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Abstract

We present new general techniques for static orthog-
onal range searching problems in two and higher di-
mensions. For the general range reporting problem
in R3 , we achieve query timeO(logn + k) using
spaceO(n log1+" n), wheren denotes the number of stored
points andk the number of points to be reported. For the
range reporting problem on ann�n grid, we achieve query
time O(log logn + k) using spaceO(n log" n). For the
two-dimensional semi-group range sum problem we achieve
query timeO(logn) using spaceO(n logn).
1 Introduction

LetP be a finite set of points inRd andQ a query range
in Rd . Range searching is the problem of answering various
types of queries about the set of points which are contained
within the query range,i.e., the point setP \ Q. A query
is, e.g. to report the point setP \ Q (reporting queries), its
cardinalityjP \Qj (counting queries), or simply to decide ifP\Q = ; (emptiness queries). Orthogonal range searching
is the special case where the query ranges ared-dimensional
rectangles[a1; b1℄� � � � � [ad; bd℄ � Rd .

Points can,e.g. represent a population of persons asso-
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etc. A typical orthogonal range query is of the form “find
all males of age between 30 and 40 years with an income
between $20,000 and $40,000”.

The orthogonal range searching problem has numerous
applications and has been studied extensively for the last
decades, seee.g.[1, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17,
20, 22, 24, 25, 26, 27, 30, 31, 40, 41, 42, 43, 45, 46, 47].
Willard [43] gives a comprehensive list of references on the
subject and gives applications to the theory of databases.
For surveys see,e.g. the survey by Agarwal [1], and the
books by Mehlhorn [27] and Preparate and Shamos [31].

In this paper we consider various orthogonal range
searching problems on static point sets. We give new tech-
niques for static orthogonal range searching problems im-
proving the previous best results [11, 14, 18, 30, 32, 41, 42]
for various models, problems and dimensions: general
range reporting inRd , for fixed d � 3, two-dimensional
range reporting in rank space, and for the two-dimensional
semi-group range sum problem. In the following we letn
denote the number of stored points andk the number of
points to be reported by a reporting query.

The model of computation we assume is a unit-cost
RAM with word size logarithmic inn, as used for the most
upper bounds,e.g. as in [11, 14, 18, 30, 32, 41, 42]. The
remaining of the introduction gives a detailed discussion of
our results.

1.1 Range reporting

Givenn pointsP � Rd , the generalstaticd-dimensional
range reporting problemis to construct a data structure forP that supports the query:report([a1; b1℄ � � � � � [ad; bd℄)
which reports the point setf (v1; : : : ; vd) 2 P : a1 � v1 �b1; : : : ; ad � vd � bd g: For three dimensions we obtain
the following result.



Theorem 1 For the static three-dimensional range report-
ing problem inR3 there exists a data structure support-
ing queries in timeO(logn + k) and requiring spaceO(n log1+" n).

Chazelle in 1986 [13] gave a data structure for three
dimensions with query timeO(log2 n + k) and using
spaceO(nlog2 n=log logn). Willard in 1992 [42] im-
proved the query time of Chazelle by a factorO(log logn)
using fusion trees. Overmars in 1988 [30] gave a data
structure with query timeO(logn log logn + k) using
spaceO(n log2 n). The query time of Overmars was im-
proved by a factorO(log logn= log�� n)1 by Subramanian
and Ramaswamy in 1995 [32]. Using a factorO(logn)
more space, the query time can be reduced by a fac-
tor O(log�� n) [11]. Chazelle [14] gives a series of results
using less space, but queries using more time. Table 1 sum-
marizes the bounds for range reporting inR3 .

Our data structure improves all the above mentioned re-
sults.

Query time Space SourceO( log2 nlog logn + k) O(n log2 nlog logn ) [42]O(logn log�� n+ k) O(n log2 n) [32]O(logn+ k) O(n log3 n) [11]O(log2 n+ k) O(n log1+" n) [14]O(logn+ k) O(n log1+" n) New

Table 1. Orthogonal range reporting in R3 .

Accepting a penalty for each reported point
Chazelle [14] gave a data structure with query
time O(log2 n + k log log(4n=k)) and using spaceO(n logn log logn), or query time O(log2 n +k log"(2n=k)) and using spaceO(n logn).

Using a method of Willard and Lueker [46], the above
bounds can be extended, for any fixedd, to d-dimensional
range reporting, ford � 4, with a penalty of a fac-
tor O(logd�3 n) in space and query time (excluding the
term involvingk). We show how the above bounds can be
extended for any fixedd, to d-dimensional range reporting,
for d � 4, with a penalty of a factorO(logd�3+" n) in space
andO(( lognlog logn )d�3) in query time (excluding the term in-
volving k).

Finally, accepting a penalty for each reported point,
orthogonal range search inR3 can be solved with
query timeO(logn(log logn)2 + k log logn) using spaceO(n logn log logn). This result is obtained by applying
the method of Willard and Lueker to one of our results for
two-dimensional range searching on a grid in Section 1.2,

1log�� n is the number of times to applylog� n to get a constant, andlog� n is the number of times to applylog n to get a constant.

using standard range reducing technique [30], as described
in Section 2.2.

