaf-list tree. Figure 3 illustrates the leaf-list tree, the block-start tree
and the links between them. Before we present the extended algorithm and explain
how to use the block-start tree to efficiently skip all elements in a block. We first
describe how to construct the leaf-list treeT and the block-start treeB at nodev
from the leaf-list trees,T1 andT2, and the block-start trees,B1 andB2, at its two
childrenw1 andw2.

Since the leaf-listLL(v) is the union of the disjoint leaf-listsLL(w1) andLL(w2)
stored inT1 andT2 respectively, we can construct the leaf-list treeT by mergingT1
andT2 using Lemma 3.1. It is more involved to construct the block-start treeB. The
reason is that an elementpi that starts a block inLL(w1) or an elementqj that starts
a block inLL(w2) does not necessarily start a block inLL(v) and vice versa, so we
cannot constructB by mergingB1 andB2. Let fe1; e2; : : : ; es+tg be the elements inLL(v) in sorted order. By definition the block-start treeB contains all elementsek
in LL(v) whereS[ek�1 � 1℄ 6= S[ek � 1℄. We constructB by modifyingB2. We
choose to modifyB2, and notB1, becausejLL(w1)j � jLL(w2)j, which by the
“smaller-half trick” allows us to consider all elements inLL(w1) without spending
too much time in total. To modifyB2 to becomeB we must identify all the elements
that are inB but not inB2 and vice versa.

LEMMA 3.5
If ek is inB but not inB2 thenek 2 LL(w1) or ek�1 2 LL(w1).
PROOF. Assume thatek is inB and that bothek andek�1 are inLL(w2). In LL(w2)
the elementsek andek�1 are neighboring elements. Let these neighboring elements
in LL(w2) be denotedqj andqj�1. Sinceek is in B and therefore starts a block inLL(v) thenS[qj � 1℄ = S[ek � 1℄ 6= S[ek�1 � 1℄ = S[qj�1 � 1℄. This shows
thatqj = ek is inB2 and the lemma follows.

In the followingNEW denotes the set of elementsek in B where eitherek or ek�1
is in LL(w1). It follows from Lemma 3.5 thatNEW contains at least all elements
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in B that are not inB2. We can constructNEW in sorted order while mergingT1
andT2 as follows. When an elementek from T1, i.e. fromLL(w1), is placed inT ,
i.e. inLL(v), we include it in the setNEW if it starts a block inLL(v). Similarly the
next elementek+1 in LL(v) is included inNEW if it starts a block inLL(v).

Constructing the setNEW is the first step in modifyingB2 to becomeB. The next
step is to identify the elements that should be removed fromB2, that is, to identify the
elements that are inB2 but not inB.

LEMMA 3.6
An elementqj in B2 is not inB if and only if the largest elementek in NEW smaller
thanqj in B2 has the same left-character asqj .
PROOF. If qj is in B2 but does not start a block inLL(v), then it must be in a block
started by some elementek with the same left-character asqj . This block cannot
containqj�1 becauseqj being inB2 implies thatS[qj � 1℄ 6= S[qj�1 � 1℄. We thus
have the orderingqj�1 < ek < qj . This implies thatek is the largest element inNEW
smaller thanqj . If ek is the largest element inNEW smaller thanqj , then no block
starts inLL(v) betweenek andqj , i.e. all elementse in LL(v) whereek < e < qj
satisfy thatS[e� 1℄ = S[ek � 1℄, so ifS[ek � 1℄ = S[qj � 1℄ thenqj does not start a
block inLL(v).

To identify the elements that should be removed fromB2, we searchB2 with the
sorted listNEW using Lemma 3.2 to find all pairs of elements(ek; qj), whereek is
the largest element inNEW smaller thanqj in B2. If the left-characters ofek andqj
in such a pair are equal, i.e.S[ek� 1℄ = S[qj � 1℄, then by Lemma 3.6 the elementqj
is not inB and must therefore be removed fromB2. It follows from the proof of
Lemma 3.6 that if this is the case thenqj�1 < ek < qj , so we can, without destroying
the order among the nodes inB2, removeqj fromB2 and insertek instead, simply by
replacing the elementqj with the elementek at the node storingqj in B2.

We can now summarize the three steps it takes to modifyB2 to becomeB. In
Step 1 we construct the sorted setNEW that contains all elements inB that are not
in B2. This is done while mergingT1 andT2 using Lemma 3.1. In Step 2 we remove
the elements fromB2 that are not inB. The elements inB2 being removed and
the elements fromNEW replacing them are identified using Lemmas 3.2 and 3.6.
In Step 3 we merge the remaining elements inNEW into the modifiedB2 using
Lemma 3.1. Adding links from the new elements inB to the corresponding elements
in T can be done while replacing and merging in Steps 2 and 3. SincejNEW j � 2 jT1j
andjB2j � jT2j, the time it takes to constructB is dominated by the the time it takes
to merge a sorted list of size2 jT1j into an AVL tree of sizejT2j. By Lemma 3.1 this
is within a constant factor of the time it takes to mergeT1 andT2, so the time is takes
to constructB is dominated by the time it takes to construct the leaf-list treeT .

Now that we know how to construct the leaf-list treeT and block-start treeB at
nodev from the leaf-list trees,T1 andT2, and block-start trees,B1 andB2, at its
two childrenw1 andw2, we can proceed with the implementation of the extended
reporting step. The details are shown in Algorithm 2. This algorithm is similar to
Algorithm 1 except that we at every nodev in TB(S) construct two AVL trees; the
leaf-list treeT that stores the elements inLL(v), and the block-start treeB that keeps
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Algorithm 2 Find all maximal pairs in stringS with bounded gap.

