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Abstract etc. A typical orthogonal range query is of the form “find

We present new general techniques for static orthog-

onal range searching problems in two and higher di-
mensions. For the general range reporting problem
in R3, we achieve query timé(logn + k) using
spaceO(n log' ™ n), wheren denotes the number of stored
points andk the number of points to be reported. For the
range reporting problem on amx n grid, we achieve query
time O(loglogn + k) using spaced(nlog®n). For the

all males of age between 30 and 40 years with an income
between $20,000 and $40,000".

The orthogonal range searching problem has numerous
applications and has been studied extensively for the last
decades, see.g.[1, 3,5, 6, 7, 8,9, 10, 11, 13, 14, 16, 17,
20, 22, 24, 25, 26, 27, 30, 31, 40, 41, 42, 43, 45, 46, 47].
Willard [43] gives a comprehensive list of references on the
subject and gives applications to the theory of databases.
For surveys seeg.g. the survey by Agarwal [1], and the

two-dimensional semi-group range sum problem we achievebooks by Mehlhorn [27] and Preparate and Shamos [31].

query timeO (logn) using spacé (nlogn).

1 Introduction

Let P be a finite set of points i? and(Q a query range

In this paper we consider various orthogonal range
searching problems on static point sets. We give new tech-
niques for static orthogonal range searching problems im-
proving the previous best results [11, 14, 18, 30, 32, 41, 42]
for various models, problems and dimensions: general
range reporting ink?, for fixedd > 3, two-dimensional
range reporting in rank space, and for the two-dimensional

in R?. Range searching is the problem of answering various semj-group range sum problem. In the following wenet
types of queries about the set of points which are containedgjenote the number of stored points ahdhe number of

within the query range,e., the point setP N Q. A query
is, e.g.to report the point seP N @ (reporting queries), its
cardinality] PN Q| (counting queries), or simply to decide if

points to be reported by a reporting query.
The model of computation we assume is a unit-cost
RAM with word size logarithmic im, as used for the most

Pn@Q = 0 (emptiness queries). Orthogonal range searchingupper boundse.g. as in [11, 14, 18, 30, 32, 41, 42]. The

is the special case where the query rangedatienensional
rectanglesa;,bi] X - -+ x [ag,bq] C RE.

Points cang.g. represent a population of persons asso-

remaining of the introduction gives a detailed discussibn o
our results.

ciated with a key with his or her age, sex, weight, salary 1.1 Range reporting
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Givenn pointsP C R?, the generastaticd-dimensional
range reporting problenis to construct a data structure for
P that supports the queryeport([a1,b1] X - - - X [aq, b4])
which reports the point sét(vi,...,vg) € P : a1 < vy <
bi, ... yaq < vg < by }. For three dimensions we obtain
the following result.



Theorem 1 For the static three-dimensional range report- using standard range reducing technique [30], as described
ing problem inR? there exists a data structure support- in Section 2.2.

ing queries in timeO(logn + k) and requiring space

O(nlog'* n). 1.2 Two-dimensional range reporting

Chazelle in 1986 [13] gave a data structure for three  Forn points in two-dimensional rank spad®.,ann xn
dimensions with query timeD(log’n + k) and using  grid, we have the following result.
spaceO(nlog” n/loglogn). Willard in 1992 [42] im-
proved the query time of Chazelle by a factoflog log n)
using fusion trees. Overmars in 1988 [30] gave a data
structure with query timeO(lognloglogn + k) using
spaceO(nlog” n). The query time of Overmars was im-
proved by a factoO(loglogn/log** n)! by Subramanian
and Ramaswamy in 1995 [32]. Using a factoflogn)
more space, the query time can be reduced by a fac-

tor O(log™ n) [11]. Chazelle [14] gives a series of results o, points on am x 1 grid Overmars [30] achieves
using less space, but queries using more time. Table 1 SUMguery timeO(loglogn + k) using space(nlogn). Our

Theorem 2 For the static two-dimensional range report-
ing problem on ann x n grid, there exist data struc-
tures supporting queries in timé&(loglogn + k) and
O((loglogn)? + kloglogn) respectively and requiring
spaceO(nlog® n) and O(nloglogn) respectively, for any
constants > 0. In both cases the preprocessing time is
expected(nlogn).

marizes the bounds for range reportingiif. _ Theorem 2 improves the result of Overmars, and settle an
Our data structure improves all the above mentioned rée- open problem he raises by asking “It is not clear whether
sults. Q(nlogn) storage is necessary for obtaining efficient solu-
Query time Space Source tions on a grid",
o e Chazelle [14] provides the following series of results for
O(logﬁogn + k) O(nloggizogn) [42] the case of pOintS iR
O(lognlog™ n+k)  O(nlog®n) [32] _
O(logn + k) O(nlog® n) [11] Query time Spa;:e
O(log” n + k) O(nlog'™n)  [14] ol O_l(_k;ﬁn T k)(4 /1) O(()U; 10% n) )
1+¢ ogn + kloglog(4n/k nloglogn
O(logn + k) O(nlog ™ n) New Ollogn + klog® (2n/k)) O(n)

N 3
Table 1. Orthogonal range reporting in - R®. Using the standard range reduction frdRd to rank

space, it can be seen that we only match or almost match
, ) the results of Chazelle iR?.

