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ABSTRACT:A pair in a string is the occurrence of the same substringewi pair is maximal

if the two occurrences of the substring cannot be extendéuetteft and right without making
them different, and the gap of a pair is the number of charadietween the two occurrences
of the substring. In this paper we present methods for findihghaximal pairs under various
constraints on the gap. In a string of lengtlve can find all maximal pairs with gap in an upper
and lower bounded interval in tin@(n log n + z), wherez is the number of reported pairs. If
the upper bound is removed the time reduce®te + z). Since a tandem repeat is a pair with
gap zero, our methods is a generalization of finding tandgreats. The running time of our
methods also equals the running time of well known method§riding tandem repeats.

Keywords Strings, Maximal Pairs, Tandem Repeats, Suffix Trees, iEffidierging, Search Trees

1 Introduction

A pair in a string is the occurrence of the same substringawicpair is left-maximal
(right-maximal) if the characters to the immediate lefg(ri) of the two occurrences of
the substring are different. A pair is maximal if it is botlitleand right-maximal. The
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gap of a pair is the number of characters between the two merees of the substring,
e.g. the two occurrences of the substningin the stringmaximalform a maximal pair
of mawith gap two. Gusfield in [11, Section 7.12.3] describes howde a suffix tree
to report all maximal pairs in a string of lengthin time O(n + z) and spac®(n),
wherez is the number of reported pairs. The algorithm presented tsfi€ld allows
no restrictions on the gaps of the reported maximal pairanaay of the reported
pairs probably describe occurrences of substrings thatiner overlapping or far
apart in the string. In many applications this is unfortenia¢cause it leads to a lot
of redundant output. The problem of finding occurrencesnoflar substrings not too
far apart has been studied in several papers, e.g. [15,19, 25

In the first part of this paper we describe how to find all maXipeirs in a string
with gap in an upper and lower bounded interval in tiéhg: log n+2) and spacé(n).
The interval of allowed gaps can be chosen such that we repogximal pair only
if the gap is between two constants andc.; but more generally, the interval can
be chosen such that we report a maximal pair only if the gapetsvéeng; (Ja|)
and g»(|]a|), whereg; and g are functions that can be computed in constant time
and|«/| is the length of the repeated substring. This, for exampbgkes it possible
to find all maximal pairs with gap between zero and some foactif the length of
the repeated substring. In the second part of this paper s&ile how removing the
upper bound, (]a|) on the allowed gaps makes it possible to reduce the runmmgy ti
to O(n + z). The methods we present all use the suffix tree as the fundahuzra
structure combined with efficient merging of search treestagap-ordered trees.

Finding occurrences of repeated substrings in a string iglalwstudied problem.
Much work has focused on constructing efficient methods fatifig occurrences of
contiguously repeated substrings. An occurrence of a sngstf the formaa is
called an occurrence of a square or a tandem repeat. Sevetflabds have been pre-
sented thatin timé&(n log n+z) find all z occurrences of tandem repeats in a string of
lengthn, e.g.[2,5, 17, 20, 26]. Methods that in tirdén) decide if a string of length
contains an occurrence of a tandem repeat have also beemtmése.qg. [6,21]. Ex-
tending on the ideas presented in [6], two methods [12, 1% li@en presented that
find a compact representation of all tandem repeats in astfilengthn in time O (n).
The problem of finding occurrences of contiguous repeatslogisings that are within
some Hamming- or edit-distance of each other is consideredi [18].

In biological sequence analysis searching for tandem tejieased to reveal struc-
tural and functional information [11, pp. 139-142]. Howeveearching for exact
tandem repeats can be too restrictive because of sequeartihgther experimental
errors. By searching for maximal pairs with small gaps (megdepending on the
length of the substring) it could be possible to compensatéhiese errors. Finding
maximal pairs with gap in a bounded interval is also a geigatbn of finding oc-
currences of tandem repeats. Stoye and Gusfield in [26] sayathoccurrence of the
tandem repeata is a branching occurrence of the tandem repeaif and only if
the characters to the immediate right of the two occurreinées are different, and
they explain how to deduce the occurrence of all tandem tepea string from the
occurrences of branching tandem repeats in time propatimnthe number of tan-
dem repeats. Since a branching occurrence of a tandem ligfjestta right-maximal
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pair with gap zero, the methods presented in this paper casdxto find all tandem
repeats in time)(n logn + z). This matches the time bounds of previous published
methods for this problem, e.g. [2,5, 17, 20, 26].

The rest of this paper is organized in two parts which can bd nedependently. In
Section 2 we present the preliminaries necessary to rehdreif the two parts; we
define pairs and suffix trees and describe how in general tpfaird using the suffix
tree. In the first part, Section 3, we present the methods dcafirmaximal pairs in a
string with gap in an upper and lower bounded interval. Tlaig plso presents facts
about efficient merging of search trees which are esseutitde formulation of the
methods. In the second part, Section 4, we present the ngetbdithd all maximal
pairs in a string with gap in a lower bounded interval. Thigtadso includes the pre-
sentation of two novel data structures, the heap-tree anddlored heap-tree, which
are essential to the formulation of the methods. FinallSéttion 5 we summarize
our work and discuss open problems.

2 Prédiminaries

Throughout this pape$ will denote a string of length, over a finite alphabet. We
will use S[i], fori = 1,2,... ,n, to denote théth character of5, and uses|i .. j] as
notation for the substrin§[:]S[i+1] - - - S[j] of S. To be able to refer to the characters
to the left and right of every character Biwithout worrying about the first and last
character, we defin€[0] and S[n + 1] to be two distinct characters not appearing
anywhere else ii$.

In order to formulate methods for finding repetitive struetiinS, we need a proper
definition of such structures. An obvious definition is to fialll pairs of identical
substrings inS. This, however, leads to a lot of redundant output, e.g.érsthing that
consists ofr identical characters there aB§n?) such pairs. To limit the redundancy
without sacrificing meaningful structures Gusfield in [11pposes maximal pairs.

DEFINITION 2.1 (Pair)

We say that(i, j, |a|) is apair of « in S formed byi andj if and only if 1 < i <
j<n-—-lal+1landa = S[i..i + |a| — 1] = S[j..j + |a| — 1]. The pair is
left-maximal(right-maxima) if the characters to the immediate left (right) of two
occurrences ofx are different, i.e. left-maximal i§[i — 1] # S[j — 1] and right-
maximal if S[i + |a|] # S[j + |a|]. The pairismaximalif it is right- and left-maximal.
The gap of a paifi, j, |a|) is the number of charactejs— i — |a| between the two
occurrences oft in S.

The indices andj in aright-maximal paifi, j, |«|) uniquely determinéx|. Hence,
a string of lengthn contains in the worst cas@(n?) right-maximal pairs. The
stringa™ contains the worst case number of right-maximal pairs bt 61{n) max-
imal pairs. However, the stringuab)™/? contains®(n?) maximal pairs. This shows
that the worst case number of maximal pairs and right-makjags in a string are
asymptotically equal.

Figure 1 illustrates the occurrence of a pair. In some appibos it might be inter-
esting only to find pairs that obey certain restrictions anghp, e.g. to filter out pairs
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FIG. 1. An occurrence of a palt, j, |«|) with gapj — i — |a].

of substrings that are either overlapping or far apart an tteduce the number of
pairs to report. Using the “smaller-half trick” (see Seati®.1) and Lemma 2.3 it can
be shown that a string of lengthin the worst case contaii®(n log n) right-maximal
pairs with gap in an interval of constant size.

In this paper we present methods for finding all right-maxiarad maximal pairs
(i,7,]al) in S with gap in a bounded interval. These methods all use thexsuéfe
of S as the fundamental data structure. We briefly review thexsuriie and refer
to [11] for a more comprehensive treatment.

DEFINITION 2.2 (Suffix tree)

The suffix treeT'(S) of the stringS is the compressed trie of all suffixes 6%,
where$ ¢ X. Each leaf inT'(S) represents a suffi§[i..n] of S and is annotated
with the indexi. We refer to the set of indices stored at the leaves in thesaibboted

at nodev as thdeaf-listof v and denote i L(v). Each edge iff’(S) is labelled with

a nonempty substring & such that the path from the root to the leaf annotated with
index i spells the suffixS[i..n]. We refer to the substring &f spelled by the path
from the root to node as thepath-labelof v and denote if.(v).

