
External-Memory Priority Queues with Optimal
Insertions
Gerth Stølting Brodal #

Aarhus University, Denmark
Michael T. Goodrich #

University of California, Irvine, USA

John Iacono #

Université libre de Bruxelles, Belgium
Jared Lo #

University of Hawai’i at Mānoa, USA

Ulrich Meyer #

Goethe University Frankfurt am Main, Germany
Victor Pagan #

University of Hawai’i at Mānoa, USA

Nodari Sitchinava #

University of Hawai’i at Mānoa, USA
Rolf Svenning #

Aarhus University, Denmark

Abstract
We present an external-memory priority queue structure supporting Insert and DeleteMin with
amortized O(1) and O(lg N) comparisons, respectively, and amortized O

(
1
B

)
and O

(
1
B

logM/B
N
B

)
I/Os, respectively. Here, M is the size of the internal memory, B is the block size of I/Os between
internal and external memory, and N is the number of elements in the priority queue just before
an operation is performed. Previous external-memory priority queues required amortized O(lg N)
comparisons and O

(
1
B

logM/B
N
B

)
I/Os for both Insert and DeleteMin. The construction requires

the minimal assumption M ≥ 2B.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases priority queues, external memory, cache aware, amortized complexity

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.3

Funding Gerth Stølting Brodal: Supported by Independent Research Fund Denmark, grant 9131-
00113B.
Michael T. Goodrich: Supported by NSF grant 2212129.
John Iacono: Research supported by the Fonds de la Recherche Scientifique — FNRS.
Jared Lo: Supported by NSF grant 2432018.
Ulrich Meyer : Supported by Deutsche Forschungsgemeinschaft (DFG) - ME 2088/5-2 (FOR 2975 -
Algorithms, Dynamics, and Information Flow in Networks).
Victor Pagan: Supported by NSF grant 2432018.
Nodari Sitchinava: Supported by NSF grant 2432018.
Rolf Svenning: Supported by Independent Research Fund Denmark, grant 9131-00113B.

Acknowledgements Work initiated while attending the Third AlgoPARC Workshop on Parallel
Algorithms and Data Structures at the University of Hawaii at Manoa, in part supported by the
National Science Foundation under Grant No. 2452276.

1 Introduction

Priority queues are fundamental data structures with a host of applications. For example,
algorithmic applications for priority queues range from classic results for sorting (such as
heapsort) [13, 31, 32] and network optimization [19] to recent instance-optimal results for
graph algorithms [22, 23]. In addition, priority queues have been developed for external-
memory models [3, 6, 12, 18, 25, 26], ideal-cache models [4, 9], concurrent models [29], and
RAM models [30]. Thus, it is desirable to design efficient priority queue data structures.

Throughout the paper, we assume a priority queue stores a multi-set of elements, where
each element is a ⟨key, value⟩ pair, and the keys are from some totally ordered universe.

© Gerth Stølting Brodal, Michael T. Goodrich, John Iacono, Jared Lo, Ulrich Meyer, Victor Pagan,
Nodari Sitchinava, Rolf Svenning;
licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 3; pp. 3:1–3:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gerth@cs.au.dk
https://orcid.org/0000-0001-9054-915X
mailto:goodrich@uci.edu
https://orcid.org/0000-0002-8943-191X
mailto:johniacono@gmail.com
https://orcid.org/0000-0001-8885-8172
mailto:jaredlo@hawaii.edu
https://orcid.org/0009-0008-7674-0183
mailto:umeyer@ae.cs.uni-frankfurt.de
https://orcid.org/0000-0002-1197-3153
mailto:vpagan@hawaii.edu
https://orcid.org/0009-0006-0163-8040
mailto:nodari@hawaii.edu
https://orcid.org/0000-0001-8876-4846
mailto:rolfsvenning@cs.au.dk
https://orcid.org/0000-0002-9903-4651
https://doi.org/10.4230/LIPIcs.ESA.2025.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 External-Memory Priority Queues with Optimal Insertions

In the following, a comparison between two elements refers to the comparison of the two
elements’ keys.

Part of the reason priority queues are so broadly applicable is that they are defined in
terms of two simple and useful operations:

Insert(e) inserts an element e.
DeleteMin() extracts and returns an element from the priority queue with minimum
key. If several elements have equal keys, an arbitrary one of those is returned. This
operation requires the priority queue to be non-empty before the operation.