Accepting a penalty for each reported point Restricting the model toe.g. a pointer machine [34],
Chazelle [14] gave a data stucture with Query chazelle [15] has shown that reporting in tiélog n +
time O(log"n + kloglog(4n/k)) and using space 1 requires spacd)(nlogn/loglogn). This bound is
O(nlognloglogn), —or query time O(logn +  matched by an optimal upper bound for the pointer machine
klog®(2n/k)) and using spac®(n logn). model [13].

Using a method of Willard and Lueker [46], the above
bounds can be extended, for any fix¢do d-dimensional 13 The semi-group range sum problem
range reporting, ford > 4, with a penalty of a fac-
tor O(log” *n) in space and query time (excluding the  For the semi-group range sum problem we consider a
term involvingk). We show how the above bounds can be ¢qmmutative semi-groufts, &), i.e.,we do not assume the
extended for any fixed, to d-dimensional range reporting,  glementsirG to have additive inverses. L&tben points in
ford > 4,1with apenalty of afa_ct0®(logd73f“€ n)inspace  some spaces.g. R?, where each point € P is associated
andO((1ofe)? ) in query time (excluding the termin-\yith 3 semi-group elementp) € G. The semi-group range
volving k). sum problem is to construct a data structure that for a given

Finally, accepting a penc_';llty for each reported point, rectangular query rang@ supports the query
orthog(_)nal range search iR® can be so!ved with sum(Q) returning the semi-group SuEpEPﬁQ e(p).
query timeO (log n(loglogn)® + kloglogn) using space A data structure cannot make use of subtractions or any
O(nlognloglogn). This result is obtained by applying internal property of the semi-group. Hence, a data strectur
the method of Willard and Lueker to one of our results for oy the semi-group range sum problem can be applied to
two-dimensional range searching on a grid in Section 1.2, any concrete choice of a semi-group whighg. may be

Liog** n is the number of times to applyg* n to get a constant, and  @vailable through function calls. For the semi-group range
log* n is the number of times to applyg n to get a constant. sum problem iMk2 we have the following result.




Query time Space Source
O(log” n) O(nlog® n)
O(log® nloglogn) O(nloglogn) } [14]
O(log”*= n) O(n)
O(a(n)logn) O(nlogn) [18]
O(logn) O(nlogn) New

Table 2. Bounds for the orthogonal semi-
group range sum problemin  R2.

Theorem 3 For the static semi-group range sum problem
in R?, there exists a data structure supporting queries in
time O(log n) and requiring spac® (n logn). The prepro-

m = Q(nlog'** n). Lower bounds for the off-line version
are givenin [12].

2 Preliminaries

Let[n] denote the set of integef8,1,...,n—1}. We let
[a, b], denote the set (interval) of integers betweeandb
includinga andb. The sets (intervalgy, b], [a, b] and]a, b]
denotes the same set of integers but excludingxcluding
b, and excluding botla andb respectively. Forn > b, the
interval [a,b] = 0 and fora = b, [a, b[=]a, b] =]a,b[= 0.
A rectangle is the cross product of two intervals. ket 1
denote an integer. Lt C [u] x [u] denote a rectangle and
let S denote a set of points ifu] x [u]. We letrect(S, R)
denote the set of points frorfi within rectangleR, i.e.,

cessing time is expectéi{n log” n). rect(S, R) = S N R. Finally, for an intervall C [u] we let
rect, (S, I) denote the setect(S, I x [u]) andrect, (S, I)

Results for the range sum problem often only state the the setrect(S, [u] x I).

space used as the number of semi-group elements stored.

However, for our data structure both the number of semi- 2.1 Three-sided queries reporting

group elements stored and the additional space required

is O(nlogn). For the one-dimensional semi-group range
sum problem in[n], i.e., a table of semi-group elements,
Yao [47, 48] showed that using spaee the query time is
O(a(m,n) +n/(m — n + 1)) in the arithmetic model [47, ~ dimensional space.