1.2 Two-dimensional range reporting

Forn points in two-dimensional rank space,i.e.,ann�n
grid, we have the following result.

Theorem 2 For the static two-dimensional range report-
ing problem on ann � n grid, there exist data struc-
tures supporting queries in timeO(log logn + k) andO((log logn)2 + k log logn) respectively and requiring
spaceO(n log" n) andO(n log logn) respectively, for any
constant" > 0. In both cases the preprocessing time is
expectedO(n logn).

For n points on ann � n grid Overmars [30] achieves
query timeO(log logn + k) using spaceO(n logn). Our
Theorem 2 improves the result of Overmars, and settle an
open problem he raises by asking “It is not clear whether
(n logn) storage is necessary for obtaining efficient solu-
tions on a grid”.

Chazelle [14] provides the following series of results for
the case of points inR2 :

Query time SpaceO(logn+ k) O(n log" n)O(logn+ k log log(4n=k)) O(n log logn)O(logn+ k log"(2n=k)) O(n)
Using the standard range reduction fromR2 to rank

space, it can be seen that we only match or almost match
the results of Chazelle inR2 .

Restricting the model to,e.g. a pointer machine [34],
Chazelle [15] has shown that reporting in timeO(logn +k) requires space
(n logn= log logn). This bound is
matched by an optimal upper bound for the pointer machine
model [13].

1.3 The semi-group range sum problem

For the semi-group range sum problem we consider a
commutative semi-grouphG;�i, i.e.,we do not assume the
elements inG to have additive inverses. LetP ben points in
some space,e.g.R2 , where each pointp 2 P is associated
with a semi-group elemente(p) 2 G. The semi-group range
sum problem is to construct a data structure that for a given
rectangular query rangeQ supports the query
sum(Q) returning the semi-group sum

Pp2P\Q e(p).
A data structure cannot make use of subtractions or any

internal property of the semi-group. Hence, a data structure
for the semi-group range sum problem can be applied to
any concrete choice of a semi-group which,e.g. may be
available through function calls. For the semi-group range
sum problem inR2 we have the following result.



Query time Space SourceO(log2 n) O(n log" n)O(log2 n log logn) O(n log logn) 9=; [14]O(log2+" n) O(n)O(�(n) logn) O(n logn) [18]O(logn) O(n logn) New

Table 2. Bounds for the orthogonal semi-
group range sum problem in R2 .

Theorem 3 For the static semi-group range sum problem
in R2 , there exists a data structure supporting queries in
timeO(logn) and requiring spaceO(n logn). The prepro-
cessing time is expectedO(n log2 n).

Results for the range sum problem often only state the
space used as the number of semi-group elements stored.
However, for our data structure both the number of semi-
group elements stored and the additional space required
is O(n logn). For the one-dimensional semi-group range
sum problem in[n℄, i.e., a table of semi-group elements,
Yao [47, 48] showed that using spacem, the query time is�(�(m;n) + n=(m� n+ 1)) in the arithmetic model [47,
48], where� is the functional inverse of Ackermann’s func-
tion defined by Tarjan [33]. Chazelle and Rosenberg [18]
showed how to achieve the upper bound on the RAM.
Chazelle and Rosenberg combine their result for one dimen-
sion with the technique of Lueker and Willard [46] to get a
result for two dimensions: Using spaceO(n logn), queries
can be answered in timeO(�(n) logn). Chazelle [14] gives
a series of results using less space, but queries using more
time.

Table 2 summarizes the bounds for the orthogonal semi-
group range sum problem inR2 . The space bounds are the
number of semi-group elements stored.

Willard [40] studied the range sum problem in the group
model, i.e., he makes use of the presence of additive in-
verses. Willard obtained query timeO(logn) using spaceO(n logn), i.e.,the same bounds as we obtain for the semi-
group model.

If we consider the product of query time and space,
our result is the first that achieves a product trade-off
of O(n log2 n). Chazelle in [16] provides the follow-
ing lower bound for thed-dimensional semi-group range
sum problem: usingm units of storage, the query time is
((logn= log(2m=n))d�1) (see also Yao [48]). The lower
bound is given for the dominance problem,i.e., the spe-
cial case where the ranges are of the form[�1; b1℄ �� � � � [�1; bd℄, and clearly holds for general orthogonal
range sum queries. For the dominance problem Chazelle
gives matching upper bounds in the arithmetic model for

m = 
(n log1+" n). Lower bounds for the off-line version
are given in [12].

