
On the Complexity of Slot-Based RoRo Stowage
Planning

Gerth Stølting Brodal1[0000−0001−9054−915X]⋆, Martin
Olsen3[0000−0002−2740−545X], Dario Pacino2[0000−0002−7255−004X], and Oliver

Rise Thomsen2[0009−0005−4758−6410]

1 Department of Computer Science, Aarhus University, Denmark, gerth@cs.au.dk
2 Department of Technology, Management and Economics, Technical University of

Denmark, {darpa,olitho}@dtu.dk
3 Department of Business Development and Technology, Aarhus University,

Denmark, martino@btech.au.dk

Abstract. We consider the computational complexity of stowage plan-
ning with a specific view of Roll-on/Roll-off (RoRo) vessels. Stowage
planning is the process of determining where cargo is loaded on a vessel.
A key part of a stowage plan is to avoid shifts of cargo, i.e., unnecessary
cargo movements. We focus on the slot-based RoRo variant where the
deck of a vessel has a predefined set of equally sized positions and each
position can be occupied by a cargo item. We show that it is NP-hard
to decide if there is a slot-based RoRo plan with no shifts. We also show
how to generate slot-based RoRo instances requiring shifts. Finally, we
present a greedy linear time algorithm always generating a plan with no
shifts for a special RoRo case.

Keywords: Stowage planning · RoRo shipping · Computational com-
plexity

1 Introduction

In shipping operations a central operational component is stowage planning. A
stowage plan determines the placement of cargo on a vessel, and depending on
its application also how the cargo is to be secured and loaded. A feasible stowage
plan must adhere to a number of restrictions to ensure the seaworthiness of the
vessel – for example that dangerous cargo is securely positioned. An optimal
stowage plan can have different objectives depending on the specific industrial
application, e.g., minimizing time at port, reducing costs, maximizing revenue,
etc. Examples of industrial application of stowage planning can be found in
container shipping, Roll-on Roll-off (RoRo) shipping, and bulk shipping.

Container vessels are stowed from above using specialized cranes. The con-
tainers are loaded in stacks and the stow area is divided into rows and bays where
containers are placed [14]. Containers are standardized; most containers are ei-
ther 20 or 40 foot. Container vessels usually operate on a fixed schedule and visit

⋆ Supported by Independent Research Fund Denmark, grant 9131-00113B.

2 G. S. Brodal, M. Olsen, D. Pacino, O. R. Thomsen

multiple ports during a voyage. Multi-port voyages have multiple Port Of Load
(POL) and Port Of Discharge (POD). In multi-port voyages, restows can occur.
A restow is when a cargo item must be moved on the vessel before its POD and
it leads to higher turn-around times due to unnecessary crane moves. Restows
are often also referred to as shifts or involuntary moves. For the remainder of
this paper, we will refer to these additional cargo movements as shifts.

Bulk carriers are a versatile type of vessel. They store their cargo in a set of
tanks, where typical products are usually bulk like coal, grain or ore, but can
also be finished products like steel coils or cement elements. Depending on the
cargo type, the loading is done with cranes or conveyor belts from above. Bulk
carriers can carry different products in each tank on a voyage, but they must
ensure that the tanks are suitable for the specific product and compatible with
the other products being carried [15]. For finished products like steel coils, the
stow plan must also include how to stack them properly [11].

RoRo vessels carry any wheeled cargo and are thus flexible. The loading
of RoRo vessels differs from containers and bulk since the cargo is rolled onto
the deck through ramps. The cargo can be of any size but usually consists of
trailers or cars. RoRo vessels are both used for short and ocean-sea shipping.
In short-sea shipping (e.g., within Europe), they sail on services between two
ports, thus having a single POL and POD [8]. In ocean-sea shipping, they visit
multiple ports, increasing the complexity of the stow plan [16] due to the possible
occurrence of shifts.

(a)

Ramp

(b)

Copyright © DFDS A/S. All Rights Reserved.

Fig. 1. (a) Slots in deck layout. (b) Standard cargo trailer.

RoRo vessels are composed of several decks, which can be accessed through
internal ramps. As the decks provide free positioning of cargo, what distinguishes
academic studies is the way cargo positions are modelled. The slot-based RoRo
stowage planning problem considers the decks to have a predefined set of equally
sized positions, and hence assumes homogenous cargo. Though this is a restric-
tive constraint for ocean-going vessels, it is surprisingly relevant for short-sea
shipping where the majority of cargo is standard sized trailers and special plat-
forms (Mafi RoRo trailers). Fig. 1(a) shows an example slot arrangement on a
deck, and Fig. 1(b) a typical cargo trailer. Though the layout of the slots resem-

On the Complexity of Slot-Based RoRo Stowage Planning 3

bles that of a container vessel, RoRo vessel cargo can be moved freely within
the deck and is not restricted by stacks. As for any stowage planning problems,
vessel stability, stress forces, and the use of ballast water are also relevant parts
of the problem [8].

With this paper we aim at contributing to the theory of stowage planning by
studying the computational complexity of RoRo stowage planning. In particular,
we study the slot-based stowage planning problem of a single deck for a vessel
that visits multiple ports. Our contributions are three-fold. First, we prove that
the slot-based RoRo stowage planning problem is NP-complete for a stylized
vessel definition, which is then extended to a more general vessel layout. Second,
we show how our result can be used to generate computationally hard instances
for the problem. Existing benchmarks are mainly based on instances requiring
zero shifts, hence existing solution approaches are not well tested on harder
instances. Third, we present a greedy linear time algorithm always producing a
plan with no shifts for a special case of the RoRo stowage planning problem.

