.-ﬁ
=

The IT University

of Copenhagen

Time and Space Efficient Multi-Method Dispatching

Stephen Alstrup
Gerth Stglting Brodal
Inge Li Gartz

Theis Rauhe

IT University Technical Report Series TR-2001-8
ISSN 1600-6100 October 2001

Copyright (© 2001, Stephen Alstrup
Gerth Stglting Brodal
Inge Li Gartz
Theis Rauhe

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600-6100

ISBN 87-7949-010-7

Copies may be obtained by contacting:

IT University of Copenhagen
Glentevej 67

DK-2400 Copenhagen NV
Denmark

Telephone: +45 38 16 88 88
Telefax: +45 38 16 88 99
Web ww. i t-c.dk

Time and Space Efficient Multi-Method Dispatching

Stephen Alstrup Gerth Stglting Brodal Inge Li Gartz Theis Rauhe
26th October 2001

Abstract

Thedispatching problenfor object oriented languages is the problem of determitiiggmost spe-
cialized method to invoke for calls at run-time. This can beritical component of execution perfor-
mance. A number of recent results, including [Muthukrishaad Muller SODA96, Ferragina and
Muthukrishnan ESA'96, Alstrugt al. FOCS’98], have studied this problem and in particular pded
various efficient data structures for theono-methodlispatching problem. A recent paper of Ferragina,
Muthukrishnan and de Berg [STOC'99] addressestidti-methoddispatching problem.

Our main result is a linear space data structurebioary dispatching that supports dispatching in
logarithmic time. Using the same query time as Ferragihal, this result improves the space bound
with a logarithmic factor.

*The IT University of Copenhagen, Glentevej 67, DK-2400 Gogen NV, Denmark. E-mail:{st ephen, i nge,
theis}@t-c. dk.

fBRICS (Basic Research in Computer Science), Center of tmésB&lational Research Foundation, Department of Computer
Science, University of Aarhus, Ny Munkegade, DK-800@us C, Denmark. Partially supported by the IST Programhta@EU
under contract number IST-1999-14186 (ALCOM-FT). E-mg#rt h@ri cs. dk.

3

1 Introduction

Thedispatching problenfor object oriented languages is the problem of determinigmost specialized
method to invoke for a method call. This specialization agjseon the actual arguments of the method call
at run-time and can be a critical component of executiongoerince in object oriented languages. Most
of the commercial object oriented languages rely on dispadgcof methods with only one argument, the
so-calledmono-methodr unary dispatching problemA number of papers, seeg, [3, 12, 17, 22, 23,
27], have studied the unary dispatching problem, and Fiersagnd Muthukrishnan [17] provide a linear
space data structure that supports unary dispatching Holpayithmic time. However, the techniques in
these papers do not apply to the more gensmalti-method dispatching problein which more than one
method argument are used for the dispatching. Multi-mettisdatching has been identified as a powerful
feature in object oriented languages supporting multinoé$ such as Cecil [5], CLOS [4], and Dylan [8].
Several recent results have attempted to deal w#sny dispatching in practice [1, 6, 7, 14, 15]. Ferragina
et al. [18] provided the first non-trivial data structures, andptijug this paper, several experimental object
oriented languages’ “ultimately success and impact intm@aepends, among other things, on whether
multi-method dispatching can be supported efficiently”.

Our main result is dinear spacedata structure for theinary dispatchingproblem,i.e., multi-method
dispatching for methods with at most two arguments. Our dat&cture usetinear spaceand supports
dispatching in logarithmic time. Using the same query tiredrarraginaet al. [18], this result improves
the space bound with a logarithmic factor. Before we prodderecise formulation of our result, we will
formalize the general-ary dispatching problem.

