
D2-Tree: A New Overlay with Deterministic
Bounds

Gerth Stølting Brodal1, Spyros Sioutas2,
Kostas Tsichlas3, and Christos Zaroliagis4

1 MADALGO (Center for Massive Data Algorithmics, a Center of the Danish
National Research Foundation), Aarhus University, gerth@madalgo.au.dk

2 Ionian University, Department of Informatics, sioutas@ionio.gr
3 Aristotle University of Thessaloniki, Department of Informatics,

tsichlas@csd.auth.gr
4 CTI and Dept. of Computer Engineering & Informatics, University of Patras,

zaro@ceid.upatras.gr

Abstract. We present a new overlay, called the Deterministic Decentral-
ized tree (D2-tree). The D2-tree compares favourably to other overlays for
the following reasons: (a) it provides matching and better complexities,
which are deterministic for the supported operations; (b) the manage-
ment of nodes (peers) and elements are completely decoupled from each
other; and (c) an efficient deterministic load-balancing mechanism is pre-
sented for the uniform distribution of elements into nodes, while at the
same time probabilistic optimal bounds are provided for the congestion
of operations at the nodes.

1 Introduction

Decentralized systems and in particular Peer-to-Peer (P2P) networks have be-
come very popular of late and are widely used for sharing resources and store very
large data sets. Data are stored at the nodes (or peers) and the most crucial op-
erations are data search (identify the node that stores the requested information)
and updates (insertions/deletions of data). Searching and updating is typically
done by building a logical overlay network that facilitates the assignment and
indexing of data at the nodes. Sometimes, we distinguish between the overlay
structure per se and the indexing scheme used to access the data.

Following the typical modeling, a decentralized communication network is
represented by a graph. Its nodes correspond to the network nodes, while its
edges correspond to communication links. We assume constant size messages
between nodes through links and asynchronous communication. It is assumed
that the network provides an upper bound on the time needed for a node to
send a message and receive an acknowledgment. The complexity of an operation
is measured in terms of the number of messages issued during its execution.
Throughout the paper, when we refer to cost we shall mean number of messages
(internal computations at nodes are considered insignificant). The overlay is
another graph defined over the communication network. The nodes of the overlay

2 G.S. Brodal, S. Sioutas, K. Tsichlas, and C. Zaroliagis

correspond to nodes of the original network, while its edges (links) may not
correspond to existing communication links, but to communication paths.

With respect to its structure, the overlay supports the operations Join (of
a new node v; v communicates with an existing node u in order to be inserted
into the overlay), and Departure(of an existing node u; u leaves the overlay
announcing its intent to other nodes of the overlay). The overlay is used to
implement an indexing scheme for the stored data. Such a scheme supports
the operations search for an element, insert a new element, delete an existing
element, and range query for elements in a specific range.

In terms of efficiency, an overlay network should address the following issues:

– Fast queries and updates: updates and queries must be executed in a minimal
number of communication rounds and using a minimal number of messages.

– Ordered data: keeping the data in order facilitates the implementation of
various enumeration queries when compared to a simple dictionary that can
only answer membership queries, including those arising in DNA databases,
location-based services, and prefix searches for file names or data titles. In-
deed, the ever-wider use of P2P infrastructures has found applications that
require support for range queries (e.g., [6]).

– Size of nodes (peers): the size of a node is the routing information (links and
related data) maintained by this node and it is not related to the number of
data elements stored in it. Keeping the size of a node small allows for more
efficient update operations, but in general reduces the efficiency of access
operations while aggravating fault tolerance.

– Fault Tolerance: the structure should be able to discover and heal failures
at nodes or links.

– Congestion: it refers to the distribution of the load of search (access) op-
erations per node, aiming at distributing this load equally across all nodes.
The congestion is an expected quantity defined as the maximum, among all
nodes, of the fraction of the expected number of accesses of a node due to a
random sequence of operations on the structure.

– Load Balancing: it refers to the distribution of data elements on the nodes.
The goal of load balancing is to distribute equally the n elements stored in
the N nodes of the network (typically N � n). That is, ideally each node
should carry approximately k elements, where bn/Nc ≤ k ≤ bn/Nc+ 1.

