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Abstract. In an array of n numbers each of the
`

n

2

´

+n contiguous sub-
arrays define a sum. In this paper we focus on algorithms for selecting and
reporting maximal sums from an array of numbers. First, we consider the
problem of reporting k subarrays inducing the k largest sums among all
subarrays of length at least l and at most u. For this problem we design
an optimal O(n + k) time algorithm. Secondly, we consider the problem
of selecting a subarray storing the k’th largest sum. For this problem we
prove a time bound of Θ(n · max{1, log(k/n)}) by describing an algo-
rithm with this running time and by proving a matching lower bound.
Finally, we combine the ideas and obtain an O(n·max{1, log(k/n)}) time
algorithm that selects a subarray storing the k’th largest sum among all
subarrays of length at least l and at most u.

1 Introduction

In an array, A[1, . . . , n], of numbers each subarray, A[i, . . . , j] for 1 ≤ i ≤ j ≤ n,

defines a sum,
∑j

t=i A[t]. There are
(
n

2

)
+ n different subarrays each inducing

a sum. Locating a subarray A[i, . . . , j] maximizing
∑j

t=i A[t] is known as the
maximum sum problem, and it was formulated by Ulf Grenander in a pattern
matching context. Algorithms solving the problem also have applications in areas
such as Data Mining [12, 13] and Bioinformatics [1]. In [5] Bentley describes the
problem and an optimal linear time algorithm.

The problem can be extended to any number of dimensions. In the two di-
mensional version of the problem the input is an m × n matrix of numbers,
and the task is to locate the connected submatrix storing the largest aggre-
gate. This problem can be solved by a reduction to

(
m
2

)
+ m one-dimensional

instances of size n, or a single one-dimensional instance in one array of length
O(m2n) created by separating each of the

(
m

2

)
+ m instances mentioned before

by dummy −∞ elements. However, this solution is not optimal since faster algo-
rithms are known [22, 21]. The currently fastest algorithm is due to Takaoka who
describes an O(m2n

√
log log m/ log m) time algorithm in [21]1. The only known
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lower bound for the problem is the trivial Ω(mn) bound. The two-dimensional
version was the first problem studied, introduced as a method for maximum
likelihood estimations of patterns in digitized images [5].

A natural extension of the maximum sum problem, introduced in [4], is to
compute the k largest sums for 1 ≤ k ≤

(
n

2

)
+ n. The subarrays are allowed to

overlap, and the output is k triples of the form (i, j,
∑j

t=i A[t]). An O(nk) time
algorithm is given in [4]. An algorithm solving the problem in optimal O(n + k)
time using O(k) additional space is described in [7].

Another generalization of the maximal sum problem is to restrict the length
of the subarrays considered. This generalization is considered in [15, 18, 9] mainly
motivated by applications in Bioinformatics such as finding tandem repeats [23],
locating GC-rich regions [14], and constructing low complexity filters for se-
quence database search [2]. In [15] Huang describes an O(n) time algorithm
locating the largest sum of length at least l, while in [18] an O(n) time algo-
rithm locating the largest sum of length at most u is described. The algorithms
can be combined into at linear time algorithm finding the largest sum of length
at least l and at most u [18]. In [9] it is shown how to solve the problem in O(n)
time when the input elements are given online one by one.

The length constrained k maximal sums problem is defined as follows. Given
an array A of length n, find the k largest sums consisting of at least l and at
most u numbers. The k maximal sums problem is the special case of this problem
where l = 1 and u = n. Lin and Lee solved the problem using a randomized algo-
rithm with an expected running time of O(n log(u− l)+k) [17]. Their algorithm
is based on a randomized algorithm that selects the k’th largest length con-
strained sum from an array in O(n log(u − l)) expected time. The authors state
as an open problem whether this is optimal. Furthermore, in [16] Lin and Lee
describe a deterministic O(n log n) time algorithm that selects the k’th largest
sum in an array of size n. They propose as an open problem whether this bound
is tight. This problem is known as the sum selection problem.

