
Time and Space Efficient Multi-Method Dispatching

Stephen Alstrup
Gerth Stølting Brodal
Inge Li Gørtz
Theis Rauhe

IT University Technical Report Series TR-2001-8

ISSN 1600–6100 October 2001

Copyright c 2001, Stephen Alstrup
Gerth Stølting Brodal
Inge Li Gørtz
Theis Rauhe

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-010-7

Copies may be obtained by contacting:

IT University of Copenhagen
Glentevej 67
DK-2400 Copenhagen NV
Denmark

Telephone: +45 38 16 88 88
Telefax: +45 38 16 88 99
Web www.it-c.dk

Time and Space Efficient Multi-Method Dispatching

Stephen Alstrup� Gerth Stølting Brodaly Inge Li Gørtz? Theis Rauhe?
26th October 2001

Abstract

Thedispatching problemfor object oriented languages is the problem of determiningthe most spe-
cialized method to invoke for calls at run-time. This can be acritical component of execution perfor-
mance. A number of recent results, including [Muthukrishnan and Müller SODA’96, Ferragina and
Muthukrishnan ESA’96, Alstrupet al. FOCS’98], have studied this problem and in particular provided
various efficient data structures for themono-methoddispatching problem. A recent paper of Ferragina,
Muthukrishnan and de Berg [STOC’99] addresses themulti-methoddispatching problem.

Our main result is a linear space data structure forbinary dispatching that supports dispatching in
logarithmic time. Using the same query time as Ferraginaet al., this result improves the space bound
with a logarithmic factor.

�The IT University of Copenhagen, Glentevej 67, DK-2400 Copenhagen NV, Denmark. E-mail:fstephen,inge,
theisg@it-c.dk.yBRICS (Basic Research in Computer Science), Center of the Danish National Research Foundation, Department of Computer
Science, University of Aarhus, Ny Munkegade, DK-8000Århus C, Denmark. Partially supported by the IST Programme of the EU
under contract number IST-1999-14186 (ALCOM-FT). E-mail:gerth@brics.dk.

3

1 Introduction

Thedispatching problemfor object oriented languages is the problem of determiningthe most specialized
method to invoke for a method call. This specialization depends on the actual arguments of the method call
at run-time and can be a critical component of execution performance in object oriented languages. Most
of the commercial object oriented languages rely on dispatching of methods with only one argument, the
so-calledmono-methodor unary dispatching problem. A number of papers, seee.g., [3, 12, 17, 22, 23,
27], have studied the unary dispatching problem, and Ferragina and Muthukrishnan [17] provide a linear
space data structure that supports unary dispatching in log-logarithmic time. However, the techniques in
these papers do not apply to the more generalmulti-method dispatching problemin which more than one
method argument are used for the dispatching. Multi-methoddispatching has been identified as a powerful
feature in object oriented languages supporting multi-methods such as Cecil [5], CLOS [4], and Dylan [8].
Several recent results have attempted to deal withd-ary dispatching in practice [1, 6, 7, 14, 15]. Ferragina
et al. [18] provided the first non-trivial data structures, and, quoting this paper, several experimental object
oriented languages’ “ultimately success and impact in practice depends, among other things, on whether
multi-method dispatching can be supported efficiently”.

Our main result is alinear spacedata structure for thebinary dispatchingproblem,i.e., multi-method
dispatching for methods with at most two arguments. Our datastructure useslinear spaceand supports
dispatching in logarithmic time. Using the same query time as Ferraginaet al. [18], this result improves
the space bound with a logarithmic factor. Before we providea precise formulation of our result, we will
formalize the generald-ary dispatching problem.

Let T be a rooted tree withN nodes. The tree represents a class hierarchy with nodes representing the
classes.T defines a partial order� on the set of classes:A � B , A is a descendant ofB (not necessarily
a proper descendant). LetM be the set of methods and letm denote the number of methods andM the
number of distinct method names inM. Each method takes a number of classes as arguments. A method
invocation is a query of the forms(A1; : : : ; Ad) wheres is the name of a method inM andA1; : : : ; Ad
are class instances. A methods(B1; : : : ; Bd) is applicablefor s(A1; : : : ; Ad) if and only ifAi � Bi for alli. Themost specialized methodis the methods(B1; : : : ; Bd) such that for every other applicative methods(C1; : : : ; Cd) we haveBi � Ci for all i. This might be ambiguous,i.e., we might have two applicative
methodss(B1; : : : ; Bd) ands(C1; : : : ; Cd) whereBi 6= Ci, Bj 6= Cj, Bi � Ci, andCj � Bj for some
indices1 � i; j � d. That is, neither method is more specific than the other. Multi-method dispatching is
to find the most specialized applicable method inM if it exists. If it does not exist or in case of ambiguity,
“no applicable method” resp. “ambiguity” is reported instead.