Several algorithms construct the suffix tfféS) in time O(n), e.g. [7, 22,28, 30].
It follows from the definition of a suffix tree that all interh@odes inT'(S) have out-
degree between two ani|. We can turn the suffix tre&(S) into the binary suffix
treeTs(S) by replacing every nodein T'(S) with out-degreel > 2 by a binary tree
with d — 1 internal nodes and — 2 internal edges in which thé leaves are thd
children of nodev. We label each new internal edge with the empty string suah th
thed — 1 nodes replacing nodeall have the same path-label as nedeas inT'(S).
SinceT (S) hasn leaves, constructing the binary suffix trég (S) requires adding at
mostn — 2 new nodes. Since each new node can be added in constantteténary
suffix treeTs(S) can be constructed in tim@(n).

The binary suffix tree is an essential component of our methddefinition 2.2
implies that there is an internal noden T'(S) with path-labeky if and only if « is
the longest common prefix &ffi .. n] andS[j .. n] for somel < i < j < n. In other
words, there is a node with path-labek: if and only if (4, j, |a|) is a right-maximal
pairin S. SinceS[i + |a|] # S[j + |a]] the indicesi andj cannot be elements in
the leaf-list of the same child af. Using the binary suffix tre€'z(S) we can thus
formulate the following lemma.

LEMMA 2.3

There is a right-maximal paifi, j, |«|) in S if and only if there is a node in the
binary suffix treeTs(S) with path-labela and distinct childrenv; andw,, where
1€ LL(wl) andj S LL(wz)



Finding Maximal Pairs with Bounded Gap 5

The lemma implies an approach to find all right-maximal p&irS; for every inter-
nal nodev in the binary suffix tre€ s (S) consider the leaf-lists at its two children
andw», and for every elemen(, j) in LL(w,) x LL(w2) report a right-maximal
pair (i, j,|a|) if i < j and(j,i,|al) if j < i. To find all maximal pairs inS the
problem remains to filter out all right-maximal pairs thag aot left-maximal.

3 Pairswith upper and lower bounded gap

We want to find all maximal pair§, j, |a|) in S with gap between, (J«|) andga(|«|),
ie.gi(lal) < j—i—-|a|l < g2(lal), whereg; and g, are functions that can be
computed in constant time. An obvious approach to solvepttiblem is to generate
all maximal pairs inS but only report those with gap between(|«|) and g»(|a|).
However, as explained in the previous section there mighadyenptotically fewer
maximal pairs inS with gap betweem, (Ja|) andg:(|a|) than maximal pairs irf in
total. We therefore want to find all maximal pais j, |«|) in S with gap between
91(|a|) andg2(|a|) withoutgenerating and considering all maximal pairsinA step
towards finding all maximal pairs with gap betwegrf|a|) andg.(|a]) is to find all
right-maximal pairs with gap between(|a|) andg (Ja|).

Figure 2 shows that if one occurrence @fin a pair with gap betweep; (|a|)
andg:(|a|) is at positionp, then the other occurrence afmust be at a positioq in
one of the two intervals:

L(p, al) [p = laf = g2(lal) . p = laf = g1(la]) ] 3.1)
R(p,Jal) = [p+lal+g(al)..p+lal+ g2(laf)] (3.2)

Combined with Lemma 2.3 this gives an approach to find alltrsighximal pairs inS
with gap betweem; (Jo|) andg:(|a|): for every internal node in the binary suffix
treeT's(S) with path-labeh and childrenyv; andw,, we reportfor every in LL(w;)
the pairs(p, ¢, |a|) for all ¢ in LL(w2) N R(p, |a|) and the pairggq, p, |«|) for all ¢
in LL(w2) N L(p,||).

To report the right-maximal pairs efficiently we must be atudind for everyp
in LL(w,) the proper elementgin LL(w-) to report it against, without looking at all
the elements it L(w). It turns out that search trees make this possible. In ttpgpa
we use AVL trees, but other types of search trees, (@.gh)-trees [13] or red-black
trees [10], can also be used as long as they obey Lemmas 3.3 2usthted below.
Before we can formulate algorithms we review some usefusfabout AVL trees.

3.1 Data structures

An AVL tree T is a balanced search tree that stores an ordered set of ekerdfh
trees were introduced in [1], but are explained in almostyetextbook on data struc-
tures. We say that an elemenis in T, ore € T, if it is stored at a node ifi’. For
short notation we useto denote both the element and the node at which it is stored
in T'. We can keep links between the node%'im such a way that we in constant time
from the node: can find the nodesexzt(e) andprev(e) storing the next and previous
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<—lal+g1(le]) —=><—la| + g1(|a]) —=

< [a + g2(|a]) < la] + g2(]al)
% Z a % Z
L(p, |al) P R(p,|al)

Fic. 2: If (p,q,|a]) (respectively(q,p,|«|)) is a pair with gap betweep; (Ja|)
and g»(|a|), then one occurrence ef is at positionp and the other occurrence is
at a positiory in the intervalR(p, |a|) (respectivelyL(p, |a|)) of positions.

element. We usfl'| to denote the size F, i.e. the number of elements storedlin

Efficient merging of two AVL trees is essential to our methods/ang and Lin [14]
show how to merge two sorted lists using the optimal numbebaiparisons. Brown
and Tarjan [4] show how to implement merging of two heighliabaed search trees,
e.g. AVL trees, in time proportional to the optimal numberoaimparisons. Their
result is summarized in Lemma 3.1, which immediately impliemma 3.2.

LEMMA 3.1

Two AVL trees of size at most andm can be merged in timé (log ("“;m))

LEMMA 3.2

Given a sorted list of elements, e, ... ,e, and an AVL treel’ of size at mosin,
wherem > n, we can findg; = min{x eT \ T > ei} foralli = 1,2,...,nin
time O(log (™).

PROOF Construct the AVL tree of the elements, es, ... , e, in time O(n). Merge
this AVL tree with 7" according to Lemma 3.1, except that whenever the merge-
algorithm would insert one of the elements, es, ... , e, into T, we change the
merge-algorithm to report the neighbor of the elemenfiinstead. This modifi-
cation does not increase the running time. [ |

The “smaller-half trick” is used in several methods for fimglitandem repeats,
e.g.[2,5, 26]. It says that the sum over all nodés an arbitrary binary tree of size
of terms that are)(n;), wheren; < no are the numbers of leaves in the subtrees
rooted at the two children af, is O(n log n). Our methods for finding maximal pairs
rely on a stronger version of the “smaller-half trick” hidtet in [23, Exercise 35] and
used in [24, Chapter 5, page 84]; we summarize it in the falhlglemma.

LEMMA 3.3
Let T be an arbitrary binary tree with leaves. The sum over all internal nodes

in T of termslog (”1:1”2), wheren, andn» are the numbers of leaves in the subtrees
rooted at the two children af, is O(nlogn).

PrRooFR We will by induction in the number of leaves of the binarygtpgrove that the
sum is upper bounded lygn!. If T is a leaf then the upper bound holds vacuously.
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Now assume inductively that the upper bound holds for a#idreith at most — 1
leaves. Letl' be a tree withn leaves where the number of leaves in the subtrees
rooted at the two children of the root are < n andn, < n. According to the
induction hypothesis the sum over all nodes in these twaeesbti.e. the sum over all
nodes ofl" except the root, is bounded byg n;! + logny! and thus the entire sum is
bounded by

log n1! + lognsy! + log <n1: n2>

1

logni! + logna! 4+ log(n1 + n2)! — logny! — logns!

= logn!.

Aslogn! = O(nlogn) the lemma follows. ||

3.2 Algorithms

We first describe an algorithm that finds all right-maximate@n S with bounded gap
using AVL trees to keep track of the elements in the leakldtring a traversal of the
binary suffix treel's (S). We then extend it to find all maximal pairs$hwith bounded
gap using an additional AVL tree to filter out efficiently dtjint-maximal pairs that are
not left-maximal. Both algorithms run in tim@(n log n+z) and spacé(n), wherez

is the number of reported pairs. In the following we assunmgss stated otherwise,
thatv is a node in the binary suffix tre€g(S) with path-labela and childrenw;
andw, named such thal. L(w )| < |LL(ws)|. We say thatv, is the small child ofs
and thatw, is the big child ofv.

3.2.1 Right-maximal pairs with upper and lower bounded gap

To find all right-maximal pairs irf with gap betweemn; (|a|) andgs(|«|) we consider
every nodev in the binary suffix tre€l's(S) in a bottom-up fashion, e.g. during a
depth-first traversal. At every nodewe use AVL trees storing the leaf-listsl (w; )
and LL(w-) at the two children ob to report the proper right-maximal pairs of the
path-labeh of v. The details are given in Algorithm 1 and explained next.