48], wherex is the functional inverse of Ackermann'sfunc-  Athree-sided query takes as arguments three coordinates
tion defined by Tarjan [33]. Chazelle and Rosenberg [18] Z1, T2,y and reports:

showed how to achieve the upper bound on the RAM.
Chazelle and Rosenberg combine their result for one dimen-
sion with the technique of Lueker and Willard [46] to get a
result for two dimensions: Using spaGgn logn), queries  Note that the three-sided query equals the general query
can be answered in tim@(a(n) log n). Chazelle [14] gives report ([z1, za] x [—o0,y1]).

a series of results using less space, but queries using more Frieset al.[23] considered three-sided queried M| x
time. R. Givenn lexicographically sorted points frofiV] x R,

Table 2 summarizes the bounds for the orthogonal semi-they showed how to achieve query tiriéloglogn + k),
group range sum problem ik*. The space bounds are the usingO(N +n) space and preprocessing time. We have the
number of semi-group elements stored. following result (following immediately from [24]):

Willard [40] studied the range sum problem in the group
model,i.e., he makes use of the presence of additive in-
verses. Willard obtained query tim@(logn) using space
O(nlogn), i.e.,the same bounds as we obtain for the semi-

group model. . To show this letS, = {y | (z,y) € P} U {oc} be stored
If we consider the product of query time and space, as sorted lists and l@t, = min S, for z € [N]. From [24,
our result is the first that achieves a product trade-off gect. 3] we have that usir@(N +n) space and preprocess-
of O(nlog”n). Chazelle in [16] provides the follow- ing time, we can for a quemeport (z1, z», y1) in constant
ing lower bound for thei-dimensional semi-group range time findi such thats; = min{s, | z1 < z < @y}. If
sum problem: usingn units of storage, the query time is 5, > ¢, we stop; otherwise we return the poirfts., y) |
Q((logn/ log(2m/n))?~") (see also Yao [48]). The lower ¢ S, A y < y;}, and proceed witheport (z1,i — 1,y;)

bound is given for the dominance probleie., the spe-  andreport (i + 1,25, y;). In total we spend (k) time.
cial case where the ranges are of the foravo,b;] x

- x [~00,b4], and clearly holds for general orthogonal Corollary 1 For n points infu] x [u], usingO(n) space
range sum queries. For the dominance problem Chazelleand expected_ preprocessing time, three-sided queries can
gives matching upper bounds in the arithmetic model for Pe answered i) (k + log log u) time.

In our solutions for answering general queries in two
dimensions, we will use data structures fibiree-sided
gueries in two dimensions. Ld? be a point set in a two-

report(z1,z2,y1): report{ (r,y) € P : x; <z <
T2 ANy<uyi}.

Theorem 4 For n points in[N] x R, using O(N + n)
space and preprocessing time, three-sided queries can be
answered irO (k) time.



2.2 Reduction to rank space

Using a standard technique from the literatueeg.
Chazelle [14] and Gabowt al.[24], we can reduce a gen-
eral static range searching problentif to a range search-
ing problem in thel-dimensional grido0, 1,...,n — 1]¢ =
[n]¢, in the following denotedank space For a pointz,
let z; denote theit" coordinate ofz. If P is a set ofn
points inR%, thenP is translated to the sét in rank space
by the order preserving mapping, whererp is defined
by (p(p)); = rank(p;, P;), andP; = {q; | ¢ € P} and
rank(z,S) = |{y € S| y < x}|. The construction of the
setP is easily accomplished by sorting the pointsironce
with respect to each of thécoordinates. Al-dimensional
range queryR = [a;,bi] x --- x [aq, bg] in R? is trans-
lated to the range quersy(R) = [a1,b1] X - -+ X [ag, bd]
in rank space by performingd binary searches such that
a; = rank(ai,Pi) andi)i = rank(pred(b,;,P,;),Pi), where
pred(z, S) = max{y € SU{—o0} | y < z}. This transla-
tion satisfies» (RN P) = 75(R) N P. In the following we
let the mappingp from P to P be denoted theange re-
ductionfor P, andP therange reducedet of points. Note
that P, = [ni], wheren; is the number of different'"-
coordinates of the points iR.

Algorithms given in this paper uses range reductions to

reduce the problems defined for general spa&eto point

In the following we use the functionf(m) =
[Vmlogm]. We let fO(m) = m and f*)(m) =
F(f* =V (m)) for k > 1. We letf*(m) denote the minimal
integerk such thatf*)(m) < 3. We need the following
fact for f.

Fact 1 Forany integerl, 1 <1 < f*(n), 2'log(f®)(n)) <
4logn and f*(n) = loglogn + O(1).

Consider a point sef from a universdu] x [u], where
u < n. Letm < n be the size ofS. We define the
row and column subsets relative to a set of row borders
R C [u + 1] and column border§ C [u + 1] defined
as follows. Letc(0) = 0. The k'™ column borderc(k)
is defined to be the minimat > ¢(k — 1) such that
Irect, (S, [c(k — 1),z])] > f(m). If no suchz exists,
c(k) = u and is then the last column border. Thé& col-
umnis the setC(k) = rect,(S,[c(k — 1),c(k)]) and the
interior of the column isC'(k) = rect, (S, Jc(k — 1), ¢(k)]).
Note that by definition of the borders¢!(k)| < f(m)
for all k. The row borders and associated rows are de-
fined similarly. That isr(0) = 0 andr(k) = min({y >
r(k = 1) = [rect,(S,[r(k — 1),5])| > f(m)} U {u}).
The k™" row is R(k) = rect,(S,[r(k — 1),7(k)]) and
R(k) = rect,(S,]r(k — 1),7(k)[). Finally, letQ(i, ) de-
note the intersection of columrand rowy, i.e.,Q(i, j) =
C(i)NR(j) = rect(S, [e(i — 1), () [x[r(j — 1), 7(j)])- By

sets in rank spaces. In order to support the range reducyefinition of row and column borders, there can be at most
tion from R? to rank space, we sort the set of stored points r2m/ f(m)] columns and2m/ f (m)] rows. We define the

by each of thel dimensions in timeé)(dn logn). A range
reduced query originally fronR? is then transformed to

top setof pointsS C [[2m/f(m)]]? by (i,5) € S if and
only if Q(i, ) # 0.