There has been considerable recent work in devising effective distributed search
and update techniques. Existing structured P2P systems can be classified into
two broad categories: distributed hash table (DHT)-based systems and tree-
based systems. Examples of the former, which constitute the majority, include
Chord [11], Pastry [14], Symphony [12], and Tapestry [17]. DHT-based systems
support exact match queries well and use (successfully) probabilistic methods
to distribute the workload among nodes equally. DHT-based systems work with
little synchrony and high churn (the collective effect created by independent
burstly arrivals and departures of nodes), a fundamental characteristic of the
Internet. Since hashing destroys the ordering on keys, DHT-based systems typi-
cally do not possess the functionality to support straightforwardly range queries,

D2-Tree: A New Overlay with Deterministic Bounds 3

or more complex queries based on data ordering (e.g., nearest-neighbor and string
prefix queries). The most recent effort towards range queries is reported in [16].

Tree-based systems are based on hierarchical structures. They support range
queries more naturally and efficiently as well as a wider range of operations, since
they maintain the ordering of data. On the other hand, they lack the simplicity
of DHT-based systems, and they do not always guarantee data locality and load
balancing in the whole system. Important examples of such systems include Skip
Graphs (SG) [4, 7], NoN SG [13], SkipNet (SN), Deterministic SN [9], Bucket
SG [3], Family Trees [15], Skip Webs [1], BATON [10], Rainbow Skip Graphs
(RSG) [8], and Strong RSG [8].

In this work, we focus on tree-based overlay networks that support directly
range and more complex queries. Let N be the number of nodes present in the
network and let n denote the size of data (N � n). Let M be the size of each
node, Q(n, N) be the cost of a single query, U(n, N) be the cost of an update,
C(n, N) be the congestion per node (measuring the load) incurred by search
operations, and let L(n, N) be the cost for load balancing the overlay w.r.t.
element updates. With respect to congestion, each node issues one operation,
while the destination node of the operation is assumed to be selected uniformly at
random among all nodes of the network. Congestion depends on the distribution
of elements into nodes as well as on the topology of the overlay. It provides hints
as to how well the structure avoids the existence of hotspots (i.e., nodes which
are accessed multiple times during a sequence of operations – the root of a tree
is usually a hotspot in decentralized tree structures).

Methods N M Q(n, N) U(n, N) C(n, N) L(n, N)

SG [4, 7] ≤ n O(log N) bO(log N) w.h.p. bO(log N) w.h.p. bO(log N
N) eO(log N)

NoN SG [13] n O(log2 n) bO(log n
log log n) bO(log2 n) bO(log2 n

n) –

Determ. SN [9] n O(log n) O(log n) O(log2 n) O(n0,32
n) –

BATON [10] ≤ n O(log N) O(log N) O(log N) – O(log n)

Family Trees [15] n O(1) bO(log n) bO(log n) bO(log n
n) –

Bucket SG [3] ≤ n O(n
N + log N) bO(log N) bO(log N) bO(1

N + log N
n) No Bounds

Skip Webs [1] n O(log n) bO(log n
log log n) bO(log n

log log n) bO(log n
n) –

Rainbow SG [8] n O(1) bO(log n) w.h.p. O(log n) w.h.p. bO(log n
n) –

Strong RSG [8] n O(1) O(log n) eO(log n) bO(nε

n) –

D2-tree ≤ n O(1) O(log N) eO(log N) bO(log N
N) eO(log N)

Table 1. A comparison between previous methods and the D2-tree. By bO we represent
expected bounds, by eO we represent amortized bounds, and by O expected amortized
bounds. All other bounds are worst-case. Typically, N � n.

A comparison of the aforementioned tree-based overlays is given in Table 1.
We would like to emphasize that w.r.t. load balancing, there are solutions in the
literature either as part of the overlay (e.g., [10]) or as a separate technique (e.g.
[3, 7]). These solutions are either heuristics, or provide expected bounds under
certain assumptions, or amortized bounds but at the expense of increasing the
size per node (see [5] for a detailed discussion).