1. Initializing: Build the binary suffix treeTB(S) and create at each leaf two AVL
trees of size one, the leaf-list and the block-start tree, storing the index at the leaf.

2. Reporting and merging:When the leaf-list treesT1 andT2, wherejT1j � jT2j,
and the block-start treesB1 andB2 at the two childrenw1 andw2 of nodev with
path-label� are available, we do the following:

(a) Letfp1; p2; : : : ; psg be the elements inT1 in sorted order. For each elementp
in T1 we findqr(p) = min�x 2 T2 �� x � p+ j�j+ g1(j�j)	q`(p) = min�x 2 T2 �� x � p� j�j � g2(j�j)	br(p) = min�x 2 B2 �� x � p+ j�j+ g1(j�j)	b`(p) = min�x 2 B2 �� x � p� j�j � g2(j�j)	
by searching inT2 andB2 with the sorted listsfpi + j�j + g1(j�j) j i =1; 2; : : : ; sg andfpi � j�j � g2(j�j) j i = 1; 2; : : : ; sg using Lemma 3.2.

(b) For each elementp in T1 we callReportMax(qr(p); br(p); p+ j�j+g2(j�j)) andReportMax(q`(p); b`(p); p� j�j � g1(j�j)), whereReportMax is the following
procedure.ReportMax(from in T ; from in B ; to)q = from in Tb = from in B

while q � to do
if S[q � 1℄ 6= S[p� 1℄ then

report pair(p; q; j�j) if p < q, and(q; p; j�j) otherwiseq = next(q)
else

while b � q do b = next(b)q = b
(c) Build the leaf-list treeT at nodev by mergingT1 andT2 using Lemma 3.1.

Build the block-start treeB at nodev by modifyingB2 as described in the text.

track of the blocks inLL(v) by storing the subset of elements that start a block. Ifv
is a leaf, we constructT andB directly. If v is an internal node, we constructT by
merging the leaf-list treesT1 andT2 at its two childrenw1 andw2, and we constructB
by modifying the block-start treeB2 as explained above.

Before constructingT andB we report all maximal pairs from nodev with gap
betweeng1(j�j) and g2(j�j), by reporting everyp in LL(w1) against everyq inLL(w2)\L(p; j�j) andLL(w2)\R(p; j�j) whereS[p� 1℄ 6= S[q� 1℄. This is done
in two steps. In Step 2a we find for everyp in LL(w1) the minimum elementsq`(p)
andqr(p), as well as the minimum elementsb`(p) and br(p) that start a block, in



Finding Maximal Pairs with Bounded Gap 13LL(w2) \ L(p; j�j) andLL(w2) \ R(p; j�j) respectively. This is done by searching
in T2 andB2 using Lemma 3.2. In Step 2b we report pairs(p; q; j�j) and(q; p; j�j)
for everyp in LL(w1) and increasingq’s in LL(w2) starting withqr(p) andq`(p)
respectively, until the gap violates the upper or lower bound. Whenever we are about
to reportp againstq whereS[p� 1℄ = S[q� 1℄, we instead use the block-start treeB2
to skip all elements in the block containingq and continue with reportingp against the
first element in the following block.

To argue that Algorithm 2 finds all the maximal pairs with gap betweeng1(j�j)
andg2(j�j) it is sufficient to show that we for everyp in LL(w1) report all maximal
pairs (p; q; j�j) and (q; p; j�j) with gap betweeng1(j�j) andg2(j�j). The rest fol-
lows because we at every node inTB(S) consider everyp in LL(w1). Consider the
call ReportMax(qr(p); br(p); p + j�j + g2(j�j)) in Step 2b. The implementation ofReportMax implies that unless we skip elements by increasingb, we consider everyq
in LL(w2)\R(p; j�j) exactly as in Algorithm 1. The testS[q�1℄ 6= S[p�1℄ ensures
that we only report maximal pairs. WheneverS[q� 1℄ = S[p� 1℄ we increaseb untilb = minfx 2 B2 j x > qg, which by construction ofB2 andbr(p) is the element that
starts the block following the block containingq. Hence, all the elementsq0, whereq < q0 < b, we skip by settingq to b thus satisfy thatS[p�1℄ = S[q�1℄ = S[q0�1℄.
We conclude thatReportMax(qr(p); br(p); p+ j�j+g2(j�j)) reportsp against exactly
thoseq in LL(w2) \ R(p; j�j) whereS[p� 1℄ 6= S[q � 1℄, i.e. it reports all maximal
pairs(p; q; j�j) at nodev with gap betweeng1(j�j) andg2(j�j). Similarly, the callReportMax(q`(p); b`(p); p � j�j � g1(j�j)) reports all maximal pairs(q; p; j�j) with
gap betweeng1(j�j) andg2(j�j).