Our Contribution. In this paper we settle the time complexity for the sum se-
lection problem and the length constrained k maximal sums problem. First, we
describe an optimal O(n + k) time algorithm for the length constrained k max-
imal sums problem in Section 2. This algorithm is an extension of our optimal
algorithm solving the k maximal sums problem from [7]. Secondly, we prove a
time bound of Θ(n log(k/n)) for the sum selection problem in Section 3. This
is the main result of the paper. An O(n log(k/n)) time algorithm that selects
the k’th largest sum is described in Section 3.1, and in Section 3.2 we prove a
matching lower bound using a reduction from the cartesian sum problem [11].
Finally, in Section 4 we combine the ideas from the two algorithms we have de-
signed and obtain an O(n log(k/n)) time algorithm that selects the k’th largest
sum among all sums consisting of at least l and at most u numbers. This bound
is always as good as the previous randomized bound of O(n log(u − l)) by Lin
and Lee [17], since there are

∑u

t=l n − t + 1 ≤ n(u − l + 1) subarrays of length
between l and u in an array of size n and thus k/n ≤ u − l + 1. Due to lack of



Table 1. Overview of results on reporting and selecting sums in arrays.

Problem Previous Work This Paper

Length Const. k Maximal Sums O(n log(u − l) + k) exp. [17] O(n + k)

Sum Selection O(n log n) [16] Θ(n log(k/n))

Length Const. Sum Selection O(n log(u − l)) exp. [17] O(n log(k/n))

space the details are deferred to the full version which will combine the results
of this paper and the results in [7]. The results are summarized in Table 1.

2 The Length Constrained k Maximal Sums Problem

In this section we present an optimal O(n+k) time algorithm that reports the k
largest sums of an array A of length n with the restriction that each sum is an
aggregate of at least l and at most u numbers. We reuse the idea from the k
maximal sums algorithm in [7], and construct a heap2 that implicitly represents
all

∑u

t=l n − t + 1 = O(n(u − l)) valid sums from the input array using only
O(n) time and space. The k largest sums are then retrieved from the heap using
Fredericksons heap selection algorithm [10] that extracts the k largest elements
from a heap in O(k) time. We note that the k maximal sums algorithm from [7]
can be altered to use a heap supporting deletions to obtain an O(n log(u− l)+k)
algorithm solving the problem without randomization. The difference between
our new O(n+k) time algorithm and the algorithm solving the k maximal sums
problem [7] is in the way the sums are grouped in heaps. This change enables
us to solve the problem without deleting elements from a heap. In the following
we assume that l < u. If l = u the problem can be solved in O(n) time using a
linear time selection algorithm [6].

2.1 A Linear Time Algorithm

For each array index j, for j = 1, . . . , n − l + 1, we build data structures rep-
resenting all sums of length between l and u ending at index j + l − 1. This
is achieved by constructing all sums ending at A[j] with length between 1 and
u− l + 1, and then adding the sum of the l − 1 elements, A[j + 1, . . . , j + l − 1],
following A[j] in the input array to each sum. To construct these data structures
efficiently, the input array is divided into slabs of w = u− l consecutive elements,
and the sums are grouped in disjoint sets, Q̂j and Q̄j for j = 1, . . . , n, depending
on the slab boundaries.

Let a be the first index in the slab containing index j, i.e. a = 1 +
⌊

j−1

w

⌋
w.

The set Q̂j contains all sums of length between l and u ending at index j + l− 1
that start in the slab containing index j and is defined as follows:

Q̂j = {(i, j + l − 1, sum) | a ≤ i ≤ j, sum = c +
∑j

t=i A[t]} ,

2 For simplicity of exposition, by heap we denote a heap ordered binary tree where
the largest element is placed at the root.
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Fig. 1. Overview of the sets, l = 4, u = 9, c =
Pj+l−1

t=j+1
A[t] and d =

Pj+l−1

t=a
A[t]. A

slab is starting at index a and ending at index b.

where c =
∑j+l−1

t=j+1
A[t] is the sum of l− 1 numbers in A[j +1, . . . , j + l− 1]. The

set Q̄j contains the (u − l + 1) − (j − a + 1) = u − l − j + a valid sums ending
at index j + l − 1 that start to the left of index a, thus:

Q̄j = {(i, j + l − 1, sum) | j − u + l ≤ i < a, sum = d +
∑a−1

t=i A[t]} ,

where d =
∑j+l−1

t=a A[t] is the result of summing the j − a + l numbers in
A[a, . . . , j + l − 1]. The sets are illustrated in Figure 1. By construction, the
sets Q̂j and Q̄j are disjoint and their union is the u − l + 1 sums of length
between l and u ending at index j + l − 1.