Moreover, in internal memory, it is possible to design priority queues that hold N elements
and achieve O(1) time for Insert and O(lg N) time for DeleteMin, either in the worst
case [14] or amortized [13, 31]1. Unfortunately, prior to this work, we are not aware of
any efficient data structures in external-memory models [1, 20, 21] that can match the
performance of these classic internal-memory data structures.

Internal-memory priority queues

Williams introduced the binary heap in 1964 [32], which supports Insert and DeleteMin
with O(lg N) comparisons. Since then, many priority queues have been proposed; see, e.g.,
the survey by Brodal [7]. Vuillemin [31] introduced the binomial queue and demonstrated
that it supports a sequence of N Insert and DeleteMin operations using a total of
O(N lg N) comparisons. Shortly after, Brown [13] gave a detailed analysis of binomial
queues. Binomial queues support a sequence of I Insert and D DeleteMin operations in
total O(I + D lg I) comparisons. Carlson, Munro, and Poblete [14] showed how to achieve
binomial queues supporting Insert with worst-case O(1) comparisons and DeleteMin with
worst-case O(lg N) comparisons. Fibonacci heaps, introduced by Fredman and Tarjan [19],
achieve the same amortized performance as binomial queues for Insert and DeleteMin
operations. Additionally, they support the DecreaseKey operation in amortized O(1) time
and comparisons, allowing the key of an element to be replaced with a smaller key. Relaxed
heaps, proposed by Driscoll, Gabow, Shrairman, and Tarjan [16], matched these bounds in
the worst case.

External-memory model and priority queues

Aggarwal and Vitter [1] introduced the external-memory model as a model of computation
focusing on the communication between two levels of memory: an internal memory of size M

and an infinite external memory, where an I/O transfers a block of B consecutive memory
cells between the two levels of memory. The I/O cost of an algorithm is the number of I/Os
the algorithm performs. The minimal assumption is that B ≥ 1 and M ≥ 2B.

Aggarwal and Vitter proved that comparison-based sorting of N elements in the external-
memory model can be done with O

(
N
B logM/B

N
B

)
I/Os, and proved a matching lower bound

for comparison-based sorting. Since sorting can be performed using a priority queue by
performing N Insert operations followed by N DeleteMin operations, the amortized
I/O cost of either Insert or DeleteMin must be Ω

(
1
B logM/B

N
B

)
I/Os. Arge [3], Kumar

and Schwabe [27], and Fadel, Jakobsen, Katajainen, and Teuhola [18] presented external-
memory priority queues supporting Insert and DeleteMin in amortized O

(
1
B logM/B

N
B

)
1 lg x denotes the binary logarithm of x.

Brodal, Goodrich, Iacono, Lo, Meyer, Pagan, Sitchinava, Svenning 3:3

I/Os, assuming M ≥ 2B. Brengel, Crauser, Ferragina and Meyer [6] presented a simple
external-memory priority queue denoted an array heap with matching I/O bounds, assuming
B logM/B

N
B ≤ M . Brodal and Katajainen [12] achieved a matching worst-case I/O cost.

Since the number of DeleteMin operations is always no more than the number of Insert
operation, we can charge the deletion cost to the insertions, i.e., we can restate the amortized
costs to be O

(
1
B logM/B

N
B

)
I/Os for Insert and O(1/B) I/Os for DeleteMin (or even zero).

The question we address in this paper is whether we can swap the two I/O costs, i.e., achieve
amortized O(1/B) I/Os for Insert and O

(
1
B logM/B

N
B

)
I/Os for DeleteMin, which is

relevant when the number of Insert operations is asymptotically larger than the number of
DeleteMin operations, i.e., not all elements inserted into the priority queue are eventually
also extracted. Table 1 summarizes previous results, where we let Sort(N) = N

B logM/B
N
B ;

hence, 1
N Sort(N) = 1

B logM/B
N
B .