4 G.S. Brodal, S. Sioutas, K. Tsichlas, and C. Zaroliagis

Our Contribution. In this paper we present a new tree-based overlay, called
the Deterministic Decentralized tree or D2-tree. The D2-tree (see also Table 1)
uses O(1) space per node, achieves a deterministic O(log N) query bound and a
deterministic (amortized) O(log N) update bound for elements as well as for node
joins and departures, achieves optimal congestion, and exhibits a deterministic
(amortized) O(log N) bound for load-balancing. Moreover, it supports ordered
data queries optimally, and tolerates node failures.

The D2-tree is an overlay consisting of two levels. The upper level is a perfect
binary tree, while the lower level consists of buckets (sets of nodes), where each
bucket is structured as a doubly linked list. Each bucket contains O(log N) nodes.
Since N changes, the size of buckets is dynamically maintained by the overlay.

In the D2-tree, we separate the index from the overlay structure using the
load-balancing mechanism. The number of elements per node is dynamic w.r.t.
node joins and departures and it is controlled by the load-balancing mechanism.
Moreover, the number of nodes of the perfect binary tree is not connected by any
means to the number of elements stored in the structure. The overlay structure
supports the operations of node join and node departure, while at the same time
it tackles failures of nodes whenever these are discovered.

Our load-balancing technique distributes almost equally the elements among
nodes by making use of weights. Weights are used to define a metric of load-
balance, which shows how uneven is the load between nodes. When the load is
uneven, then a data migration process is initiated to equally distribute elements.

Our load-balancing technique is quite general and can be applied to any
hierarchical decentralized overlay (e.g., BATON, Skip Graphs) with the following
specifications: (i) The overlay structure must be a tree with height O(log N) with
each node having O(1) children. (ii) Nodes at level i having the same father have
approximately (within constant factors) the same weight, which is Ω(i4). (iii)
Updates are performed at the leaves. Alternatively, if each node has access to a
leaf in O(1) messages then this is enough, since the update is simply forwarded
to this leaf.

We discuss the load balancing technique in Section 2, and present the D2-tree
in Section 3. We conclude in Section 4. Due to space constraints, some details
and proofs are deferred to the full version [5].

2 Deterministic Load Balancing

The load-balancing mechanism distributes almost equally the elements among
nodes by making use of weights, which are used to define a metric showing
how uneven is the load between nodes. When the load is uneven, then a data
migration process is initiated to equally distribute elements.

A few definitions are in place. Assume that the overlay structure is a tree T .
Based on T ancestor-descendant relationships are defined. There is a node that
has no ancestor (the root) and there are nodes with no descendants (the leaves).
All nodes which are not leaves are called internal. The subgraph induced by the
descendants of node v (including v) in T is the subtree of v. The weight w(v) of

D2-Tree: A New Overlay with Deterministic Bounds 5

node v is equal to the number of elements stored in its subtree. The term weight
will also be used to express other similar quantities at some parts of the paper,
in which case we explicitly say so. The number of elements residing in node v
is represented by e(v). The height of node v is the length of the longest path
from v to one of its leaves. The depth (or level) of node v is the length of the
path from v to the root. Two nodes are called brothers when they have the same
father and they are consecutive in his child list.

We describe the load-balancing mechanism in two steps. First, we provide
a mechanism that allows for efficient and local update of weight information in
a tree when elements are added or removed at the leaves. This is necessary to
avoid hotspots. Then, we describe the load-balancing scheme in a tree overlay.

2.1 A Technique for Amortized Constant Weight Updating

We provide a technique that lazily updates the weights on the nodes of a tree.
When an element is added or removed to/from a leaf u in T the weights on the
path from u to the root must be updated. If the height of T is H, then the cost
of the weight updating is O(H). Assume that node v lies at height h and its
children are v1, v2, . . . , vs at height h − 1. We relax the weight of a node and
its recomputation. We define the virtual weight b(v) of v as the weight stored in
node v. In particular, for node v the following invariants are maintained

Invariant 1 b(v) > e(v) + (1− εh) (
∑s

i=1 b(vi))

Invariant 2 b(v) < e(v) + (1 + ε′h) (
∑s

i=1 b(vi))

where εh and ε′h are appropriate constants. These invariants imply that the
weight information is approximate, at most by a multiplicative constant.