The d-ary dispatching problemis to construct a data structure that supports multi-methoddispatching
with methods having up tod arguments, whereM is static but queries are online. The casesd = 1 andd = 2 are theunary andbinary dispatchingproblems respectively. In this paper we focus on the binary
dispatching problem which is of “particular interest” quoting Ferraginaet al. [18].

The input is the treeT and the set of methods. We assume that the size ofT is O(m), wherem is the
number of methods. This is not a necessary restriction but due to lack of space we will not show how to
remove it here.

1.1 Results

Our main result is a data structure for the binary dispatching problem usingO(m) space and query timeO(log m) on a unit-cost RAM with word size logarithmic inN with O(N + m (loglog m)2) time for
preprocessing. By the use of a reduction to a geometric problem, Ferraginaet al. [18], obtain similar time
bounds within spaceO(m logm). Furthermore they show how the cased = 2 can be generalized ford > 2

at the cost of factorlogd�2m in the time and space bounds.
Our result is obtained by a very different approach in which we employ a dynamic to static transforma-

tion technique. To solve the binary dispatching problem we turn it into a unary dispatching problem — a
variant of the marked ancestor problem as defined in [2], in which we maintain a dynamic set of methods.
The unary problem is then solved persistently. We solve the persistent unary problem combining the tech-
nique by Dietz [9] to make a data structure fully persistent and the technique from [2] to solve the marked
ancestor problem. The technique of using a persistent dynamic one-dimensional data structure to solve a
static two-dimensional problem is a standard technique [25]. What is new in our technique is that we use the
class hierarchy tree to denote the time (give the order on theversions) to get a fully persistent data structure.
This gives a “branching” notion for time, which is the same aswhat one has in a fully persistent data struc-
ture where it is called the version tree. This technique is different from the plane sweep technique where a
plane-sweep is used to give a partially persistent data structure. A top-down tour of the tree corresponds to
a plane-sweep in the partially persistent data structures.

1.2 Related and previous work

For the unary dispatching problem the best known bound isO(N + m) space andO(loglog N) query
time [23, 17]. For thed-ary dispatching,d � 2, the general result of Ferraginaet al. [18] is a data structure
using spaceO(m (t logm=log t)d�1) and query timeO((logm=log t)d�1loglogN), wheret is a parameter2 � t � m. For the caset = 2 they are able to improve the query time toO(logd�1m) using fractional
cascading. They obtain their results by reducing the dispatching problem to a point-enclosure problem ind
dimensions: Given a pointq, check whether there is a smallest rectangle containingq. In the context of the
geometric problem, Ferraginaet al. also present applications to approximate dictionary matching.

In [16] Eppstein and Muthukrishnan look at a similar problemwhich they callpacket classification.
Here there is a database ofm filters available for preprocessing. Each query is a packetP , and the goal is
to classifyit, that is, to determine the filter of highest priority that applies toP . This is essentially the same
as the multiple dispatching problem. Ford = 2 they give an algorithm using spaceO(m1+o(1)) and query
timeO(loglog m), or O(m1+") and query timeO(1). They reduce the problem to a geometric problem,
very similar to the one in [18]. To solve the problem they use astandard plane-sweep approach to turn the
static two-dimensional rectangle query problem into a dynamic one-dimensional problem,which is solved
persistently such that previous versions can be queried after the plane sweep has occurred.

1.3 Overview

The remainder of this paper consists of three sections. In Section 2 we introduce terminology and concepts.
In Section 3 we give a formulation of the binary dispatching problem as a tree problem, which we call the
bridge color problem, and in Section 4 we present a data structure for the bridge color problem.

2 Preliminaries

In this section we give some basic concepts which are used throughout the paper.