2 Preliminaries

Let [n℄ denote the set of integersf0; 1; : : : ; n�1g. We let[a; b℄, denote the set (interval) of integers betweena andb
includinga andb. The sets (intervals)℄a; b℄, [a; b[ and℄a; b[
denotes the same set of integers but excludinga, excludingb, and excluding botha andb respectively. Fora > b, the
interval [a; b℄ = ; and fora = b, [a; b[=℄a; b℄ =℄a; b[= ;.
A rectangle is the cross product of two intervals. Letu � 1
denote an integer. LetR � [u℄� [u℄ denote a rectangle and
let S denote a set of points in[u℄ � [u℄. We let rect(S;R)
denote the set of points fromS within rectangleR, i.e.,
rect(S;R) = S \ R. Finally, for an intervalI � [u℄ we let
rectx(S; I) denote the setrect(S; I � [u℄) and recty(S; I)
the setrect(S; [u℄� I).
2.1 Three-sided queries reporting

In our solutions for answering general queries in two
dimensions, we will use data structures forthree-sided
queries in two dimensions. LetP be a point set in a two-
dimensional space.

A three-sided query takes as arguments three coordinatesx1; x2; y1 and reports:

report(x1; x2; y1): reportf (x; y) 2 P : x1 � x �x2 ^ y � y1 g :
Note that the three-sided query equals the general query
report([x1; x2℄� [�1; y1℄).

Frieset al. [23] considered three-sided queries in[N ℄ �R. Givenn lexicographically sorted points from[N ℄ � R,
they showed how to achieve query timeO(log logn + k),
usingO(N+n) space and preprocessing time. We have the
following result (following immediately from [24]):

Theorem 4 For n points in [N ℄ � R, usingO(N + n)
space and preprocessing time, three-sided queries can be
answered inO(k) time.

To show this letSx = fy j (x; y) 2 Pg [ f1g be stored
as sorted lists and letsx = minSx, for x 2 [N ℄. From [24,
Sect. 3] we have that usingO(N+n) space and preprocess-
ing time, we can for a queryreport(x1; x2; y1) in constant
time find i such thatsi = minfsx j x1 � x � x2g. Ifsi > y1 we stop; otherwise we return the pointsf(i; y) jy 2 Si ^ y � y1g, and proceed withreport(x1; i� 1; y1)
andreport(i+ 1; x2; y1). In total we spendO(k) time.

Corollary 1 For n points in [u℄ � [u℄, usingO(n) space
and expected preprocessing time, three-sided queries can
be answered inO(k + log log u) time.



2.2 Reduction to rank space

Using a standard technique from the literature,e.g.
Chazelle [14] and Gabowet al. [24], we can reduce a gen-
eral static range searching problem inRd to a range search-
ing problem in thed-dimensional grid[0; 1; : : : ; n� 1℄d =[n℄d, in the following denotedrank space. For a pointx,
let xi denote theith coordinate ofx. If P is a set ofn
points inRd , thenP is translated to the set̂P in rank space
by the order preserving mapping�P , where�P is defined
by (�P (p))i = rank(pi; Pi), andPi = fqi j q 2 Pg andrank(x; S) = jfy 2 S j y < xgj. The construction of the
setP̂ is easily accomplished by sorting the points inP once
with respect to each of thed coordinates. Ad-dimensional
range queryR = [a1; b1℄ � � � � � [ad; bd℄ in Rd is trans-
lated to the range query�P (R) = [â1; b̂1℄ � � � � � [âd; b̂d℄
in rank space by performing2d binary searches such thatâi = rank(ai; Pi) andb̂i = rank(pred(bi; Pi); Pi), wherepred(x; S) = maxfy 2 S [ f�1g j y � xg. This transla-
tion satisfies�P (R\P ) = �P (R)\ P̂ . In the following we
let the mapping�P from P to P̂ be denoted therange re-
ductionfor P , andP̂ therange reducedset of points. Note
that P̂i = [ni℄, whereni is the number of differentith-
coordinates of the points inP .

Algorithms given in this paper uses range reductions to
reduce the problems defined for general spacesRd to point
sets in rank spaces. In order to support the range reduc-
tion fromRd to rank space, we sort the set of stored points
by each of thed dimensions in timeO(dn logn). A range
reduced query originally fromRd is then transformed to
rank space using a binary search for each dimension in
time O(d logn). If the coordinates of the points are inte-
gers in a universe of sizeU , we can alternatively use the
data structure of van Emde Boas that supports searches in
time O(log logU) [28, 37, 38, 39] and uses spaceO(n).
Depending on the computational model and the sort of
problem, several different constructions can be used see
e.g.[2, 4, 35, 36, 44].

3 Range searching on the grid

In this section we describe the data structure for range
reporting on the two-dimensional grid. LetM be the input
set ofn points in[n℄� [n℄. We assume word size of at leastlogn, and when we say space cost, we measure this in terms
of number of words used.

Our data structure uses the divide and conquer approach,
and consists of a number of recursive levels. Each recursive
level holds a number of auxiliary range searching structures
supporting various limited kinds of range queries. We con-
sider a division of the points into subsets called rows and
columns. Each point is represented in at most two recursive
substructures for a row subset and a column subset.

In the following we use the functionf(m) =dpm logme. We let f (0)(m) = m and f (k)(m) =f(f (k�1)(m)) for k � 1. We letf�(m) denote the minimal
integerk such thatf (k)(m) � 3. We need the following
fact forf .