rank space using a binary search for each dimension in
time O(dlogn). If the coordinates of the points are inte-
gers in a universe of siz€, we can alternatively use the
data structure of van Emde Boas that supports searches in
time O(loglogU) [28, 37, 38, 39] and uses spat¥n).
Depending on the computational model and the sort of
problem, several different constructions can be used see
e.0.[2, 4, 35, 36, 44].

3 Range searching on the grid

In this section we describe the data structure for range
reporting on the two-dimensional grid. Lé&f be the input
set ofn points in[n] x [n]. We assume word size of at least
log n, and when we say space cost, we measure this in terms
of number of words used.

Our data structure uses the divide and conquer approach,
and consists of a number of recursive levels. Each recursive
level holds a number of auxiliary range searching strucure
supporting various limited kinds of range queries. We con-

A range query for the query rectangle b] x [c,d] C
[u] x [u] can be expressed in terms of range queries for the
_above sets. We split between two cases for the query.

Case a)[a,b)NC # @ and[c,d]N'R # 0.

In this case let[i,,i;] be the set of column
borders spanned bya,b], i.e., {c(ia),c(is +

1),...,¢c(ip)} = [a,b] N C. Similarly let [i.,i4]

be the set of row borders spanned pyd]. De-

fine the rectangle®”; = Ja,c(ia)[X[c,d], Cr =

(i), bl % [e,dl, Row = [c(ia), clin)[x[e,r(io)]

and Ry = [c(iq),c(ip)[X[r(iq),d]. Let R =

rect(S, Jia, is) X Jic, ia]). Thenrect(S,[a,b] x [c,d])

can be expressed as the followidigjoint union

(U eGpu (1)
(i.5)€R

rect(C'(i,), Cy) Urect(C(ip + 1),C,) U

rect(R(i.), Riow) U rect(R(iq + 1), Rup).

sider a division of the points into subsets called rows and Case b) [a,b]NC =D or[c,d| "R = 0.

columns. Each point is represented in at most two recursive
substructures for a row subset and a column subset.

In this case the query rectandle b] x [c, d] is com-
pletely within the interior of a row or a column. That



is, if it is completely within a column (in case of correspondingto levél+ 1. We will use two strategies for
[a,b] N C = () we can expreseect(S, [a,b] X [c,d]) this recursive representation depending upon the time and

asrect(C'(k), [a, b] x [¢, d]) for the uniquék satisfying space cost we aim at. The recursive point setffanay

3

c¢(k — 1) < a < b < ¢(k). Similar for the rectangle  either be stored relative to the universe useddoior we

completely within a row (in case dt,d] N R = (), may reduce the universe to rank space forln the latter
rect(S, [a, b] x [c,d]) = recR(k), [a,b] x [c,d]) for case, all structures recursively represented at level are
the uniquek satisfyingr(k — 1) < ¢ < d < r(k). range reduced, and we say a range reduction on leakes

H by the ab , £Iace. For levels where a range reduction takes place, we
ence Dy the above two cases, we can answer any reportin eep a van Emde Boas data structure which enable us to

query for a rectangle provided access to reporting QUen€Sransform a rectangle query within a range reduced point

for the following types of ranges. set] to the rank space domain fér Furthermore we also

Store a perfect hash table [21] enabling us to map the points

from range reduced points sets at level 1 back to the

original domain forS. We call the non-recursive data struc-

tures associated the recursive structures at lemath as the

2. A range properly included in a column or row as in three-sided range searching structures and the top steuctu
Case b). for auxiliary structures at levél

. ) The set of recursive range searching data structures at
3. A general range query for the top sewithindomain |eye| 7 is denotedD(1), for instanceD(0) is the general

[[2m/ f(m)]]*. This range query computes the points girycture for the input setZ, D(1) is the set of structures
corresponding td? in (1). Using these points and in- o the interior column and row sets for . Letd € D(1) be
formation stored for eacl(i, j) fora (i, j) € S, we 4 recursive structure at level The number of points stored
can form the union corresponding to the first term in ;, ;s denotedn(d). We letu(d) denote the universe size
(). for structured, i.e.,d stores points in the grifs(d)] x [u(d)].

We letu(l) be the size of the largest universe size at a recur-
sive levell, i.e.,u(l) = maxqe p(;) u(d). Before describing
the query computation we state three simple lemmas rele-
vant for the analysis of the data structure.