Assume that an update takes place at leaf u. Apparently, only the weight of
its ancestors need to be updated by ±1 and no other node is affected. We traverse
the path from u to the root until we find a node z for which Invariants 1 and 2
hold. Let v be its child for which either Invariant 1 or 2 does not hold on this
path. We recompute all weights on the path from u to v. In particular, for each
node z on this path, we update its weight information by taking the sum of the
weights written in its children plus the number of elements that z carries.

The following lemma states how frequently the weight information in each
node changes. Its proof follows from the fact that the update of node v is a result
of the violation of either of Invariants 1 or 2 and by taking into account that
1
2 · w(v) < b(v) < 2 · w(v), if we choose εh = ε′h = 1

h2 [5].
Lemma 1. The minimum number of updates in the subtree of v, causing a
weight update at v, is Θ(εhw(v)).
The above lemma states that if we make εhw(v) update operations then the
maximum number of weight changes at node v is 1, implying that the amortized
cost per update operation at height h is 1

εhb(v) . Since a node on the path at
height i has (by assumption) virtual weight Ω(i4), it is not hard to see that the
weight updating mechanism is efficient in an amortized sense.
Theorem 1. The amortized cost of the weight update algorithm is O(1).

6 G.S. Brodal, S. Sioutas, K. Tsichlas, and C. Zaroliagis

2.2 Updates and Load Balancing

We now investigate how load balancing is realized on the balanced tree structure
T . For clarity of exposition, we assume that T is a binary tree. The following
discussion can be easily generalized for trees with O(1) maximum degree, simply
by looking between brother nodes.

First, bear in mind that this mechanism does not tamper with the structure
of T . An update operation (either insertion or deletion of an element) is initiated
at node v. Node v issues a search for the involved element and the appropriate
node u is returned. Then, the update request is forwarded from v to u. Node u
executes the update operation and signals v for the status of the update. The
load balancing mechanism redistributes the elements among nodes when the load
between nodes is not distributed equally enough.

Assume that node v at height h has child p and its right brother q at height
h − 1. Let |v| denote the number of nodes of the subtree of v (including v) in
the overlay structure. The density d(v) = w(v)

|v| of node v represents the mean

number of elements per node in the subtree of v. The criticality c(p, q) = d(p)
d(q) of

two brother nodes p and q represents their difference in densities. The following
invariant guarantees that there will not be large differences between densities.

Invariant 3 For two brothers p and q, it holds that 1
c ≤ c(p, q) ≤ c, 1 < c ≤ 2.

For example, choosing c = 2 we get that the density of any node can be at most
twice or half of that of its brother. In the more general case where the number
of children of node v is O(1), we get that no child of v has more density than a
constant factor w.r.t. the other children of v.

When an update takes place at leaf u, weights are updated by using the
mechanism described in Section 2.1. In this way, we guarantee that no hotspot
exists w.r.t. weight updating as implied by Lemma 1. Then, starting from u, the
highest ancestor w is located that is unbalanced w.r.t. his brother z, meaning
that Invariant 3 is violated. Finally, the elements in the subtree of their father
v are redistributed uniformly so that the density of the brothers becomes equal;
this procedure is henceforth called redistribution of node v. Assume that the
redistribution phase has a cost of O(f(w(v))), for some increasing function f :
N → N. The following theorem provides amortized bounds for the redistribution.

Theorem 2. The load balancing has an amortized cost of O
(
H f(n)

n

)
.

3 The D2-tree

In this section we design and analyze the D2-tree overlay. We first describe the
overlay structure, then move to the description of the index, and finally discuss
efficiency issues regarding congestion and fault-tolerance.

