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the process, for each of the remaining vertices, a tenta-tive distance from the source. For an n-vertex, m-edgedigraph the algorithm can be implemented to run inO(m + n logn) operations by using e�cient priorityqueues like Fibonacci heaps [7] for maintaining tenta-tive distances, or other priority queue implementationssupporting deletion of the minimum key element inamortized or worst-case logarithmic time, and decreasekey in amortized or worst-case constant time [3, 6, 10].The single-source shortest path problem is in NC(by virtue of the all-pairs shortest path problem beingin NC), and thus a fast parallel algorithm exists, butfor general digraphs no work-e�cient algorithm in NCis known. (The best NC algorithm runs in O(log2 n)time and performs O(n3(log logn= logn)1=3) work onan EREW PRAM [9].) Moreover, work-e�cient algo-rithms which are (at least) sublinearly fast are also notknown for general digraphs.Dijkstra's algorithm is highly sequential, and canprobably not be used as a basis for a fast (NC) parallelalgorithm. However, it is easy to give a parallel im-plementation of the algorithm that runs in O(n logn)time [11]. The idea is to perform the distance updateswithin each iteration in parallel by associating a lo-cal priority queue with each processor. The vertexof minimum distance for the next iteration is deter-mined (in parallel) as the minimum of the minima inthe local priority queues. For this parallelization itis important that the priority queue operations haveworst-case running time, and therefore the original Fi-bonacci heap cannot be used to implement the localqueues. This was �rst observed in [6] where a new datastructure, called relaxed heaps, was developed to over-come this problem. Using relaxed heaps, an O(n logn)time and O(m + n logn) work(-optimal) parallel im-plementation of Dijkstra's algorithm is obtained. Thisseems to be the currently fastest work-e�cient paral-



lel algorithm for the single-source shortest path prob-lem. The parallel time spent in each iteration of theabove implementation of Dijkstra's algorithm is de-termined by the (processor local) priority queue op-erations of �nding a vertex of minimum distance anddeleting an arbitrary vertex, plus the time to �nd andbroadcast a global minimum among the local minima.Either or both of the priority queue operations takeO(logn) time, as does the parallel minimum computa-tion; for the latter 
(logn) time is required, even ona CREW PRAM. Hence, the approach with processorlocal priority queues does not seem to make it possibleto improve the running time beyond O(n logn) with-out resorting to a more powerful PRAM model. Thiswas considered in [11] where two faster (but not work-e�cient) implementations of Dijkstra's algorithm weregiven on a CRCW PRAM: the �rst (resp. second) al-gorithm runs in O(n log logn) (resp. O(n)) time, andperforms O(n2) (resp. O(n2+�), 80 < � < 1) work.An alternative approach would be to use a parallelglobal priority queue supporting some form of multi-decrease key operation. Unfortunately, no known par-allel priority queues support such an operation; theyonly support a multi-delete operation which assumesthat the k elements to be deleted are the k elementswith smallest priority in the priority queue (see e.g., [2]and the references in that paper). A di�erent idea isrequired to improve upon the running time.We present a parallel priority data structure thatspeeds up the parallel implementation of Dijkstra's al-gorithm, by supporting the operations required at eachiteration in O(1) time. Using this data structure wegive an alternative implementation of Dijkstra's algo-rithm that runs in O(n) time and performs O(m logn)work on a CREW PRAM. More speci�cally, by sort-ing the adjacency lists (after weight) it is possible inconstant time both to determine a vertex of minimumdistance, as well as to add (in parallel) any numberof new vertices and/or update the distance of verticesmaintained by the priority data structure. It shouldalso be mentioned that the PRAM implementation ofthe data structure requires concurrent read only forbroadcasting constant size information to all proces-sors in constant time.The idea of the parallel priority data structure isto perform a pipelined merging of keys. We illustratethe idea by �rst giving a simple implementation usinga linear pipeline, which requires O(n2 +m logn) work(Sec. 2). We then sketch how the pipeline can be dy-namically restructured in a tree like fashion such thatonly O(m logn) operations are required (Sec. 3). Fur-ther applications are discussed in Sec. 4. Due to spacelimitations many details and proofs are omitted.