We now consider the running time of Algorithm 2. We first arguethat the callReportMax(qr(p); br(p); p+ j�j+g2(j�j)) takes constant time plus time proportional
to the number of reported pairs(p; q; j�j). To do this all we have to show is that
the time used to skip blocks, i.e. the number of times we increaseb, is proportional
to the number of reported pairs. By constructionbr(p) � qr(p), so the number of
times we increaseb is bounded by the number of blocks inLL(w2)\R(p; j�j). Since
neighboring blocks contain elements with different left-characters, we reportp against
an element from at least every second block inLL(w2) \ R(p; j�j). The number of
times we increaseb is thus proportional to the number of reported pairs. Similarly
the callReportMax(q`(p); b`(p); p� j�j � g1(j�j)) also takes constant time plus time
proportional to the number of reported pairs(q; p; j�j). We thus have that Step 2b
takes time proportional tojT1j plus the number of reported pairs. Everything else
we do at nodev, i.e. searching inT2 andB2 and constructing the leaf-list treeT and
block-start treeB, takes timeO(log �jT1j+jT2jjT1j �). Summing this over all nodes gives by
Lemma 3.3 that the total running time of the algorithm isO(n logn+z), wherez is the
number of reported pairs. Since constructing and keepingTB(S) requires spaceO(n),
and since no element at any time is in more than one leaf-list tree, and maybe one
block-start tree, Algorithm 2 requires spaceO(n).
THEOREM 3.7
Algorithm 2 finds all maximal pairs(i; j; j�j) in a stringS of lengthn with gap be-
tweeng1(j�j) andg2(j�j) in spaceO(n) and timeO(n logn + z), wherez is the
number of reported pairs.
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As a closing remark we can observe that Algorithm 2 never usesthe block-start
treeB1 at the small childw1. This observation can be used to ensure that only one
block-start tree exists during the execution of the algorithm. If we implement the
traversal ofTB(S) as a depth-first traversal in which we at each nodev first recursively
traverse the subtree rooted at the small childw1, then we do not need to store the block-
start tree returned by this recursive traversal while recursively traversing the subtree
rooted at the big childw2. This implies that only one block-start tree exists at all times
during the recursive traversal ofTB(S). The drawback is that we at each nodev need
to know in advance which child is the small child, but this knowledge can be obtained
in linear time by annotating each node ofTB(S) with the size of the subtree it roots.

4 Pairs with lower bounded gap

If we relax the constraint on the gap and only want to find all maximal pairs inS with
gap at leastg(j�j), whereg is a function that can be computed in constant time, then a
straightforward solution is to use Algorithm 2 withg1(j�j) = g(j�j) andg2(j�j) = n.
This obviously finds all maximal pairs with gap at leastg(j�j) in timeO(n logn+ z).
However, the missing upper bound on the gap makes it possibleto reduce the running
time toO(n + z) since reporting from each node during the traversal of the binary
suffix tree is simplified.

The reporting of pairs from nodev with childrenw1 andw2 is simplified, because
the lack of an upper bound on the gap implies that we do not haveto searchLL(w2)
for the first element to report against the current element inLL(w1). Instead we can
start by reporting the current element inLL(w1) against the biggest (and smallest)
element inLL(w2), and then continue reporting it against decreasing (and increasing)
elements fromLL(w2) until the gap becomes smaller thang(j�j). Unfortunately this
simplification alone does not reduce the asymptotic runningtime because inspecting
every element inLL(w1) and keeping track of the leaf-lists in AVL trees alone re-
quires time�(n logn). To reduce the running time we must thus avoid to inspect
every element inLL(w1) and find another way to store the leaf-lists. We achieve this
by using the priority-queue like data structures presentedin the next section to store
the leaf-lists during the traversal of the binary suffix tree.

4.1 Data structures

A heap-ordered tree is a tree in which each node stores an element and has a key.
Every node other than the root satisfies that its key is greater than or equal to the key
at its parent. Heap-ordered trees have been widely studied and are the basic structure
of many priority queues [8, 9, 29, 31]. In this section we utilize heap-ordered trees to
construct two data structures,the heap-treeand the colored heap-tree, that are use-
ful in our application of finding pairs with lower bounded gapbut might also have
applications elsewhere.

A heap-tree stores a collection of elements with comparablekeys and supports the
following operations.



Finding Maximal Pairs with Bounded Gap 15Init(e; k): Return a heap-tree of size one that stores elemente with keyk.Find(H; x): Return all elementse stored in the heap-treeH with keyk � x.Min(H): Return the elemente stored inH with minimum key.Meld(H;H 0): Return a heap-tree that stores all elements inH andH 0 with
unchanged keys and colors.

A colored heap-tree stores a collection of colored elementswith comparable keys.
We useolor (e) to denote the color of elemente. A colored heap-tree supports the
same operations as a heap-tree except that it allows us to findall elements not having
a particular color. The operations are as follows.ColorInit(e; k): Return a colored heap-tree of size one that stores elemente with

keyk.ColorFind(H; x; ): Return all elementse stored in the colored heap-treeH with keyk � x andolor (e) 6= .ColorMin(H): Return the elemente stored inH with minimum key.ColorSe(H): Return the elemente stored inH with minimum key such thatolor (e) 6= olor(ColorMin(H)).ColorMeld(H;H 0): Return a colored heap-tree that stores all elements inH andH 0
with unchanged keys.

In the following we will describe how to implement heap-trees and colored heap-
trees using heap-ordered trees such thatInit, Min, ColorInit, ColorMin andColorSe
take constant time,Find andColorFind take time proportional to the number of re-
turned elements, andMeld andColorMeld take amortized constant time. This means
that we can meldn (colored) heap-trees of size one into a single (colored) heap-tree of
sizen by an arbitrary sequence ofn�1meld operations in timeO(n) in the worst case.

4.1.1 Heap-trees
We implement heap-trees as binary heap-ordered trees as illustrated in Figure 4. At
every node in the heap-ordered tree we store an element from the collection of ele-
ments we want to store. The key of a node is the key of the element it stores. We
usev:elm to refer to the element stored at nodev, v:key to refer to the key of nodev,
andv:right andv:left to refer to the two children of nodev. Besides the heap-order
we maintain the invariant that the root of the heap-ordered tree has no left-child.