Fact 1 For any integerl, 1 � l � f�(n), 2l log(f (l)(n)) �4 logn andf�(n) = log logn+O(1).
Consider a point setS from a universe[u℄ � [u℄, whereu � n. Let m � n be the size ofS. We define the

row and column subsets relative to a set of row bordersR � [u + 1℄ and column bordersC � [u + 1℄ defined
as follows. Let(0) = 0. The kth column border(k)
is defined to be the minimalx > (k � 1) such thatjrectx(S; [(k � 1); x℄)j > f(m). If no suchx exists,(k) = u and is then the last column border. Thekth col-
umn is the setC(k) = rectx(S; [(k � 1); (k)[) and the
interior of the column is _C(k) = rectx(S; ℄(k� 1); (k)[).
Note that by definition of the borders,j _C(k)j � f(m)
for all k. The row borders and associated rows are de-
fined similarly. That isr(0) = 0 andr(k) = min(f y >r(k � 1) : jrecty(S; [r(k � 1); y℄)j > f(m) g [ fug).
The kth row is R(k) = recty(S; [r(k � 1); r(k)[) and_R(k) = recty(S; ℄r(k � 1); r(k)[). Finally, letQ(i; j) de-
note the intersection of columni and rowj, i.e.,Q(i; j) =C(i)\R(j) = rect(S; [(i�1); (i)[�[r(j�1); r(j)[). By
definition of row and column borders, there can be at mostd2m=f(m)e columns andd2m=f(m)e rows. We define the
top setof pointsŜ � [d2m=f(m)e℄2 by (i; j) 2 Ŝ if and
only if Q(i; j) 6= ;.

A range query for the query rectangle[a; b℄ � [; d℄ �[u℄� [u℄ can be expressed in terms of range queries for the
above sets. We split between two cases for the query.

Case a) [a; b℄ \ C 6= ; and[; d℄ \ R 6= ;.
In this case let [ia; ib℄ be the set of column
borders spanned by[a; b℄, i.e., f(ia); (ia +1); : : : ; (ib)g = [a; b℄ \ C. Similarly let [i; id℄
be the set of row borders spanned by[; d℄. De-
fine the rectanglesCl = [a; (ia)[�[; d℄, Cr =[(ib); b℄ � [; d℄, Rlow = [(ia); (ib)[�[; r(i)[
and Rup = [(ia); (ib)[�[r(id); d℄. Let R̂ =
rect(Ŝ; ℄ia; ib℄�℄i; id℄). Then rect(S; [a; b℄ � [; d℄)
can be expressed as the followingdisjoint union� [(i;j)2R̂Q(i; j)� [ (1)

rect(C(ia); Cl) [ rect(C(ib + 1); Cr) [
rect(R(i); Rlow) [ rect(R(id + 1); Rup):

Case b) [a; b℄ \ C = ; or [; d℄ \ R = ;.
In this case the query rectangle[a; b℄ � [; d℄ is com-
pletely within the interior of a row or a column. That



is, if it is completely within a column (in case of[a; b℄ \ C = ;) we can expressrect(S; [a; b℄ � [; d℄)
asrect( _C(k); [a; b℄� [; d℄) for the uniquek satisfying(k � 1) < a � b < (k). Similar for the rectangle
completely within a row (in case of[; d℄ \ R = ;),
rect(S; [a; b℄ � [; d℄) = rect( _R(k); [a; b℄ � [; d℄) for
the uniquek satisfyingr(k � 1) <  � d < r(k).

Hence by the above two cases, we can answer any reporting
query for a rectangle provided access to reporting queries
for the following types of ranges.

1. Three-sided rectangle ranges contained in a column or
a row, with a side fixed to a column or row border,i.e.,
as the rectangle rangesCl, Cr, Rlow andRup in (1).

2. A range properly included in a column or row as in
Case b).

3. A general range query for the top setŜ within domain[d2m=f(m)e℄2. This range query computes the points
corresponding tôR in (1). Using these points and in-
formation stored for eachQ(i; j) for a (i; j) 2 Ŝ, we
can form the union corresponding to the first term in
(1).

Our data structure reflects the above partition into rows
and columns, with auxiliary structures supporting queries
1. and 3. above, and recursive structures for 2. To be
more precise, the data structure consists of` recursive lev-
els (which by Fact 1 will turn out to belog logn + O(1)),
starting with the input set at level 0. Consider a structure
at level l, 0 � l � `, storing point setS. If S has size
less than a constant larger than3, the recursion stops and
we represent the points in a list with queries supported by
a linear scan in constant time. OtherwiseS is partitioned
according to the above description. For each1 < k � jCj,
the column border(k) is associated two three-sided range
searching structures, a structure for points inC(k � 1) and
one for all points inC(k). Both supports the three-sided
queries with a side fixed to(k). That is, these queries en-
able answers for the rectangles as given in 1. Fork = 1 ork = jCj, the border(k) is only associated one structure for
the pointsC(k) andC(k�1) respectively. Similarly we as-
sociate three-sided structures for the rows with a side fixed
to a row border for rectangles likeRlow andRup in Case a).