2 A parallel priority data structureIn this section we introduce our new parallel pri-ority data structure, and show how to use it to givean alternative, parallel implementation of Dijkstra'salgorithm. Let G = (V;E) be an n-vertex, m-edgedirected graph with edge weights c : E ! IR+0 , rep-resented as a collection of adjacency lists. For aset S � V of vertices, de�ne �(S) to be the neigh-bors of the vertices in S, excluding vertices in S, i.e.,�(S) = fw 2 V n Sj9 v 2 S; (v; w) 2 Eg. We as-sociate with each vertex v 2 S a (�xed) real-valuedlabel �v. For a vertex w 2 �(S), de�ne the distancefrom S to w as dist(S;w) = minu2Sf�u + c(u;w)g.The distance has the property that dist(S [ fvg; w) =minfdist(S;w);�v + c(v; w)g. We de�ne the vertexclosest to S to be the vertex z 2 �(S) that attainsthe minimum minw2�(S)fdist(S;w)g (with ties brokenarbitrarily).Assume that a processor Pv is associated with eachvertex v 2 V of G. Among the processors associatedwith vertices in S at any given instant one will be des-ignated as the master processor. Our data structuresupports the following four operations:� Init: initializes the priority data structure.� Eject(S): deletes the vertex v of �(S) that isclosest to S, and returns the pair (v;Dv) to themaster processor, where Dv = dist(S; v).� Extend(S; v;�; Pv): adds a vertex v associatedwith processor Pv to S, and assigns it label �.Processor Pv becomes the new master processor.� Empty(S): returns true to the master processorof S if �(S) = ;.Performing j�(S)j successive Eject-operations on aset S ejects the vertices in �(S) in non-decreasing or-der of closeness, and leaves the priority data structureempty. Each vertex of �(S) is ejected once. Note alsothat there is no operation to change the labels associ-ated with vertices in S.These operations su�ce for an alternative, parallelimplementation of Dijkstra's algorithm. Let s 2 V bea distinguished source vertex . The algorithm computesfor each vertex v 2 V the length of a shortest path froms to v, where the length of a path is the sum of theweights of the edges on the path. Dijkstra's algorithmmaintains a set S of vertices for which a shortest pathhave been found, in each iteration adding one more ver-tex to S. Each vertex w 2 V nS has a tentative distancewhich is equal to dist(S;w) as de�ned above. Hence,instead of the usual priority queue withDeleteMin to



select the vertex closest to S, and DecreaseKey op-erations to update tentative distances for the verticesin V n S, we use the priority data structure above todetermine in each iteration a vertex closest to the cur-rent set S of correct vertices. The Extend-operationreplaces the updating of tentative distances. Let Pv bethe processor associated with vertex v.Algorithm New-Parallel-Dijkstra/* Initialization */Init; d(s) 0; S  ;;Extend(S; s; d(s); Ps);/* Main loop */while :Empty(S) do(v;Dv) Eject(S); /* instead of DeleteMin */d(v) Dv;Extend(S; v; d(v); Pv);/* replaces the update step */odOur main result in this section is that the New-Parallel-Dijkstra algorithm runs in linear time in par-allel.Theorem 1 Dijkstra's algorithm can be implementedto run in O(n) time and O(n2 + m logn) work usingO(n+m) space on a CREW PRAM.The proof of Theorem 1 is based on the following.Lemma 1 Operation Init takes O(m logn) work andO(logn) time. After initialization, each Eject(S)-operation takes constant time using jSj processors,and each Extend(S; v;�; Pv)-operation takes constanttime using jSj+ degin(v) processors, where degin(v) isthe in-degree of v. The Empty(S)-operation takes con-stant time per processor. The space required per pro-cessor is O(n).The remainder of this section will be devoted to pro-vide a sketch of a proof for Lemma 1.In the Init-operation the adjacency lists of G aresorted in non-decreasing order after edge weight, i.e.,on the adjacency list of v vertex w1 appears beforew2 if c(v; w1) � c(v; w2) (with ties broken arbitrarily).The adjacency lists are assumed to be implementedas doubly linked lists, such that any vertex w on v'sadjacency list can be removed in constant time. Foreach vertex v we also associate an array of vertices uj towhich v is adjacent, i.e., vertices uj for which (uj ; v) 2E. In the array of v we store for each such uj a pointerto the position of v in the adjacency list of uj. Thisenables us to delete all occurrences of v in adjacencylists of such vertices uj 2 S = V n S in constant time.Sorting of the adjacency lists takes O(logn) time andO(m logn) work [4]. Constructing links and building