We define thebackboneof a heap-tree as the path in the heap-ordered tree that starts
at the root and continues via nodes reachable from the root via a sequence of right-
children. We define the length of the backbone as the number ofedges on the path
it describes. Consider the heap-treesH andH 0 in Figure 4; the backbone ofH is
the pathr; v1; : : : ; vs of lengths and the backbone ofH 0 is the pathr0; v01; : : : ; v0t of
length t. We say that the node on the backbone farthest from the root isat the bottom
of the backbone. We keep track of the nodes on the backbone of aheap-tree using
a stack,the backbone-stack, in which the root is at the bottom and the node farthest
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FIG. 4: Heap-trees are binary heap-ordered trees. The figure shows two heap-treesH
andH 0. The nodes on the backbone of the two heap-trees are shaded.

from the root is at the top. The backbone-stack makes it easy to access the nodes on
the backbone from the bottom and up towards the root.

We now turn to the implementation ofInit, Min, Find andMeld. The implementa-
tion of Init(e; k) is straightforward. We construct a single nodev wherev:elm = e,v:key = k andv:right = v:left = null and a backbone-stack of size one that con-
tains nodev. The implementation ofMin(H) is also straightforward. The heap-order
implies that rootr of H stores the element with minimum key, i.e.Min(H) = r:elm .

The implementation ofFind(H; x) is based on a recursive traversal ofH starting at
the root. At each nodev we comparev:key to x. If v:key � x, we reportv:elm and
continue recursively with the two children ofv. If v:key > x, then by the heap-order
all keys at nodes in the subtree rooted atv are greater thanx, so we return fromv
without reporting. Clearly this traversal reports all elements stored at nodesv withv:key � x, i.e. all elements stored with keyk � x. Since each node has at most two
children, we make, for each reported element, at most two additional comparisons
againstx corresponding to the at most two recursive calls from which we return with-
out reporting. The running time of the traversal is thus proportional to the number of
reported elements.

The implementation ofMeld(H;H 0) is done in two steps. Figure 5 illustrates the
melding of the heap-treesH andH 0 from Figure 4. We assume thatr:key � r0:key .
In Step 1 we merge the backbones ofH andH 0 together such that the heap-order is
satisfied in the resulting tree. The merged backbone is constructed from the bottom
and up towards the root by popping nodes from the backbone-stacks ofH andH 0.
Step 1 results in a heap-tree with a backbone of lengths+t+1. Sincer:key � r0:key ,
a prefix of the merged backbone consists of nodesr; v1; v2; : : : ; vi solely from the
backbone ofH . In Step 2 we shorten the merged backbone. Since the rootr0 of H 0
has no left-child, the noder0 on the merged backbone has no left-child either, so
by moving the right-child ofr0 to this empty spot, making it the left-child ofr0, we
shorten the length of the merged backbone toi+ 1.

The two steps ofMeld(H;H 0) clearly construct a heap-ordered tree that stores all
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FIG. 5: The two steps of melding the heap-treesH andH 0 shown in Figure 4. The
heap-tree to the left is the result of merging the backbones.The heap-tree to the right
is the result of shortening the backbone by moving the right-child of r0 in the merged
backbone to the left-child. The nodes on the backbones are marked.

elements inH andH 0 with unchanged keys. Sincer:key � r0:key , the root of the
constructed heap-ordered tree is the root ofH and therefore has no left-child. The
constructed heap-ordered tree is thus a heap-tree as wanted. The backbone of the new
heap-tree is the pathr; v1; : : : ; vi; r0. We observe that the backbone-stack ofH after
Step 1 contains exactly the nodesr; v1; : : : vi. We can thus construct the backbone-
stack of the new heap-tree by pushingr0 onto what remains of the backbone-stack
of H after Step 1.

Now consider the running time ofMeld(H;H 0). Step 1 takes time proportional to
the total number of nodes popped from the two backbone-stacks. Sincei + 1 nodes
remains on the backbone-stack ofH , Step 1 takes time(s+ 1)+ (t+1)� (i+ 1) =s+ t� i+1. Step 2 and construction of the new backbone-stack takes constant time,
so, except for a constant factor, melding two heap-trees with backbones of lengths
and t takes timeT (s; t) = s + t � i + 1. In our application of finding pairs we
are more interested in bounding the total time required to doa sequence of melds
rather than bounding the time of each individual meld. We therefore turn to amortized
analysis [27].

On a forestF of heap-trees we define the potential function�(F ) to be the sum of
the lengths of the backbones of the heap-trees in the forest.Melding two heap-trees
with backbones of lengths andt, as illustrated in Figure 5, changes the potential of
the forest with�� = i+1� (s+ t). The amortized running time of melding the two
heap-trees is thusT (s; t) + �� = (s+ t� i+ 1) + (i� s� t+ 1) = 2, so starting
with n heap-trees of size one, i.e. a forestF0 with potential�(F0) = 0, and doing a
sequence ofn�1meld operations until the forestFn�1 consists of a single heap-tree,
takes timeO(n) in the worst case.
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4.1.2 Colored heap-trees
We implement colored heap-trees as colored heap-ordered trees in much tqhe same
way as we implemented heap-trees as uncolored heap-orderedtrees. The implemen-
tation only differs in two ways. First, a node in the colored heap-ordered tree stores a
set of elements instead of just a single element. Secondly, anode, including the root,
can have several left-children. The elements stored at a node, and the references to the
left-children of a node, are kept in uncolored heap-trees. More precisely, a nodev in
the colored heap-ordered tree has the following attributes.v:elms : A heap-tree that stores the elements at nodev. Find(v:elms ; x) returns all

elements stored at nodev with key less than or equal tox. All elements
stored at nodev have identical colors. We say that this color is the color of
nodev and denote it byolor (v).v:key : The key of nodev. We set the key of a node to be the minimum key of an
element stored at the node, i.e. the key of nodev is the key of the element
stored at the root of the heap-treev:elms .v:right : A reference to the right-child of nodev.v:lefts : A heap-tree that stores the references to the left-children of nodev. A ref-
erence is stored with a key equal to the key of the referenced left-child, soFind(v:lefts ; x) returns the references to all left-children of nodev with key
less than or equal tox.