This paper is organised as follows. Section 2 presents relevant computational
complexity results on stowage planning problems. In Section 3 we prove that the
slot-based RoRo stowage planning is NP-complete on a symmetric deck layout,
an assumption that is then lifted in Section 4. Section 5 shows how insights
from the complexity proof can be leveraged to create meaningful benchmark
instances. Section 6 presents the greedy algorithm. Finally, Section 7 concludes
the paper.

2 Related work

The following overview of computational complexity results focuses on stowage
problems related to the shipping industry. In container stowage, the planning
problem is represented as a stacking problem, where containers are assigned to
vertical LIFO (last-in, first-out) stacks in bays of the vessel’s cargo hold. The
goal is to stack the containers to minimize the number of shifts needed during a
voyage. The first published complexity result [1] shows that, given a number of
stacks with infinite capacity, it is NP-complete to determine if there is a plan
for stowing containers with no shifts. The proof is based on a reduction from
the problem of coloring intervals such that overlapping4 intervals do not get the
same color [4]. The stacking problem is also NP-hard for any fixed bound h ≥ 6
on the stacking height [3]. This can be shown by a reduction from the coloring
problem on permutation graphs [7].

If the number of stacks and the bound of the stacking height are fixed con-
stants, then there is a polynomial time algorithm for deciding if the stacking
problem can be solved using no more than a given number of shifts as shown
in [12]. Furthermore, [12] introduces the hatch overstow problem, where contain-
ers are placed on top of the hatches on the container vessel and the objective

4 Two intervals overlap if they intersect and none of them are contained in the other
interval.

4 G. S. Brodal, M. Olsen, D. Pacino, O. R. Thomsen

is to minimize the number of times the hatches are accessed. The hatch over-
stow problem is then shown to be NP-complete using a reduction from the set
covering problem.

Stowage planning of bulk carriers is about the allocation of products to the
tanks for the carrier. The tank allocation problem (TAP) is NP-complete [6]
and has shown to be computationally intractable utilizing a reduction from the
partition problem.

Differently than in container and bulk vessels, where cargo is restricted to
specific areas (stacks or tanks), RoRo vessels have an open deck layout, where
wheeled cargo is loaded through ramps. The computational complexity of this
problem depends heavily on how the layout of the vessel is represented. In
the literature, four main methods have been proposed: lane-based, grid-based,
slot-based, and the hybrid-slot approach. The RoRo stowage planning problem
(RSSP) introduced in [16] models the deck layout with lanes. The lane represen-
tation partitions the deck space into a set of lanes where cargo is assigned, thus
mirroring the real world. The grid representation allows the free positioning of
cargo on the deck. To identify the position of cargo, a coordinate system in the
form of a grid of points is used [5]. The slot and hybrid-slot representations create
a set of predefined slots on the deck area and then assign cargo to them [8,10].

In terms of computational complexity, the RSSP variant from [16] is NP-
hard which is proved by the authors by reduction from the knapsack problem
using heterogeneous cargo items. Though no computational complexity results
have been published for the grid representation, it would be trivial to derive
a reduction from 2D-packing. No results have been published for the slot and
hybrid-slot representations.

In the case of RoRo stowage planning, we see a gap in the understanding of
the computational complexity of planning using the slot and hybrid-slot repre-
sentation. The slot representation is the focus of this paper.

3 Slot-based RoRo stowage planning is NP-complete

We now turn our attention to a simple version of the slot-based RoRo prob-
lem described in the introduction. The deck layouts we require are depicted in
Fig. 2(a) with W and L denoting the width and length of the deck, respectively.
In Section 4 we generalize the reduction to apply to other deck layouts. The
deck layout in Fig. 2(a) has a total capacity of N = LW −

⌊
W−1

2

⌋ (
1 +

⌊
W
2

⌋)
cargos. There will be two center lanes with length L if W is even. The cargo can
enter and leave using W ramps at the stern of the vessel. One cargo item can
occupy one slot, and cargo can only move from a slot to one of the (up to four)
neighbouring slots sharing an edge with the slot.

The RoRo problem asks whether it is possible to load and unload the cargo
items with no shifts, where a shift as described earlier is a move of a cargo item
not used for loading or unloading the item at a port. We now formally define
the RoRo problem and name it RoRo-Slot-No-Shift.

Definition 1. The RoRo-Slot-No-Shift problem is defined as follows:

On the Complexity of Slot-Based RoRo Stowage Planning 5

W

L

2

2

2

2

2

7

7

7

7

7

7

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

3

3

3

3

3

3

8

8

8

8

8

9

9

9

9

9

14

14

14

14

14

14

9

9

9

9

9

9

9

14

14

14

14

14

14

14

14

9

9

9

9

9

9

9

14

14

14

14

14

14

9

9

9

9

9

(a) (b) (c)

Fig. 2. (a) The layout of the deck of a vessel for W = 7 and L = 8. Cargo can enter
and leave the vessel using W ramps at the stern. (b) The deck configuration right after
Step 1, where the vessel has left Port 1. The numbers and colors in the slots represent
the destination ports of the cargo. For every destination port, the cargo is placed in a
single lane. (c) The deck configuration when Step 2 has finished and the vessel has left
Port 8. For the Ports 9 to 13, the deck will act like four uncapacitated LIFO columns
because the cargo has to enter and leave using a single lane only (C = 4, p = 5 and
n = 5).

– Input: A P × P matrix R = {ri,j} and numbers W and L, where P is the
number of ports. The entry ri,j in R is the number of cargo items that has
to be transported from Port i to Port j, and the numbers W and L represent
the width and length of the deck, respectively.

– Question: Is there a plan for transporting the cargo items with no shifts?