With the sets of sums defined we continue with the representation of these.
The sets Q̂j and Q̄j are represented by pairs 〈δ̂j , Ĥj〉 and 〈δ̄j , H̄j〉 where Ĥj and

H̄j are partially persistent heaps and δ̂j and δ̄j are constants that must be added

to all elements in Ĥj and H̄j respectively to obtain the correct sums. For the
heaps we use the Iheap from [7] which supports insertions in amortized constant
time. Partial persistence is implemented using the node copying technique [8].

We construct representations of two sequences of sets, Lj and Rj for j =
1, . . . , n, that depend on the slab boundaries. Consider the slab A[a, . . . , j, . . . , b]
containing index j. The set Lj contains the j − a + 1 sums ending at A[j] that
start between index a and j. The set Rj contains the b − j + 1 sums ending at
A[b] starting between index j and b, see Figure 1.

Each set Lj is represented as a pair 〈δL
j , HL

j 〉 where δL
j is an additive constant

as above and HL
j is a partially persistent Iheap. The pairs are incrementally

constructed while scanning the input array from left to right as follows:

〈δL
a , HL

a 〉 = 〈A[a], {0}〉 ∧
〈δL

j , HL
j 〉 = 〈δL

j−1 + A[j], HL
j−1 ∪ {−δL

j−1}〉 .



This is also the construction equations used in [7]. Constructing a representation
of La is simple, and creating a representation for Lj can be done efficiently given
a representation of Lj−1. The representation of Lj is constructed by implicitly
adding A[j] to all elements from Lj−1 by setting δL

j = δL
j−1 + A[j] and inserting

an element to represent the sum A[j]. Since δL
j−1 +A[j] needs to be added to all

elements in the representation of Lj , an element with −δL
j−1 as key is inserted into

HL
j−1, yielding HL

j ending the construction. Partial persistence ensures that the

Iheap HL
j−1 used to represent Lj−1 is not destroyed. By the above description

and the cost of applying the node copying technique [8] the amortized time
needed to construct a pair is O(1).

The Rj sets are represented by partially persistent Iheaps HR
j , and these

representations are built by scanning the input array from right to left. We get
the following incremental construction equations:

HR
b = {A[b]} ∧

HR
j = HR

j+1 ∪ {
∑b

t=j A[t]} .

Similar to the 〈δL
j , HL

j 〉 pairs, constructing a partial persistent Iheap HR
j also

takes O(1) time amortized. Therefore, the time needed to build the representa-
tion of the 2n sets Lj and Rj for j = 1, . . . , n is O(n).

We represent the sets Q̂j and Q̄j using the representations of the sets Lj and

Rj−u+l. Figure 1 illustrates the correspondence between Q̂j and Lj and Q̄j and
Rj−u+l. Consider any index j ∈ {1, . . . , n − l + 1}, and let A[a, . . . , j, . . . , b] be

the current slab containing j. The set Q̂j contains the sums of length between l
and u that start in the current slab and end at index j+l−1. The set Lj contains
the j − a + 1 sums that start in the current slab and end at A[j]. Therefore,
adding the sum of the l − 1 numbers in A[j + 1, . . . , j + l − 1] to each element
in Lj gives Q̂j and thus:

Q̂j = 〈c + δL
j , HL

j 〉 ,

where c =
∑j+l−1

t=j+1
A[t].

Similarly, the set Q̄j contains the u − l + 1 − (j − a + 1) = u − l − j + a
sums of length between l and u ending at A[j + l − 1] starting in the previous
slab. The set Rj−u+l contains the u− l − j − a shortest sums ending at the last
index in the previous slab. Therefore, adding the sum of the j + l − a numbers
in A[a, . . . , j + l − 1] to each element in Rj−u+l gives Q̄j and thus:

Q̄j = 〈d, HR
j−u+l〉 ,

where d =
∑j+l−1

t=a A[t].

Lemma 1. Constructing the 2(n − l + 1) pairs that represent Q̂j and Q̄j for

j = 1, . . . , n − l + 1 takes O(n) time.

Proof. Constructing all 〈δL
j , HL

j 〉 pairs and all HR
j partial persistent Iheaps takes

O(n) time, and calculating sums c and d takes constant time using a prefix array.
Constructing the prefix array takes O(n) time. Therefore, constructing Q̂j and
Q̄j for j = 1, . . . , n − l + 1 takes O(n) time. ⊓⊔



After constructing the 2(n− l+ 1) pairs, they are assembled into one large heap
using 2(n− l + 1)− 1 dummy ∞ keys as in [7]. The largest 2(n− l + 1)− 1 + k
elements are then extracted from the assembled heap in O(n + k) time using
Fredericksons heap selection algorithm. The implicit sums given by adding δ
values are explicitly computed while Fredericksons algorithm explores the final
heap top down in the way described in [7]. The 2(n− l+1)−1 dummy elements
are discarded.