1. Three-sided rectangle ranges contained in a column o
a row, with a side fixed to a column or row bordee.,
as the rectangle rangé$, C,, Riow andRyp in (1).

Our data structure reflects the above partition into rows
and columns, with auxiliary structures supporting queries
1. and 3. above, and recursive structures for 2. To be
more precise, the data structure consistg mdcursive lev-
els (which by Fact 1 will turn out to blvglogn + O(1)), Lemma 1 Foranyl, 0 < | < ¢, the number of points:(d)
starting with the input set at level 0. Consider a structure in a structured € D(1) is bounded by () (n).
at levell, 0 < I < /, storing point setS. If S has size

less than a constant larger thanthe recursion stops and  prgof.  Proof by induction orl, using that the largest

we represent the points in a list with queries supported by gty cture inD(1 + 1) contains at mosf (m) points, where
a linear scan in constant time. OtherwiSds partitoned ~ ,,, _ maxge p(y m(d), and the initial level 0 has points.

according to the above description. For edch k£ < |C|, 1

the column bordet(k) is associated two three-sided range

searching structures, a structure for point€ifk — 1) and Lemma 2 The number of levels/ is bounded by
one for all points inC'(k). Both supports the three-sided O(loglogn).

queries with a side fixed ta(k). That is, these queries en-

able answers for the rectangles as given in 1. Fer 1 or Proof. By Lemma 1, any structure at level*(n) —

k= ‘C." the border (k) is only assogiated one structure for O(loglog n) contains at mos? points and hence the recur-
the pointsC' (k) andC'(k — 1) respectively. Similarly we as- g5 can'not have depth of more than thist
sociate three-sided structures for the rows with a side fixed
to a row borderl‘or rectangles likBiqw and Ry, in Case a). Lemma 3 For any levell, 0 < | < ¢, ZdeD(l) m(d) <
The point set is represented in an general range search- o/ -
ing structure we call the top structure. In addition to this,
we store information for each séi(i, j), i.e., a list of the
points. For eacld)(i, j) we keep this information in an en-
try in a two-dimensional array witfi2m / f (m)]? entries.
Hence in order to report the points f@¥(i, j) we simply
return the list for entry(i, j) in the array.
Finally, for each interior point sef, i.e., I is a setC' (k)
andR(k) for an integetk, we storel in a recursive structure

Proof. Proof by induction ori. At the initial level O it
clearly holds. Next for a point sét at a levell, a point in

S is represented in at most two recursive structures at level
[ + 1,i.e.,in the interior point sets for a column and a row.
Hence the number of points at leviel- 1 is at most the
double of level. 1



3.1 Query computation Next consider Case a). First we ne®dloglogn) time
for the computation of the query boundaries. By Corollary 1

Consider a query for rectangle, b] x [¢, d] to a struc- these three-sided queries take ti@éoglogu(l) + k) =
tured € D(1) for some level, where0 < [ < f. First O(loglogn + k) for k elements to be reported. Hence the

the computation decides whether the query rectangle sat°Verallworkfor Case a) i®)(loglogn + k).

isfy Case a) or Case b) above. That is, we need a structure, L6t7 denote the number of levels for which a range re-
to decide whether the interval, 5] contains a column bor- duction takes place. For a query computation, the total time

der or whetherlc, d] contains a row border. In case one spend on recursive levels of this kind is by the above anal-

of these intervals does not contain a border, the structureYSis O(rloglogn + k). For levels without a range re-
returns the column (or row) number the rectangle is con- duction and where a Case b) computation takes place we

tained in,i.e., the predecessor far (or ¢). We call the data 0Ny use constant time. Finally, since there is only one

structure supporting this kind of query for column or row €vel for which a query computation corresponds to Case
borders, the interval range (IR) structure. We will express & (we do not recurse from such case) and this takes time
the time cost of a query to the IR structure in termsnof ~ O(loglogn + k), the total computation for all levels along

and letg(n) denote this cost. The IR structures we use will the computation path is