We now revisit the stacking problem considered by Avriel et al. [1], that was
introduced in Section 2, where we have to decide if it is possible to transport some
containers with no shifts using a given number of stacks with infinite capacity.
We will refer to this problem as the Stacking-No-Shift problem. We remind
the reader that Avriel et al. have shown that the Stacking-No-Shift problem
is NP-complete. As demonstrated by Avriel et al., we can replace a group of
containers with the same origin and destination with a single container when we
consider the Stacking-No-Shift problem using stacks with infinite capacity.
This is the reason why a matrix with binary entries is used in the following
formal definition of the Stacking-No-Shift problem. We assume that a vessel
visits Ports 1 to p in increasing order.

Definition 2. The Stacking-No-Shift problem is defined as follows:

– Input: A p× p matrix S = {si,j} and a number C, where p is the number of
ports. The entry si,j in S is 1 if there are containers to be transported from
Port i to Port j and 0 otherwise, and the number C indicates the number of
infinite capacity vertical stacks to be used for stowing the containers.

– Question: Does a plan exist with no shifts for transporting the containers?

6 G. S. Brodal, M. Olsen, D. Pacino, O. R. Thomsen

In the following we show that the RoRo-Slot-No-Shift problem is NP-
complete by using reduction from the Stacking-No-Shift problem. The in-
tuition of the proof is to reduce a Stacking-No-Shift problem to a RoRo-
Slot-No-Shift problem by transforming the deck of the vessel in the RoRo-
Slot-No-Shift problem into a set of LIFO columns. The key trick is to force
every second lane of the deck to be filled with cargo that has to go to the final
port and leave all the other lanes empty. After this has been done, we repre-
sent a container from the Stacking-No-Shift problem by a cargo item in the
RoRo-Slot-No-Shift problem with a corresponding origin and destination.
In this way, we can solve the Stacking-No-Shift problem efficiently if we have
access to an efficient algorithm for the RoRo-Slot-No-Shift problem. To put
it short, we reduce a stacking problem to a RoRo problem by using the lanes of
a RoRo deck to simulate the stacks from the stacking problem.

We are considering a restricted version of the problem where the deck is not
too big compared to the size of the input. This makes it possible to prove that
the problem is in NP since an instance with a positive answer to the question (a
yes-instance) can be verified in polynomial time by simulating a plan for loading
and unloading the cargo. If the deck was too big, this simulation could potentially
take super-polynomial time in the size of the input. It should be noted that a
corollary of Theorem 1 is that the unrestricted RoRo-Slot-No-Shift problem
is NP-hard. The formal details will now follow.

Theorem 1. The RoRo-Slot-No-Shift problem is NP-complete restricted
to instances with WL ≤ P 3.

Proof. If there is a plan with no shifts, then there will be no more than PWL
cargo involved, and the specific route on the deck for each cargo contains no
more than WL steps. The restriction WL ≤ P 3 implies that the RoRo-Slot-
No-Shift problem is in NP since a yes-instance can be verified in polynomial
time by simulating a plan with no shifts.

We now show how to transform a Stacking-No-Shift instance into a
RoRo-Slot-No-Shift instance with identical answers to the questions posed
in the definitions of the problems. First, we provide the details for the case that
C is even. At the end of the proof, the case of an odd value for C is addressed.

A Stacking-No-Shift instance (S,C), where S is a p × p 0-1-matrix and
C the number of stacks, is transformed into a RoRo-Slot-No-Shift instance
(R,W,L) with P = 2C+p+1, W = 2C−1 and L = n+C−1, where n =

∑
si,j

is the number of 1-entries in S. Please note that the RoRo-Slot-No-Shift in-
stance can be constructed in polynomial time since we can assume C < p (other-
wise the Stacking-No-Shift problem is trivially solvable by having one stack
per destination port, and we can transform the Stacking-No-Shift instance
into a trivial yes-instance of the RoRo-Slot-No-Shift problem). Please also
note that WL = (2C − 1)(n + C − 1) ≤ P (p2 + C − 1) ≤ P (p + C − 1)2 ≤ P 3

since n ≤ p2.
The matrix R is defined in three steps in order to make the proof easier to

follow. In the first step, the deck is filled with cargo at Port 1. All the cargo has

On the Complexity of Slot-Based RoRo Stowage Planning 7

to go to the Ports 2, 3, . . ., 2C. The details for Step 1 are as follows:

r1,2 = n
r1,3 = n+ 1

· · ·
r1,C = n+ C − 2

r1,C+1 = n+ C − 1
r1,C+2 = n+ C − 2

· · · r1,2C−1 = n+ 1
r1,2C = n

In Step 2, the vessel unloads the cargo from Step 1 in W = 2C − 1 ports,
Ports 2, 3, . . ., 2C. For each of these ports, cargo is loaded such that the vessel
is full again when leaving the port. The loaded cargo goes either to Port 2C +1
or the final Port P = 2C + p+ 1. Below we will argue that this implies that at
Ports 2 to 2C, exactly one full lane will be unloaded and reloaded. The specific
entries in the matrix R for Step 2 are presented here:

r2,2C+1 = n
r3,P = n+ 1

r4,2C+1 = n+ 2
· · ·

rC,2C+1 = n+ C − 2
rC+1,P = n+ C − 1

rC+2,2C+1 = n+ C − 2
· · · r2C−1,P = n+ 1

r2C,2C+1 = n

In Step 3, the vessel visits the Ports 2C + 1 and onwards where a container
going from Port i to Port j in the Stacking-No-Shift instance is represented
by a cargo item that is loaded in Port 2C + i and unloaded in Port 2C + j
in the RoRo-Slot-No-Shift instance: r2C+i,2C+j = si,j . Please note that the
final destination for the cargo loaded in Step 3 is not the final Port P since
2C + j ≤ 2C + p ≤ P − 1.

We now show that the Stacking-No-Shift instance is a yes-instance if
and only if the RoRo-Slot-No-Shift instance is a yes-instance. We start with
the if-direction assuming that there is a plan for transporting the cargo in the
RoRo-Slot-No-Shift instance with no shifts.