D2-Tree: A New Overlay with Deterministic Bounds 7

3.1 The D2-tree Structure

The D2-tree is a binary tree, where each node maintains an additional set of
links to other nodes apart from the standard links which form the tree. Each
node v in the tree maintains the following links:

1. Links to its father (if there is one) and its children.
2. Links to its adjacent nodes based on an inorder traversal of the tree.
3. Links to nodes at the same level as v. These links facilitate an exponential

search on the nodes of the same level. Assume that node v lies at level `.
In a binary tree, the maximum number of nodes at level ` is equal to 2`.
Node v maintains at most 2` links: ` links to nodes to the right and ` links
to nodes to the left. The links are distributed in exponential steps, that is
the first link points to a node (if there is one) 20 positions to the left (right),
the second 21 positions to the left (right) and the i-th link 2i−1 positions to
the left (right). These links constitute the routing table of v.

The next lemma captures some important properties of the routing tables w.r.t.
their construction. It follows immediately from the aforementioned link structure
and the fixed distances between successive links in the routing tables.

Lemma 2. (i) If a node v contains a link to node u in its routing table, then
the parent of v also contains a link to the parent of u, unless u and v have the
same father. (ii) If a node v contains a link to node u in its routing table, then
the left (right) sibling of v also contains a link to the left (right) sibling of u,
unless there are no such nodes. (iii) Every non-leaf node has two adjacent nodes
in the inorder traversal, which are leaves.

A Weight-Balanced Overlay. The overlay consists of two levels. The upper
level of the overlay is a Perfect Binary Tree (PBT). The lower level of the overlay
are the leaves of this tree, which are sets of nodes called buckets containing
O(log N) nodes. Each bucket is structured as a doubly linked list. Each node
of the bucket points to the node which is a leaf of the PBT and is called the
representative of the bucket. Additionally, it maintains its routing table w.r.t.
the nodes of all buckets.

When a node z makes a join request to v, then this node is forwarded to its
adjacent leaf u w.r.t. the inorder traversal. Then, node z is added to the doubly
linked list representing the bucket of u by manipulating a constant number of
links. The routing table of z is updated by using Lemma 2(ii). When a node v
leaves the network, then it is replaced by its right adjacent node u (if there is no
right adjacent node then we choose the left one) which in turn is replaced by its
first node z in its bucket. Link and data information are copied from v to u and
from u to z. When a node v is discovered to be unreachable, its adjacent node u
is first located. This is accomplished by traversing the path to the rightmost or
leftmost leaf starting from the left or right child respectively. Node u fills the gap
of v and the first child z in the bucket of u fills the gap left by u. The contents
of u are not moved to another node except from the navigation data (routing

8 G.S. Brodal, S. Sioutas, K. Tsichlas, and C. Zaroliagis

tables and other links) which are moved to node z that take its place. Node u
has its routing tables recomputed.

The join and departure of nodes may cause the size of the buckets to be
uneven, which in the long run renders the structure unbalanced (imagine a bucket
holding almost all nodes). To control the size of the buckets we employ a weight-
based approach. Each node v of the PBT maintains its weight |v|, which is
equal to the number of nodes in the buckets of its subtree. The size control is
accomplished by using the method introduced in Section 2.1, in order to avoid
the existence of hotspots.

The node criticality ncv of a node v at level ` with left and right children w

and z at level `+1, respectively, is defined as ncv = |w|
|v| . The following invariant

bounds the criticality of nodes.

Invariant 4 The node criticality of all nodes is in the range
[
1
4 , 3

4

]
.

Invariant 4 implies that the number of nodes in buckets in the left subtree of
a node v is at least 1/3 and at most threefold the corresponding number of its
right subtree (this definition can be easily generalized when v has a O(1) number
of children). When an update takes place at bucket x, then we locate the highest
ancestor v of x whose node criticality is out of bounds, w.r.t. Invariant 4, and we
redistribute the nodes in its subtree. The redistribution phase is described in [5].
The redistribution guarantees that if there are z nodes in total in the y buckets
of the subtree of v, then after the redistribution each bucket maintains either
bz/yc or bz/yc + 1 nodes. However, the following discussion still holds (with
minor changes) even if the redistribution phase guarantees that the minimum
and maximum size of the buckets is within constant factors. The cost for the
redistribution we propose for node v is f(|v|) = O(|v|).