Let T be a rooted tree witlv nodes. The tree represents a class hierarchy with nodessesing the
classesT defines a partial ordex on the set of classest < B < A is a descendant d® (not necessarily
a proper descendant). L&l be the set of methods and let denote the number of methods amfl the
number of distinct method names.m. Each method takes a number of classes as arguments. A method
invocation is a query of the form(A,,... , A4) wheres is the name of a method iM and A4, ... , Ay
are class instances. A methe@3y, ... , B,) is applicablefor s(Ay,... , Ay) ifand only if A; < B; for all
i. Themost specialized methasl the methods(B;, ... , B;) such that for every other applicative method
s(Cy,...,Cy) we haveB; < C; for all i. This might be ambiguous.e., we might have two applicative
methodss(B;, ... ,Bg) ands(Ch,... ,Cq) whereB; # C;, B; # C;, B; < C;, andC; < B; for some
indices1 < i,5 < d. That is, neither method is more specific than the other. iMuétthod dispatching is
to find the most specialized applicable methodvihif it exists. If it does not exist or in case of ambiguity,
“no applicable method” resp. “ambiguity” is reported iresde

The d-ary dispatching problens to construct a data structure that supports multi-metfiegatching
with methods having up td arguments, whergM is static but queries are online. The cages 1 and
d = 2 are theunary andbinary dispatchingproblems respectively. In this paper we focus on the binary
dispatching problem which is of “particular interest” qungt Ferragineet al. [18].

The input is the tred” and the set of methods. We assume that the sizéiefO(m), wherem is the
number of methods. This is not a necessary restriction bettduack of space we will not show how to
remove it here.

1.1 Results

Our main result is a data structure for the binary dispaghproblem usingD(m) space and query time
O(log m) on a unit-cost RAM with word size logarithmic iV with O(N + m (loglog m)?) time for
preprocessing. By the use of a reduction to a geometric enobFerraginat al. [18], obtain similar time
bounds within spacé®(m log m). Furthermore they show how the case- 2 can be generalized fat > 2

at the cost of factolog?~2 mn in the time and space bounds.

Our result is obtained by a very different approach in whighemploy a dynamic to static transforma-
tion technigue. To solve the binary dispatching problem wra tt into a unary dispatching problem — a
variant of the marked ancestor problem as defined in [2], irckvive maintain a dynamic set of methods.
The unary problem is then solved persistently. We solve #grsigtent unary problem combining the tech-
nigue by Dietz [9] to make a data structure fully persistamd the technique from [2] to solve the marked
ancestor problem. The technique of using a persistent dignane-dimensional data structure to solve a
static two-dimensional problem is a standard techniqug [@#at is new in our technique is that we use the
class hierarchy tree to denote the time (give the order omargons) to get a fully persistent data structure.
This gives a “branching” notion for time, which is the samenmat one has in a fully persistent data struc-
ture where it is called the version tree. This technique fledint from the plane sweep technigue where a
plane-sweep is used to give a partially persistent datatsier A top-down tour of the tree corresponds to
a plane-sweep in the partially persistent data structures.

1.2 Related and previous work

For the unary dispatching problem the best known boun@(i8” + m) space and)(loglog N) query
time [23, 17]. For thel-ary dispatchingd > 2, the general result of Ferragimd al. [18] is a data structure
using space (m (t logm/logt)?=") and query timeO((log m/log t)?~'loglog N), wheret is a parameter
2 < t < m. For the case = 2 they are able to improve the query time@glog?—'m) using fractional
cascading. They obtain their results by reducing the dityadg problem to a point-enclosure problemin
dimensions: Given a point, check whether there is a smallest rectangle contaifirig the context of the
geometric problem, Ferragiret al. also present applications to approximate dictionary nmatch

In [16] Eppstein and Muthukrishnan look at a similar problerich they callpacket classification
Here there is a databaseqaffilters available for preprocessing. Each query is a paékednd the goal is
to classifyit, that is, to determine the filter of highest priority thaipdies toP. This is essentially the same
as the multiple dispatching problem. Fbe= 2 they give an algorithm using spa&(m“ﬂ’(l)) and query
time O(loglog m), or O(m!*%) and query timeD(1). They reduce the problem to a geometric problem,
very similar to the one in [18]. To solve the problem they ustamdard plane-sweep approach to turn the
static two-dimensional rectangle query problem into a dyiceone-dimensional problem,which is solved
persistently such that previous versions can be queried ti plane sweep has occurred.

1.3 Overview

The remainder of this paper consists of three sections. ¢tid®e2 we introduce terminology and concepts.
In Section 3 we give a formulation of the binary dispatchimghjem as a tree problem, which we call the
bridge color problem, and in Section 4 we present a datatsteifor the bridge color problem.

2 Preliminaries

In this section we give some basic concepts which are useddghout the paper.