DEFINITION 1 (Trees)
Let T be a rooted tree. The set of all nodes inT is denotedV (T). The nodes on the unique path from a
nodev to the root are denoted�(v), which includesv and the root. The nodes�(v) are called theancestors
of v. Thedescendantsof a nodev are all the nodesu for whichv 2 �(u). If v 6= u we say thatu is aproper
descendant ofv. The distancedist(v,w) between two nodes inT is the number of edges on the unique path
betweenv andw.

LetC be a set of colors. A labelingl(v) of a nodev 2 V (T) is a subset ofC, i.e., l(v) � C. A labelingl : V (T)! 2C of a treeT is a set of labelings for the nodes inT .

In the rest of the paper all trees are rooted trees.

DEFINITION 2 (Persistent data structures)
The concept of persistent data structures was introduced byDriscoll et al. in [13]. A data structure is
partially persistentif all previous versions remain available for queries but only the newest version can be
modified. A data structure isfully persistentif it allows both queries and updates of previous versions. An
update may operate only on a single version at a time, that is,combining two or more versions of the data
structure to form a new one is not allowed. The versions of a fully persistent data structure form a tree called
theversion tree. Each node in the version tree represents the result of one update operation on a version of
the data structure. A persistent update or query take as an extra argument the version of the data structure to
which the query or update refers.

KNOWN RESULTS. Dietz [9] showed how to make any data structure fully persistent on a unit-cost RAM. A
data structure with worst case query timeO(Q(n)) and update timeO(F (n)) making worst caseO(U(n))
memory modifications can be made fully persistent usingO(Q(n) loglog n) worst case time per query andO(F (n) loglog n) expected amortized time per update usingO(U(n) loglog n) space.

DEFINITION 3 (Tree color problem)
Let T be a rooted tree withn nodes, where we associate a set of colors with each node ofT . Thetree color
problemis to maintain a data structure with the following operations:

color(v,c): add to v’s set of colors,i.e., l(v) l(v) [fg,
uncolor(v,c): remove from v’s set of colors,i.e., l(v) l(v) n fg,
findfirstcolor(v,c): find the first ancestor ofv with color (this may bev itself).

The incrementalversion of this problem does not supportuncolor, thedecrementalproblem does not
supportcolor, and thefully dynamicproblem supports both update operations.

KNOWN RESULTS. In [2] it is showed how to solve the tree color problem on a RAMwith logarithmic word
size in expected update timeO(loglog n) for bothcolor anduncolor, query timeO(log n=loglog n), using
linear space and preprocessing time. The expected update time is due to hashing. Thus the expectation can be
removed at the cost of using more space. We need worst case time when we make the data structure persistent
because data structures with amortized/expected time may perform poorly when made fully persistent, since
expensive operations might be performed many times.

Dietz [9] showed how to solve the incremental tree color problem inO(loglog n) amortized time per
operation using linear space, when the nodes are colored top-down and each node has at most one color.

The unary dispatching problem is the same as thetree color problemif we let each color represent a
method name.

DEFINITION 4
We need a data structure to support insert and predecessor queries on a set of integers fromf1; : : : ; ng.
This can be solved in worst caseO(loglog n) time per operation on a RAM using the data structure of van
Emde Boas [26] (VEB). We show how to do modify this data structure such that it only usesO(1) memory
modifications per update.

1

3 4 2

b3b1 b2
Figure 1: The solid lines are tree edges and the dashed and dotted lines are bridges of color and 0,
respectively.firstcolorbridge(,v1 ,v2) returnsb3. firstcolorbridge(0 ,v3,v4) returns ambiguity since neitherb1 or b2 is closer than the other.

3 The Bridge Color Problem

The binary dispatching problem (d = 2) can be formulated as the following tree problem, which we call the
bridge color problem.