We guarantee that each bucket contains O(log N) nodes when subject to joins
or departures of nodes by employing two operations on the PBT, the contraction
and the extension. When a redistribution takes place at the root of the PBT,
we also check whether any of these two operations can be applied to the PBT.
The extension operation adds one more level of nodes at the PBT from existing
nodes in the buckets, thus increasing its height by one. The contraction operation
removes one level of nodes from the PBT and puts them into the buckets, thus
decreasing its height by one. In order to decide whether the PBT needs extension
or contraction we compare the size of the buckets B after the redistribution with
the height of the PBT. Note that after redistribution, the sizes of all buckets
may differ by at most 1. If the size is larger by at least 1 then an extension
takes place. If the size of the bucket is smaller than the height of the PBT by at
least 1 then a contraction takes place. The height of the PBT can be deduced
by the size of the routing table in the nodes of the last level of the PBT. These
two operations involve a reconstruction of the overlay which rarely happens as
shown in the following lemma.

Lemma 3. If a redistribution operation is performed at a node with weight s,
then this node will be redistributed again after Ω(s) joins or departures have been
performed in its subtree.

D2-Tree: A New Overlay with Deterministic Bounds 9

Lemma 3 states that the expensive operations of extension and contraction take
place when the number of nodes has at least doubled or halved. Assuming that
the redistribution of v has O(f(|v|)) cost, it follows by Lemma 3 that the amor-
tized cost for join/departure of a node v at height h is O

(
f(|v|)
|v|

)
. Since the PBT

has height H, we establish the following.

Lemma 4. The amortized cost of join/departure of a node v is O
(
H f(N)

N

)
.

O(1) Space per Node. The routing tables require O(log N) space for each
node. To make the space consumption constant, one could apply on the overlay
the schemes described in [8, 15]. However, on the one hand the complexities will
not be deterministic while on the other hand even in the case of the strong
rainbow graphs [8] with deterministic bounds our congestion for searching is
much better than theirs. To achieve constant space we distribute the routing
tables to many nodes doing the same also for nodes in the buckets. A set of nodes
with constant degree is grouped together and a routing table is distributed on all
these nodes, such that each node uses constant space. Thus, a node can recreate
approximately its routing table by accessing nodes inside the same group. We
call each such group a hypernode.

A hypernode at level ` consists of at most ` nodes, numbered from left to
right 1, 2, This number is the rank of the node within the hypernode. A
node v with rank i maintains two links to the nodes that are approximately 2i

positions to the right and to the left. In particular, node v either points to a
node z in the same hypernode whose distance is 2i or to a node z′ whose rank is
i and lies in a different hypernode than that of v which contains a node whose
distance is 2i from v. The concatenation of all such links constitutes the routing
table for the hypernode. Additionally, each node with rank i maintains two links
to nodes with ranks i− 1 and i + 1, if there are such nodes. Finally, each node
with rank i in the hypernode maintains a link to the node with the largest rank.
The following lemma translates Lemma 2(ii) in the setting of hypernodes.

Lemma 5. If node v contains a link to node u, then the left (right) sibling of v
also contains a link to the left (right) sibling of u, unless @ such nodes.

Using Lemma 5 we can update the links of a node v by simply looking at the links
of its siblings u and w and update the links of v by pointing to the adjacent nodes
of the nodes pointed to by u and w. Hypernodes are static in the overlay and
only in the case of contraction we destroy the hypernodes of the last level while
in the case of extension we create new hypernodes for the new level. A faulty
node inside a hypernode will not disconnect it since by accessing the parents we
can find its siblings and reconstruct the missing routing information.

3.2 The Index Structure of the D2-tree

The overlay provides the infrastructure for the index to efficiently support various
operations. The overlay is used as a node-oriented tree. The range of all values

10 G.S. Brodal, S. Sioutas, K. Tsichlas, and C. Zaroliagis

stored in the overlay is partitioned into subranges each one of which is assigned
to a node of the overlay. An internal node v with range [xv, x′v] may have a left
child u and a right child w with ranges [xu, x′u] and [xw, x′w] respectively such
that xu < x′u < xv < x′v < xw < x′w. Thus, if an element x ∈ [xv, x′v] then it
must be stored at node v. Ranges are dynamic in the sense that they depend on
the values maintained by the node.