Theorem 1. The algorithm described reports the k largest sums with length

between l and u in an array of length n in O(n + k) time.

3 Sum Selection Problem

In this section we prove a Θ(n log(k/n)) time bound for the sum selection prob-
lem by designing an O(n log(k/n)) time algorithm that selects the k’th largest
sum in an array of size n and by proving a matching lower bound.

The idea of the algorithm is to reduce the problem to selection in a collection
of sorted arrays and weight balanced search trees [19, 3]. The trees and the
sorted arrays are constructed using the ideas from Section 2 and [7]. Selecting
the k’th largest element from a set of trees and sorted arrays is done using an
essential part of the sorted column matrix selection algorithm of Frederickson
and Johnson [11]. The part of Frederickson and Johnsons algorithm that we use
is an iterative procedure named Reduce. In a round of the Reduce algorithm each
array, A, is represented by the 1+⌊α|A|⌋ largest element stored in the array, and
a constant fraction of the elements in each array may be eliminated. This can
be approximated in weight balanced search trees and the complexity analysis
from [11] remains valid.

The lower bound is proved using a reduction from the X + Y cartesian sum
selection problem [11].

We note that if k ≤ n then the k maximal sums algorithm from [7] can be
used to solve the problem optimally in O(n) time.

To construct the sorted arrays efficiently, we use a heap data structure, that
is a generalization of the Iheap, which we name Bheap. The Bheap is a heap
ordered binary tree where each node of the tree contains a sorted array of size
B. By heap order, we mean that all elements in a child of a node v must be
smaller than the smallest element stored in v. Sorted arrays of B elements are
required to be inserted in O(B) time amortized. Our Bheap implementation is
based on ideas from the functional random access lists in [20] and simple bubble
up/down procedures based on merging sorted arrays.

3.1 An O(n log(k/n)) Time Algorithm

In this section we reduce the sum selection problem to selection in a set of trees
and sorted arrays. We use the weight balanced B-trees of Arge and Vitter [3]
with degree B = O(1). Similar to the grouping of sums in Section 2, each index
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Fig. 2. Overview of the sets. Slab size w = 5, and A[a, . . . , b] is the slab containing
index j.

j, for j = 1, . . . , n, is associated with data structures representing all possible
sums ending at A[j]. The set representing all sums ending at index j is defined
as follows:

Qj =
{
(i, j, sum) | 1 ≤ i ≤ j, sum =

∑j

t=i A[t]
}

.

The input array is divided into slabs of size w = ⌈k/n⌉, and the set Qj is repre-
sented by two disjoint sets WBj and BHj that depend on the slab boundaries.
The set WBj contains the sums ending at index j beginning in the current slab,
and BHj contains the sums ending at index j not beginning in the current slab.
Let a = 1 +

⌊
j−1

w

⌋
w, i.e. the first index in the slab containing index j, then:

WBj =
{

(i, j, sum) | a ≤ i ≤ j, sum =
∑j

t=i A[t]
}

∧

BHj =
{

(i, j, sum) | 1 ≤ i < a, sum = c +
∑a−1

t=i A[t]
}

,

where c =
∑j

t=a A[t] is the sum of the j − a + 1 numbers in A[a, . . . , j]. The sets
WBj and BHj are disjoint, and WBj ∪ BHj = Qj by construction. The sets
are illustrated in Figure 2.

The set WBj is represented as a pair 〈τj , Tj〉 where Tj is a partial persistent
weight balanced B-tree and τj is an additive constant that must be added to all
elements in Tj to obtain the correct sums. The set BHj is represented as a pair
〈δj , Hj〉 where δj is an additive constant and Hj is a partial persistent Bheap
with B = w.

The pairs 〈τj , Tj〉 are constructed as follows. If j is the first index of a slab,
i.e. j = 1 + tw for some natural number t, then:

〈τj , Tj〉 = 〈A[j], {0}〉 .



This is the start of a new slab, and a new partial persistent weight balanced
B-tree representing A[j], the first element in the slab, is created. If j is not the
first index in a slab then:

〈τj , Tj〉 = 〈τj−1 + A[j], Tj−1 ∪ {−τj−1}〉 ,

i.e. we change the additive constant and insert −τj−1 into the weight balanced
tree Tj−1. These construction equations are identical to the construction equa-
tions from Section 2, and partial persistence ensures that Tj−1 is not destroyed
by constructing Tj .