Frigo, Leiserson, Prokop, and Ramachandran [20, 21] introduced the ideal-cache model
by augmenting the external-memory model with an optimal offline paging mechanism. In
this model, instead of having each algorithm explicitly transfer data between the two levels
of memory, the data transfers are assumed to be performed by an optimal offline paging
mechanism. While this might seem like a strong assumption, they demonstrated that under
reasonable resource augmentation assumptions, a more realistic paging mechanism, e.g.,
the one implementing least recently used (LRU) replacement policy, is competitive with an
optimal one. Consequently, ideal-cache model allows the design of so-called cache-oblivious
algorithms – algorithms that are oblivious to the parameters M and B. Frigo et al. [20, 21]
presented cache-oblivious sorting algorithms achieving optimal I/O cost, provided a tall-cache
assumption of M ≥ B2. Brodal and Fagerberg [8] proved that the same bounds can be
achieved under the weaker tall cache assumption M ≥ B1+ε for any constant ε > 0, with
a constant overhead of 1

ε in the I/O bounds. Brodal and Fagerberg [10] proved that this
trade-off between the tall-cache assumption and the I/O cost is inherent to cache-oblivious
algorithms. Cache-oblivious priority queues were presented by Arge, Bender, Demaine,
Holland-Minkley, and Munro [4] and Brodal and Fagerberg [9] achieving O

(
1
B logM/B

N
B

)
I/Os for Insert and DeleteMin, under the tall cache assumptions M ≥ B2 and M ≥ B1+ε,
respectively.

In internal memory, several priority queues support Insert and DeleteMin in amortized
O(lg N) time, and additionally a DecreaseKey operation in amortized O(1) time (some
also in the worst-case and Insert in O(1) time). A natural question is if it is possible to
achieve similar results in external memory, i.e., N Insert and DeleteMin operations with
O

(
N
B logM/B

N
B

)
I/Os and DecreaseKey with O

(1
B

)
I/Os. Eenberg, Larsen, and Yu [17]

proved a lower bound that this is not possible. An external-memory priority queue structure
by Kumar and Schwabe [27] supports each of the three operations with amortized O

(1
B lg N

B

)
I/Os. Similar bounds were achieved cache-obliviously by Brodal, Fagerberg, Meyer, and
Zeh [11] and Chowdhury and Ramachandran [15]. External-memory priority queues with
improved DecreaseKey operations were presented by Iacono, Jacob, and Tsakalidis [25],
who support Update (a combination of Insert and DecreaseKey) and DeleteMin in
amortized O

(
1
B logM/B

N
B

)
and O

(⌈
Mε

B logM/B
N
B

⌉
logM/B

N
B

)
I/Os, respectively, and by

Jiang and Larsen [26], who support Insert, DeleteMin and DecreaseKey in expected
amortized time O

(1
B lg N

B / lg lg N
)

I/Os, assuming M > B lg0.01 N .

ESA 2025

3:4 External-Memory Priority Queues with Optimal Insertions

Table 1 Selected previous and new comparison and I/O bounds for priority queues. OA denotes
amortized bounds, whereas O denotes worst-case bounds.

Comparisons I/Os
Insert DeleteMin Insert DeleteMin

Internal memory
Binary heap [32] O(lg N) O(lg N)
Binomial queue [13, 31] OA(1) OA(lg N)
Binomial queue [14] O(1) O(lg N)
External memory
Buffer tree [3]
Buffered multiway heap [18, 27]

}
OA(lg N) OA(lg N) OA

(
1
N

Sort(N)
)

OA

(
1
N

Sort(N)
)

Brodal-Katajainen [12] O(lg N) O(lg N) O
(

1
N

Sort(N)
)

O
(

1
N

Sort(N)
)

New (Theorem 1) OA(1) OA(lg N) OA

(
1
B

)
OA

(
1
N

Sort(N)
)

Cache oblivious
Arge et al. [4], Funnel-heap [9] OA(lg N) OA(lg N) OA

(
1
N

Sort(N)
)

OA

(
1
N

Sort(N)
)

Result

In this paper, we present an external-memory priority queue that is optimal both with respect
to the amortized I/Os and comparisons performed, achieving the following result.

▶ Theorem 1. There exists an external-memory priority queue supporting Insert with
amortized O(1) comparisons and O

(1
B

)
I/Os, and DeleteMin with amortized O(lg N)

comparisons and O
(

1
B logM/B

N
B

)
I/Os, where N is the current number of elements in the

priority queue. The space usage is O
(

N
B

)
blocks. The memory size only needs to satisfy the

minimal requirement M ≥ 2B.