The point set̂S is represented in an general range search-
ing structure we call the top structure. In addition to this,
we store information for each setQ(i; j), i.e., a list of the
points. For eachQ(i; j) we keep this information in an en-
try in a two-dimensional array withd2m=f(m)e2 entries.
Hence in order to report the points forQ(i; j) we simply
return the list for entry(i; j) in the array.

Finally, for each interior point setI , i.e.,I is a set _C(k)
and _R(k) for an integerk, we storeI in a recursive structure

corresponding to levell + 1. We will use two strategies for
this recursive representation depending upon the time and
space cost we aim at. The recursive point set forI may
either be stored relative to the universe used forS, or we
may reduce the universe to rank space forI . In the latter
case, all structures recursively represented at levell+ 1 are
range reduced, and we say a range reduction on levell takes
place. For levels where a range reduction takes place, we
keep a van Emde Boas data structure which enable us to
transform a rectangle query within a range reduced point
setI to the rank space domain forI . Furthermore we also
store a perfect hash table [21] enabling us to map the points
from range reduced points sets at levell + 1 back to the
original domain forS. We call the non-recursive data struc-
tures associated the recursive structures at levell such as the
three-sided range searching structures and the top structure
for auxiliary structures at levell.

The set of recursive range searching data structures at
level l is denotedD(l), for instanceD(0) is the general
structure for the input setM , D(1) is the set of structures
for the interior column and row sets forM . Letd 2 D(l) be
a recursive structure at levell. The number of points stored
in d is denotedm(d). We letu(d) denote the universe size
for structured, i.e.,d stores points in the grid[u(d)℄�[u(d)℄.
We letu(l) be the size of the largest universe size at a recur-
sive levell, i.e.,u(l) = maxd2D(l) u(d). Before describing
the query computation we state three simple lemmas rele-
vant for the analysis of the data structure.

Lemma 1 For anyl, 0 � l � `, the number of pointsm(d)
in a structured 2 D(l) is bounded byf (l)(n).
Proof. Proof by induction onl, using that the largest
structure inD(l + 1) contains at mostf(m) points, wherem = maxd2D(l)m(d), and the initial level 0 hasn points.

Lemma 2 The number of levels` is bounded byO(log logn).
Proof. By Lemma 1, any structure at levelf�(n) =O(log logn) contains at most3 points and hence the recur-
sion can not have depth of more than this.

Lemma 3 For any levell, 0 � l � `, Pd2D(l)m(d) �2ln.

Proof. Proof by induction onl. At the initial level 0 it
clearly holds. Next for a point setS at a levell, a point inS is represented in at most two recursive structures at levell + 1, i.e., in the interior point sets for a column and a row.
Hence the number of points at levell + 1 is at most the
double of levell.



3.1 Query computation

Consider a query for rectangle[a; b℄ � [; d℄ to a struc-
ture d 2 D(l) for some levell, where0 � l � `. First
the computation decides whether the query rectangle sat-
isfy Case a) or Case b) above. That is, we need a structure
to decide whether the interval[a; b℄ contains a column bor-
der or whether[; d℄ contains a row border. In case one
of these intervals does not contain a border, the structure
returns the column (or row) number the rectangle is con-
tained in,i.e., the predecessor fora (or ). We call the data
structure supporting this kind of query for column or row
borders, the interval range (IR) structure. We will express
the time cost of a query to the IR structure in terms ofn
and letq(n) denote this cost. The IR structures we use will
have linear space cost in terms ofm(d), i.e., a bit cost ofO(m(d) logu(l)). If the query is in Case a), there will be
no further recursive calls, and the computation is reflected
by the expression (1). That is the computation consists of
computing the five rectanglesRup,Rlow,Cl,Cr andR̂ using
the respective three-sided column and row range searching
structures and top structure. In total, the computation of the
rectangle boundaries takes timeO(log logn) using the van
Emde Boas data structure. Points to be returned are then
the collection of points from these queries together with the
points in the lists associated setsQ(i; j), for points(i; j) to
be reported for̂R in (1).

In Case b) we need a recursive call for an interior point
set I for either a column or a row. If a range reduction
takes place,i.e., I is represented recursively in rank space,
we need to transform the query rectangle[a; b℄� [; d℄ to the
corresponding range reduced region valid for the rank space
for I at levell + 1. Furthermore, each recursively returned
point from this query needs to be mapped back to the do-
main for this levell using the perfect hash table storing the
inverse of the range reduction forI .

We summarize the time cost of the various steps for a
level l. The first step is to establish whether the query
corresponds to Case a) or Case b). We can use a van
Emde Boas data structure in which case we getq(n) =O(log logn). Later we will describe how to avoid this cost
of O(log logn), using a certain approximate version of IR
structure allowing time cost ofq(n) = O(1) within bit costO(m(d) logu(l)).