the required arrays can then be done in constant timeusing O(m) operations. This completes the descriptionof the Init operation.The processors associated with vertices in S at anygiven instant are organized in a linear pipeline. Let vibe the ith vertex added to S, let Si denote S after theith Extend(S; vi;�i; Pi)-operation where �i is the la-bel to be associated with vi, and let Pi be the processorassigned to vi (in the implementation of Dijkstra's al-gorithm the label �i to be associated with vertex viwas d(v)). Let �nally Li be the sorted, doubly linkedadjacency list of vi. Processor Pi which was assignedat the ith Extend-operation receives input from Pi�1,and, after the (i + 1)th Extend-operation, will sendoutput to Pi+1. The last processor assigned to S willbe the master processor, and the output from this pro-cessor will be the result of the next Eject-operation,i.e., the vertex closest to S. The pipeline for i = 4 isshown below. The input queue Q1 of processor P1 isempty and not shown. mP1Q2 F1� 6L1 = LsmP2Q3 F2� 6L2mP3Q4 F3� 6L3mP4Q5 F4� 6L4Assume now that Eject(Si�1) can be performedin constant time by the processors assigned to thevertices in Si�1, and returns to the master proces-sor of Si�1 the vertex in �(Si�1) that is closest toSi�1. We show how to maintain this property af-ter an Extend-operation; more speci�cally, that thevertex v ejected by Eject(Si), immediately afterExtend(Si�1; vi;�i; Pi), is produced in constant time,is indeed the vertex closest to Si, and that each vertexin �(Si) is ejected exactly once.Performing an Eject(Si�1) returns the vertex uclosest to Si�1 with value Du = dist(Si�1; u). Eitherthis vertex, or the vertex closest to vi is the vertex to beejected from Si. Let w be the �rst vertex on the sortedadjacency list Li. If �i + c(vi; w) � Du, then the re-sult of Eject(Si) is w with value Dw = �i + c(vi; w);otherwise, the result is u with value Du. In the �rstcase, w is ejected and simply removed from Li, but theejected vertex of Si�1 must be saved for a later Eject-operation. For this purpose we associate an input queueQi with each Pi which stores the vertices ejected fromSi�1 by processor Pi�1. The Eject-operation of Pithus consists in selecting the smaller value from either



the input queue Qi or the adjacency list Li of vi. Inother words, Pi performs one merging step of the twoordered lists Qi and Li. In case Pi exhausts its ownadjacency list Li, it always ejects from Qi. It can beshown that Qi never gets empty, unless all vertices of�(Si�1) have been ejected, in which case processor Pimay terminate. The Empty(Si) thus has to returntrue when both adjacency list Li and input queue Qiof the master processor are empty.In order to ensure that a vertex output by Pi isnever output at a later Eject-operation (i.e., insertedinto Qi+1 with di�erent priorities), we associate a setFi of forbidden vertices with each Pi. Each Fi set isimplemented as a Boolean array (i.e., Fi[w] = truei� w has been ejected from Li). When a vertex w isremoved from Li and ejected, w is put into Fi andremoved from Qi (if it is there). A vertex ejected fromSi�1 is only put into the input queue Qi of Pi if it isnot in the forbidden set Fi of Pi. In the case wherea vertex u at the head of Qi (previously ejected fromSi�1) \wins" at Pi and is ejected, it is removed fromLi (in case u is adjacent to vi), and is made forbiddenfor Pi by putting it into Fi. In order to be able toremove vertices from Qi in constant time, each Pi hasan array of pointers intoQi, which is updated wheneverPi�1 outputs a vertex into Qi. The complete Eject-operation looks as follows:Function Eject(S)for all vi 2 S do in parallel/* processor Pi is associated with vertex vi */(v0;D0) Head(Qi);v00  Head(Li); D00  c(vi; v00) + �i;if D00 < D0 then (v0;D0) (v00;D00) �;remove v0 from Li and Qi if present;insert v0 into Fi;if v0 =2 Fi+1 then append (v0;D0) to Qi+1 �od;if Pi is the master processor return Head(Qi+1)An Extend(Si�1; vi;�i; Pi)-operation must �rstperform an Eject(Si�1) in order to get an elementinto the input queue Qi of Pi. Since we must pre-vent that a vertex already in S is ever ejected (as �(S)excludes S), once a vertex is appended to S it mustbe removed from the adjacency lists of all vertices inS. This can be done in parallel in constant time usingthe array of pointers constructed by the Init-operation(since v occurs at most once in any adjacency list), ifconcurrent read is allowed: a pointer to the list of ver-tices uj to which v is adjacent must be made availableto all processors. In parallel they remove v from theadjacency lists of the uj's, which takes constant timeusing degin(v) processors, degin(v) being the in-degreeof v. The required concurrent read is of the restrictedsort of broadcasting the same constant size informa-tion to all processors. The Extend-operation looks asfollows.