DEFINITION 1 (Treeg

Let T" be a rooted tree. The set of all nodesTinis denotedV (7). The nodes on the unique path from a
nodew to the root are denoted(v), which includesy and the root. The nodesv) are called th@ncestors

of v. Thedescendantsf a nodev are all the nodes for whichv € 7 (u). If v # u we say thau is aproper
descendant of. The distancealist(v,w) between two nodes ifi is the number of edges on the unique path
betweernv andw.

Let C be a set of colors. A labelinv) of a nodev € V(T') is a subset of’, i.e., I(v) C C. Alabeling
1:V(T) — 2¢ of atreeT is a set of labelings for the nodesTh

In the rest of the paper all trees are rooted trees.

DEFINITION 2 (Persistent data structurgs

The concept of persistent data structures was introduceDrisgoll et al. in [13]. A data structure is
partially persistentf all previous versions remain available for queries butydhe newest version can be
modified. A data structure ifsllly persistentf it allows both queries and updates of previous versions. A
update may operate only on a single version at a time, thabibining two or more versions of the data
structure to form a new one is not allowed. The versions oflg fersistent data structure form a tree called
theversion tree Each node in the version tree represents the result of otat@mperation on a version of
the data structure. A persistent update or query take astemamgument the version of the data structure to
which the query or update refers.

KNOWN RESULTS Dietz [9] showed how to make any data structure fully péesison a unit-cost RAM. A
data structure with worst case query tif¥¢Q(n)) and update timé& (F(n)) making worst cas® (U (n))
memory modifications can be made fully persistent usi@(n) loglog n) worst case time per query and
O(F(n) loglog n) expected amortized time per update usind/ (n) loglog n) space.

DEeFINITION 3 (Tree color problem
Let T be a rooted tree with nodes, where we associate a set of colors with each ndfie Biietree color
problemis to maintain a data structure with the following operasion

color(v,cy addctov’s set of colorsj.e., [(v) < I(v) U {c},
uncolor(v,c) removec from v’s set of colorsj.e., [(v) + [(v) \ {c},

findfirstcolor(v,c) find the first ancestor af with color ¢ (this may bev itself).

The incrementalversion of this problem does not supparicolor, the decrementaproblem does not
supportcolor, and thefully dynamicproblem supports both update operations.

KNOWN RESULTS In [2] itis showed how to solve the tree color problem on a RA#h logarithmic word
size in expected update tind&loglog n) for both color anduncolor, query timeO (log n/loglog n), using
linear space and preprocessing time. The expected updaéstdue to hashing. Thus the expectation can be
removed at the cost of using more space. We need worst casetisn we make the data structure persistent
because data structures with amortized/expected time sr&yrm poorly when made fully persistent, since
expensive operations might be performed many times.

Dietz [9] showed how to solve the incremental tree color obin O(loglog n) amortized time per
operation using linear space, when the nodes are coloredawp and each node has at most one color.

The unary dispatching problem is the same asttbe color problemif we let each color represent a
method name.

DEFINITION 4

We need a data structure to support insert and predecessdegjon a set of integers frofl, ... ,n}.
This can be solved in worst caggloglog n) time per operation on a RAM using the data structure of van
Emde Boas [26] (VEB). We show how to do modify this data sticeetsuch that it only useS(1) memory
modifications per update.

Figure 1: The solid lines are tree edges and the dashed atetidotes are bridges of colar and ¢/,
respectively.firstcolorbridgdc,v; ,v0) returnsbs. firstcolorbridgdc’ ,v3,04) returns ambiguity since neither
b1 or by is closer than the other.

3 The Bridge Color Problem

The binary dispatching problem & 2) can be formulated as the following tree problem, which wletha
bridge color problem

DEFINITION 5 (Bridge Color Problem

Let Ty andT; be two rooted trees. Betwe@h andT, there are a number of bridges of different colors. Let
C be the set of colors. A bridge is a triple, v1,v2) € C x V(T1) x V(T3) and is denoted by(v;, vy). If

vy € w(uy) andvy € w(ug) we say that(vy, vo) is a bridgeover (u1,us). Thebridge color problemis to
construct a data structure which supports the gtiesycolorbridgdc,v, ,v2). Formally, letB be the subset
of bridgesc(wy,ws) of color ¢ wherew, is an ancestor of;, andw, an ancestor of,. If B = () then
firstcolorbridg€c,v, ,v2) = NIL. Otherwise, leth; = c¢(w;,w}) € B, such thadist(v;,w;) is minimal and

by = c(wh, we) € B, such thatist(vs, ws) is minimal. Ifb; = by thenfirstcolorbridgdc,v, ,v2)= b and we
say that, is thefirst bridgeover (v, v2), otherwisefirstcolorbridgéc,v; ,v2) = “ambiguity”. See Figure 1.