Next consider the computation needed for Case b). The
IR structure gives us the number of the column or row con-
taining the rectangle,i.e., which recursive structure to call.
If a range reduction takes place atl, there is an additional
cost ofO(log logn+ k); we need to compute the range re-
duced query rectangle for the recursive call appropriate for
the domain at levell + 1. In addition we needO(k) calls
to the perfect hash table for mapping the points from the
domain of levell + 1 back to original domain at levell.

Next consider Case a). First we needO(log logn) time
for the computation of the query boundaries. By Corollary 1
these three-sided queries take timeO(log log u(l) + k) =O(log logn + k) for k elements to be reported. Hence the
overall work for Case a) isO(log logn+ k).

Let r denote the number of levels for which a range re-
duction takes place. For a query computation, the total time
spend on recursive levels of this kind is by the above anal-
ysis O(r log logn + rk). For levels without a range re-
duction and where a Case b) computation takes place we
only use constant time. Finally, since there is only one
level for which a query computation corresponds to Case
a) (we do not recurse from such case) and this takes timeO(log logn+ k), the total computation for all levels along
the computation path isO(`q(n)) + O(log logn+ k) + O(r log logn+ rk) (2)= O(q(n) log logn+ (r + 1) log logn+ (r + 1)k):
also using Lemma 2.

3.2 Analysis

In our analysis we will bound the number of bits used
at each recursive level. First we analyze the number of bits
used for auxiliary structures associated a recursive levell,
in terms ofu(l) andn.

By Lemma 3 there is a total of2ln points at levell. Since
the IR structure uses linear space and by Corollary 1 each
auxiliary three-sided structure storingm points uses at mostO(m) words of sizeO(logu(l)), the total bit cost of these
structures are bounded byO(2ln logu(l)).

Next, eachtop structureassociated a structure with a
total of m points, keeps at mosts = (d2m=f(m)e)2 =O(m= logm) points. Hence, any auxiliary general range
searching structure usingO(s log s) words of sizelogu(l)
for s points in universe[u(l)℄2, keeps the total bit cost
for the top structure atO(m logu(l)). Hence, the to-
tal bit cost of top structures at levell is bounded byO(2ln logu(l)). The bound onO(s log s) for space cost
is met by the Overmars’ data structure [30] with queries in
timeO(log logu(l) + k) = O(log logn+ k).

For the reporting case we consider two variants of the
above structure with different trade-offs between space and
time. We start by the variant with the best space cost.

In this variant a range reduction takes place on each re-
cursive level. Hence the universe size of a point set at levell is bounded by the number of points in the set. Since
range reduction takes place at levell � 1, u(l) is bounded
by maxd2D(l)m(d) � f (l)(n), the last inequality follows
from Lemma 1. Hence the total bit cost of structures at levell isO(n2l log(f (l)(n))).

Fact 1 bound the total bit cost for all levels byn logn + Pl̀=1 n2l log(f (l)(n)) = O(nf�(n) logn) =



O(n logn log logn). Hence, this variant has the claimedO(n log logn) bound on space cost in terms of words of
size
(logn).

In this variant we use the van Emde Boas data struc-
ture for the IR structure,i.e., q(n) = O(log logn) and
hence by the bound given in (2) we get a total time cost ofO((log logn)2 + k log logn) sincer = ` = O(log logn).
This proves the second part of Theorem 2.

The other trade-off variant we consider for reporting uses
more space, but provides better query performance. Let
be an integer such that1 �  � `. The only difference
from the previous variant is that range reductions only take
place on levelsl � 1 where divides l. This leads to an
increase of space cost which is analyzed as follows. Letl
be a recursive level for which divides l. Since a range
reduction takes place on levell � 1, u(l) is bounded byf (l)(n). Using the same argumentation as for the previous
reporting variant, the bit cost for any levell0, l � l0 <l +  is bounded by2l0n log(u(l0)). Sinceu(l0) = u(l) we
get2l0n log(u(l0)) � 2l0n log(f (l)(n)). From this we can
bound the sum of bit costs of recursive levelsl; l+1; : : : ; l+� 1 by

Pl+�1l0=l 2l0n log(f (l)(n)) � n22l log(f (l)(n)) =O(2n logn), since2l log(f (l)(n)) isO(logn) by Fact 1.
Hence for any constant� > 0, we can choose another

constant�0 > 0where we for = d�0`e obtain a total bit cost
of O((`=)2n logn) = O(n log1+� n). In terms oflogn
size words, the space cost is thusO(n log� n). Furthermore,
the numberr of levels where a range reduction takes place
is O(`=) = O(1=�0) = O(1). Thus the total time cost isO(q(n) log logn + (log logn)(`= + 1) + k(`= + 1)) =O(q(n) log logn+ k) by the general bound (2) on the time
cost for a query. Implementing the IR structure using the
van Emde Boas data structure, leads toO((log logn)2+k).