As for the heap-tree we define the backbone of a colored heap-tree as the path that
starts at the root and continues via nodes reachable from theroot via a sequence of
right-children. We use a stack, the backbone-stack, to keeptrack of the nodes on the
backbone. In addition to the heap-order, saying that the keyof every node other than
the root is greater than or equal to the key of its parent, we maintain the following
three invariants about the color of the nodes and the relation between the elements
stored at a node and its left-children.I1: Every nodev other than the rootr has a color different from its parent.I2: Every nodev satisfies thatjFind(v:elms ; x)j � jFind(v:lefts ; x)j for anyx.I3: The rootr satisfies thatjFind(r:elms ; x)j � jFind(r:lefts ; x)j + 1 for anyx � Min(r:elms).

We now turn our attention towards the implementation of the operations on col-
ored heap-trees.ColorInit(e; k) is straightforward. We simply construct a single
nodev wherev:key = k, v:elms = Init(e; k) andv:right = v:lefts = null and a
backbone-stack that contains nodev. ColorMin(H) is also straightforward. The heap-
order implies that the element with minimum key is stored in the heap-treer:elms
at the rootr of H , soColorMin(H) = Min(r:elms). The heap-order andI1 imply
thatColorSe(H) is the element stored with minimum key at a child ofr. The el-
ement stored with minimum key at the right-child isMin(r:right) and the element
stored with minimum key at a left-child must by the heap-order of r:lefts be the el-
ement stored with minimum key at the left-child referenced by the root ofr:lefts ,
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i.e.Min(Root(r:lefts):elm). BothColorMin(H) andColorSe(H) can thus be found
in constant time.

We implementColorFind(H; x; ) as a recursive traversal ofH starting at the root.
More precisely, we implementColorFind(H; x; ) asReportFrom(r) wherer is the
root ofH andReportFrom is the following recursive procedure.ReportFrom(v)

if key(v) � x then
if olor (v) 6=  thenE = Find(v:elms ; x)

for e in E do
reporteReportFrom(v:right)W = Find(v:lefts ; x)

for w in W doReportFrom(w)
The correctness of this implementation is established as follows. The heap-order

ensures that all nodesv with v:key � x are visited during the traversal. The def-
inition of v:key implies that any elemente with key k � x is stored at a nodev
with v:key � x, i.e. among the elements returned byFind(v:elms ; x) for somev vis-
ited during the traversal. Together with the testolor (v) 6=  this implies that all ele-
mentse with keyk � x and color different from are reported byColorFind(H; x; ).

Now consider the running time ofColorFind(H; x; ). SinceFind(v:elms ; x) andFind(v:lefts ; x) both take time proportional to the number of returned elements, it
follows that the running time is dominated by the number of recursive calls plus the
number of reported elements. To argue that the running time of ColorFind(H; x; ) is
proportional to the number of reported elements we therefore argue that the number of
reported elements dominates the number of recursive calls.We only make recursive
calls from a nodev if v:key � x. Let v be such a node and consider two cases.

If olor (v) 6=  then we report at least one element, namely the element with
key v:key , and by the invariantsI2 andI3 we report at least as many elements as the
number of left-children we call when reporting fromv. Hence, except for a constant
term that we can charge for visiting nodev, the number of reported elements atv
accounts for the call tov and all the recursive calls fromv.

If olor (v) =  then we do not report any elements atv, but the invariantI1 ensures
that we have reported elements at its parent (unlessv is the root) and that we will be
reporting elements at all left-children we call fromv. The call tov is thus already ac-
counted for by the elements reported at its parent, and except for a constant term that
we can charge for visiting nodev, all calls fromv will be accounted for by elements
reported at the children ofv. We conclude that the number of reported elements dom-
inates the number of recursive calls, soColorFind(H; x; ) takes time proportional to
the number of reported elements.

We implementColorMeld(H;H 0) similar toMeld(H;H 0) except that we must en-
sure that the constructed colored heap-tree obeys the threeinvariants. LetH andH 0 be
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colored heap-trees with rootsr andr0 named such thatr:key � r0:key . We implementColorMeld(H;H 0) as the following three steps.

1. Merge. We merge the backbones ofH andH 0 together such that the resulting
heap-ordered tree stores all elements inH andH 0 with unchanged keys. The
merging is done by popping nodes from the backbone-stacks ofH andH 0 until
the backbone-stack ofH 0 is empty

2. Solve conflicts. A nodew on the merged backbone with the same color as its
parentv is a violation of invariantI1. We solve conflicts between neighboring
nodesv andw of equal color by melding the elements and left-children of the two
nodes and removing nodew. We say that parentv swallows the childw.v:elms = Meld(v:elms ; w:elms)v:lefts = Meld(v:lefts ; w:lefts)v:right = w:right

3. Shorten backbone. Let v be the node on the merged backbone corresponding tor0
or the node that swallowedr0 in Step 2. We shorten the backbone by moving the
right-child ofv to the set of left-children ofv.v:lefts = Meld(v:lefts ; Init(v:right ; v:right :key))v:right = null

The main difference fromMeld(H;H 0) is Step 2 where the invariantI1 is restored
along the merged backbone. To establish the correctness of the implementation ofColorMeld(H;H 0) we consider each of the three steps in more details.