The binary dispatching problem can be reduced to the bridg@ problem the following way. LeT}
andT, be copies of the tre€ in the binary dispatching problem. For every methdgd,, v2) € M make a
bridge of colors betweeny; € V(1) andvy € V (T).

The problem is now to construct a data structure that supfiostcolorbridge The object of the re-
maining of this paper is show the following theorem:

THEOREM 6
Using expected)(m (loglog m)?) time for preprocessing and(m) spacefirstcolorbridge can be sup-
ported in worst case tim@ (log m) per operation, wheren is the number of bridges.

4 A Data Structure for the Bridge Color Problem

Let B be a set of bridges B |= m) for which we want to construct a data structure for the keidglor
problem. As mentioned in the introduction we can assumetb®humber of nodes in the trees involved
in the bridge color problem i©(m), i.e, | V(T1) | + | V(T2) |= O(m). In this section we present a data
structure that supporfirstcolorbridgein O(log m) time per query using)(m) space for the bridge color
problem.

For each node € V(T}) we define the labeling, of T as follows. The labeling of a node € V(T3)
contains colore if w is the endpoint of a bridge of colerwith the other endpoint among ancestorsvof

Figure 2: The straight lines are tree edges and the dashedaitedl lines and the curved solid lines are
bridges of colorcy,co, andcs, respectively.l,(w) = {c1,ca,c3}, ly(u) = {cs}, ly(s) = {ea1}. H(v) =

{((wv 01),7“), ((wv 02)7y)a ((wv 03), U)a ((ua 63)7T)a ((37 Cl)a y)}

Formally, ¢ € [, (w) if and only if there exists a node € n(v) such thaic(u, w) € B. Similar define the
symmetric labelings fof;.

In addition to each labeling,, we need to keep the following extra information stored iparse array
H(v): For each paifw,c) € V(Ty) x C, wherel,(w) contains color, we keep the node’ of maximal
depth int(v) from which there is a bridge(v’, w) in B. Note that this set is spargeg., we can use a sparse
array to store it.

For each labeling, of Ty, wherev € V(Ty), we will construct a data structure for the static tree color
problem. That is, a data structure that supports the dfired§irstcolofu,c) which returns the first ancestor
of u with color c¢. Using this data structure we can find the first bridge dvew) € V(Ty) x V(T3) of
color ¢ by the following queries.

In the data structure for the labelirig of T, we perform the querfindfirstcolofw,c). If this query
reports NIL there is no bridge to report, and we can simplynmetNIL. Otherwise letw’ be the reported
node. We make a lookup iff (u) to determine the bridgé such thath = c(v’,w') € B. By definitionb
is the bridge ovefu, w') with minimal distance betweem andw’. But it is possible that there is a bridge
(u",w") over (u, w) wheredist(u,u") < dist(u,u’). By a symmetric computation with the data structure for
the labeling (w) of T} we can detect this in which case we return “ambiguity”. Otfise we simply return
the unique first bridgé.

Explicit representation of the tree color data structui@sefach of the labelings, for nodesv in T
and T, would take up spac€®(m?). Fortunately, the data structures overlap a lot: Let € V(T}),

u € V(Ty), and letv € 7(w). Thenl,(u) € I, (u). We take advantage of this in a simple way. We make
a fully persistent version of theynamictree color data structure using the technique of Dietz [9le Tdea

is that the above set @d(m) tree color data structures corresponds to a persistentivedrversion, each
created by one af(m) updates in total.