have linear space cost in termsfd), i.e., a bit cost of 0(g(n)) + O(loglogn + k) + O(rloglogn + rk)  (2)
O(m(d)logu(l)). If the query is in Case a), there will be O(g(n) Toglogn + (r + 1) loglogn + (r + 1)k)
no further recursive calls, and the computation is reflected '
by the expression (1). That is the computation consists ofalso using Lemma 2.
computing the five rectanglé®,p, Riow, Ci, Cr andR using
the respective three-sided column and row range searchindg3.2 Analysis
structures and top structure. In total, the computatiomef t
rectangle boundaries takes tirlog log ) using the van In our analysis we will bound the number of bits used
Emde Boas data structure. Points to be returned are therat each recursive level. First we analyze the number of bits
the collection of points from these queries together with th used for auxiliary structures associated a recursive lgvel
points in the lists associated s€é)$i, j), for points(i, j) to in terms ofu(l) andn.
be reported forz in (1). By Lemma 3 there is a total @fn points at level. Since
In Case b) we need a recursive call for an interior point the IR structure uses linear space and by Corollary 1 each
set I for either a column or a row. If a range reduction auxiliary three-sided structure storingpoints uses at most
takes placei.e., I is represented recursively in rank space, O(m) words of sizeO(logu(l)), the total bit cost of these
we need to transform the query rectanglgh] x [c, d] to the structures are bounded 6)(2'n log u(1)).
corresponding range reduced region valid for the rank space Next, eachtop structureassociated a structure with a
for I at levell + 1. Furthermore, each recursively returned total of m points, keeps at most = ([2m/f(m)])? =
point from this query needs to be mapped back to the do-O(m/logm) points. Hence, any auxiliary general range
main for this level using the perfect hash table storing the searching structure using(s log s) words of sizelog u(1)
inverse of the range reduction fér for s points in universgu(l)]?, keeps the total bit cost
We summarize the time cost of the various steps for a for the top structure aO(mlogu(l)). Hence, the to-
level I. The first step is to establish whether the query tal bit cost of top structures at leveél is bounded by
corresponds to Case a) or Case b). We can use a va®)(2'nlogu(l)). The bound orO(slogs) for space cost
Emde Boas data structure in which case we get) = is met by the Overmars’ data structure [30] with queries in
O(loglogn). Later we will describe how to avoid this cost time O(loglogu(l) + k) = O(loglogn + k).

of O(loglogn), using a certain approximate version of IR~ For the reporting case we consider two variants of the
structure allowing time cost af(n) = O(1) within bit cost above structure with different trade-offs between spack an

O(m(d)logu(l)). time. We start by the variant with the best space cost.

Next consider the computation needed for Case b). The In this variant a range reduction takes place on each re-
IR structure gives us the number of the column or row con- cqrsive level. Hence the universe si;e of.a point set at ]evel
taining the rectangld,e., which recursive structure to call. ¢ iS bounded by the number of points in the set. Since
If a range reduction takes placelathere is an additional ~ fange reduction takes place at levet 1, u(l) is bounded
cost ofO(loglog n + k); we need to compute the range re-  bY maxae p) m(d) < FO(m), the last inequality follows
duced query rectangle for the recursive call appropriate fo fr_om Lemma 1. Hence the total bit cost of structures at level
the domain at level + 1. In addition we need) (k) calls Lis O(n2' log(f"(n))). .
to the perfect hash table for mapping the points from the ~Fact 1 bound the total bit cost for all levels by
domain of level + 1 back to original domain at level nlogn + Zle n2'log(f®(n)) = O(nf*(n)logn) =



O(nlognloglogn). Hence, this variant has the claimed 4 Semi-group sum
O(nloglogn) bound on space cost in terms of words of
sizeQ(logn).

In this variant we use the van Emde Boas data struc-
ture for the IR structurej.e., g¢(n) = O(loglogn) and
hence by the bound given in (2) we get a total time cost of

2 i _ _
O((loglogn)® + kloglogn) sincer = ¢ = O(loglogn). structure is very similar to the reporting variants, and we

This proves the second part of Theorem 2. _ will thus just describe how to modify these variants to ob-
The other trade-off variant we consider for reporting uses t3in the result.

more space, but provides better query performance.cLet
be an integer such that < ¢ < ¢. The only difference
from the previous variant is that range reductions only take
place on levels — 1 wherec divides!. This leads to an
increase of space cost which is analyzed as follows.! Let
be a recursive level for which dividesi. Since a range Lemma4 LetS C [n] x [n] be a set of points with =
reduction takes place on level- 1, u(l) is bounded by  |S|- Forany integer parametep, 1 < p < logn we can
£ (n). Using the same argumentation as for the previous construct a three-sided range searching data structuresfor
reporting variant, the bit cost for any levél I < I' <  intimeO(nlogn) time using spacé(nlogn) containing

I + ¢ is bounded by! nlog(u(l')). Sinceu(l') = u(l)we  atmostO(nlogn/p) semi-group elements, such that range
get2' nlog(u(l')) < 2'nlog(f™(n)). From this we can  dueries can be answered @(plog ) time.

In the semi-group variant we measure the space cost in
terms of the number of stored semi-group sums and the bit
cost of remaining parts of the data structure. We will an-
alyze these two measures separately in what follows. The

Before we begin a description we need a certain parame-
terized version of the semi-group variant for three-sided a
general range searching structures.

bound the sum of bit costs of recursive levebst 1, . .., 1+
c—1by Z;Ef_l 2" nlog(f") (n)) < n2°2' log(f(n)) = For the proof see Section 5.
0(2°nlogn), since2! log(f® (n)) is O(logn) by Fact 1. In addition to the three-sided range query we also need

Hence for any constant > 0, we can choose another a general semi-group range searching data structure, but fo
constant’ > 0 where we for: = [¢'¢] obtain a total bitcost  this we allow alog n factor extra in the space cost, stated in
of O((¢/¢)2°nlogn) = O(nlog'tn). In terms oflogn the following lemma.
size words, the space cost is thg: log® n). Furthermore,
the number- of levels where a range reduction takes place
isO(¢/c) = O(1/€') = O(1). Thus the total time cost is
O(g(n)loglogn + (loglogn)(f/c + 1) + k({/c + 1)) =
O(¢(n)loglogn + k) by the general bound (2) on the time
cost for a query. Implementing the IR structure using the
van Emde Boas data structure, lead®tglog log n)? + k).