In Step 1 we merge the backbones ofH andH 0 together such that the resulting
tree is a heap-ordered tree that stores all elements inH andH 0 with unchanged keys.
Since the merging does not change the left-children or the elements of any node and
sinceH andH 0 both obeyI2 andI3, the constructed heap-ordered tree also obeysI2
andI3. The merged backbone can however contain neighboring nodesof equal color.
These conflicts are a violation ofI1.

In Step 2 we restoreI1. We solve all conflicts on the merged backbone between
neighboring nodesv andw of equal color by letting the parentv swallow the childw
as illustrated in Figure 6. We observe that sinceH andH 0 both obeyI1 a conflict must
involve a node from both of them. This implies that a conflict can only occur in the
part of the merged backbone made of nodes popped off the backbone-stacks in Step 1.
We also observe that solving a conflict does not induce a new conflict. Combined with
the previous observation this implies that the number of conflicts is bounded by the
number of nodes popped off the backbone-stacks in Step 1. Finally, we observe that
solving a conflict does not induce violations ofI2 andI3, so after solving all conflicts
on the merged backbone we have a colored heap-tree that stores all elements inH
andH 0 with unchanged keys.

In Step 3 we shorten the merged backbone. It is done by moving the right-child
of r0 to its left-children, or in caser0 has been swallowed by a nodev in Step 2, by
moving the right-child ofv to its left-children. The subtree rooted by the right-child
moved follows along, and thus becomes a subtree rooted by thenew left-child ofr0
(or v). To argue that shortening the backbone does not induce violations ofI2 andI3
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FIG. 6: This figure illustrates how a conflict on the merged backbone is solved. Ifolor (v) = olor (w) thenI1 is violated. The invariant is restored by letting nodev
swallow nodew, i.e. melding the elements and left-children at the two nodes and
removing nodew. Sinceolor (u) 6= olor (w) = olor (v) andolor (u0) 6= olor (v),
solving a conflict does not induce another conflict.

we start by making two observations. First, we observe that moving the right-child of
a node that obeysI3 to its set of left-children results in a node that obeysI2. Secondly,
we observe that if a node that obeysI2 (or I3) swallows a node that obeysI2 it results
in a node that still obeysI2 (or I3).

Sincer0 is the root ofH 0, it obeysI3 before Step 2. We consider two cases.
First, if r0 is not swallowed in Step 2, the first observation immediatelyimplies that it
obeysI2 after Step 3. Secondly, ifr0 is swallowed by a nodev in Step 2, we might as
well think of Steps 2 and 3 as occurring in opposite order as this does not affect the re-
sulting tree. Hence, first we move the right-child ofr0 to its set of left-children, which
by the first observation results in a node that obeysI2, then we let nodev swallow this
node, which by the second observation does not affect the invariants obeyed byv.

We conclude that the implementation ofColorMeld(H;H 0) constructs a colored
heap-tree that obeys all three invariants and stores all elements inH andH 0 with un-
changed keys and colors. The backbone-stack of the colored heap-tree constructed byColorMeld(H;H 0) is what remains on the backbone-stack ofH after popping nodes
in Step 1 with the noder0 pushed onto it, unless the noder0 is swallowed in Step 2.

Now consider the time it takes to meldn colored heap-trees of size one together
by a sequence ofn � 1 melds. If we ignore the time it takes to meld the heap-trees
storing elements and references to left-children when solving conflicts in Step 2 and
shortening the backbone in Step 3, then we can bound the time it takes to do the se-
quence of melds byO(n) exactly as we did in the previous section. Meldingn colored
heap-trees of size one involves melding at mostn heap-trees of size one storing ele-
ments, and at mostn heap-trees of size one storing references to left-children. Since
meldingn heap-trees of size one takes timeO(n), we have that melding the heap-trees
storing elements and references to left-children also takes timeO(n), so meldingn
colored heap-trees of size one takes timeO(n) in the worst case.
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4.2 Algorithms

In the following we present two algorithms to find pairs with lower bounded gap. First
we describe a simple algorithm to find all right-maximal pairs with lower bounded gap
using heap-trees, then we extend it to find all maximal pairs with lower bounded gap
using colored heap-trees. Both algorithms run in timeO(n+z) wherez is the number
of reported pairs.

4.2.1 Right-maximal pairs with lower bounded gap
We find all right-maximal pairs inS with gap at leastg(j�j), by for each nodev in
the binary suffix treeTB(S) considering the leaf-lists at its two childrenw1 andw2.
The pair(p; q; j�j), for p 2 LL(w1) andq 2 LL(w2), is right-maximal and has gap
at leastg(j�j) if and only if q � p+ j�j+ g(j�j). If we letpmin denote the minimum
element inLL(w1) this implies that everyq inQ = fq 2 LL(w2) j q � pmin + j�j+ g(j�j)g
forms a right-maximal pair(p; q; j�) with gap at leastg(j�j) with everyp inPq = fp 2 LL(w1) j p � q � g(j�j)� j�jg :
By constructionPq containspmin and we have that(p; q; j�j) is a right-maximal pair
with gap at leastg(j�j) if and only if q 2 Q and p 2 Pq . We can constructQ
andPq using heap-trees. LetHi and �Hi be heap-trees that store the elements inLL(wi) ordered by “�” and “�” respectively. By definition of the operationsMin
andFind we have thatpmin = Min(H1), Q = Find( �H2; pmin + j�j + g(j�j) andPq = Find(H1; q � g(j�j)� j�j).