DEFINITION 5 (Bridge Color Problem)
Let T1 andT2 be two rooted trees. BetweenT1 andT2 there are a number of bridges of different colors. LetC be the set of colors. A bridge is a triple(; v1; v2) 2 C � V (T1)� V (T2) and is denoted by(v1; v2). Ifv1 2 �(u1) andv2 2 �(u2) we say that(v1; v2) is a bridgeover (u1; u2). Thebridge color problemis to
construct a data structure which supports the queryfirstcolorbridge(,v1 ,v2). Formally, letB be the subset
of bridges(w1; w2) of color wherew1 is an ancestor ofv1, andw2 an ancestor ofv2. If B = ; then
firstcolorbridge(,v1 ,v2) = NIL. Otherwise, letb1 = (w1; w01) 2 B, such thatdist(v1,w1) is minimal andb2 = (w02; w2) 2 B, such thatdist(v2; w2) is minimal. If b1 = b2 thenfirstcolorbridge(,v1 ,v2)= b1 and we
say thatb1 is thefirst bridgeover(v1; v2), otherwisefirstcolorbridge(,v1 ,v2) = “ambiguity”. See Figure 1.

The binary dispatching problem can be reduced to the bridge color problem the following way. LetT1
andT2 be copies of the treeT in the binary dispatching problem. For every methods(v1; v2) 2 M make a
bridge of colors betweenv1 2 V (T1) andv2 2 V (T2).

The problem is now to construct a data structure that supports firstcolorbridge. The object of the re-
maining of this paper is show the following theorem:

THEOREM 6
Using expectedO(m (loglog m)2) time for preprocessing andO(m) space,firstcolorbridgecan be sup-
ported in worst case timeO(logm) per operation, wherem is the number of bridges.

4 A Data Structure for the Bridge Color Problem

Let B be a set of bridges (jB j= m) for which we want to construct a data structure for the bridge color
problem. As mentioned in the introduction we can assume thatthe number of nodes in the trees involved
in the bridge color problem isO(m), i.e., j V (T1) j + j V (T2) j= O(m). In this section we present a data
structure that supportsfirstcolorbridge in O(log m) time per query usingO(m) space for the bridge color
problem.

For each nodev 2 V (T1) we define the labelinglv of T2 as follows. The labeling of a nodew 2 V (T2)
contains color if w is the endpoint of a bridge of color with the other endpoint among ancestors ofv.

r

s x

w y

u v

Figure 2: The straight lines are tree edges and the dashed anddotted lines and the curved solid lines are
bridges of color1,2, and3, respectively.lv(w) = f1; 2; 3g, lv(u) = f3g, lv(s) = f1g. H(v) =f((w; 1); r); ((w; 2); y); ((w; 3); v); ((u; 3); r); ((s; 1); y)g.
Formally, 2 lv(w) if and only if there exists a nodeu 2 �(v) such that(u;w) 2 B. Similar define the
symmetric labelings forT1.

In addition to each labelinglv, we need to keep the following extra information stored in a sparse arrayH(v): For each pair(w;) 2 V (T2) � C, wherelv(w) contains color, we keep the nodev0 of maximal
depth in�(v) from which there is a bridge(v0; w) in B. Note that this set is sparse,i.e., we can use a sparse
array to store it.

For each labelinglv of T2, wherev 2 V (T1), we will construct a data structure for the static tree color
problem. That is, a data structure that supports the queryfindfirstcolor(u,) which returns the first ancestor
of u with color . Using this data structure we can find the first bridge over(u;w) 2 V (T1) � V (T2) of
color by the following queries.

In the data structure for the labelinglu of T2 we perform the queryfindfirstcolor(w,). If this query
reports NIL there is no bridge to report, and we can simply return NIL. Otherwise letw0 be the reported
node. We make a lookup inH(u) to determine the bridgeb such thatb = (u0; w0) 2 B. By definitionb
is the bridge over(u;w0) with minimal distance betweenw andw0. But it is possible that there is a bridge(u00; w00) over(u;w) wheredist(u,u00) < dist(u,u0). By a symmetric computation with the data structure for
the labelingl(w) of T1 we can detect this in which case we return “ambiguity”. Otherwise we simply return
the unique first bridgeb.

Explicit representation of the tree color data structures for each of the labelingslv for nodesv in T1
andT2 would take up spaceO(m2). Fortunately, the data structures overlap a lot: Letv; w 2 V (T1),u 2 V (T2), and letv 2 �(w). Thenlv(u) 2 lw(u). We take advantage of this in a simple way. We make
a fully persistent version of thedynamictree color data structure using the technique of Dietz [9]. The idea
is that the above set ofO(m) tree color data structures corresponds to a persistent, survived version, each
created by one ofO(m) updates in total.