An area of the deck is said to be connected to the stern if there exists a path
within the area from every slot in the area to the stern. The deck of the vessel is
full after leaving each of the Ports 1, 2, 3, . . . , 2C, so for every Port 2 to 2C the
cargo to be unloaded has to occupy an area of the deck connected to the stern.
Every cargo item loaded in Step 1 will be unloaded at the ports in Step 2.

We claim that all the cargo with destination C + 1 must be placed in the
longest lane of the deck (that has length L = n + C − 1). The top slot in this
lane must be occupied by cargo going to Port C +1. If this is not the case, then
we have some destination port unloading less than L cargo, i.e., the cargo is not
placed in an area connected to the stern producing a contradiction. If there is
a cargo item with another destination than C + 1 in another slot of the longest
lane, then we have another contradiction for cargo going to Port C + 1. With
a similar argument we conclude that cargo to Port C is placed in one of the
two lanes with length L − 1. As we go on, we can see that every lane is filled
with cargo for exactly one destination when the vessel leaves Port 1. We have
illustrated this argument in Fig. 2(b) that shows how the deck configuration
could look after leaving Port 1 for C = 4, p = 5 and n = 5.

We now consider the details in Step 2 and look at the deck configuration
after leaving Port 2C. At this point in time, the odd-numbered lanes will contain

8 G. S. Brodal, M. Olsen, D. Pacino, O. R. Thomsen

cargo for Port 2C + 1 and the even-numbered lanes will contain cargo for the
final Port P as illustrated in Fig. 2(c).

After unloading cargo in Port 2C+1, the deck of the vessel is essentially a set
of C LIFO columns since the even-numbered lanes are blocked with cargo for the
final port. The loading/unloading plan for the containers in the Stacking-No-
Shift instance at the Ports 1 to p is identical to the plan in the RoRo-Slot-
No-Shift instance for loading and unloading cargo at the Ports 2C+1 to 2C+p.
There are no shifts for the RoRo-Slot-No-Shift plan for the Ports 2C + 1 to
2C + p so this plan can easily be turned into a plan for handling the containers
in the Stacking-No-Shift instance using C vertical LIFO columns with no
shifts. The corresponding Stacking-No-Shift instance is in other words a yes-
instance.

The only-if direction is easier to show. Assume that a plan exists for handling
the containers in the Stacking-No-Shift instance with no shifts. We now use
the RoRo-Slot-No-Shift plan as above illustrated by Fig. 2(b) and Fig. 2(c).
From Port 2C + 1 and onwards, we follow the loading/unloading pattern from
the Stacking-No-Shift plan. This is a plan with no shifts so the RoRo-Slot-
No-Shift instance is a yes-instance. This concludes the proof for even values
of C.

If C is odd, the proof is only slightly changed. The only difference is that we
now have to use the longest lane of the deck as a column for simulating stacking
of containers. This can easily be achieved by small changes to Step 2 of the proof.
E.g., rC+1,P = n+ C − 1 shall be changed to rC+1,2C+1 = n+ C − 1. ⊓⊔

It is worth noting that the only property used for the reduction in the proof
of Theorem 1 is that no even-numbered lane has the same length as an odd-
numbered lane. Consequently, the theorem holds for any deck configuration sat-
isfying this property.

Unger [13] has presented a result stating that the interval overlap coloring
problem mentioned earlier is NP-complete for a fixed value C = 4. As far as we
know, this result has not been questioned but a couple of Ungers related results
have later been challenged [2,9]. If the result with C = 4 holds, then Theorem 1
holds for a fixed value W = 7. We have decided to state a weaker version of
Theorem 1 with W as part of the input because that makes it possible for us to
base our proof on the papers by Avriel et al. [1] and Garey et al. [4].

4 Generalization to arbitrary lane lengths

The proof in Section 3 required a specific layout of the deck to arrive at a
configuration of the deck where exactly every second lane is filled with cargo
for the final port and the remaining lanes contain no cargo. In this section
we describe a slightly more complicated reduction from a Stacking-No-Shift
instance to a RoRo-Slot-No-Shift instance with arbitrary lane lengths, with
the only requirement that the minimum lane length is at least the total number
of containers in the Stacking-No-Shift instance. The reduction also works,
e.g., for rectangular decks.

On the Complexity of Slot-Based RoRo Stowage Planning 9

W

n

b

b

b

b

B

d

d

d

d

D

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

a

a

a

a

A

c

c

c

c

C

e

e

e

e

E

b

b

b

b

B

d

d

d

d

D

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

(a) (b) (c) (d)

Fig. 3. Reduction with an arbitrary vessel deck: (a) Vessel deck for n = 5 and W = 5,
(b) goal configuration for reduction, (c) state after 5W + 3 ports, (d) obtained state
for reduction.

Assume we want to solve a Stacking-No-Shift problem (S,C) with C
columns, S = {si,j} being a p × p 0-1-matrix, where p is the number of ports,
and the total number of containers is n =

∑
si,j . For the reduction in this section

we only need to assume that the deck has W = 2C − 1 lanes, each of length at
least n. See Fig. 3(a). We let N ≥ nW denote the total cargo capacity of the
deck. Our RoRo-Slot-No-Shift instance will require P = 5W + 5 + p ports.