This leads to the formulation of Algorithm 3 in which we at every nodev in TB(S)
construct two heap-trees,H and �H, that store the elements inLL(v) ordered by “�”
and “�” respectively. Ifv is a leaf, we constructH and �H directly by creating two
heap-trees of size one each storing the index at the leaf. Ifv is an internal node,
we constructH and �H by melding the corresponding heap-trees at the two children
(lines 11–12). Before constructingH and �H at nodev, we report right-maximal pairs
of its path-label (lines 1–10).

To argue that Algorithm 3 finds all right-maximal pairs inS with gap at leastg(j�j)
it is sufficient to show that we at each nodev in TB(S) report all pairs(p; q; j�j) and(q; p; j�j), wherep 2 LL(w1) andq 2 LL(w2), with gap at leastg(j�j). The rest
follows because we consider every node inTB(S). Letv be a node inTB(S) at which
the heap-treesH1, �H1, H2, and �H2 at its two children are available. As explained
above(p; q; j�j) is a right-maximal pair with gap at leastg(j�j) if and only if q 2 Q
andp 2 Pq , which are exactly the pairs reported in lines 1–5. Symmetrically we
can argue that(q; p; j�j) is a right-maximal pair with gap at leastg(j�j) if and only ifp 2 P andq 2 Qp, which are exactly the pairs reported in lines 6–10.

Now consider the running time of the algorithm. We first note that constructing two
heap-trees of size one at each of then leaves inTB(S) and melding them together
according to the structure ofTB(S) takes timeO(n) because each of then� 1 meld
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Algorithm 3 Find all right-maximal pairs inS with lower bounded gap.

1. Initializing: Build the binary suffix treeTB(S). Create at each leaf two heap-trees
of size one,H ordered by “�” and �H ordered by “�”, that both store the index at
the leaf.

2. Reporting and melding:When the heap-treesH1 and �H1 at the left-child of
nodev, and the heap-treesH2 and �H2 at the right-child of nodev are available
we report pairs of�, the path-label ofv, and construct the heap-treesH and �H as
follows

1 Q = Find( �H2;Min(H1) + j�j+ g(j�j))
2 for q in Q do
3 Pq = Find(H1; q � g(j�j)� j�j)
4 for p in Pq do
5 report pair(p; q; j�j)
6 P = Find( �H1;Min(H2) + j�j+ g(j�j))
7 for p in P do
8 Qp = Find(H2; p� g(j�j)� j�j)
9 for q in Qp do

10 report pair(q; p; j�j)
11 H = Meld(H1; H2)
12 �H = Meld( �H1; �H2)

operation takes amortized constant time. We then note that the reporting of pairs at
each node, lines 1–10, takes time proportional to the numberof reported pairs because
the find operation takes time proportional to the number of returned elements and the
setPq (andQp) is non-empty for every elementq in Q (andp in P ). Finally we
recall that constructing the binary suffix treeTB(S) takes timeO(n). Now consider
the space needed by the algorithm. The binary suffix tree requires spaceO(n). The
heap-trees also requires spaceO(n) because no element at any time is stored in more
than one heap-tree. Finally, since no leaf-list contains more thann elements, storing
the elements returned by the find operations during the reporting requires no more
than spaceO(n). In summary we formulate the following theorem.

THEOREM 4.1
Algorithm 3 finds all right-maximal pairs(i; j; j�j) in a stringS of lengthn with gap
at leastg(j�j) in spaceO(n) and timeO(n + z), wherez is the number of reported
pairs.

4.2.2 Maximal pairs with lower bounded gap
Essential to the above algorithm is that we in time proportional to its size can con-
struct the setQ that contains all elementsq in LL(w2) that form a right-maximal
pair (pmin; q; j�j) with gap at leastg(j�j). Unfortunately the left-charactersS[q � 1℄



24 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

andS[pmin � 1℄ can be equal, soQ can contain elements that do not form a maximal
pair with any element inLL(w1). Since we aim for the reporting of pairs to take
time proportional to the number of reported pairs, this implies that we cannot afford
to consider every element inQ if we only want to report maximal pairs.

Fortunately we can efficiently construct the subset ofLL(w2) that contains all the
elements that form at least one maximal pair. An elementq in LL(w2) forms a maxi-
mal pair if and only if there is an elementp in LL(w1) such thatq � p+ j�j+ g(j�j)
andS[q � 1℄ 6= S[p � 1℄. We can construct this subset ofLL(w2) using colored
heap-trees. We define the color of an element to be its left-character, i.e. the color ofp
in LL(w1) andq in LL(w2) is S[p� 1℄ andS[q � 1℄ respectively. LetHi and �Hi be
colored heap-trees that store the elements inLL(wi) ordered by “�” and “�” respec-
tively. Usingpmin = ColorMin(H1) andpse = ColorSe(H1) we can characterize
the elements inLL(w2) that form at least one maximal pair with gap at leastg(j�j)
by considering two cases.

First, if q � pse + j�j+ g(j�j) then(pmin; q; j�j) and(pse; q; j�j) both have gap
at leastg(j�j) and sinceS[pmin � 1℄ 6= S[pse � 1℄ at least one of them is maximal,
so everyq � pse + j�j + g(j�j) forms a maximal pair with gap at leastg(j�j). If #
is a character not appearing anywhere inS, i.e. no element inLL(w2) has color#,
this is the same as saying that everyq in Q0 = ColorFind( �H2; pse + j�j+ g(j�j);#)
forms a maximal pair with gap at leastg(j�j). Secondly, ifq < pse + j�j + g(j�j)
forms a maximal pair(p; q; j�j) with gap at leastg(j�j) thenpmin � p < pse. This
implies thatS[p � 1℄ = S[pmin � 1℄, so(pmin; q; j�j) is also maximal and has gap
at leastg(j�j). We thus have thatq < pse + j�j+ g(j�j) forms a maximal pair with
gap at leastg(j�j) if and only if (pmin; q; j�j) is maximal and has gap at leastg(j�j),
i.e. if and only ifS[q � 1℄ 6= S[pmin � 1℄ andq � pmin + j�j+ g(j�j). This implies
that the setQ00 = ColorFind( �H2; pmin + j�j + g(j�j); S[pmin � 1℄) contains everyq < pse + j�j+ g(j�j) that forms a maximal pair with gap at leastg(j�j).