In order to avoid thdoglogn factor for the additive i
term we use a modified version of a data structure of Mil- FOr the proof see Section 5.
tersenet al. [29] which supports range reporting in one di- ~ The semi-group variant is a modification of the data
mension in constant time per point to be reported_ By a structure from Section 3. Fixsuch thafl < ¢ < 2. For the
lookup of an associated column and row number for a re- three-sided range searching structures at leves use the
turned point, we can determine the information needed for Structure from Lemma 4 with parameter= [c']. For the
the IR query. Unfortunately the data structure of Miltersen top structure we use the data structure from Lemma 5 again
et al.[29] uses slightly too much spadee.,it has a bitcost ~ With parametep = [¢']. The semi-group elementi, j)
of O(m(d)log? u(l)). By only keeping a sparse sample of associatedi, j) € S is the semi-group sum of elements in
m(d)/log u(l) points in the structure, we can reduce the bit @(i,;). The analogy of (1) for the semi-group sum is then
cost to the desire® (m(d) logu(l)). However, this sparsi-

Lemmab5 Let p be an integer parameter such that <

p < logn. The general semi-group sum problem can be
solved in time) (plog n) and space (n log” n/p) in terms

of semi-group elements, and spa@@: log” n) in terms of
words.

fication leads to a special case for interval ranges that con- rect(S, [a,b] X [¢,d]) = Z e(i,j) ®
tain very few points (less thalog u(7)). This case can be (ij)ER
handled by a simple additional linear space auxiliary struc sum(rect(C (i), C1)) & sum(rect(C iy + 1), C,)) &

ture for thin rows and thin columns with at mdst(u(1))
points in each. For these thin rows and columns we can
support general range queries in tiélog log n + k) for k )
points to be reported. Details will be given in the full paper Note thatthe termy_ ; ., s e(i, j) corresponds to a single
We conclude that this variant of the range reporting proves range query for the top sétwith the associated semi-group
the first part of Theorem 2. sumse(i, j) for the points(i, j) € S.

sum(rect(R(i.), Riow) & sum(rect(R(iq + 1), Rup))-



4.1 Analysis associate the point € P, where rankpgy1, Piy1) =
j. For a node inT', we for each of theB? pairs of its
Consider a structurd € D(l) for a levell. We will childrenc, ..., cp associate al-dimensional data struc-
show that the number of semi-group elements used forture. Such data structure associated a pair, (&ay;),
the the auxiliary three-sided structures and the top struc-contains the points associated all leafs to descendents of

ture for d is boundedO((m(d)logm(d))/c'). First, the ¢i,--.,cj. A point in thesed-dimensional data structures
top structure contains at mo§}((m(d)/f(m(d)))?) = is only represented by the firdtcoordinates. Each point
O(m(d)/logm(d)) points. Hence the use of struc- is represented iB? d-dimensional data structures at each
ture from Lemma 5 with parameter = [c!] implies of the O(logn/ log B) levels in the tree, leading to space
a cost of O((m(d)logm(d))/c') semi-group elements. costO(s(n)B?logn/logB). A d + 1-dimensional query
For the three-sided structures we store at mogin(d)) can now be answered by(logn/log B) d-dimensional
points, hence by Lemma 4 also leading to a cost of queries. In addition we need(logn/log Blog B) time
O((m(d) logm(d))/c') semi-group elements. to determine these queries. Choosiig= (logn)'/!, for

By these bounds and by Lemma 1, Lemma 3 and Fact 1a constant > 1, we have al + 1 dimensional data struc-
we have the following total bound on the number of semi- ture with the claimed complexity. The construction can be

group elements stored in auxiliary structures at lével repeated a fixed number of times proving the following the-
orem.
Y (m(d)logm(d)/c < n2'log fU(n)/¢
deD(l) Theorem 5 Given a data structurel for two-dimensional
= O((nlogn)/d). static range reporting problem, using spa€ds(n)) and

time O(t(n) + k), t(n) > loglogn, for n points A can
For the chosen parameterthe sum of semi-group ele- be extended, for any fixetl > 3, to d-dimensional range
ment cost of all levels i®) (n Zlé:o logn/c) = O(nlogn) reporting, with space compllexi@(s(ﬁ,) log’™***n) and
as desired. Using argumentation very similar to the report- time complexityO (£ + t(”)(log’ﬁ,’;n)d’z)-
ing variant (except from an additionalg n factor) the ad-

ditional space cost (in terms bfg n size words) is bounded Combining Theorem 5 with the first part of Theorem 2,
by O(nlog n). using the observations in Section 2.2, proves Theorem 1.