Like in Section 3, the idea is to establish C lanes of length n separated by
lanes only containing cargo heading for the final port, and use these lanes for the
reduction, see Fig. 3(b). To achieve this, we will first establish through loading
and unloading cargo at a sequence of ports a specific configuration with 2W +1
types of cargo, see Fig. 3(c): For each of the W lanes the n− 1 first slots are for
a specific type cargo identified by W letters a, b, c, . . . , the n’th slot is of type
equal to the corresponding capital letters A, B, C, . . . , and the remaining slots
at the top of each lane are filled with cargo of type X. The letters will appear
alphabetically left-to-right or right-to-left. Finally, by deleting all cargo of types
A, a, C, c, E, e, . . . we will have the desired configuration, see Fig. 3(d). Think
of the type of a container as the color of the containers to load and unload.
Whenever a type of container is loaded/unloaded, then all containers of this
type is loaded/unloaded. At the end of the section we discuss how to convert
the color view into the required P ×P matrix R = {ri,j}. It will be an invariant
between ports, that there is zero or one cargo on the deck of each of the types
A, B, C, . . . , zero or n− 1 cargos of each of the types a, b, c, . . . , and N − nW
cargo of type X, except for the initial and final empty deck.

To establish the configuration in Fig. 3(c), we consider two steps. The first
step consists of 1 + 3W ports. At the first port we fill the deck with cargo with
the required number of each type. At the following ports in the first step we

10 G. S. Brodal, M. Olsen, D. Pacino, O. R. Thomsen

unload all cargo of particular types and reload new cargo at the immediately
following ports of the same type to enforce the initial loading of cargo at the
first port to be in a specific configuration.

Port 1: Load N − nW cargos of type X, one cargo of each of the W types A, B,
C, . . . , and n− 1 cargos of each of the W types a, b, c,

Port 2: Unload all cargo of type a and A.
Port 3: Load one cargo of type A.
Port 4: Load n− 1 cargos of type a.
Ports 5 to 3W + 1 Repeat Ports 2 to 4 for each of the remaining W−1 letters.

We now argue that to serve the above requests, the vessel must be loaded in
the configuration shown in Fig. 3(d) after Port 3W + 1, up to a permutation of
the columns with letters. We denote the slots at the stern to be in row 1, the
next slot in each lane to be in row 2, etc.

– After Port 1 the vessel is fully loaded, since we loaded W (1+(n−1))+(N−
nW) = N cargo.

– At Port 2 exactly n cargos are unloaded, which are connected to the stern.
Since the vessel is full, we can only unload from the first n rows of the vessel.
At Port 3 and Port 4 cargo of the sames types are loaded again, to make the
vessel fully loaded. Similarly, for the other cargo types b/B, c/C, d/D,

– Since we at Ports 2 to 3W + 1 unload nW different cargo that must be in
the first n rows, it follows that we have unloaded exactly all cargo from the
first n rows, i.e., all cargo of type X must reside in rows n+ 1, n+ 2,

– In row n there are cargo of type being a lower or capital letter. Assume it
is cargo of type a or A. If a cargo is unloaded from this type, it is unloaded
as part of exactly n cargo at Port 2 (or similar port for another letter), i.e.,
at Port 2 we unload exactly the first n cargo of one lane. Since we at Port 3
force cargo of type A to be loaded into the lane before all cargo of type a is
loaded at the next port, A must be placed in row n after Port 4. It follows
that there is exactly one cargo of type A in row n and none of type a.

– By repeating the above argument iteratively for the next letter in row n,
it follows that there exists one lane with n − 1 cargo of type a followed by
one cargo of type A in row n, and similarly for b and B, c and C, The
remaining rows of the W lanes are filled with cargo of type X, i.e., the vessel
is in the configuration shown in Fig. 3(c) after Port 3W + 1, except that
columns with letters may be permuted.

In the second step we add further load and unload requests, to force the
columns to be alphabetically ordered from left-to-right or right-to-left after
Port 3W + 1.

Port 3W + 2: Unload all cargo of type a, A and B.
Port 3W + 3: Load one cargo of type B.
Port 3W + 4: Load one cargo of type A.
Port 3W + 5: Load n− 1 cargos of type a.

On the Complexity of Slot-Based RoRo Stowage Planning 11

Port 3W + 6: Unload all cargo of type b, B, C.
Ports 3W + 7 to 4W + 3: Unload the single cargos of type D, E, . . . in alpha-

betical order, one cargo per port.
Ports 4W + 4 to 5W + 2: Load the W −1 cargos of type . . . , D, C, B in reverse

alphabetical order, one cargo per port.
Port 5W + 3: Load n− 1 cargos of type b.

We now argue that these load and requests force the columns to be alpha-
betically ordered, either from left-to-right or right-to-left.

– Since the cargo of type A and B are in row n, the unloading at Port 3W + 2
forces A and B to be adjacent in row n. The subsequent loads at Ports 3W+3
to 3W + 5 reestablish a full vessel with cargo of the same type in all slots.

– Similarly, the request at Port 3W + 6 forces the cargo of type B and C to be
adjacent in row n, i.e., the type B cargo is between cargo of type A and C in
row n.

– The unloading at Ports 3W + 7 forces the cargo of type C and D to be
adjacent, and the subsequent ports that type D and E cargo are adjacent,
. . . . It follows that we have adjacent cargos of type (A, B), (B, C), (C, D),
(D, E), . . . in row n, which is only possible if the cargo in row n is ordered
alphabetically from left-to-right or right-to-left.

– Since the unloaded cargo forms a path on the deck, the remaining Ports 4W+
4 to 5W + 2 reload cargo in row n in reverse order of type of how it was
unloaded, and Port 5W + 3 reloads the remaining of the column with B.
It follows that after Port 5W + 3, we can only have the configuration in
Fig. 3(c).

To arrive at the desired configuration required by the reduction from Sec-
tion 3, we unload the first n cargo from every second lane, i.e., C lanes.

Port 5W + 4: Unload all cargo of type a, A, c, C, e, E, . . . (every second letter)
for a total of nC cargo to unload.