Function Extend(S; v;�; P )connect the master processor of S to P ;make P the (new) master processor;(u;D0) Eject(S);append (u;D0) to the input queue Q of P ;�v  �; S  S [ fvg;remove v from S using pointers constructed by InitThe O(n2) space due to the forbidden sets and thearrays of pointers into the input queues can be reducedto O(n + m). Instead of maintaining the forbiddensets Fi explicitly, we let each occurrence of each vertexin the priority data structure carry information aboutwhether it has been forbidden and if so, by which pro-cessor. Maintaining for each vertex v 2 V a doublylinked list of its occurrences in the data structure makesit possible for processor Pi to determine in constanttime whether a given vertex v has been forbidden forprocessor Pi+1, and to remove v in constant time fromQi whenever it is ejected from Li.This concludes the sketch of the proof of Lemma 1,Theorem 1 and the basic implementation of the prioritydata structure.3 A dynamic tree pipelineWe now briey describe how to decrease the amountof work required by the algorithm in Sec. 2. Before do-ing so, we �rst make an observation about the mergingpart of the algorithm. The work done by processor Piis intuitively to output vertices by incrementally merg-ing its adjacency list Li with the incoming stream Qi ofvertices output by processor Pi�1. Processor Pi termi-nates when it has nothing left to merge. An alternativebound on the real work done by this algorithm is thenthe sum of the distance each vertex v from an adja-cency list Li travels, where the distance is the num-ber of processors that output v. Because each vertexv from Li can at most be output by a pre�x of theprocessors Pi; Pi+1; : : : ; Pn, the distance v travels is atmost n � i + 1. This gives a total bound on the workdone by the processors of O(mn). That the real workcan actually be bounded by O(n2) is due to the factthat vertices get annihilated by forbidden sets.Using this view of the work done by the algorithmduring merging, we sketch now a variation of the datastructure that basically bounds the distance a ver-tex can travel by O(logn), i.e., bounds the work byO(m logn). The main idea is to replace the sequen-tial pipeline of processors by a binary tree pipeline ofprocessors of height O(logn). Each processor Pi stillmaintains an adjacency list Li and a set of forbiddenvertices Fi. The output of processor Pi is still inserted



into an input queue of a processor Pj, but Pi can nowreceive input from two processors instead of one.The basic organization of the processor connectionsare perfect binary trees. Each node corresponds toa processor and the unique outgoing edge of a nodecorresponds to the output queue of the node (and aninput queue to the successor node). The rank of a nodeis the height of the node in the perfect binary tree andthe rank of a tree is the rank of the root. The nodesare connected such that the incoming edges of a nodev come from the left child of v and the sibling of v.The processors are organized in a sequence of treesof rank rk; rk�1 : : : ; r1, where the ith root is connectedto the i + 1st root. We maintain the invariant thatrk � rk�1 < rk�2 < � � � < r2 < r1: (1)When performing an Extend-operation a new proces-sor is initialized. If rk < rk�1 the new processor isinserted as a new rank one tree at the front of the listof trees (as in the sequential pipeline case). That (1)is satis�ed follows from 1 � rk < rk�1 < � � � < r1. Ifrk = rk�1 we link the kth and k�1st tree with the newnode to form a tree of rank 1 + rk�1. That (1) is sat-is�ed follows from 1 + rk�1 � rk�2 < rk�3 < � � � < r1.For the tree pipeline we can show that all non-terminated processors have the next vertex to be out-put in one of its input queues. What remains is to di-vide the work among the available processors. Assum-ing that O(m lognn ) processors are available, the idea isto simulate the tree structured pipeline for O(logn)time steps, after which we stop the simulation andin O(logn) time eliminate the (simulated) terminatedprocessors, and reschedule. By this scheme a termi-nated processor is kept alive for only O(logn) timesteps, and hence no superuous work is done. In totalthe simulation takes linear time. Thus, we have:Theorem 2 Dijkstra's algorithm can be implementedto run in O(n) time and O(m logn) work on a CREWPRAM.4 Further applicationsThe improved single-source shortest path algorithmimmediately gives rise to corresponding improvementsin algorithms in which the single-source shortest pathproblem occurs as a subproblem. We mention here theassignment problem, the minimum cost ow problem,(for de�nitions see [1]), and the single-source short-est path problem in planar digraphs. For example,the minimum cost ow problem (which is P-complete[8]) can be solved by O(m logn) calls to Dijkstra's
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