Formally, suppose we have generated the data structure for the labelinglv, for v in T1. Let w be the
child of nodev in T1. We can then construct the data structure for the labelinglw by simply updating
the persistent structure forlv by inserting the color marks corresponding to all bridges with endpointw
(including updatingH(v)). Since the data structure is fully persistent, we can repeat this for each child ofv, and hence obtain data structures for all the labelings for children of v. In other words, we can form all
the data structures for the labelinglv for nodesv 2 V (T1), by updates in the persistent structures according
to a top-down traversal ofT1. Another way to see this, is thatT1 is denoting the time (give the order of the
versions). That is, the version tree has the same structure asT1.

Similar we can construct the labelings forT1 by a similar traversal ofT2. We conclude this discussion
by the following lemma.

LEMMA 7
A static data structure for the bridge color problem can be constructed byO(m) updates to a fully persistent
version of the dynamic tree color problem.

4.1 Reducing the memory modifications in the tree color problem

The paper [2] gives the following upper bounds for the tree color problem for a tree of sizem. Update time
expectedO(loglog m) for both color anduncolor, and query timeO(log m=loglog m), with linear space
and preprocessing time.

For our purposes we need a slightly stronger result,i.e., updates that only make worst caseO(1) memory
modifications. By inspection of the dynamic tree color algorithm, the bottle-neck in order to achieve this, is
the use of the van Emde Boas predecessor data structure [26] (VEB). Using a standard technique by Dietz
and Raman [10] to implement a fast predecessor structure we get the following result.

THEOREM 8
Insert and predecessor queries on a set of integers fromf1; : : : ; ng can be performed inO(loglog n) worst
case time per operation using worst caseO(1) memory modifications per update.

To prove the theorem we first show an amortized result1. The elements in our predecessor data structure
is grouped into bucketsS1; : : : ; Sk, where we maintain the following invariants:(1) maxSi < min Si+1 for i = 1; : : : k � 1; and(2) 1=2 log n < jSi j � 2 log n for all i:

We havek 2 O(n= log n).
EachSi is represented by a balanced search tree withO(1) worst case update time once the position of

the inserted or deleted element is known and query timeO(logm), wherem is the number of nodes in the
tree [19, 20]. This gives us update timeO(loglog n) in a bucket, but onlyO(1) memory modifications per
update. The minimum elementsi of each bucketSi is stored in a VEB.

When a new elementx is inserted it is placed in the bucketSi such thatsi < x < si+1, or in S1 if
no such bucket exists. Finding the correct bucket is done by apredecessor query in the VEB. This takesO(loglog n) time. Inserting the element in the bucket also takesO(loglog n) time, but onlyO(1) memory
modifications.

When a bucketSi becomes to large it is split into two buckets of half size. This causes a new element
to be inserted into the VEB and the binary trees for the two newbuckets have to be build. An insertion into
the VEB takesO(loglog n) time and uses the same number of memory modifications. Building the binary
search trees usesO(logn) time and the same number of memory modifications. When a bucket is split there
must have been at leastlog n insertions into this bucket since it last was involved in a split. That is, splitting
and inserting usesO(1) amortized memory modifications per insertion.

LEMMA 9
Insert and predecessor queries on a set of integers fromf1; : : : ; ng can be performed inO(loglog n) worst
case time for predecessor andO(loglog n) amortized time for insert usingO(1) amortized number of mem-
ory modifications per update.

1The amortized result (Lemma 9) was already shown in [21], burin order to make the deamortization we give another imple-
mentation here.

We can remove this amortization at the cost of making the bucket sizes�(log2n) by the following
technique by Raman [24] called thinning.

Let � > 0 be a sufficiently small constant. Define thecriticality of a bucket to be:�(b) = 1� log nmaxf0; size(b)� 1:8 log2 ng:
A bucketb is calledcritical if �(b) > 0. We want to ensure that size(b) � 2 log2 n. To maintain the size

of the buckets every� logn updates take the most critical bucket (if there is any) and move logn elements to
a newly created empty adjacent bucket. A bucket rebalancingusesO(log n) memory modifications and we
can thus perform it withO(1) memory modifications per update spread over no more than� log n updates.