Formally, suppose we have generated the data structuréddabelingi,, for v in T;. Letw be the
child of nodew in Ty. We can then construct the data structure for the labdlingy simply updating
the persistent structure fdy by inserting the color marks corresponding to all bridgethvandpointw
(including updatingH (v)). Since the data structure is fully persistent, we can retes for each child of
v, and hence obtain data structures for all the labelings Hdden of v. In other words, we can form all
the data structures for the labelihigfor nodesv € V (T}), by updates in the persistent structures according
to a top-down traversal df;. Another way to see this, is thd} is denoting the time (give the order of the
versions). That is, the version tree has the same structife. a

Similar we can construct the labelings by by a similar traversal of ;. We conclude this discussion
by the following lemma.

LEMMA 7
A static data structure for the bridge color problem can besticted by) (m) updates to a fully persistent
version of the dynamic tree color problem.

4.1 Reducing the memory modifications in the tree color prol#m

The paper [2] gives the following upper bounds for the trelercproblem for a tree of size:. Update time
expected) (loglog m) for both color anduncolor, and query time)(log m/loglog m), with linear space
and preprocessing time.

For our purposes we need a slightly stronger reself,updates that only make worst ca3¢l) memory
modifications. By inspection of the dynamic tree color alifion, the bottle-neck in order to achieve this, is
the use of the van Emde Boas predecessor data structureME8)) (Using a standard technique by Dietz
and Raman [10] to implement a fast predecessor structurestvig following result.

THEOREMS8
Insert and predecessor queries on a set of integers{ftom. ,n} can be performed it (loglog n) worst
case time per operation using worst ca¥@) memory modifications per update.

To prove the theorem we first show an amortized résilhe elements in our predecessor data structure

is grouped into bucketS, ... , Si, where we maintain the following invariants:
(1) maxs$S; < min S;;1 fori=1,...k—1, and
(2) 1/2logn < |S;| <2logn for all 7.

We havek € O(n/ logn).

Eachs; is represented by a balanced search tree @ith) worst case update time once the position of
the inserted or deleted element is known and query tinleg m), wherem is the number of nodes in the
tree [19, 20]. This gives us update timEloglog n) in a bucket, but onlyD (1) memory modifications per
update. The minimum elemest of each buckeg; is stored in a VEB.

When a new elemenit is inserted it is placed in the buckst such thats; < = < s;41, orin Sy if
no such bucket exists. Finding the correct bucket is done pyedecessor query in the VEB. This takes
O(loglog n) time. Inserting the element in the bucket also takékglog n) time, but onlyO(1) memory
modifications.

When a buckeft5; becomes to large it is split into two buckets of half size. sT¢auses a new element
to be inserted into the VEB and the binary trees for the two haekets have to be build. An insertion into
the VEB takes)(loglog n) time and uses the same number of memory modifications. Bagilttie binary
search trees us€¥(log n) time and the same number of memory modifications. When a biggplit there
must have been at ledsk n insertions into this bucket since it last was involved in Bt sphat is, splitting
and inserting use® (1) amortized memory modifications per insertion.

LEMMA 9

Insert and predecessor queries on a set of integers{ftom. ,n} can be performed it (loglog n) worst
case time for predecessor anfloglog n) amortized time for insert using (1) amortized number of mem-
ory modifications per update.

1The amortized result (Lemma 9) was already shown in [21],ibbarder to make the deamortization we give another imple-
mentation here.

We can remove this amortization at the cost of making the éuskesO (log?n) by the following
technique by Raman [24] called thinning.
Let o > 0 be a sufficiently small constant. Define ttriticality of a bucket to be:

1
b) = 0.sizeb) — 1.8 log® n).
p(b) alognmaX{ , size(h) og” n}

A bucketb is calledcritical if p(b) > 0. We want to ensure that sigg < 2 log? n. To maintain the size
of the buckets eveny logn updates take the most critical bucket (if there is any) andehg;n elements to
a newly created empty adjacent bucket. A bucket rebalancegO (log n) memory modifications and we
can thus perform it wittO (1) memory modifications per update spread over no more éhkig n updates.

We now show that the buckets never get too big. The criticalftall buckets can only increase by 1
between bucket rebalancings. We see that the criticalithebucket being rebalanced is decreased, and no
other bucket has its criticality increased by the rebalagaiperations. We make use of the following lemma
due to Raman:

LEMMA 10 (Raman

Letxy,... ,z, be real-valued variables, all initially zero. Repeateditloe following:
(1) Choosen non-negative real numbers, ... ,a, such thaty’; , a; = 1, and setc; < z; + a; for
1 <1 <n.