At every nodev in Tp(S) we construct an AVL tree, keaf-list treeT', that stores
the elements il L(v). If v is a leaf then we constru@t directly in Step 1. Ifv is an
internal node thed.L(v) is the union of the disjoint leaf-liste L(w;) and LL(w-).
By assumption.L(w; ) and LL(w-) are stored in the already constructE&dandT>.
We constructl’ by mergingT; andT5 using Lemma 3.1, wherfy| < |T5|. Be-
fore constructing’’ in Step 2c we usé; andT> to report right-maximal pairs from
nodewv by reporting everny in LL(w,) against every in LL(w2) N L(p, |a|) and
LL(w2) N R(p,|a|), whereL(p, |a|) andR(p, |a|) are the intervals defined by (3.1)
and (3.2). This is done in two steps. In Step 2a we find for epery LL(w;) the
minimum element, (p) in LL(w>) N R(p, |a|) and the minimum elemeng (p) in
LL(w2) N L(p, |a]) by searching ifl» using Lemma 3.2. In Step 2b we report pairs
(p,q,|a|) and(q, p, |a|) for everyp in LL(w, ) and increasing’s in LL(w-), starting
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with ¢, (p) andq,(p) respectively, until the gap violates the upper or lower lwhun

To argue that Algorithm 1 finds all right-maximal pairs witagbetweery; (|a|)
andg(]a|) by Lemma 2.3 it is sufficient to show that we for everin LL(w;) report
all right-maximal pairgp, q, |o|) and(g, p, |«|) with gap between; (|a|) andg:(|al).
The rest follows because we at every nadie Tz(S) consider every in LL(wy).
Consider the calReport(g-(p),p + |a| + g2(l)) in Step 2b. The implementation
of Report implies thatp is reported against everyin LL(w2) N [q-(p) ..p + |a| +
92(la)]. The construction ofy,.(p) and the definition ofR(p, |a|) implies that the
setLL(w2) N [qr(p) .-p + |a| + g2(|a|)] is equal toLL(w2) N R(p, |a]). Hence,
the call toReport reports all right-maximal pairép, g, |«|) with gap between; (|a|)
and g»(|a|). Similarly the callReport(q/(p),p — |a| — g1(Ja|)) reports all right-
maximal pairg(q, p, |a|) with gap betweem; (Ja|) andga(|a|).

Now consider the running time of Algorithm 1. Building thenbiry suffix treel's (S)
takes timeO(n) [7,22, 28, 30], and creating an AVL tree of size one at eachitea
Step 1 also takes tim@(n). At every internal node i¥'z(S) we perform Step 2.
Since|T}| < |Ts|, the searching in Step 2a and the merging in Step 2c take time
O(log (‘Tl“;fl“TQ‘)) by Lemmas 3.2 and 3.1 respectively. The reporting of pairs in
Step 2b takes time proportional {6 |, because we consider everyn LL(w,), plus
the number of reported pairs. Summing this over all nodeeggby Lemma 3.3 that
the total running time i€ (nlogn + z), wherez is the number of reported pairs.
Constructing and keepirifjs (S) requires spacé(n). Since no element at any time
is stored in more than one leaf-list tree, Algorithm 1 regaispac®(n) in total.

THEOREM 3.4

Algorithm 1 finds all right-maximal pair§i, j, |a|) in a stringS of lengthn with gap
betweery; (Ja|) andgz(|a|) in spaceO(n) and timeO(nlogn + z), wherez is the
number of reported pairs.

3.2.2 Maximal pairs with upper and lower bounded gap

We now turn our attention towards finding all maximal pairsSinvith gap between
g1(la]) and g2 (|a]). Our approach is to extend Algorithm 1 to filter out all right-
maximal pairs that are not left-maximal. A simple solutientd extend the proce-
dureReport to check ifS[p — 1] # S[q — 1] before reporting the paifp, ¢, |a|) or
(¢,p, |a]) in Step 2b. This solution takes time proportional to the nandd inspected
right-maximal pairs, and not time proportional to the numbgreported maximal
pairs. Even though the maximum number of right-maximalgaird maximal pairs
in strings of a given length are asymptotically equal, mariggs contain significantly
fewer maximal pairs than right-maximal pairs. We therefwaat to filter out all right-
maximal pairs that are not left-maximalthoutinspecting all right-maximal pairs. In
the remainder of this section we describe one approach teathis.

Consider the reporting step in Algorithm 1. Assume that we a&wout to report
from a nodev with childrenw; andw,. At this point the leaf-list tree§; and 75,
where|T1| < |T»|, are available and they make it possible to access the etsmen
in LL(w1) = {p1,p2,...,ps} and LL(w2) = {q1,42,...,q:} in sorted order.
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Algorithm 1 Find all right-maximal pairs in string with bounded gap.

1. Initializing: Build the binary suffix tred's(S) and create at each leaf an AVL tree
of size one that stores the index at the leaf.

2. Reporting and mergingWhen the AVL treesl; andTs», where|T}| < |T»|, at
the two childrernw; andw- of a nodev with path-labek are available, we do the
following:

(a) Let{p1,p2,... ,ps} be the elements iff; in sorted order. For each elemant
in Ty we find
qar(p) = min{x eTy | x> p+|al -I-gl(\oz\)}
q(p) = min{a: €Ty | x>p—|al - gg(\a\)}

by searching iff> with the two sorted list§p; + |a| + g1 (Ja]) | i = 1,2,... , s}
and{p; — |a| — g2(|a]) | i =1,2,...,s} using Lemma 3.2.

(b) For each elemenp in T} we call Report(q-(p),p + |a| + g¢2(|a|)) and
Report(g¢(p),p — |a| — g1(|a|)) whereReport is the following procedure.
Report(from, to)

q = from
while ¢ < to do
report pair(p, g, |al|) if p < ¢, and(q, p, |a|) otherwise
q = next(q)
(c) Build the leaf-list tred” at nodev by mergingT; andT, applying Lemma 3.1.

Our approach is to divide the sorted leaf-IisL (w-) into blocks of contiguous el-
ements, such that the elemenrts; and ¢; are in the same block if and only if
Slgi—1 — 1] = S[qg; — 1]. We say that we divide the sorted leaf-list into blocks of
elements with equal left-characters. To filter out all righéximal pairs that are not
left-maximal we must avoid to repoptin LL(w,) against any elememtin LL(w-)

in a block of elements with left-charact8fp — 1]. This gives the overall idea of the
extended algorithm; we extend the reporting step in Algponitl such that whenever
we are about to repogtin LL(w, ) againsly in LL(w,) whereS[p — 1] = S[q — 1],
we skip all elements in the current block containingnd continue reporting against
the first elemeng’ in the following block, which by the definition of blocks ssftes
thatS[p — 1] # S[¢’ — 1].

To implement this extended reporting step efficiently we nhesable to skip all
elements in a block without inspecting each of them. We aehiieis by constructing
an additional AVL tree, thélock-start treethat keeps track of the blocks in the leaf-
list. At each node during the traversal df's(S) we thus construct two AVL trees;
the leaf-list tre€l” that stores the elements Il (v), and the block-start treB that
keeps track of the blocks in the sorted leaf-list by storilighee elements inL.L(v)
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FiG. 3: The data structure constructed at each nodeT's(S). The leaf-list treel’
stores all elements ih L(v). The block-start tre@ stores all elements ifiL(v) that
start a block in the sorted leaf-list. We keep links from thengents in the block-start
tree to the corresponding elements in the leaf-list tree.

that start a block. We keep links from the block-start trethileaf-list tree such that
we in constant time can go from an element in the block-gtetto the corresponding
element in the leaf-list tree. Figure 3 illustrates the {istftree, the block-start tree
and the links between them. Before we present the extendedithim and explain
how to use the block-start tree to efficiently skip all eletsein a block. We first
describe how to construct the leaf-list tréeand the block-start tre® at nodev
from the leaf-list trees]; andT», and the block-start tree€3; and B,, at its two
childrenw; andws,.

