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Abstract

Given a dictionary S of n binary strings each of length m, we consider the problem
of designing a data structure for S that supports d-queries; given a binary query
string ¢ of length m, a d-query reports if there exists a string in S within Hamming
distance d of q. We construct a data structure for the case d = 1, that requires space
O(nlogm) and has query time O(1) in a cell probe model with word size m. This
generalizes and improves the previous bounds of Yao and Yao for the problem in
the bit probe model. The data structure can be constructed in randomized expected
time O(nm).
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1 Introduction

Minsky and Papert in 1969 posed the following problem, that has remained a
challenge in data structure design [9].

Let S be a set of n binary strings of length m each. We want to construct
a data structure for S that supports fast d-queries; that is, given a binary
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query string ¢, determine if there is a string in .S within Hamming distance d
of q.

To date, no efficient solutions are known for this problem for arbitrary n, m
and d. Dolev et al. [3,4] and Greene, Parnas and Yao [6] made some progress
on the problem for the case when d is large. Manber and Wu [8] considered
applications to password security and spellchecking of large files.

The theoretical study of the problem for small d was started by Yao and
Yao [12], who considered the case d = 1 and presented a scheme in the
bit probe model that uses space O(mnlogm) bits and queries requiring
O(mloglogn) bit probes. Brodal and Gasieniec [1] considered the problem
for the case d = 1 in the standard unit-cost RAM model with logarithmic
word size, and presented a data structure of size O(mn) words supporting
1-queries in O(m) memory accesses.

In this paper, we also consider the case d = 1. We give a scheme proving the
following result.

Theorem 1 In a cell probe model with word size m, a data structure exists
that achieves query time O(1) using space O(nlogm). It can be constructed in
randomized expected time O(nm).

Translated to the bit probe model, this yields a query time O(m) and space
O(mnlogm) scheme. Our scheme improves the query time of Yao and Yao by
a factor O(loglogn). Our scheme can be implemented on a standard unit-cost
RAM which is not true for the data structure of Yao and Yao since it is proved
in the bit probe model. It is unknown if the data structure of Yao and Yao
can be implemented on a standard unit-cost RAM or in the cell probe model
with word size m such that queries are supported in time O(loglogn) [12].

The model of computation we use is the cell probe model with word size m
defined in [11]. In this model, each word is assumed to be m bits long. The
space used by a scheme is measured as the number of words used by the storing
scheme. The query algorithm answers queries by making adaptive cell probes
and trme is counted as the number of cell probes made by the query algorithm.
The bit probe model is a cell probe model with word size 1.

2 The scheme

To describe our scheme, we will make use of the following results by Dietzfel-
binger [2] and Jacobs and van Emde Boas [7].



Theorem 2 (Dietzfelbinger) Given a set S of n binary strings each of m
bits in a cell probe model with word size m, there exists a data structure using
O(n) cells that supports membership queries of S in time O(1). The construc-
tion time of the data structure is randomized expected O(n).

The result of Dietzfelbinger is a simplification of the data structure of Fred-
man, Komlds and Szemeredi [5]. It eliminates the requirement for knowing a
prime in the range [2™ .. 2", In the following we refer to the data structure
of Theorem 2 as a FKS data structure.

Definition 3 A function h : {0,1,...,0 —1} — {0,1,...,k — 1} is perfect
for S C {0,1,...,0 =1} if his 1-1 on S. A family H is an ({,n,k)-family
of perfect hash functions if for all S C {0,1,...,¢ — 1} of size n, there is an
h € H that is perfect for S.

The question of representing efficiently families of perfect hash functions is
well studied. Schmidt and Siegel [10] described a (2™, n,O(n))-family of per-
fect hash functions where each hash function can be represented by ©(n +
logm) bits. Jacobs and van Emde Boas [7] gave a simpler solution requiring
O(nloglogn + logm) bits in the standard unit-cost RAM model augmented
with multiplicative arithmetic, that suffices for our purposes. The construc-
tion in [7] makes repeated use of the data structure in [5] where some primes
are assumed to be known. By replacing the applications of [5] by applications
of [2], the randomized construction time in Theorem 4 follows immediately.

Theorem 4 (Jacobs and van Emde Boas) There is a (2™,n,0(n))-family
of perfect hash functions H such that any hash function h € H can be repre-
sented in ©(nloglogn + logm) bits and evaluated in O(1) time. The perfect
hash function can be constructed in randomized expected O(n) time.

Our scheme is based on the following simple idea: If the query string exactly
matches with one of the strings in S, then a FKS data structure can be used
to check this efficiently. If the query string differs from some string in S by a
single bit, then it is sufficient to find such a bit position. We use the Jacobs-
van Emde Boas scheme to do this. Given the bit position, we can then flip this
bit in the query string and use the FKS data structure for an exact search to
verify that the query is within Hamming distance 1 of a string in S.

Let N(S) denote the set of all strings at Hamming distance one of a string
in S. Note that |[N(S)| < mn. For any string z € N(S), we denote by indez(z),
the position of the bit that was flipped in a string from S to obtain z. If there
is more than one choice for index(zx), we choose one arbitrarily.



Storing scheme for a set S.

(1) Construct a FKS data structure for S.

(2) Using the Jacobs-van Emde Boas scheme (Theorem 4), construct a perfect
hash function h for N(S) and store h.

(3) Construct a look-up table T of size O(|N(S)|) where each entry is [log m |
bits. For € N(S), let T[h[z]] = index(x).

Query scheme for a query string q.

(1) Check if ¢ € S using the FKS data structure for S. If ¢ € S, report yes.

(2) Otherwise, evaluate h(q) and let i = T'[h(q)].

(3) Flip the ith bit of ¢ and report yes if the new string is in S using the
FKS structure for S. Otherwise report no.

That the scheme works correctly follows from the discussion above. From
Theorem 2 and Theorem 4 it follows that in a cell probe model with word
size m, the scheme described above uses O(nlogm) cells, and answers queries
in O(1) cell probes, and Theorem 1 follows.
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