(2) Choose am; such that:; = max{z;}, and setc; <— max{z; — ¢, 0} for some constant > 1.
Then each:; will always be less than In + 1, even where = 1.

Apply the lemma as follows: Let the variables of Lemma 10 kedtiticalities of the buckets. The reals
a; are the increases in the criticalities between rebalascamgic = 1/«. We see that ifv < 1 the criticality
of a bucket will never exceed kit 1 = O(log n). Thus for sufficiently smalk the size of the buckets will
never exceed log? n. This completes the proof of Theorem 8.

We need worst case update time émlor in the tree color problem in order to make it persistent. The
expected update time is due to hashing. The expectation eamnioved at the cost of using more space.
We now use Theorem 8 to get the following lemma.

LEMMA 11

Using linear time for preprocessing, we can maintain a tréé aomplexity O(loglog n) for color and
complexityO(log n/loglog n) for findfirstcolor, usingO(1) memory modifications per update, wheres
the number of nodes in the tree.

4.2 Reducing the space

Using Dietz’ method [9] to make a data structure fully persis on the data structure from Lemma 11, we
can construct a fully persistent version of the tree coldaddructure with complexity)((loglog m)?) for
color anduncolor, and complexityO((log m /loglog m) - loglog m) = O(log m) for findfirstcolor, using
O(m) memory modifications, where: is the number of nodes in the tree.

According to Lemma 7 a data structure for the first bridge f@wbcan be constructed lay(m) updates
to a fully persistent version of the dynamic tree color pewbl We can thus construct a data structure for the
bridge color problem in tim& (m (loglog m)?), which has query timé (log m), wherem is the number
of bridges.

This data structure might use(c - m) space, where is the number of method names. We can reduce
this space usage using the following lemma.

LEMMA 12

If there exists an algorithnd constructing astatic data structurd) using expected(n) time for prepro-
cessing and expected(n) memory modifications and has query timig.), then there exists an algorithm
constructing a data structuf®’ with query timeO(q(n)), using expecte@(t(n)) time for preprocessing
and spac®(m(n)).

PROOF The data structur®’ can be constructed the same waylasising dynamic perfect hashing [11]
to reduce the space. O

Since we only us&)(m) memory modifications to construct the data structure forktidge color
problem, we can construct a data structure with the same djuee using onlyO(m) space. This completes
the proof of Theorem 6.

If we useO(N) time to reduce the class hierarchy tree to sien) as mentioned in the introduction,
we get the following corollary to Theorem 6.

COROLLARY 13

UsingO(N + m (loglog m)?) time for preprocessing and(m) space, themultiple dispatching problem
can be solved in worst case tirdlog m) per query. Heré\ is the number of classes andis the number
of methods.

References

[1] Rakesh Agrawal, Lindga G. DeMichiel, and Bruce G. Lingls&tatic type checking of multi-methods.
ACM SIGPLAN Notices26(11):113-128, November 1991. OOPSLA '91 Conferencedtdings,
Andreas Paepcke (editor), October 1991, Phoenix, Arizona.

[2] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestobjams (extended abstract). IBEE Sym-
posium on Foundations of Computer Science (FQ@&j)es 534-543, 1998.

[3] Eric Amiel, Oliver Gruber, and Eric Simon. Optimizing tiimethod dispatch using compressed
dispatch tables. IOOPSLA '94 Conference Proceedingslume 29, pages 244—258, October 1994.

[4] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, Kiczales, and D. A. Moon. Com-
mon LISP object system specification X3J13 document 88-00%ERM SIGPLAN Notice23, 1988.
Special Issue, September 1988.

[5] Craig Chambers. Object-oriented multi-methods in Cddi Ole Lehrmann Madsen, editdECOOP
'92, European Conference on Object-Oriented Programmitnecht, The Netherlangdsolume 615
of Lecture Notes in Computer Sciengages 33-56. Springer-Verlag, New York, NY, 1992.

[6] Craig Chambers and Weimin Chen. Efficient multiple anddicated dispatchingACM SIGPLAN
Notices 34(10):238-255, October 1999.