We now show that the buckets never get too big. The criticality of all buckets can only increase by 1
between bucket rebalancings. We see that the criticality ofthe bucket being rebalanced is decreased, and no
other bucket has its criticality increased by the rebalancing operations. We make use of the following lemma
due to Raman:

LEMMA 10 (Raman)
Let x1; : : : ; xn be real-valued variables, all initially zero. Repeatedly do the following:

(1) Choosen non-negative real numbersa1; : : : ; an such that
Pni=1 ai = 1, and setxi xi + ai for1 � i � n.

(2) Choose anxi such thatxi = maxjfxjg, and setxi maxfxi � ; 0g for some constant � 1.

Then eachxi will always be less than lnn+ 1, even when = 1.

Apply the lemma as follows: Let the variables of Lemma 10 be the criticalities of the buckets. The realsai are the increases in the criticalities between rebalancings and = 1=�. We see that if� � 1 the criticality
of a bucket will never exceed ln+ 1 = O(log n). Thus for sufficiently small� the size of the buckets will
never exceed2 log2 n. This completes the proof of Theorem 8.

We need worst case update time forcolor in the tree color problem in order to make it persistent. The
expected update time is due to hashing. The expectation can be removed at the cost of using more space.
We now use Theorem 8 to get the following lemma.

LEMMA 11
Using linear time for preprocessing, we can maintain a tree with complexityO(loglog n) for color and
complexityO(log n=loglog n) for findfirstcolor, usingO(1) memory modifications per update, wheren is
the number of nodes in the tree.

4.2 Reducing the space

Using Dietz’ method [9] to make a data structure fully persistent on the data structure from Lemma 11, we
can construct a fully persistent version of the tree color data structure with complexityO((loglogm)2) for
color anduncolor, and complexityO((log m=loglog m) � loglog m) = O(logm) for findfirstcolor, usingO(m) memory modifications, wherem is the number of nodes in the tree.

According to Lemma 7 a data structure for the first bridge problem can be constructed byO(m) updates
to a fully persistent version of the dynamic tree color problem. We can thus construct a data structure for the
bridge color problem in timeO(m (loglogm)2), which has query timeO(logm), wherem is the number
of bridges.

This data structure might useO(�m) space, where is the number of method names. We can reduce
this space usage using the following lemma.

LEMMA 12
If there exists an algorithmA constructing astaticdata structureD using expectedt(n) time for prepro-
cessing and expectedm(n) memory modifications and has query timeq(n), then there exists an algorithm
constructing a data structureD0 with query timeO(q(n)), using expectedO(t(n)) time for preprocessing
and spaceO(m(n)).
PROOF. The data structureD0 can be constructed the same way asD using dynamic perfect hashing [11]
to reduce the space. 2

Since we only useO(m) memory modifications to construct the data structure for thebridge color
problem, we can construct a data structure with the same query time using onlyO(m) space. This completes
the proof of Theorem 6.

If we useO(N) time to reduce the class hierarchy tree to sizeO(m) as mentioned in the introduction,
we get the following corollary to Theorem 6.

COROLLARY 13
UsingO(N +m (loglog m)2) time for preprocessing andO(m) space, themultiple dispatching problem
can be solved in worst case timeO(logm) per query. HereN is the number of classes andm is the number
of methods.

References

[1] Rakesh Agrawal, Lindga G. DeMichiel, and Bruce G. Lindsay. Static type checking of multi-methods.
ACM SIGPLAN Notices, 26(11):113–128, November 1991. OOPSLA ’91 Conference Proceedings,
Andreas Paepcke (editor), October 1991, Phoenix, Arizona.

[2] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems (extended abstract). InIEEE Sym-
posium on Foundations of Computer Science (FOCS), pages 534–543, 1998.

[3] Eric Amiel, Oliver Gruber, and Eric Simon. Optimizing multi-method dispatch using compressed
dispatch tables. InOOPSLA ’94 Conference Proceedings, volume 29, pages 244–258, October 1994.

[4] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, and D. A. Moon. Com-
mon LISP object system specification X3J13 document 88-002R. ACM SIGPLAN Notices, 23, 1988.
Special Issue, September 1988.