Since the leaf-lisL. L(v) is the union of the disjoint leaf-lists L(w;,) and L L(w>)
stored inTy andT, respectively, we can construct the leaf-list tfBdoy mergingT;
andT, using Lemma 3.1. It is more involved to construct the blotdetdreeB. The
reason is that an elemepy that starts a block i L(w,) or an elemeny; that starts
a block inLL(w-) does not necessarily start a blockli.(v) and vice versa, so we
cannot construcB by mergingB; andB,. Let{e;,es,... ,es1:} be the elementsin
LL(v) in sorted order. By definition the block-start tré&contains all elements;,
in LL(v) whereS[e,_1 — 1] # S[ex, — 1]. We constructB by modifying B,. We
choose to modifyB,, and notB;, becauseéLL(w;)| < |LL(ws)|, which by the
“smaller-half trick” allows us to consider all elements i (w, ) without spending
too much time in total. To modify3, to becomeB we must identify all the elements
that are inB but not in B, and vice versa.

LEMMA 3.5
If ey, isin B butnotinB, theney, € LL(w) Oreg—1 € LL(w1).

PROOF Assume thaty is in B and that botle;, ande;_; are inLL(ws). In LL(w-)

the elementg;, andej_; are neighboring elements. Let these neighboring elements
in LL(w») be denoted;; andg;_1. Sinceey, is in B and therefore starts a block in
LL(v) thenS[g; — 1] = Slex — 1] # Slex—1 — 1] = S[gj—1 — 1]. This shows
thatg; = ey, is in B and the lemma follows. i

In the following NEW denotes the set of elememtsin B where eitheey orej_;
is in LL(wy). It follows from Lemma 3.5 thalVEW contains at least all elements
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in B that are not inB,. We can construcNEW in sorted order while mergin@;
andT as follows. When an elemen, from T, i.e. from LL(w1), is placed inT’,
i.e.in LL(v), we include it in the seNE'W if it starts a block inLL(v). Similarly the
next elementy, in LL(v) is included inNEW if it starts a block inLL(v).

Constructing the seWEW is the first step in modifyind3, to becomeB. The next
step is to identify the elements that should be removed fBirthat is, to identify the
elements that are iB» but not inB.

LEMMA 3.6
An elementy; in Bs is notin B if and only if the largest elemery, in NEW smaller
thang; in B> has the same left-charactergs

PROOE If g; is in B, but does not start a block ibL(v), then it must be in a block
started by some elemen}, with the same left-character gs. This block cannot
containg;_, because; being inB, implies thatS[g; — 1] # S[g;—1 — 1]. We thus
have the ordering;_; < e < g;. Thisimplies that;, is the largest element iNEW
smaller tharg;. If e, is the largest element iINETW smaller tharg;, then no block
starts inLL(v) betweere;, andg;, i.e. all elementg in LL(v) wheree, < e < g;
satisfy thatS[e — 1] = S[ex, — 1], so if S[e; — 1] = S[g; — 1] theng; does not start a
block in LL(v). ||

To identify the elements that should be removed frBs we searchB, with the
sorted listNEW using Lemma 3.2 to find all pairs of elemeltts, ¢;), wheree, is
the largest element iINVEW smaller thany; in B,. If the left-characters of;, andg;
in such a pair are equal, i.8[ex, — 1] = S[g; — 1], then by Lemma 3.6 the elemapt
is not in B and must therefore be removed fral. It follows from the proof of
Lemma 3.6 that if this is the case then.; < e;, < g;, SO we can, without destroying
the order among the nodes By, removeg; from B, and insert;, instead, simply by
replacing the element; with the element,, at the node storing; in Bs.

We can now summarize the three steps it takes to maBliffo becomeB. In
Step 1 we construct the sorted $éE W that contains all elements iR that are not
in By. This is done while mergin@; and7, using Lemma 3.1. In Step 2 we remove
the elements fronB; that are not inB. The elements iB, being removed and
the elements fromVEW replacing them are identified using Lemmas 3.2 and 3.6.
In Step 3 we merge the remaining elementshiB W into the modifiedBs using
Lemma 3.1. Adding links from the new elementsBrto the corresponding elements
in T can be done while replacing and merging in Steps 2 and 3. §NE& | < 2|T}|
and|B.| < |Tz|, the time it takes to construé@ is dominated by the the time it takes
to merge a sorted list of siz2|T} | into an AVL tree of sizeéT»|. By Lemma 3.1 this
is within a constant factor of the time it takes to mefgeandT5, so the time is takes
to constructB is dominated by the time it takes to construct the leaf-testT".

Now that we know how to construct the leaf-list tréeand block-start tred3 at
nodewv from the leaf-list trees]} andT5, and block-start trees3; and B,, at its
two childrenw; andw,, we can proceed with the implementation of the extended
reporting step. The details are shown in Algorithm 2. Thigoaithm is similar to
Algorithm 1 except that we at every noden T'5(S) construct two AVL trees; the
leaf-list treeT that stores the elementsi.(v), and the block-start treB that keeps
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Algorithm 2 Find all maximal pairs in string with bounded gap.

1. Initializing: Build the binary suffix treél’s(S) and create at each leaf two AVL
trees of size one, the leaf-list and the block-start tre®irgg the index at the leaf.

2. Reporting and mergingWhen the leaf-list tree$; andT,, where|T;| < |Ts|,
and the block-start tree8; andB, at the two childrenw; andw, of nodev with
path-labek are available, we do the following:

(a) Let{p1,p2,... ,ps} be the elements iff; in sorted order. For each elemant
in T} we find
f(p) = min{zeT|z>p+]a|+g(al)}
o(p) = min{z €Ty |z>p-|a|—g(al)}
(p) =
(p)

(=)

SR

r

min{z € By | > p+ |a| + g1(|al)}
= min{z € B, |z >p—|a| — g2(|a])}

S

14

by searching inl» and B, with the sorted lists{p; + |a| + g1(|a]) | i =
1,2,...,s}and{p; — |a| — g=(la|]) | i = 1,2,... , s} using Lemma 3.2.

(b) For each elementin T we callReportMax (¢, (p), b (p), p+ ||+ g2(|a])) and

ReportMax(q¢(p), be(p), p — |a| — 91 (Jr|)), whereReportMax is the following
procedure.
ReportMax(from_in_T', from_in_B, to)

q = from_in_T

b= from_in_B

while ¢ < to do

if S[g — 1] # S[p — 1] then
report pair(p, ¢, |a|) if p < g, and(q, p, |a|) otherwise

q = next(q)

else
while b < ¢ dob = next(b)
q=">

(c) Build the leaf-list treel’ at nodev by mergingT; and7T; using Lemma 3.1.
Build the block-start tred3 at nodev by modifying B, as described in the text.

track of the blocks inLL(v) by storing the subset of elements that start a block. If
is a leaf, we construct’ and B directly. If v is an internal node, we construEtby
merging the leaf-list tre€g, andT; at its two childrenuv; andws, and we construdB
by modifying the block-start tre8, as explained above.

Before constructing’ and B we report all maximal pairs from node with gap
betweeng; (|a|) and g2(|a]), by reporting everyp in LL(w;) against everyy in
LL(w2)N L(p,|a|) andLL(ws) N R(p, |a|) whereS[p — 1] # S[q — 1]. Thisis done
in two steps. In Step 2a we find for evesyn LL(w;) the minimum elements, (p)
andg,(p), as well as the minimum elemeniig(p) andb,.(p) that start a block, in
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LL(ws) N L(p, |a]) andLL(w=) N R(p, |a|) respectively. This is done by searching
in T, and B, using Lemma 3.2. In Step 2b we report pairsq, |a|) and(q, p, |a|)
for everyp in LL(w;) and increasing’s in LL(w2) starting withg,(p) andg,(p)
respectively, until the gap violates the upper or lower mhuVhenever we are about
to reportp againsiy whereS[p — 1] = S[q — 1], we instead use the block-start trBe

to skip all elements in the block containipgnd continue with reporting against the
first element in the following block.

To argue that Algorithm 2 finds all the maximal pairs with gagivieeeng; (|a|)
andg-(|a|) it is sufficient to show that we for evegyin LL(w;) report all maximal
pairs (p, q, |a]) and (g, p, |a|) with gap betweery; (Ja|) and g2(|a|). The rest fol-
lows because we at every nodeTi(S) consider every in LL(w;). Consider the
call ReportMax(g; (p), br(p), p + |a| + g2(|al)) in Step 2b. The implementation of
ReportMax implies that unless we skip elements by increasinge consider every
in LL(w2) N R(p, |a|) exactly as in Algorithm 1. The testfg — 1] # S[p— 1] ensures
that we only report maximal pairs. Whenev#y — 1] = S[p — 1] we increasé until
b= min{z € By | x > g}, which by construction oB, andb,(p) is the element that
starts the block following the block containimg Hence, all the elementg, where
g < ¢' < b, we skip by setting to b thus satisfy thaf[p — 1] = S[¢ — 1] = S[¢' — 1].
We conclude thaReportMax(g- (p), by (p), p+|a| + g2(|a|)) reportsp against exactly
thoseq in LL(w>) N R(p, |a|) whereS[p — 1] # S[¢ — 1], i.e. it reports all maximal
pairs(p, ¢, |a|) at nodev with gap betweery; (Ja|) andga(|a|). Similarly, the call
ReportMax(q¢(p), be(p),p — |a| — g1(|c|)) reports all maximal pairgg, p, |a|) with
gap between; (|a|) andgs(|al).