[7] Weimin Chen, Volker Turau, and Wolfgang Klas. Efficiengnémic look-up strategy for multi-
methods. In Mario Tokoro and Remo Pareschi, editBfSQOP '94, European Conference on Object-
Oriented Programming, Bologna, Italwolume 821 ofLecture Notes in Computer Sciengeges
408-431, New York, NY, July 1994. Springer-Verlag.

[8] Inc. Apple Computer. Dylan interim reference manual949

[9] P. F. Dietz. Fully persistent arrays. In F. Dehne, J.-RckS and N. Santoro, editorBroceedings of
the Workshop on Algorithms and Data Structyreslume 382 ofLecture Notes in Computer Science
pages 67-74, Berlin, August 1989. Springer-Verlag.

[10] Paul F. Dietz and Rajeev Raman. Persistence, amaotizahd randomization. IRroc. 2nd ACM-
SIAM Symposium on Discrete Algorithms (SOOF&eges 78-88, 1991.

[11] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer aufer Heide, H. Rohnert, and R. E. Tarjan.
Dynamic perfect hashing: Upper and lower bounds.29%h Annual Symposium on Foundations of
Computer Science (FOC$)ages 524-531. IEEE Computer Society Press, 1988.

[12] K. Driesen. Method lookup strategies in dynamicailped object-oriented programming languages.
Master’s thesis, Vrije Universiteit Brussel, 1995.

[13] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. TarjaMaking data structures persistend.
Computer Systems S@8(1):86—-124, 1989.

[14] Eric Dujardin. Efficient dispatch of multimethods inrgiant time using dispatch trees. Technical
Report RR-2892, Inria, Institut National de Recherche dorinatique et en Automatique, May 1996.

[15] Eric Dujardin, Eric Amiel, and Eric Simon. Fast algdwihs for compressed multimethod dispatch table
generation. ACM Transactions on Programming Languages and Syst@®4):116—-165, January
1998.

[16] David Eppstein and S. Muthukrishnan. Internet packitrfmanegement and rectangle geometry. In
ACM-SIAM Symposium on Discrete Algorithms (SO2AP1.

[17] P. Ferragina and S. Muthukrishnan. Efficient dynamidhuod-lookup for object oriented languages.
In European Symposium on Algorithm®lume 1136 ofLecture Notes in Computer Sciengmges
107-120, 1996.

[18] P. Ferragina, S. Muthukrishnan, and M. de Berg. Muléthod dispatching: A geometric approach
with applications to string matching problems. Pnoceedings of the Thirty-First Annual ACM Sym-
posium on Theory of Computingages 483-491, New York, May 1-4 1999. ACM Press.

[19] R. Fleischer. A simple balanced search tree with O(ljstvoase update timdnternational Journal
of Foundations of Computer Scien@el37-149, 1996.

[20] C. Levcopoulos and M. Overmars. A balanced search tridle @(1) worstcase update timéActa
Informatica 26:269-277, 1988.

[21] K. Mehlhorn and S. Naher. Bounded ordered dictiorsaie0 (log log n) time andO(n) space Infor-
mation Processing Letter85:183-189, 1990.

[22] M. Miller. Method dispatch in dynamically-typed objeoriented languages. Master’s thesis, Univer-
sity of New Mexico Albuquerque, 1995.

[23] S. Muthukrishnan and Martin Muller. Time and spaceoiffit method-lookup for object-oriented pro-
grams (extended abstract). Bioceedings of the Seventh Annual ACM-SIAM Symposium orelzis
Algorithms pages 42-51, Atlanta, Georgia, January 28-30 1996.

[24] R. Raman Eliminating Amortization: On Data Structures with Guaraatl Response TimPhD the-
sis, University of Rochester, Computer Science Departp@ctiober 1992. Technical Report TR439.

[25] N. Sarnak and R. E. Tarjan. Planar point location usiegsistent search tree€ommunications of the
ACM, 29:669-679, 1986.

[26] P. van Emde Boas. Preserving order in a forest in legs litgarithmic time and linear spacénfor-
mation Processing Letter§:80-82, 1978.

[27] Jan Vitek. Compact dispatch tables for dynamicallyeyprogramming languages. M. Sc. University
of Victoria, 1995.