For the 〈δj , Hj〉 pairs representing the sets Q̂j , we observe that if j ≤ w then
BHj = ∅, thus:

〈δj , Hj〉 = 〈0, ∅〉 .

If j > w and j is not the first index in a slab, then adding A[j] to all elements
from the previous set yields the new set, thus:

〈δj , Hj〉 = 〈δj−1 + A[j], Hj−1〉 .

If j is the first index of a slab, i.e. j = 1 + tw for some integer t ≥ 1, all w
sums represented in 〈τj−1, Tj−1〉 are inserted into a sorted array S and each sum
explicitly calculated. This sorted array then contains all sums starting in the
previous slab ending at index j − 1. For each element in S the additive constant
δj−1 is subtracted and S is inserted into the Bheap Hj−1. The construction
equation becomes:

〈δj , Hj〉 = 〈δj−1 + A[j], Hj−1 ∪ S〉 ,

where
S =

{
(i, j, s − δj−1) | j − w ≤ i < j, s =

∑j−1

t=i A[t]
}

.

Again, partial persistence ensures that the previous version of the Bheap, Hj−1,
is not destroyed.

Lemma 2. Constructing the pairs 〈δj , Hj〉 and 〈τj , Tj〉 for j = 1, . . . , n takes

O(n log(k/n)) time.

Proof. The Bheap and the weight balanced B-trees have constant in and out-
degree. Therefore, partial persistence can be implemented for both using the
node copying technique [8].

For the Bheap, amortized O(1) pointers and arrays are changed per insertion.
The extra cost for applying the node copying technique is O(B) = O(w) time
amortized per insert operation. Constructing the sorted array S from a weight
balanced B-tree takes O(w) time. An insert in a Bheap is only performed every
w’th step, and calculating additive constants in each step takes constant time.
Therefore, the time used for constructing all 〈δj , Hj〉 pairs is O(n+ n

w
w) = O(n).

Each insert in a weight balanced B-tree is performed on a tree containing at
most w elements using O(log w) time. Therefore, the extra cost of using the node
copying technique is O(log w) time amortized per insert operation. Calculating
an additive constant τj takes constant time, thus, constructing all 〈τj , Tj〉 pairs
takes O(n log(k/n)) time. ⊓⊔



After the n pairs, 〈δi, Hi〉, storing Bheaps are constructed, they are assembled
into one large heap in the same way as in Section 2. That is, we construct
a complete heap on top of the pairs using n − 1 dummy nodes storing the
same array of w dummy ∞ elements. We then use Fredericksons heap selection
algorithm in the same way as in Section 2 where the representative for each node
is the smallest element in the sorted array stored in it. Using Fredericksons heap
selection algorithm the 2n − 1 nodes with the maximal smallest element and
their 2n children are extracted. This takes O(n) time and the nodes extracted
from the Bheap gives 3n sorted arrays by discarding the n − 1 dummy nodes.

Lemma 3. The 3n nodes found as described above contain the k largest sums

contained in the n pairs 〈δi, Hi〉.

Proof. The 4n−1 nodes found by the heap selection algorithm forms a connected
subtree T of the heap rooted at the root of the heap. Any element e stored in a
node ve /∈ T is smaller than all elements stored in any internal node v ∈ T since,
by heap order, e is smaller than the smallest element in the leaf of T that is on
the path from ve to the root. The smallest element in a leaf is smaller than the
smallest element in any internal node since the leaf was not picked by the heap
selection algorithm. There are 2n − 1 internal nodes in T and n of these does
not store dummy elements. Therefore, for each element not residing in T there
at least nw = n⌈ k

n
⌉ ≥ k larger elements in the 3n found nodes. ⊓⊔

These 3n sorted arrays of size w and the n pairs 〈τi, Ti〉 storing weight bal-
anced B-trees of size at most w contain at most 4nw = 4n⌈ k

n
⌉ ≤ 4(k + n)

sums. The 3n arrays and the n weight balanced B-trees are given as input
to the adapted sorted column matrix selection algorithm, which extracts the
k’th largest element from these in O(n log(k/n)) time. The fact that the weight
balanced B-trees are partially persistent versions of the same tree and contain
additive constants is handled by expanding the trees and computing the sums
explicitly during the top down traversals performed by the selection algorithm
as in Section 2 and [7].