In order to avoid thelog logn factor for the additive
term we use a modified version of a data structure of Mil-
tersenet al. [29] which supports range reporting in one di-
mension in constant time per point to be reported. By a
lookup of an associated column and row number for a re-
turned point, we can determine the information needed for
the IR query. Unfortunately the data structure of Miltersen
et al. [29] uses slightly too much space,i.e., it has a bit cost
of O(m(d) log2 u(l)). By only keeping a sparse sample ofm(d)= logu(l) points in the structure, we can reduce the bit
cost to the desiredO(m(d) logu(l)). However, this sparsi-
fication leads to a special case for interval ranges that con-
tain very few points (less thanlogu(l)). This case can be
handled by a simple additional linear space auxiliary struc-
ture for thin rows and thin columns with at mostlog(u(l))
points in each. For these thin rows and columns we can
support general range queries in timeO(log logn+k) for k
points to be reported. Details will be given in the full paper.
We conclude that this variant of the range reporting proves
the first part of Theorem 2.

4 Semi-group sum

In the semi-group variant we measure the space cost in
terms of the number of stored semi-group sums and the bit
cost of remaining parts of the data structure. We will an-
alyze these two measures separately in what follows. The
structure is very similar to the reporting variants, and we
will thus just describe how to modify these variants to ob-
tain the result.

Before we begin a description we need a certain parame-
terized version of the semi-group variant for three-sided and
general range searching structures.

Lemma 4 Let S � [n℄ � [n℄ be a set of points withn =jSj. For any integer parameterp, 1 � p � logn we can
construct a three-sided range searching data structure forS
in timeO(n logn) time using spaceO(n logn) containing
at mostO(n logn=p) semi-group elements, such that range
queries can be answered inO(p logn) time.

For the proof see Section 5.
In addition to the three-sided range query we also need

a general semi-group range searching data structure, but for
this we allow alogn factor extra in the space cost, stated in
the following lemma.

Lemma 5 Let p be an integer parameter such that1 �p � logn. The general semi-group sum problem can be
solved in timeO(p logn) and spaceO(n log2 n=p) in terms
of semi-group elements, and spaceO(n log2 n) in terms of
words.

For the proof see Section 5.
The semi-group variant is a modification of the data

structure from Section 3. Fix such that1 <  � 2. For the
three-sided range searching structures at levell we use the
structure from Lemma 4 with parameterp = dle. For the
top structure we use the data structure from Lemma 5 again
with parameterp = dle. The semi-group elemente(i; j)
associated(i; j) 2 Ŝ is the semi-group sum of elements inQ(i; j). The analogy of (1) for the semi-group sum is then

rect(S; [a; b℄� [; d℄) = X(i;j)2R̂ e(i; j)�
sum(rect(C(ia); Cl)) � sum(rect(C(ib + 1); Cr))�
sum(rect(R(i); Rlow)� sum(rect(R(id + 1); Rup)):

Note that the term
P(i;j)2R̂ e(i; j) corresponds to a single

range query for the top set̂S with the associated semi-group
sumse(i; j) for the points(i; j) 2 Ŝ.



4.1 Analysis

Consider a structured 2 D(l) for a level l. We will
show that the number of semi-group elements used for
the the auxiliary three-sided structures and the top struc-
ture for d is boundedO((m(d) logm(d))=l). First, the
top structure contains at mostO((m(d)=f(m(d)))2) =O(m(d)= logm(d)) points. Hence the use of struc-
ture from Lemma 5 with parameterp = dle implies
a cost of O((m(d) logm(d))=l) semi-group elements.
For the three-sided structures we store at mostO(m(d))
points, hence by Lemma 4 also leading to a cost ofO((m(d) logm(d))=l) semi-group elements.

By these bounds and by Lemma 1, Lemma 3 and Fact 1
we have the following total bound on the number of semi-
group elements stored in auxiliary structures at levellXd2D(l)(m(d) logm(d))=l � n2l log f (l)(n)=l= O((n logn)=l):

For the chosen parameter, the sum of semi-group ele-

ment cost of all levels isO(nPl̀=0 logn=l) = O(n logn)
as desired. Using argumentation very similar to the report-
ing variant (except from an additionallogn factor) the ad-
ditional space cost (in terms oflogn size words) is bounded
byO(n logn).

The time cost is also very similar to the analysis for the
reporting variant. Time cost for traversing through the re-
cursive structures until we reach a structure at some levell for which Case a) holds is the same,i.e., with a cost ofO(` log logn) = O((log logn)2). The remaining computa-
tion is the calls for three-sided queries and the top structure
at the levell where the query satisfy Case a) for a struc-
tured 2 D(l). By Lemma 1m(d) is bounded byf (l)(n).
The chosen structures for the three-sided queries and the top
structure has time cost bounded byO(l logm(d)) which
by Fact 1 isO(logn) since � 2. Hence the total time cost
isO(logn) as claimed.