The time cost is also very similar to the analysis for the
reporting variant. Time cost for traversing through the re- 6 Subproblems for the semi-group result
cursive structures until we reach a structure at some level
[ for which Case a) holds is the same., with a cost of

— 2 ini _
O(floglogn) = O((loglogn)). The remaining computa-  p ¢ (Lemma 4)Ve solve the three-sided range query

tlonhls tlhe ﬁ?IIshforthLee-mded que_zrlesg\nd the ;EOp strectu by using a dynamic to static transformation technique of
at the levell where the query satisfy Case a) for a struc- a persistent dynamic one-dimensional version of the semi-

tured € D(l). By Lemma 1m(d) is b.ounded b.wl) (n). group sum problem. The one-dimensional problem is as
The chosen structures for the three-sided queries andphetofo”OWS. For anA array of semi-group elements we will
structure has time cost bounded By logm(d)) which support two operationsipdate(i, f) : AJi] := Ai]& f and
by Fact 1 isO(log_n) sincec < 2. Hence the total time cost ;.. -, (i, ) i= A[]@A[i+1]- '7'@14[1]- Initially A[i] = e
is O(log) as claimed. for all 4, wheree is the neutral element for the semi-group.
Over the array we span a complete binary tree (we assume
5 Range searching in/ dimensions without loss of generality that = 2* for integerk > 0).
The leafs are ordered from left to right, and ttieleaf holds
Let A be a data structure fod-dimensional range the value ofd[i]. An internal node that spans the leafs from

reporting, using spac®(s(n)) and time O(t(n) + k), i to j holds the valuénterval (i, j). An update(i, f) oper-
where t(n) > loglogn, for n points P C R?. We ation corresponds to updating tfta leaf. Updating a leaf
show how to extendd to support(d + 1)-dimensional is done by updating in constant time each of(tfog | A|)

range reporting, using spad@(s(n)log'**n) and time ancestors. Similarly, a query can be answered by comput-

O(t(n)(logn/loglogn) + k). For a pointz, letz; denote ing the sum 0O (log | A|) values from internal nodes. Now
thei” coordinate of:. To avoid tedious details we assume we use a standard approach to get a solution for the static
x; # y; forall z,y € P andi. Let P, = {p;|p € P}. three-sided two-dimensional range query. The degree of
Let T be a rooted tree, with leafs, node degreB, where the nodes in the above structure is clearly bounded by a
the different between two leafs depth is at mast The constant implying that we can use a persistent technique
leafs are ordered from left to right, and to ti# leaf we by Driscoll et. al.[19]. This is done with a worst case



slowdownQ(1) for queries, amortized slowdown(1) for

updates and amortized space do$l) per memory modi-
fication. Using the above one-dimensional structure for the
first coordinate of the points, we now insert the points in

(4]

increasing order by the second coordinate. A three-sided 5]

query (xo, z1,y) corresponding tonterval (xq, z1) in the

persistent one-dimensional structure at the time where all
points with second coordinatesy have been inserted, and

no one else. This gives dd(n logn) space and)(logn)

(6]
(7]

guery time solution for three-sided range queries. Next we 8]
show how to decrease the space used for semi-group el-

ements toO(nlogn/p), by increasing the query time to
O(plogn) still using O(nlogn) space in total. This is
done by a slight modification of the above dynamic one-
dimensional algorithm. For an internal nogepanning the
leafsi - - - j we associate a bucket of pointers to semi-group

elements. Updating with f we insert a pointer tg in z’s

bucket. If the bucket holds pointers, we empty the bucket

and update. Let z hold the semi-group valug(z), let the
semi-group element a pointgrpoints to bev(q), and let
the pointers ire’s bucket beyy, - - - ¢,. Updatingz is to set

v(z) == v(z) v(q1) ® - -- ® v(gy). This change does not
decrease the total space used, but it does decrease the nunp 3]

ber of semi-group elements in memorygn logn/p). To

perform a query we have to examif®élog n) ancestors and

their buckets of sizg, leading to complexity) (plogn) for
aquery. 1

Proof.

setsA andB, such thatd = {p : rank(p,S1) < |S|/2}

andB = S\ A. To each of the point set$ and B we asso-

(Lemma 5)To avoid tedious details we assume
x1 # y1 forallz,y € S. We divide the points into two sub-

(9]

[10]

[11]

[12]

[14]

[15]

[16]

ciate a three-sided structure that enable us to answeragueri [17]

not entirely enclosed in eithet or B. In order to answer
queries entirely enclosed in eithér or B we associate a
recursive structure. Now usin@(logn) time we find the
structure in which we can combine two three-sided queries

for the answer leading to the complexi®flog n+ plogn).

Since a point is at most included x(log n) structures we

also achieve the claimed space complexita
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