We now consider the running time of Algorithm 2. We first arghat the call
ReportMax(g,(p), b+ (p), p+ || + g2(|a|)) takes constant time plus time proportional
to the number of reported paifp, ¢, |a|). To do this all we have to show is that
the time used to skip blocks, i.e. the number of times we Bex®g, is proportional
to the number of reported pairs. By constructigiip) > ¢,(p), so the number of
times we increaskis bounded by the number of blocksir.(w2) N R(p, |a|). Since
neighboring blocks contain elements with different Idfacacters, we repoptagainst
an element from at least every second blocilib(w,) N R(p, |a|). The number of
times we increase is thus proportional to the number of reported pairs. Sirhila
the callReportMax(q,(p), be(p), p — || — g1 (Ja|)) also takes constant time plus time
proportional to the number of reported paiis p, |a|). We thus have that Step 2b
takes time proportional t¢7 | plus the number of reported pairs. Everything else
we do at node, i.e. searching iff; and B, and constructing the leaf-list trée and
block-start treeB, takes time) (log (‘Tl“;l‘Tz‘) ). Summing this over all nodes gives by
Lemma 3.3 that the total running time 0* the algorithrmig: log n+z), wherez is the
number of reported pairs. Since constructing and keepig@d) requires spac€(n),
and since no element at any time is in more than one leafréist tand maybe one
block-start tree, Algorithm 2 requires spadén).

THEOREM3.7

Algorithm 2 finds all maximal pair$i, j, |«|) in a stringS of lengthn with gap be-
tweeng, (Ja|) andg2(|a|) in spaceO(n) and timeO(nlogn + z), wherez is the
number of reported pairs.
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As a closing remark we can observe that Algorithm 2 never tisedlock-start
tree B; at the small childw;. This observation can be used to ensure that only one
block-start tree exists during the execution of the algonit If we implement the
traversal off'5(S) as a depth-first traversal in which we at each nofiest recursively
traverse the subtree rooted at the small chijdthen we do not need to store the block-
start tree returned by this recursive traversal while rsivety traversing the subtree
rooted at the big chilavs. This implies that only one block-start tree exists at afids
during the recursive traversal &% (S). The drawback is that we at each nadeeed
to know in advance which child is the small child, but this Whedge can be obtained
in linear time by annotating each node®f (S) with the size of the subtree it roots.

4 Pairswith lower bounded gap

If we relax the constraint on the gap and only want to find alkimmal pairs inS with
gap atleasy(|«|), whereg is a function that can be computed in constant time, then a
straightforward solution is to use Algorithm 2 with(Ja|) = g(|a|) andgz (Ja]) = n.
This obviously finds all maximal pairs with gap at legéfn|) in time O(n logn + 2).
However, the missing upper bound on the gap makes it pogsilbéeluce the running
time to O(n + z) since reporting from each node during the traversal of timadyi
suffix tree is simplified.

The reporting of pairs from nodewith childrenw; andws is simplified, because
the lack of an upper bound on the gap implies that we do not teasearchl L(w-)
for the first element to report against the current elemedtiifw, ). Instead we can
start by reporting the current element Il (w; ) against the biggest (and smallest)
elementinL L(w-), and then continue reporting it against decreasing (armeéasing)
elements fron. L(w-) until the gap becomes smaller thafja|). Unfortunately this
simplification alone does not reduce the asymptotic runtimg because inspecting
every element inLL(w;) and keeping track of the leaf-lists in AVL trees alone re-
quires time®(nlogn). To reduce the running time we must thus avoid to inspect
every element il L(w, ) and find another way to store the leaf-lists. We achieve this
by using the priority-queue like data structures preseirtéte next section to store
the leaf-lists during the traversal of the binary suffix tree

4.1 Data structures

A heap-ordered tree is a tree in which each node stores areetemmd has a key.
Every node other than the root satisfies that its key is grelade or equal to the key
at its parent. Heap-ordered trees have been widely studi@@i the basic structure
of many priority queues [8,9, 29, 31]. In this section weingilheap-ordered trees to
construct two data structurethe heap-treeandthe colored heap-treghat are use-
ful in our application of finding pairs with lower bounded ghpt might also have
applications elsewhere.

A heap-tree stores a collection of elements with comparadje and supports the
following operations.
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Init(e, k): Return a heap-tree of size one that stores elemuaiith key k.

Find(H,z): Return all elements stored in the heap-tre# with key k < .
Min(H): Return the elementstored inH with minimum key.

Meld(H, H'): Return a heap-tree that stores all elementg/iand H' with

unchanged keys and colors.

A colored heap-tree stores a collection of colored elemeitts comparable keys.
We usecolor(e) to denote the color of element A colored heap-tree supports the
same operations as a heap-tree except that it allows us talfiatments not having
a particular color. The operations are as follows.

Colorlnit(e, k): Return a colored heap-tree of size one that stores elesmeitit
key k.

ColorFind(H, z,c): Return all elements stored in the colored heap-tréewith key
k < x andcolor(e) # c.

ColorMin(H): Return the elementstored inH with minimum key.

ColorSec(H): Return the element stored inH with minimum key such that
color(e) # color(ColorMin(H)).

ColorMeld(H, H'): Return a colored heap-tree that stores all elemenis and H'
with unchanged keys.

In the following we will describe how to implement heap-tsesnd colored heap-
trees using heap-ordered trees such thiat Min, Colorlnit, ColorMin andColorSec
take constant timefind and ColorFind take time proportional to the number of re-
turned elements, andeld andColorMeld take amortized constant time. This means
that we can meld (colored) heap-trees of size one into a single (coloredp+tese of
sizen by an arbitrary sequence nf- 1 meld operations in timé(n) in the worst case.

4.1.1 Heap-trees

We implement heap-trees as binary heap-ordered treesiasalied in Figure 4. At
every node in the heap-ordered tree we store an element frerndllection of ele-
ments we want to store. The key of a node is the key of the eleihstores. We
usew.elm to refer to the element stored at node.key to refer to the key of node,
andw.right andv.left to refer to the two children of node Besides the heap-order
we maintain the invariant that the root of the heap-orderegl has no left-child.

We define thddackbonef a heap-tree as the path in the heap-ordered tree that start
at the root and continues via nodes reachable from the racd dequence of right-
children. We define the length of the backbone as the numbedgés on the path
it describes. Consider the heap-trdésand H' in Figure 4; the backbone of is
the pathr, vy, ... , v, Of lengths and the backbone df’ is the path’, vi, ... ,v; of
length ¢. We say that the node on the backbone farthest from the rabtfe bottom
of the backbone. We keep track of the nodes on the backbondeépg-tree using
a stackthe backbone-stackn which the root is at the bottom and the node farthest
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FIG. 4. Heap-trees are binary heap-ordered trees. The figuresstveo heap-treefl
andH'. The nodes on the backbone of the two heap-trees are shaded.

from the root is at the top. The backbone-stack makes it enagdess the nodes on
the backbone from the bottom and up towards the root.

We now turn to the implementation éfit, Min, Find andMeld. The implementa-
tion of Init(e, k) is straightforward. We construct a single nadeherev.elm = e,
v.key = k andv.right = v.left = null and a backbone-stack of size one that con-
tains nodey. The implementation oflin(H) is also straightforward. The heap-order
implies that rootr of H stores the element with minimum key, idin(H) = r.elm.

The implementation ofind(H, z) is based on a recursive traversalffstarting at
the root. At each node we comparey.key to x. If v.key < z, we reportv.elm and
continue recursively with the two children of If v.key > z, then by the heap-order
all keys at nodes in the subtree rootedvadre greater thaw, so we return fronv
without reporting. Clearly this traversal reports all elemts stored at nodeaswith
v.key < z, i.e. all elements stored with kddy< z. Since each node has at most two
children, we make, for each reported element, at most twdtiaddl comparisons
against: corresponding to the at most two recursive calls from whiehreturn with-
out reporting. The running time of the traversal is thus mipnal to the number of
reported elements.