5 Range searching ind dimensions

Let A be a data structure ford-dimensional range
reporting, using spaceO(s(n)) and timeO(t(n) + k),
where t(n) � log logn, for n points P � Rd . We
show how to extendA to support(d + 1)-dimensional
range reporting, using spaceO(s(n) log1+" n) and timeO(t(n)(logn= log logn) + k). For a pointx, let xi denote
theith coordinate ofx. To avoid tedious details we assumexi 6= yi for all x; y 2 P and i. Let Pi = fpijp 2 Pg.
Let T be a rooted tree, withn leafs, node degreeB, where
the different between two leafs depth is at most1. The
leafs are ordered from left to right, and to thejth leaf we

associate the pointp 2 P , where rank(pd+1; Pd+1) =j. For a node inT , we for each of theB2 pairs of its
children 1; : : : ; B associate ad-dimensional data struc-
ture. Such data structure associated a pair, say(i; j),
contains the points associated all leafs to descendents ofi; : : : ; j . A point in thesed-dimensional data structures
is only represented by the firstd coordinates. Each point
is represented inB2 d-dimensional data structures at each
of theO(logn= logB) levels in the tree, leading to space
costO(s(n)B2 logn= logB). A d + 1-dimensional query
can now be answered byO(logn= logB) d-dimensional
queries. In addition we needO(logn= logB logB) time
to determine these queries. ChoosingB = (logn)1=l, for
a constantl > 1, we have ad + 1 dimensional data struc-
ture with the claimed complexity. The construction can be
repeated a fixed number of times proving the following the-
orem.

Theorem 5 Given a data structureA for two-dimensional
static range reporting problem, using spaceO(s(n)) and
time O(t(n) + k), t(n) � log logn, for n pointsA can
be extended, for any fixedd � 3, to d-dimensional range
reporting, with space complexityO(s(n) logd�2+" n) and
time complexityO(k + t(n)( lognlog log n )d�2).

Combining Theorem 5 with the first part of Theorem 2,
using the observations in Section 2.2, proves Theorem 1.

6 Subproblems for the semi-group result

Proof. (Lemma 4)We solve the three-sided range query
by using a dynamic to static transformation technique of
a persistent dynamic one-dimensional version of the semi-
group sum problem. The one-dimensional problem is as
follows. For anA array of semi-group elements we will
support two operations:update(i; f) : A[i℄ := A[i℄�f and
interval(i; j) := A[i℄�A[i+1℄ � � ��A[j℄. Initially A[i℄ = e
for all i, wheree is the neutral element for the semi-group.
Over the array we span a complete binary tree (we assume
without loss of generality thatn = 2k for integerk � 0).
The leafs are ordered from left to right, and theith leaf holds
the value ofA[i℄. An internal node that spans the leafs fromi to j holds the valueinterval(i; j). An update(i; f) oper-
ation corresponds to updating theith leaf. Updating a leafi
is done by updating in constant time each of itsO(log jAj)
ancestors. Similarly, a query can be answered by comput-
ing the sum ofO(log jAj) values from internal nodes. Now
we use a standard approach to get a solution for the static
three-sided two-dimensional range query. The degree of
the nodes in the above structure is clearly bounded by a
constant implying that we can use a persistent technique
by Driscoll et. al. [19]. This is done with a worst case



slowdownO(1) for queries, amortized slowdownO(1) for
updates and amortized space costO(1) per memory modi-
fication. Using the above one-dimensional structure for the
first coordinate of the points, we now insert the points in
increasing order by the second coordinate. A three-sided
query (x0; x1; y) corresponding tointerval(x0; x1) in the
persistent one-dimensional structure at the time where all
points with second coordinates� y have been inserted, and
no one else. This gives anO(n logn) space andO(logn)
query time solution for three-sided range queries. Next we
show how to decrease the space used for semi-group el-
ements toO(n logn=p), by increasing the query time toO(p logn) still using O(n logn) space in total. This is
done by a slight modification of the above dynamic one-
dimensional algorithm. For an internal nodez spanning the
leafsi � � � j we associate a bucket of pointers to semi-group
elements. Updatingz with f we insert a pointer tof in z’s
bucket. If the bucket holdsp pointers, we empty the bucket
and updatez. Let z hold the semi-group valuev(z), let the
semi-group element a pointerq points to bev(q), and let
the pointers inz’s bucket beq1; � � � qp. Updatingz is to setv(z) := v(z) � v(q1)� � � � � v(qp). This change does not
decrease the total space used, but it does decrease the num-
ber of semi-group elements in memory toO(n logn=p). To
perform a query we have to examineO(logn) ancestors and
their buckets of sizep, leading to complexityO(p logn) for
a query.

Proof. (Lemma 5)To avoid tedious details we assumex1 6= y1 for all x; y 2 S. We divide the points into two sub-
setsA andB, such thatA = f p : rank(p1; S1) < jSj=2 g
andB = S nA. To each of the point setsA andB we asso-
ciate a three-sided structure that enable us to answer queries
not entirely enclosed in eitherA or B. In order to answer
queries entirely enclosed in eitherA or B we associate a
recursive structure. Now usingO(logn) time we find the
structure in which we can combine two three-sided queries
for the answer leading to the complexityO(logn+p logn).
Since a point is at most included inO(logn) structures we
also achieve the claimed space complexity.
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