Search and Range Queries. The search for an element α in the overlay may
be initiated from any node v at level `. Let z be the node with range of values
containing α. Assume O(log N) space per node and assume that w.l.o.g x′v < α.
Then, by using the routing tables we search at level ` for a node u with right
sibling w (if there is such sibling) such that x′u < α and xw > α unless α is
in the range of u and the search terminates. This step has O(`) cost, since we
simulate a binary search. If the search continues, then node z will either be an
ancestor of u or in the subtree rooted at u. If u is a leaf, then we move upwards
(or in its corresponding bucket) until we find node z in O(log N) steps. If u is an
internal node, by following the respective link we move to the left adjacent node
y of u which is certainly a leaf (inorder traversal). If x′y > α then an ordinary
top down search from node u will suffice to find z in O(log N) steps (or in its
bucket). Otherwise, node z is certainly an ancestor of u and thus we can move
upwards from u until we find it in O(log N) steps. The case with O(1) space per
node, along with the proof of the following lemma, are given in [5].

Lemma 6. The search for an element α in a D2-tree of N nodes is carried out
in O(log N) steps.

A range query [a, b] reports all elements x such that x ∈ [a, b]. A range query
[a, b] initiated at node v, invokes a search operation for element a. Node u that
contains a returns to v all elements in this range. If all elements of u are reported
then the range query is forwarded to the right adjacent node (inorder traversal)
and continues until an element larger than b is reached for the first time.

Updates and Load Balancing. Assume that an update operation is initiated
at node v involving element α. By invoking a search operation we locate node u
with range containing element α. Finally, the update operation is performed on
u. The main issue is how to balance the load to all nodes of the overlay as much
equally as possible. To do that we employ the machinery developed in Section 2.
Details can be found in [5].

The cost for the redistribution of a node v is O(|v| log N) for the case of
O(log N) space per node or O(|v|) for the case of O(1) space per node. This
is because, during the transfer of elements the routing tables must be recon-
structed. The following lemma states that the load balancing is efficient in an
amortized sense when the structure is subject to insertions and deletions of ele-
ments. It is a direct implication of Theorem 2 and the space used by the nodes.

Lemma 7. The load rebalancing operation of the index has an amortized cost
of O(log N).

D2-Tree: A New Overlay with Deterministic Bounds 11

One final comment is that the redistribution of elements may be affected by the
redistribution of nodes in the weight-balanced overlay. In order to avoid such a
phenomenon, the redistribution of nodes in the subtree of node v in the overlay
is preceded by a redistribution of elements.

3.3 Other Efficiency Issues and the Main Result

We are now ready to tackle the congestion and the fault-tolerance of the D2-tree
overlay, and to present the main results of this work.

Congestion. We assume that a sequence of searches s1, s2, . . . , sN is initiated
from each of the N nodes of the overlay. Assume that si is looking for an element
residing in a node zi (target node for si). The target nodes z1, z2, . . . , zN are
chosen independently and uniformly at random from all nodes of the overlay.
There are two phases in the search. The first is the horizontal search, which
makes use of the routing tables, and the second is the vertical search on a path
from a node either towards the root or towards a leaf. The following theorem,
whose proof can be found in [5], establishes the congestion bound.

Theorem 3. The congestion due to the search operations is O(log N
N) expected

in a D2-tree with N nodes, where each node uses O(1) space.

Fault Tolerance. If a node v discovers (during the execution of an operation)
that node u is unreachable, then it contacts a sibling of u through the routing
tables of the siblings of v (by making use of Lemma 2(ii)). This sibling of u
is able by Lemma 2(ii) (or Lemma 5) to reconstruct all links of node u and a
node departure for u is initiated, which resolves this failure. A more extensive
discussion can be found in [5].

Main Result. We are now ready to establish the main results of this work
stated in the Introduction and in Table 1. In particular, space usage is O(1)
by construction. The search cost follows from Lemma 6, which also dominates
the cost for updating a data element. Node join and departures are O(log N)
amortized by Lemma 4 and the fact that f(n) = O(N). The congestion bound
comes from Theorem 3. Finally, the load-balancing bound comes from Lemma 7.