The implementation ofeld(H, H') is done in two steps. Figure 5 illustrates the
melding of the heap-treed and H' from Figure 4. We assume thatey < r'.key.

In Step 1 we merge the backboneskfand H' together such that the heap-order is
satisfied in the resulting tree. The merged backbone is naristd from the bottom
and up towards the root by popping nodes from the backbawkstof H and H'.
Step 1 results in a heap-tree with a backbone of leagth+ 1. Sincer.key < r'.key,

a prefix of the merged backbone consists of nodes, vs, ... , v; solely from the
backbone offf. In Step 2 we shorten the merged backbone. Since the-tadtH’

has no left-child, the node’ on the merged backbone has no left-child either, so
by moving the right-child of' to this empty spot, making it the left-child ef, we
shorten the length of the merged backbong+ol.

The two steps oMeld(H, H') clearly construct a heap-ordered tree that stores all
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FiG. 5: The two steps of melding the heap-trdésand H' shown in Figure 4. The
heap-tree to the left is the result of merging the backbomke.heap-tree to the right
is the result of shortening the backbone by moving the rigtild of ' in the merged

backbone to the left-child. The nodes on the backbones arestha

elements ind and H' with unchanged keys. Sinaekey < r’.key, the root of the
constructed heap-ordered tree is the roofofind therefore has no left-child. The
constructed heap-ordered tree is thus a heap-tree as wdititedackbone of the new
heap-tree is the path v, ... ,v;,7". We observe that the backbone-stacibhfter
Step 1 contains exactly the nodes, ...v;. We can thus construct the backbone-
stack of the new heap-tree by pushirigonto what remains of the backbone-stack
of H after Step 1.

Now consider the running time dfleld(H, H'). Step 1 takes time proportional to
the total number of nodes popped from the two backbone-steincei + 1 nodes
remains on the backbone-stackif Step 1 takestimés + 1)+ (¢ +1) — (i + 1) =
s+t — i+ 1. Step 2 and construction of the new backbone-stack takestarartime,
so, except for a constant factor, melding two heap-trees baickbones of length
andt takes timeT'(s,t) = s + ¢t —4 + 1. In our application of finding pairs we
are more interested in bounding the total time required tad®quence of melds
rather than bounding the time of each individual meld. Wesdfare turn to amortized
analysis [27].

On a forestF' of heap-trees we define the potential functib(¥’) to be the sum of
the lengths of the backbones of the heap-trees in the fokslding two heap-trees
with backbones of length andt, as illustrated in Figure 5, changes the potential of
the forest withA® = i + 1 — (s + ¢). The amortized running time of melding the two
heap-treesis thuB(s,t) + A® = (s+t—i+ 1)+ (i — s —t+ 1) = 2, so starting
with n heap-trees of size one, i.e. a forégtwith potential® (F,) = 0, and doing a
sequence of — 1 meld operations until the fore#t,_; consists of a single heap-tree,
takes time0D(n) in the worst case.
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4.1.2 Colored heap-trees

We implement colored heap-trees as colored heap-ordezed in much tghe same
way as we implemented heap-trees as uncolored heap-orgeesd The implemen-
tation only differs in two ways. First, a node in the colorezhp-ordered tree stores a
set of elements instead of just a single element. Secondlygla, including the root,
can have several left-children. The elements stored at a,rzol the references to the
left-children of a node, are kept in uncolored heap-treesrévprecisely, a node in
the colored heap-ordered tree has the following attributes

v.elms: A heap-tree that stores the elements at n@dBind(v.elms, x) returns all
elements stored at nodewith key less than or equal te. All elements
stored at node have identical colors. We say that this color is the color of
nodev and denote it byolor(v).

v.key: The key of node. We set the key of a node to be the minimum key of an
element stored at the node, i.e. the key of node the key of the element
stored at the root of the heap-treeims.

v.right: A reference to the right-child of node

v.lefts: A heap-tree that stores the references to the left-childfenodev. A ref-
erence is stored with a key equal to the key of the refererefeathild, so
Find(v.lefts, z) returns the references to all left-children of nadeith key
less than or equal to.

As for the heap-tree we define the backbone of a colored heaas the path that
starts at the root and continues via nodes reachable frormotitevia a sequence of
right-children. We use a stack, the backbone-stack, to kaeg of the nodes on the
backbone. In addition to the heap-order, saying that theokeyery node other than
the root is greater than or equal to the key of its parent, wantaia the following
three invariants about the color of the nodes and the reldieiween the elements
stored at a node and its left-children.

I,: Every nodev other than the roat has a color different from its parent.
I,: Every nodev satisfies thatFind(v.elms, z)| > |Find(v.lefts, z)| for anyz.

I3: The rootr satisfies thatFind(r.elms, z)| > |Find(r.lefts,z)| + 1 for any
x > Min(r.elms).

We now turn our attention towards the implementation of tperations on col-
ored heap-trees.Colorlnit(e, k) is straightforward. We simply construct a single
nodev wherev.key = k, v.elms = Init(e, k) andv.right = v.lefts = null and a
backbone-stack that contains nadeéColorMin(H) is also straightforward. The heap-
order implies that the element with minimum key is storedhia heap-tree.elms
at the rootr of H, soColorMin(H) = Min(r.elms). The heap-order anfi imply
that ColorSec(H) is the element stored with minimum key at a childrof The el-
ement stored with minimum key at the right-childN&in(r.right) and the element
stored with minimum key at a left-child must by the heap-orafer.lefts be the el-
ement stored with minimum key at the left-child referencecdtibe root ofr.lefts,
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i.e. Min(Root(r.lefts).elm). Both ColorMin(H) andColorSec(H') can thus be found
in constant time.

We implemenColorFind(H, z, ¢) as a recursive traversal &f starting at the root.
More precisely, we implemer@olorFind(H, x, c) asReportFrom(r) wherer is the
root of H andReportFrom is the following recursive procedure.

ReportFrom(v)
if key(v) < z then
if color(v) # cthen
E = Find(v.elms, x)
forein E do
reporte
ReportFrom(v.right)
W = Find(v.lefts, )
forw in W do
ReportFrom(w)

The correctness of this implementation is established ksafe. The heap-order
ensures that all nodaeswith v.key < z are visited during the traversal. The def-
inition of v.key implies that any elemert with key £ < =z is stored at a node
with v.key < z, i.e. among the elements returnedyd (v.elms, x) for somev vis-
ited during the traversal. Together with the teslor(v) # ¢ this implies that all ele-
mentse with key & < z and color different fronz are reported by olorFind(H, z, c).

Now consider the running time d¥olorFind(H, z, ¢). SinceFind(v.elms,z) and
Find(v.lefts, z) both take time proportional to the number of returned elemein
follows that the running time is dominated by the number alrsive calls plus the
number of reported elements. To argue that the running ti@®lrFind(H, z, ¢) is
proportional to the number of reported elements we theesdiogue that the number of
reported elements dominates the number of recursive dAksonly make recursive
calls from a node if v.key < z. Letv be such a node and consider two cases.

If color(v) # c¢ then we report at least one element, namely the element with
key v.key, and by the invariant$, and/; we report at least as many elements as the
number of left-children we call when reporting from Hence, except for a constant
term that we can charge for visiting node the number of reported elementsat
accounts for the call to and all the recursive calls from

If color(v) = cthen we do not report any elementsabut the invarianf; ensures
that we have reported elements at its parent (unldsghe root) and that we will be
reporting elements at all left-children we call framThe call tov is thus already ac-
counted for by the elements reported at its parent, and ékoep constant term that
we can charge for visiting node all calls fromv will be accounted for by elements
reported at the children of. We conclude that the number of reported elements dom-
inates the number of recursive calls, GolorFind(H, z, ¢) takes time proportional to
the number of reported elements.

We implemenColorMeld(H, H') similar toMeld(H, H') except that we must en-
sure that the constructed colored heap-tree obeys theitivagants. LetH andH' be
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colored heap-trees with rootsandr’ named such thatkey < r'.key. We implement
ColorMeld(H, H') as the following three steps.