By construction ofQ0 andQ00 the setQ0 [ Q00 contains all elements inLL(w2)
that form a maximal pair with gap at leastg(j�j). More precisely, everyq in the setQ0 [ Q00 forms a maximal pair(p; q; j�j) with gap at leastg(j�j) with everyp �q � g(j�j) � j�j in LL(w1) whereS[p � 1℄ 6= S[q � 1℄, i.e. with everyp in the setPq = ColorFind(H1; q � g(j�j)� j�j; S[q � 1℄) which by construction is non-empty.
We can construct the setQ0 [Q00 efficiently as follows. Every element inQ00 greater
thanpse+ j�j+g(j�j) is also inQ0, so we can constructQ0[Q00 by concatenatingQ0
and what remains ofQ00 after removing all elements greater thanpse + j�j + g(j�j)
from it. Combined with the complexity ofColorFind this implies that we can construct
the setQ0 [Q00 in time proportional tojQ0j+ jQ00j � 2jQ0 [Q00j.

This leads to the formulation of Algorithm 4. The algorithm is similar to Algo-
rithm 3 except that we maintain colored heap-trees during the traversal of the binary
suffix tree. At every node we report maximal pairs of its path-label. In lines 1–7
we report all maximal pairs(p; q; j�j) by constructing and considering the elements
in Pq for every q in Q0 [ Q00. In lines 8–15 we analogously report all maximal
pairs(q; p; j�j). The correctness of the algorithm follows immediately fromthe above
discussion. Since the operations on colored heap-trees have the same complexities as
the corresponding operations on heap-tress, the running time and space requirement
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Algorithm 4 Find all maximal pairs inS with lower bounded gap.

1. Initializing: Build the binary suffix treeTB(S). Create at each leaf two colored
heap-trees of size one,H ordered by “�” and �H ordered by “�”, that both store
the index at the leaf with color corresponding to its left-character.

2. Reporting and melding:When the colored heap-treesH1 and �H1 at the left-child
of nodev, and the colored heap-treesH2 and �H2 at the right-child of nodev are
available we report pairs of�, the path-label ofv, and construct the colored heap-
treesH and �H as follows, where# is a character not appearing anywhere inS.

1 pmin; pse = ColorMin(H1);ColorSe(H1)
2 Q0 = ColorFind( �H2; pse + j�j+ g(j�j);#)
3 Q00 = ColorFind( �H2; pmin + j�j+ g(j�j); S[pmin � 1℄)
4 for q in Q0 [Q00 do
5 Pq = ColorFind(H1; q � g(j�j)� j�j; S[q � 1℄)
6 for p in Pq do
7 report pair(p; q; j�j)
8 qmin; qse = ColorMin(H2);ColorSe(H2)
9 P 0 = ColorFind( �H1; qse + j�j+ g(j�j);#)

10 P 00 = ColorFind( �H1; qmin + j�j+ g(j�j); S[qmin � 1℄)
11 forp in P 0 [ P 00 do
12 Qp = ColorFind(H2; p� g(j�j)� j�j; S[p� 1℄)
13 forq in Qp do
14 report pair(q; p; j�j)
15 H = ColorMeld(H1; H2)
16 �H = ColorMeld( �H1; �H2)

of the algorithm is exactly as analyzed for Algorithm 3. In summary we can formulate
the following theorem.

THEOREM 4.2
Algorithm 4 finds all maximal pairs(i; j; j�j) in a stringS of lengthn with gap at
leastg(j�j) in spaceO(n) and timeO(n + z), wherez is the number of reported
pairs.

5 Conclusion

We have presented efficient and flexible methods to find all maximal pairs(i; j; j�j)
in a string under various constraints on the gapj � i� j�j. If the gap is required to be
betweeng1(j�j) andg2(j�j), the running time isO(n logn+ z) wheren is the length
of the string andz is the number of reported pairs. If the gap is only required tobe at
leastg1(j�j), the running time reduces toO(n+ z). In both cases we use spaceO(n).

In some cases it might be interesting only to find maximal pairs (i; j; j�j) fulfilling
additional requirements onj�j, e.g. to filter out pairs of short substrings. This is



26 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

straightforward to do using our methods by only reporting from the nodes in the binary
suffix tree whose path-label� fulfills the requirements onj�j. In other cases it might
be of interest just to find the vocabulary of substrings that occur in maximal pairs.
This is also straightforward to do using our methods by just reporting the path-label�
of a node if we can report one or more maximal pairs from the node.

Instead of just looking for maximal pairs, it could be interesting to look for an array
of occurrences of the same substring in which the gap betweenconsecutive occur-
rences is bounded by some constants. This problem requires asuitable definition of a
maximal array. One definition and approach is presented in [25]. Another definition
inspired by the definition of a maximal pair could be to require that every pair of oc-
currences in the array is a maximal pair. This definition seems very restrictive. A more
relaxed definition could be to only require that we cannot extend all the occurrences in
the array to the left or to the right without destroying at least one pair of occurrences
in the array.
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