4 Conclusions and Discussion

The load-balancing scheme can be applied straightforwardly to BATON [10].
BATON is a balanced tree-like overlay that satisfies the specifications set in the
Introduction. The same goes also for Skip Graphs [4] with the exception that the
specifications hold probabilistically and thus the bounds are also probabilistic.
Additionally, it provides a mechanism to control the bucket size of [3].

12 G.S. Brodal, S. Sioutas, K. Tsichlas, and C. Zaroliagis

We provide a technique that lazily updates the weights on the nodes of a
tree. This technique is interesting by itself and can be straightforwardly applied
to weighted balanced trees [2] in the Pointer Machine model of computation
for single processor internal memory machines. In this manner, the update of
balancing information is supported in O(1) amortized time.

References

1. L. Arge, D. Eppstein and M.T. Goodrich. Skip-Webs: Efficient Distributed Data
Structures for Multidimensional Data Sets. In Proc. of the 24th PODC, 69-76,
2005.

2. L. Arge and J. Vitter. Optimal External Memory Interval Management. SIAM
Journal on Computing, 32(6):1488-1508, 2003.

3. J. Aspnes, J. Kirsch and A. Krishnamurthy. Load-balancing and Locality in Range-
Queriable Data Structures. In Proc. of the 23rd PODC, 115-124, 2004.

4. J. Aspnes and G. Shah. Skip Graphs. In Proc. of the 14th SODA, 384-393, 2003.
5. G.S. Brodal, S. Sioutas, K. Tsichlas, and C. Zaroliagis. D2-Tree: A New Overlay

with Deterministic Bounds. http://arxiv.org/abs/1009.3134.September 2010.
6. Dongsheng Li, Jiannong Cao, Xicheng Lu, and Keith C.C. Chan. Efficient Range

Query Processing in Peer-to-Peer Systems. IEEE Transactions on Knowledge and
Data Engineering, 21(1):78-91, 2009.

7. P. Gasenan and M. Bawa and H. Garcia-Molina. Online Balancing of range-
Partitioned Data with Applications to Peer-to-Peer Systems. In Proc. of the 13th
VLDB, 444-455, 2004.

8. M.T. Goodrich and M.J. Nelson and J.Z. Sun. The Rainbow Skip Graph: A Fault-
Tolerant Constant-Degree Distributed Data Structure, In Proc. of the 17th SODA,
384-393, 2006.

9. N. Harvey and J.I. Munro. Deterministic SkipNet. In Proc. of the 22nd PODC,
152-153, 2003.

10. H. V. Jagadish and Beng Chin Ooi and Quang Hieu Vu. BATON: a Balanced Tree
Structure for Peer-to-Peer Networks, In Proc. of the 31st VLDB, 661-672, 2005.

11. D. Karger, F. Kaashoek, I. Stoica, R. Morris, and H. Balakrishnan. Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications. In Proc. of the
SIGCOMM, 149-160, 2001.

12. G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed hashing in a
small world. In 4th USENIX Symp. on Internet Technologies and Systems, 2003.

13. G.S. Manku, M. Naor and U. Wieder. Know thy Neighbor’s Neighbor: the Power
of Lookahead in Randomized P2P Networks. In Proc. of the 36th STOC, 54-63,
2004.

14. A. Rowstron and P. Druschel. Pastry: A Scalable, Decentralized Object Location,
and routing for large-scale peer-to-peer systems’, In Middleware 2001, LNCS 2218,
pp. 329-350.

15. K.C. Zatloukal and N.J.A. Harvey. Family trees: An Ordered Dictionary with Op-
timal Congestion, Locality, Degree and Search Time. In Proc. of the 15th SODA,
301-310, 2004.

16. Y. Zhang, L. Liu, D. Li, F. Liu, and X. Lu. DHT-Based Range Query Processing
for Web Service Discovery. In Proc. of the 2009 IEEE ICWS, 477-484, 2009.

17. B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph and J.D. Kubiatowicz.
Tapestry: A Resilient Global-scale Overlay for Service Deployment, IEEE Journal
on Selected Areas in Communications, 22(1):41-53, 2004.