1. Merge We merge the backbones &f and H' together such that the resulting
heap-ordered tree stores all elementddnand H' with unchanged keys. The
merging is done by popping nodes from the backbone-stacks ahd H' until
the backbone-stack di’ is empty

2. Solve conflicts A nodew on the merged backbone with the same color as its
parentv is a violation of invariant/;. We solve conflicts between neighboring
nodesy andw of equal color by melding the elements and left-childrerheftwo
nodes and removing node We say that parent swallows the childv.

v.elms = Meld(v.elms, w.elms)
v.lefts = Meld(v.lefts, w.lefts)
v.right = w.right

3. Shorten backboné et v be the node on the merged backbone correspondirig to
or the node that swallowed in Step 2. We shorten the backbone by moving the
right-child of v to the set of left-children of.

v.lefts = Meld(v.lefts, Init(v.right, v.right .key))
v.right = null

The main difference fronMeld(H, H') is Step 2 where the invariadt is restored
along the merged backbone. To establish the correctneseedfriplementation of
ColorMeld(H, H') we consider each of the three steps in more details.

In Step 1 we merge the backbonesmfand H' together such that the resulting
tree is a heap-ordered tree that stores all elementsamd H' with unchanged keys.
Since the merging does not change the left-children or thmehts of any node and
sinceH andH' both obeyl> andIs, the constructed heap-ordered tree also oligys
andl;. The merged backbone can however contain neighboring rafdegial color.
These conflicts are a violation &f.

In Step 2 we restoré;. We solve all conflicts on the merged backbone between
neighboring nodes andw of equal color by letting the parentswallow the childw
as illustrated in Figure 6. We observe that sidt@andH' both obeyl; a conflict must
involve a node from both of them. This implies that a confli@h@nly occur in the
part of the merged backbone made of nodes popped off the baekdtacks in Step 1.
We also observe that solving a conflict does not induce a neflico Combined with
the previous observation this implies that the number oflads is bounded by the
number of nodes popped off the backbone-stacks in Step allfine observe that
solving a conflict does not induce violationsfand!s, so after solving all conflicts
on the merged backbone we have a colored heap-tree thas stibelements ind
andH' with unchanged keys.

In Step 3 we shorten the merged backbone. It is done by motimgight-child
of ' to its left-children, or in case’ has been swallowed by a noden Step 2, by
moving the right-child ofv to its left-children. The subtree rooted by the right-child
moved follows along, and thus becomes a subtree rooted biyetivdeft-child ofr’
(orwv). To argue that shortening the backbone does not inducatioak ofl, and i
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FiG. 6: This figure illustrates how a conflict on the merged backbiz solved. If
color(v) = color(w) thenl; is violated. The invariant is restored by letting nade
swallow nodew, i.e. melding the elements and left-children at the two soaled
removing nodev. Sincecolor(u) # color(w) = color(v) andcolor(u') # color(v),
solving a conflict does not induce another conflict.

we start by making two observations. First, we observe thating the right-child of
a node that obeyk to its set of left-children results in a node that ob&ysSecondly,
we observe that if a node that obeydor I3) swallows a node that obeys it results
in a node that still obeys, (or I3).

Sincer’ is the root of H', it obeysI; before Step 2. We consider two cases.
First, if v’ is not swallowed in Step 2, the first observation immediaimiylies that it
obeyslI, after Step 3. Secondly, if is swallowed by a node in Step 2, we might as
well think of Steps 2 and 3 as occurring in opposite order ssdbes not affect the re-
sulting tree. Hence, first we move the right-child-oto its set of left-children, which
by the first observation results in a node that obkyshen we let node swallow this
node, which by the second observation does not affect tlagiants obeyed by.

We conclude that the implementation GblorMeld(H, H') constructs a colored
heap-tree that obeys all three invariants and stores allesiés inH and H' with un-
changed keys and colors. The backbone-stack of the coleegattree constructed by
ColorMeld(H, H') is what remains on the backbone-stackkbfafter popping nodes
in Step 1 with the node’ pushed onto it, unless the norlds swallowed in Step 2.

Now consider the time it takes to metdcolored heap-trees of size one together
by a sequence of — 1 melds. If we ignore the time it takes to meld the heap-trees
storing elements and references to left-children whenisglgonflicts in Step 2 and
shortening the backbone in Step 3, then we can bound the titakeis to do the se-
quence of melds b§ (n) exactly as we did in the previous section. Meldingolored
heap-trees of size one involves melding at mosieap-trees of size one storing ele-
ments, and at most heap-trees of size one storing references to left-child&nce
meldingn heap-trees of size one takes tifién), we have that melding the heap-trees
storing elements and references to left-children alsostaikee O(n), so meldingn
colored heap-trees of size one takes tifhe) in the worst case.
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4.2 Algorithms

In the following we present two algorithms to find pairs witier bounded gap. First
we describe a simple algorithm to find all right-maximal paiith lower bounded gap
using heap-trees, then we extend it to find all maximal paits lewer bounded gap
using colored heap-trees. Both algorithms run in tith@ + z) wherez is the number

of reported pairs.

4.2.1 Right-maximal pairs with lower bounded gap

We find all right-maximal pairs irf with gap at leasy(|«|), by for each node in
the binary suffix tree'’s(S) considering the leaf-lists at its two children andws,.
The pair(p, q, |a]), forp € LL(wy) andq € LL(ws), is right-maximal and has gap
atleasty(|a) ifand only ifg > p+ |a| + g(|c]). If we let py,;,, denote the minimum
elementinL L(w, ) this implies that every in

Q ={q € LL(w2) | ¢ > pmin + |a] + g(|a])}

forms a right-maximal paifp, ¢, |«) with gap at leasg(|«|) with everyp in
Py={p€ LL(w1) [p<q—g(la]) - |a}.

By constructionP, containg,,,;, and we have thdi, ¢, |a|) is a right-maximal pair
with gap at leasy(|a|) if and only if ¢ € @ andp € P,. We can construcf)
and P, using heap-trees. Lel; and H; be heap-trees that store the elements in
LL(w;) ordered by <" and “>" respectively. By definition of the operatiofhgin
andFind we have thap,,;, = Min(H;), Q = Find(Hz, pmin + |a| + g(|a]) and
P, = Find(Hy,q ~ g(|a]) — |al).

This leads to the formulation of Algorithm 3 in which we at eyaodev in Ts(S)
construct two heap-treefl and H, that store the elements il (v) ordered by <”
and “>" respectively. Ifv is a leaf, we constructl and H directly by creating two
heap-trees of size one each storing the index at the lea#. idfan internal node,
we constructd and H by melding the corresponding heap-trees at the two children
(lines 11-12). Before constructirfg and H at nodev, we report right-maximal pairs
of its path-label (lines 1-10).

To argue that Algorithm 3 finds all right-maximal pairs$hwith gap at leasg(|a|)
it is sufficient to show that we at each nodén T'z(S) report all pairg(p, ¢, |a|) and
(q,p,|a|), wherep € LL(w;) andq € LL(w,), with gap at least(|a|). The rest
follows because we consider every noddy(.S). Letv be a node irf’z(.S) at which
the heap-tree#l,, H,, H,, and H, at its two children are available. As explained
above(p, ¢, |a|) is a right-maximal pair with gap at leagt|«|) if and only if¢ € @
andp € P,, which are exactly the pairs reported in lines 1-5. Symroalsi we
can argue thafg, p, |a|) is a right-maximal pair with gap at leagt|«|) if and only if
p € P andq € @), which are exactly the pairs reported in lines 6-10.

Now consider the running time of the algorithm. We first ndtattconstructing two
heap-trees of size one at each of théeaves inT(S) and melding them together
according to the structure @iz (S) takes timeO(n) because each of the— 1 meld
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Algorithm 3 Find all right-maximal pairs irt with lower bounded gap.

1. Initializing: Build the binary suffix tred's(S). Create at each leaf two heap-trees
of size one H ordered by <” and H ordered by >”, that both store the index at
the leaf.