[5] Craig Chambers. Object-oriented multi-methods in Cecil. In Ole Lehrmann Madsen, editor,ECOOP
’92, European Conference on Object-Oriented Programming,Utrecht, The Netherlands, volume 615
of Lecture Notes in Computer Science, pages 33–56. Springer-Verlag, New York, NY, 1992.

[6] Craig Chambers and Weimin Chen. Efficient multiple and predicated dispatching.ACM SIGPLAN
Notices, 34(10):238–255, October 1999.

[7] Weimin Chen, Volker Turau, and Wolfgang Klas. Efficient dynamic look-up strategy for multi-
methods. In Mario Tokoro and Remo Pareschi, editors,ECOOP ’94, European Conference on Object-
Oriented Programming, Bologna, Italy, volume 821 ofLecture Notes in Computer Science, pages
408–431, New York, NY, July 1994. Springer-Verlag.

[8] Inc. Apple Computer. Dylan interim reference manual, 1994.

[9] P. F. Dietz. Fully persistent arrays. In F. Dehne, J.-R. Sack, and N. Santoro, editors,Proceedings of
the Workshop on Algorithms and Data Structures, volume 382 ofLecture Notes in Computer Science,
pages 67–74, Berlin, August 1989. Springer-Verlag.

[10] Paul F. Dietz and Rajeev Raman. Persistence, amortization and randomization. InProc. 2nd ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 78–88, 1991.

[11] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer aufder Heide, H. Rohnert, and R. E. Tarjan.
Dynamic perfect hashing: Upper and lower bounds. In29th Annual Symposium on Foundations of
Computer Science (FOCS), pages 524–531. IEEE Computer Society Press, 1988.

[12] K. Driesen. Method lookup strategies in dynamically-typed object-oriented programming languages.
Master’s thesis, Vrije Universiteit Brussel, 1995.

[13] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures persistent.J.
Computer Systems Sci., 38(1):86–124, 1989.

[14] Eric Dujardin. Efficient dispatch of multimethods in constant time using dispatch trees. Technical
Report RR-2892, Inria, Institut National de Recherche en Informatique et en Automatique, May 1996.

[15] Eric Dujardin, Eric Amiel, and Eric Simon. Fast algorithms for compressed multimethod dispatch table
generation. ACM Transactions on Programming Languages and Systems, 20(1):116–165, January
1998.

[16] David Eppstein and S. Muthukrishnan. Internet packet filter manegement and rectangle geometry. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2001.

[17] P. Ferragina and S. Muthukrishnan. Efficient dynamic method-lookup for object oriented languages.
In European Symposium on Algorithms, volume 1136 ofLecture Notes in Computer Science, pages
107–120, 1996.

[18] P. Ferragina, S. Muthukrishnan, and M. de Berg. Multi-method dispatching: A geometric approach
with applications to string matching problems. InProceedings of the Thirty-First Annual ACM Sym-
posium on Theory of Computing, pages 483–491, New York, May 1–4 1999. ACM Press.

[19] R. Fleischer. A simple balanced search tree with O(1) worst-case update time.International Journal
of Foundations of Computer Science, 7:137–149, 1996.

[20] C. Levcopoulos and M. Overmars. A balanced search tree with O(1) worstcase update time.Acta
Informatica, 26:269–277, 1988.

[21] K. Mehlhorn and S. Näher. Bounded ordered dictionaries inO(log log n) time andO(n) space.Infor-
mation Processing Letters, 35:183–189, 1990.

[22] M. Müller. Method dispatch in dynamically-typed object-oriented languages. Master’s thesis, Univer-
sity of New Mexico Albuquerque, 1995.

[23] S. Muthukrishnan and Martin Müller. Time and space efficient method-lookup for object-oriented pro-
grams (extended abstract). InProceedings of the Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 42–51, Atlanta, Georgia, January 28–30 1996.

[24] R. Raman.Eliminating Amortization: On Data Structures with Guaranteed Response Time. PhD the-
sis, University of Rochester, Computer Science Department, October 1992. Technical Report TR439.

[25] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees.Communications of the
ACM, 29:669–679, 1986.

[26] P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear space.Infor-
mation Processing Letters, 6:80–82, 1978.

[27] Jan Vitek. Compact dispatch tables for dynamically typed programming languages. M. Sc. University
of Victoria, 1995.