Theorem 2. The algorithm described selects the k’th largest sum in an array

of size n in O(n log(k/n)) time.

3.2 Lower Bound

In this section we prove a matching lower bound of Ω(n log(k/n)) time for the
sum selection problem via a reduction from the X + Y cartesian sum selection
problem. In the X + Y cartesian sum selection problem as defined in [11], the
input is two unsorted arrays X and Y and an integer k, and the task is to select
the k’th largest element in the cartesian sum {x + y | x ∈ X, y ∈ Y }.

Given an instance of the X + Y cartesian sum selection problem, X =
{x1, . . . , xn}, Y = {y1, . . . , ym}, and k, construct the following array A :

x1 − x2 · · · xi − xi+1 · · · xn−1 − xn xn + ∞ + y1 y2 − y1 · · · ym − ym−1



where ∞ is a number larger than (n + m) · max{|x| | x ∈ X} ∪ {|y| | y ∈ Y }.
The sums in A have the following properties:

– A sum ranging from i to j where i ≤ n ≤ j represents the sum (
∑n−1

t=i A[t])+

xn + ∞ + y1 + (
∑j

t=n+1
A[t]) = xi + yj−n+1 + ∞.

– A sum including A[n] = xn + ∞ + y1 is larger than any sum that does not

There are more sums in the sum selection instance than there are in the X+Y
cartesian sum instance since any sum not containing A[n] does not correspond
to an element in the cartesian sum. However, the k’th largest sum does contain
A[n] and corresponds to the k’th largest sum in the cartesian sum instance.
Therefore, any algorithm that selects the k’th largest sum in an array can be
used to select the k’th largest element in the cartesian sum.

The lower bound for selecting the k’th largest element in the cartesian sum
(X + Y ) is Ω(m + p log(k/p)) comparisons where |X | = n, |Y | = m with n ≤ m
and p = min{k, m} [11]. In the reduction the size of the array A is n + m − 1,
which is Θ(n + m) = Θ(m), and it can be built in O(m) time.

Theorem 3. Any algorithm that selects the k’th largest sum in an array of

size n uses Ω(n log(k/n)) comparisons.

4 Length Constrained Sum Selection

In this section we sketch how to select the k’th largest sum consisting of at
least l and at most u numbers from an array of size n in O(n log(k/n)) time. The
algorithm combines the ideas from Section 2 and Section 3. Similar to Section 3
the algorithm works by reducing the problem to selection in a collection of weight
balanced search trees and sorted arrays. It should be noted that a deterministic
algorithm with running time O(n log(u − l)) can be achieved by using weight
balanced B-trees instead of Iheaps in the algorithm from Section 2, and using
these as input to the adapted sorted column matrix selection algorithm instead
of the heap selection algorithm.

To achieve O(n log(k/n)) time, we constrain the lengths of the sums consid-
ered and divide the input array into slabs of size u − l as in Section 2. Subse-
quently, we efficiently construct representations of the sets Q̂j and Q̄j defined in
Section 2 using weight balanced trees and Bheaps by subdividing each slab into
sub-slabs of size ⌈ k

n
⌉ as in Section 3, recall k/n ≤ u − l + 1. Weight balanced

B-trees are used to represent sums residing inside a sub-slab, and Bheaps are
used to represent sums covering multiple sub-slabs. The sums are illustrated in
Figure 3. The Bheaps and the weight balanced B-trees are constructed efficiently
as in Section 3 using partial persistence.

After the representations of the sets Q̂j and Q̄j are constructed, the algorithm
continues as in Section 3. The sorted arrays storing the k largest sums stored
in the Bheaps are extracted using Fredericksons heap selection algorithm. The
sorted arrays and the weight balanced B-trees are then given as input to the
adapted sorted column matrix selection algorithm that selects the k’th largest
sum.
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Fig. 3. Combining ideas - The sums associated with index j. A new slab of length
u − l starts at index a and a new subslab of length ⌈k/n⌉ = 4 starts at index b.
c =

Pj+l−1

t=j+1
A[t] , d =

Pj+l−1

t=b
A[t] , e =

Pj+l−1

t=a
A[t] and f =

Pj+l−1

t=x
A[t] where x is

the first index in the subslab following the subslab containing index j − u + l. The set

Q̂j is split into T̂j , represented by a weight balanced tree, and B̂Hj , represented by a
Bheap. The set Q̄j is split similarly.

Theorem 4. The k’th largest sum of length between l and u in an array of

size n can be selected in O(n log(k/n)) time.
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