2. Reporting and melding:When the heap-treef; and H; at the left-child of
nodev, and the heap-treel, and H; at the right-child of node are available
we report pairs ofy, the path-label oy, and construct the heap-treBsand H as
follows

1 Q = Find(H,, Min(Hy) + |a| + g(la]))

2 forgin@ do

3 P, = Find(Hy,q — g(|a|) — |al)
4 forpin P, do

5 report pair(p, g, |a|)

6 P =Find(H;, Min(H,) + |a| + g(|a]))
7 forpin Pdo

8 Qp = Find(Ha, p - g(Jal) — |a)
9 forgin @, do

10 report pair(q, p, |a|)

11 H = Meld(H,, H>)
12 H = Meld(Hl,Hg)

operation takes amortized constant time. We then note tieatetporting of pairs at
each node, lines 1-10, takes time proportional to the nuwfreported pairs because
the find operation takes time proportional to the number tfrreed elements and the
setP, (and@,) is non-empty for every elementin @ (andp in P). Finally we
recall that constructing the binary suffix trég (S) takes timeO(n). Now consider
the space needed by the algorithm. The binary suffix treeimesjgpace)(n). The
heap-trees also requires spaeg:) because no element at any time is stored in more
than one heap-tree. Finally, since no leaf-list containgentibann elements, storing
the elements returned by the find operations during the tigprequires no more
than spac®(n). In summary we formulate the following theorem.

THEOREMA4.1

Algorithm 3 finds all right-maximal pair§i, j, |a|) in a stringS of lengthn with gap
at leastg(]a|) in spaceO(n) and timeO(n + z), wherez is the number of reported
pairs.

4.2.2 Maximal pairs with lower bounded gap

Essential to the above algorithm is that we in time propoaido its size can con-
struct the set) that contains all elementsin LL(w,) that form a right-maximal
pair (pmin, ¢, |@|) with gap at leasg(|«|). Unfortunately the left-charactefq — 1]
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andS[pmin — 1] can be equal, s@ can contain elements that do not form a maximal
pair with any element inLL(w;). Since we aim for the reporting of pairs to take
time proportional to the number of reported pairs, this iiepthat we cannot afford
to consider every element i@ if we only want to report maximal pairs.

Fortunately we can efficiently construct the subseLéfw,) that contains all the
elements that form at least one maximal pair. An elementL L(w-) forms a maxi-
mal pair if and only if there is an elemepin LL(w,) such thay > p + |a| + g(|a|)
andS[g — 1] # S[p — 1]. We can construct this subset bf.(w-) using colored
heap-trees. We define the color of an element to be its |eftaatter, i.e. the color gf
in LL(w;) andq in LL(w>) is S[p — 1] andS[q — 1] respectively. Let; andH; be
colored heap-trees that store the elementsiiw;) ordered by <" and “>" respec-
tively. Usingpymin = ColorMin(H;) andp,.. = ColorSec(H;) we can characterize
the elements i, L(w,) that form at least one maximal pair with gap at le@gty|)
by considering two cases.

First, if ¢ > psec + |a| + g(|a]) then(pmin, ¢, |a|) @and(ps.., g, |a|) both have gap
at leasty(|a|) and sinceS[pmin — 1] # S[pse. — 1] at least one of them is maximal,
SO everyg > pse. + |a| + g(|a]) forms a maximal pair with gap at leagf|«|). If #
is a character not appearing anywheresini.e. no element ir. L(w-) has color#,
this is the same as saying that eveiin Q' = ColorFind(Ha, psec + |a| + g(|al), #)
forms a maximal pair with gap at leagt|«|). Secondly, ifg < pse. + |a| + g(|a])
forms a maximal paifp, ¢, |a|) with gap at leasy(|a|) thenp,,in < p < psec. This
implies thatS[p — 1] = S[pmin — 1], SO (Pmin, ¢, |@]) is also maximal and has gap
at leastg(|a|). We thus have that < ps.. + |a| + g(|a|) forms a maximal pair with
gap at leasy(|al) if and only if (pmin, ¢, |a|) is maximal and has gap at leagta|),
i.e.ifand only ifS[g — 1] # S[pmin — 1] @andq > pmin + |@| + g(Ja|). This implies
that the set)” = ColorFind(Hz, pmin + || + g(|a]), S[pmin — 1]) contains every
q < Psec + || + g(|a|) that forms a maximal pair with gap at leagta|).

By construction of@Q’' and Q" the setQ)’ U Q" contains all elements i L(w>)
that form a maximal pair with gap at leagt|«|). More precisely, every in the set
Q' U Q" forms a maximal paip, ¢, |a|) with gap at leasy(|a|) with everyp <
q — g(Ja]) — |a| in LL(w;) whereS[p — 1] # S[q — 1], i.e. with everyp in the set
P, = ColorFind(Hy,q — g(|a|) — ||, S[g — 1]) which by construction is non-empty.
We can construct the sét' U Q" efficiently as follows. Every element i}"’ greater
thanps.. +|a|+g(]a]) is also inQ’, so we can construé’ UQ" by concatenating’
and what remains of)” after removing all elements greater thaya. + |a| + g(|a|)
fromit. Combined with the complexity diolorFind this implies that we can construct
the set)’ U Q" in time proportional tdQ’| + |Q"| < 2|Q" U Q"].

This leads to the formulation of Algorithm 4. The algorithmsimilar to Algo-
rithm 3 except that we maintain colored heap-trees duriegtiiversal of the binary
suffix tree. At every node we report maximal pairs of its pkthel. In lines 1-7
we report all maximal pairép, ¢, |a|) by constructing and considering the elements
in P, for everyq in @' U Q". In lines 8-15 we analogously report all maximal
pairs(q, p, |a|). The correctness of the algorithm follows immediately frira above
discussion. Since the operations on colored heap-treesthavsame complexities as
the corresponding operations on heap-tress, the runmimg déind space requirement
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Algorithm 4 Find all maximal pairs i with lower bounded gap.

1. Initializing: Build the binary suffix treel’z(S). Create at each leaf two colored
heap-trees of size oné& ordered by K<” and H ordered by *”, that both store
the index at the leaf with color corresponding to its lefadcter.

2. Reporting and meldingWhen the colored heap-treég and H,; at the left-child
of nodew, and the colored heap-treé&s and H, at the right-child of node are
available we report pairs ef, the path-label of, and construct the colored heap-
treesH and H as follows, where# is a character not appearing anywheréin

1 Pmin,Psec = ColorMin(H;), ColorSec(H;)

2 Q' = ColorFind(Hs, psec + || + g(|a]), #)

3 Q" = ColorFind(Ha, pmin + la| + g(|a]), S[pmin — 1])
4 forgin@' UQ@"do

5 P, = ColorFind(H1,q — g(|a|) — |af, S[g — 1])

6 forpin P, do

7 report pair(p, q, |a|)

8  Gmin,gsec = ColorMin(Hs), ColorSec(H>)

9 P’ = ColorFind(Hy, gsec + |a| + g(|a]), #)

10 P" = ColorFind(H1, gmin + | + g(|a), Slgmin — 1])
11 forpin P'U P" do

12 @, = ColorFind(Hz,p — g(|a|) — |al, S[p — 1])
13 forgin @, do
14 report pair(g, p, |a|)

15 H = ColorMeld(H,, H>)
16 H = ColorMeld(H;, H>)

of the algorithm is exactly as analyzed for Algorithm 3. Imsaary we can formulate
the following theorem.

THEOREM4.2

Algorithm 4 finds all maximal pairgi, j, |«|) in a stringS of lengthn with gap at
leastg(|al) in spaceO(n) and timeO(n + z), wherez is the number of reported
pairs.

5 Conclusion

We have presented efficient and flexible methods to find allimabpairs(i, j, |a|)
in a string under various constraints on the gapi — |«/|. If the gap is required to be
betweery; (|a|) andgs (|a|), the running time i) (n log n + z) wheren is the length
of the string and is the number of reported pairs. If the gap is only requiredeat
leasty, (|a]), the running time reduces ©(n + z). In both cases we use spagén).

In some cases it might be interesting only to find maximalg@irj, |a|) fulfilling
additional requirements ofw|, e.g. to filter out pairs of short substrings. This is
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straightforward to do using our methods by only reportirapirthe nodes in the binary
suffix tree whose path-label fulfills the requirements ofx|. In other cases it might
be of interest just to find the vocabulary of substrings thatuo in maximal pairs.
This is also straightforward to do using our methods by japbrrting the path-label
of a node if we can report one or more maximal pairs from theenod

Instead of just looking for maximal pairs, it could be int&liag to look for an array
of occurrences of the same substring in which the gap betweesecutive occur-
rences is bounded by some constants. This problem requingitadle definition of a
maximal array. One definition and approach is presentedSh [Rnother definition
inspired by the definition of a maximal pair could be to requhrat every pair of oc-
currences in the array is a maximal pair. This definition seeeny restrictive. A more
relaxed definition could be to only require that we canno¢egtall the occurrences in
the array to the left or to the right without destroying atdeane pair of occurrences
in the array.
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