We can for the following p ports now reduce an Stacking-No-Shift instance
{si,j} for C columns and n containers to an RoRo-Slot-No-Shift instance on
the C empty lanes as described in Section 3 using p ports.

Ports 5W + 5 to 5W + 4 + p: For all 1 ≤ i ≤ p and for all 1 ≤ j ≤ p, where
si,j = 1, load a cargo at Port 5W + 4 + i heading for Port 5W + 4 + j.

At the final port we unload all remaining cargo on the deck.

Port 5W + 5 + p: Unload all cargo of type X and all cargo of type b, B, d, D, f,
F, . . . (every second letter) for a total of N − nC cargo to unload.

In total the reduction from a Stacking-No-Shift problem requires P =
5W + 5 + p ports, where N + nW + 2n +W − 1 cargo is loaded at Ports 1 to

12 G. S. Brodal, M. Olsen, D. Pacino, O. R. Thomsen

5W +4 for setting up for the simulation, plus n cargo is loaded at ports 5W +5
to 5W + 4 + p during the simulation itself.

Since the RoRo-Slot-No-Shift problem is defined in terms of the matrix
R = {ri,j}, we briefly discuss how to construct cargo requests ri,j from Port i to
Port j from the above description. Since cargo of type X is the only cargo from
Port 1 to Port P = 5W +5+p, we have r1,P = N−nW . For the remaining types
we have r1,2 = r1,5 = · · · = r1,3W−1 = n, since all initially loaded cargo of type
a and A are unloaded at Port 2, and three ports later all cargo of types b and
B, etc. The next requests for cargo of type A, B, . . . is r3,3W+2 = r6,3W+2 = 1
and r9,3W+6 = r12,3W+7 = · · · = r3W,4W+3 = 1, since A and B are unloaded at
Port 3W+2, whereas the remaining types C, D, . . . are unloaded at Ports 3W+6,
3W + 7, . . . , 4W + 3, respectively. The cargo of a, b, c, . . . loaded at Ports 4
to 3W+1 is unloaded at Ports 3W+2, 3W+6, 5W+4, P , 5W+4, P , . . . , 5W+4,
respectively, i.e., r4,3W+2 = r7,3W+6 = r10,5W+4 = r13,P = r16,5W+4 = r19,P =
· · · = r3W+1,5W+4 = n−1. This covers all cargo loaded at the first 3W +1 ports.
The cargo loaded at Ports 3W + 2 to 5W + 4 can be handled similarly. For the
reduction itself we have r5W+4+i,5W+4+j = si,j , for 1 ≤ i < j ≤ p. It follows
similar to the proof of Theorem 1 that that the RoRo-Slot-No-Shift instance
is NP-hard for all vessel decks of width W ≥ 7, in particular for rectangular
decks where all lanes have equal length.

5 Generation of RoRo instances requiring shifts

The existence of RoRo-Slot-No-Shift instances that cannot be handled with-
out shifts is a corollary of Theorem 1. Actually, the reductions described in
Section 3 and Section 4 can be used in a constructive way as recipes for gen-
erating such hard RoRo-Slot-No-Shift instances for the deck configurations
considered in those sections. The recipe works as follows: start with a Stacking-
No-Shift instance requiring shifts and generate the r-matrix specified in the
reduction. This will produce a RoRo-Slot-No-Shift instance requiring shifts.
The following is just one example for a hard Stacking-No-Shift instance to
use as the starting point: p = 8, C = 3, s1,5 = s2,6 = s3,7 = s4,8 = 1 (all other
s-entries can as an example be set to 0). This particular Stacking-No-Shift
instance is hard since there are more containers than stacks and none of the
containers can be put in the same stack without requiring shifts.

There are other ways to produce hard RoRo-Slot-No-Shift instances for
small deck configurations. Fig. 4 illustrates a RoRo-Slot-No-Shift instance,
that cannot be served without a shift of a cargo. Cargo requests at Ports 1–7
establish the configuration in Fig. 4(a), up to a permutation of the A and B

columns, provided no shift of already loaded cargo is allowed (the argument for
the A and B columns is similar as in Section 4). The unload request at Port 8
cannot unload the type C cargo without shifts, since A2 and B2 are blocking after
unloading A1 and B1. To serve the request it is sufficient at Port 8 after A1 and
B1 are unloaded to perform a shift of B2 to below A2 on the deck.

On the Complexity of Slot-Based RoRo Stowage Planning 13

(a) (b) (c)

A1

A2

B1

B2

C C

Port 1: Load C, C, A2, B2, A1, B1
Port 2: Unload A1, A2
Port 3: Load A2
Port 4: Load A1
Port 5: Unload B1, B2
Port 6: Load B2
Port 7: Load B1
Port 8: Unload A1, B1, C, C
Port 9: Unload A2, B2

r1,2 = r1,5 = r1,9 = 2
r3,9 = r4,8 = r6,9 = r7,8 = 1

Fig. 4. A RoRo-Slot-No-Shift instance that cannot be served without shifting cargo
in a port. (a) deck layout and configuration obtained by requests at Ports 1–7 (if no
shifting is performed). (b) Cargo types loaded and unloaded at the different ports. (c)
The resulting non-zero entries of R.

6 A greedy algorithm for special RoRo instances

In this section we complement the previous hardness results with a greedy algo-
rithm for the RoRo-Slot-No-Shift problem for cases where the deck layout is
a rectangle W ×L with W ramps (W ≥ 1 and L ≥ 1), and at most W ·L cargo
is loaded at an arbitrary number of source ports (possibly more than W) before
it is unloaded at subsequent P ≤ W destination ports. For this case we show
that there exists a fixed assignment of destination ports to the slots, where the
number of slots assigned for a destination port equals the amount of cargo for
the destination port. The cargo can be unloaded in any arbitrary order of the P
ports. In particular, we show that all cargo for a port p is connected to a ramp
via slots all with cargo for port p. See Fig. 5(b). When loading cargo for a desti-
nation port, the cargo is placed as far away as possible from the loading ramp in
the area assigned for this destination port (largest possible breadth-first-search
(BFS) distance). Unloading at a destination port is performed greedily in reverse
order in the area assigned to the destination port.

To create the assignment, we first identify all destination ports with exactly L
cargo (A and B in Fig. 5(b)). These are assigned one lane each, left-to-right. We
denote the remaining destination ports with ≥ L + 1 and ≤ L − 1 destination
cargo as heavy and light ports, respectively. We next consider the heavy ports
in arbitrary order. Consider the first heavy port p. Assign the full leftmost lane
for port p (e.g., C), and try to assign the bottom of the next lane to the next
light port q (e.g., D), and fill the top-part with further slots for p. If all slots
in the lane get assigned, continue repeatedly filling port p and the next light
port into the next lane. Otherwise, the remaining slots for p (possibly none) and
q cannot occupy the full lane (like C and E cannot fill the 5th leftmost lane).
Cancel inserting q in the lane, and fill the lane with next heavy port p′ (e.g., G),
and insert p′ top-down in the next column with q at the bottom. At least L+ 1
connected slots are assigned to the heavy port p′ in the two columns. If p′ and
q again cannot fill the lane, we cancel insertion q and proceed repeatedly with
the next heavy port. While there are still heavy and light ports left, this ensures

14 G. S. Brodal, M. Olsen, D. Pacino, O. R. Thomsen

(a) (b) (c)

ports : A B C D E F G H I

cargo : 5 5 10 2 2 2 8 3 4

A

A

A

A

A

B

B

B

B

B

C

C

C

C

C

D

D

C

C

C

C

C

G

G

G

E

E

G

G

G

G

G

F

F

H

H

H

I

I

I

I

W = 10

L = 5

4 4 4 4

3

3

3

3

W = 4

L = 5

Fig. 5. (a–b) Greedy algorithm for P = 9 destination ports. (c) Cargo requiring shifts.

columns left-to-right are completely filled by cargo for at most two destination
ports, each lane starts with a new destination port at the bottom, and all slots
assigned to a given destination port are connected. Two final cases remain: If
there are no more heavy ports, the remaining light ports are each assigned the
bottom part of one lane (possible since P ≤ W ; see F, H and I in Fig. 5(b)). If
there are no light ports, the heavy ports are just assigned to the remaining lanes
left-to-right and top-down.

Without the rectangular deck assumption, solutions are not guaranteed to
exist. Assume a deck has W ≥ 2 lanes of lengths W + 1, 1, . . . , 1, and we have
cargo requests r1,3 = r2,4 = W from two sources ports to two destination ports,
see Fig. 5(c). It is easy to verify that this problem has no solution with no shifts,
since one cargo for Port 3 must be placed at the top of the longest lane to be
able to load all cargo, but this cargo cannot be unloaded without shifts.

7 Conclusion

In this paper, we investigated the complexity of stowage planning and delved into
the specific case of slot-based RoRo stowage planning. We reduced a stacking
problem to a slot-based RoRo stowage problem by dividing the deck space into
a set of LIFO lanes. With the transformation, we showed that the simplest
form of the RoRo stowage problem with identical cargo is NP-complete using
a reduction from the Stacking-No-Shift problem. Further, we presented a
version of the problem with arbitrary lane length that is NP-hard, and showed
how these complexity results can be used to generate hard instances for the
problem. Finally, for the RoRo problem where the deck is a rectangle with at
least at many lanes as destination ports for cargo and where all cargo is loaded
at ports before unloading at subsequent ports, we give a greedy algorithm that
always finds a plan with no shifts if the total amount of cargo fits the deck.

References

1. Avriel, M., Penn, M., Shpirer, N.: Container ship stowage problem: complexity and
connection to the coloring of circle graphs. Discrete Applied Mathematics 103(1–
3), 271–279 (2000). https://doi.org/10.1016/S0166-218X(99)00245-0

https://doi.org/10.1016/S0166-218X(99)00245-0
https://doi.org/10.1016/S0166-218X(99)00245-0

On the Complexity of Slot-Based RoRo Stowage Planning 15

2. Bachmann, P.: 3-coloring Circle Graphs in Theory and Practice. Mas-
ter’s thesis, University of Passau, Germany (2022), https://www.fim.

uni-passau.de/fileadmin/dokumente/fakultaeten/fim/lehrstuhl/rutter/

abschlussarbeiten/2022-Patricia_Bachmann_MA.pdf
3. Cornelsen, S., Stefano, G.D.: Track assignment. Journal of Discrete Algorithms

5(2), 250–261 (2007). https://doi.org/10.1016/j.jda.2006.05.001
4. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of

coloring circular arcs and chords. SIAM Journal on Algebraic Discrete Methods
1(2), 216–227 (June 1980). https://doi.org/10.1137/0601025

5. Hansen, J.R., Hukkelberg, I., Fagerholt, K., St̊alhane, M., Rakke, J.G.: 2D-packing
with an application to stowage in roll-on roll-off liner shipping. In: Paias, A., Ruth-
mair, M., Voß, S. (eds.) Computational Logistics. pp. 35–49. Springer International
Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-44896-1_3

6. Hvattum, L.M., Fagerholt, K., Armentano, V.A.: Tank allocation problems in
maritime bulk shipping. Computers & Operations Research 36(11), 3051–3060
(November 2009). https://doi.org/10.1016/j.cor.2009.02.002

7. Jansen, K.: The mutual exclusion scheduling problem for permutation and com-
parability graphs. Information and Computation 180(2), 71–81 (2003). https:
//doi.org/10.1016/S0890-5401(02)00028-7

8. Jia, B., Fagerholt, K., Reinhardt, L.B., Rytter, N.G.M.: Stowage planning with op-
timal ballast water. In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds.) Computational Lo-
gistics, Lecture Notes in Computer Science, vol. 12433, pp. 84–100. Springer Nature
Switzerland, Cham (2020). https://doi.org/10.1007/978-3-030-59747-4_6

9. König, F.G., Lübbecke, M.E.: Sorting with complete networks of stacks. In: Hong,
S., Nagamochi, H., Fukunaga, T. (eds.) Algorithms and Computation, 19th Inter-
national Symposium, ISAAC 2008, Gold Coast, Australia, December 15-17, 2008.
Proceedings. Lecture Notes in Computer Science, vol. 5369, pp. 895–906. Springer,
Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92182-0_78

10. Puisa, R.: Optimal stowage on Ro-Ro decks for efficiency and safety. Journal of
Marine Engineering & Technology 20(1), 17–33 (January 2021). https://doi.
org/10.1080/20464177.2018.1516942

11. Tang, L., Liu, J., Yang, F., Li, F., Li, K.: Modeling and solution for the ship
stowage planning problem of coils in the steel industry. Naval Research Logistics
(NRL) 62(7), 564–581 (2015). https://doi.org/10.1002/nav.21664

12. Tierney, K., Pacino, D., Jensen, R.M.: On the complexity of container stowage
planning problems. Discrete Applied Mathematics 169(0), 225–230 (2014). https:
//doi.org/10.1016/j.dam.2014.01.005

13. Unger, W.: On the k-colouring of circle-graphs. In: Cori, R., Wirsing, M. (eds.)
STACS 88, 5th Annual Symposium on Theoretical Aspects of Computer Science,
Bordeaux, France, February 11-13, 1988, Proceedings. Lecture Notes in Com-
puter Science, vol. 294, pp. 61–72. Springer (1988). https://doi.org/10.1007/
BFb0035832

14. Van Twiller, J., Sivertsen, A., Pacino, D., Jensen, R.M.: Literature survey on the
container stowage planning problem. European Journal of Operational Research
pp. 841–857 (December 2023). https://doi.org/10.1016/j.ejor.2023.12.018

15. Vilhelmsen, C., Larsen, J., Lusby, R.: A heuristic and hybrid method for the tank
allocation problem in maritime bulk shipping. 4OR 14(4), 417–444 (2016). https:
//doi.org/10.1007/s10288-016-0319-x

16. Øvstebø, B.O., Hvattum, L.M., Fagerholt, K.: Optimization of stowage plans for
roro ships. Computers & Operations Research 38(10), 1425–1434 (2011). https:
//doi.org/10.1016/j.cor.2011.01.004

https://www.fim.uni-passau.de/fileadmin/dokumente/fakultaeten/fim/lehrstuhl/rutter/abschlussarbeiten/2022-Patricia_Bachmann_MA.pdf
https://www.fim.uni-passau.de/fileadmin/dokumente/fakultaeten/fim/lehrstuhl/rutter/abschlussarbeiten/2022-Patricia_Bachmann_MA.pdf
https://www.fim.uni-passau.de/fileadmin/dokumente/fakultaeten/fim/lehrstuhl/rutter/abschlussarbeiten/2022-Patricia_Bachmann_MA.pdf
https://doi.org/10.1016/j.jda.2006.05.001
https://doi.org/10.1016/j.jda.2006.05.001
https://doi.org/10.1137/0601025
https://doi.org/10.1137/0601025
https://doi.org/10.1007/978-3-319-44896-1_3
https://doi.org/10.1007/978-3-319-44896-1_3
https://doi.org/10.1016/j.cor.2009.02.002
https://doi.org/10.1016/j.cor.2009.02.002
https://doi.org/10.1016/S0890-5401(02)00028-7
https://doi.org/10.1016/S0890-5401(02)00028-7
https://doi.org/10.1016/S0890-5401(02)00028-7
https://doi.org/10.1016/S0890-5401(02)00028-7
https://doi.org/10.1007/978-3-030-59747-4_6
https://doi.org/10.1007/978-3-030-59747-4_6
https://doi.org/10.1007/978-3-540-92182-0_78
https://doi.org/10.1007/978-3-540-92182-0_78
https://doi.org/10.1080/20464177.2018.1516942
https://doi.org/10.1080/20464177.2018.1516942
https://doi.org/10.1080/20464177.2018.1516942
https://doi.org/10.1080/20464177.2018.1516942
https://doi.org/10.1002/nav.21664
https://doi.org/10.1002/nav.21664
https://doi.org/10.1016/j.dam.2014.01.005
https://doi.org/10.1016/j.dam.2014.01.005
https://doi.org/10.1016/j.dam.2014.01.005
https://doi.org/10.1016/j.dam.2014.01.005
https://doi.org/10.1007/BFb0035832
https://doi.org/10.1007/BFb0035832
https://doi.org/10.1007/BFb0035832
https://doi.org/10.1007/BFb0035832
https://doi.org/10.1016/j.ejor.2023.12.018
https://doi.org/10.1016/j.ejor.2023.12.018
https://doi.org/10.1007/s10288-016-0319-x
https://doi.org/10.1007/s10288-016-0319-x
https://doi.org/10.1007/s10288-016-0319-x
https://doi.org/10.1007/s10288-016-0319-x
https://doi.org/10.1016/j.cor.2011.01.004
https://doi.org/10.1016/j.cor.2011.01.004
https://doi.org/10.1016/j.cor.2011.01.004
https://doi.org/10.1016/j.cor.2011.01.004

	On the Complexity of Slot-Based RoRo Stowage Planning