We achieve this result using what can intuitively be considered an element “juggling”
scheme, where we maintain three types of data structures—two in internal memory and
one in external memory, transferring elements between them as needed. In a nutshell, our
result is obtained by maintaining an internal-memory priority queue with the O(M) smallest
elements supporting Insert and DeleteMin with O(1) and O(lg M) comparisons. We also
maintain an insert-buffer in internal memory as a buffer between the internal-memory priority
queue and an external-memory structure comprising a forest of multi-way heaps. Specifically,
in external memory, we store multi-way heap structures with buffers at the nodes, somewhat
similar to an approach by Fadel, Jakobsen, Katajainen, and Teuhola [18] but adapted to
support the insertion of batches of O(M) elements using O

(
M
B

)
I/Os. Whereas nodes in

this previous construction store sorted buffers, in our construction, we maintain the forest of
heaps in external memory to use partially sorted buffers (semi-sorted at internal nodes and
lazy semi-sorted at the leaves) to avoid insertions requiring amortized Ω(lg M) comparisons.

2 External-memory priority queue

In Sections 3–7, we describe the details of an external-memory priority queue achieving
Lemma 2 below, where we bound the total number of comparisons and I/Os performed
by a sequence of priority queue operations in terms of the total numbers of Insert and
DeleteMin operations performed, denoted I and D, respectively. In Section 8, we then
apply global rebuilding to make the bounds depend on the current number of elements in
the priority queue, achieving the amortized bounds in Theorem 1.

Brodal, Goodrich, Iacono, Lo, Meyer, Pagan, Sitchinava, Svenning 3:5

min-buffer S

≤ M

pivot

≤ p ≤

insert-buffer L

M

internal memoryexternal memory

C0C1C2

∆-heap

Figure 1 External-memory priority queue. All rectangles are buffers of capacity M, where the
gray area illustrates elements in buffers.

▶ Lemma 2. There exists an external-memory priority queue supporting a sequence of
I Insert and D DeleteMin operations, using a total of O(I + D lg I) comparisons and
O

(
1
B

(
I + D logM/B

I
B

))
I/Os, assuming M ≥ 2B.

Our priority queue consists of an internal-memory part and an external-memory part;
see Figure 1 for an overview. Each element is stored exactly once in our data structure. In
internal memory we store a min-buffer, a pivot element, and an insert-buffer, where the
elements in the min-buffer are all smaller than or equal to the pivot, and the elements in
the insert-buffer and external memory are all larger than or equal to the pivot element. By
default, Insert and DeleteMin are performed in internal memory without performing any
I/Os. If internal memory contains too many elements, Θ(M) elements are moved from the
insert-buffer to the external part. To perform DeleteMin when the min-buffer is empty,
Θ(M) smallest elements from external memory are moved to internal memory. We call
moving Θ(M) elements between internal and external memory a transfer. In the subsequent
sections, we describe the two parts in detail. We let M be a parameter for our construction,
such that M is even, M is divisible by B, and M = Θ(M). We choose M such that the
O(M) space internal-memory data structure in Section 3 fits into internal memory. To be
able to choose M, M is required to be sufficiently large and the internal memory to be able
to hold a sufficiently large number of blocks of size B. If M = O(1), then an internal-memory
data structure like a binomial queue already achieves the result of Lemma 2, and if the
number of blocks fitting in internal memory is too small we can simulate a smaller block size
with a constant blow up in the I/O complexity. I.e., in the following we w.l.o.g. can assume
that M and M/B are sufficiently large to be able to choose M.

3 The internal-memory part

The internal-memory part consists of a min-buffer S, a pivot element p, and an insert-buffer L.
The pivot is larger than or equal to any element in the min-buffer, and smaller than or equal
to any element in the insert-buffer and external memory. The insert-buffer is an unordered
array of at most M elements. The min-buffer stores the overall at most M smallest elements
in the priority queue, and is implemented using an internal-memory linear-space priority
queue supporting Insert in amortized O(1) time and DeleteMin in amortized O(lg n)
time, where n is the number of elements in the min-buffer. The min-buffer can, e.g., be

ESA 2025

3:6 External-Memory Priority Queues with Optimal Insertions

implemented using a binomial queue [31] or the implicit post-order heap by Harvey and
Zatloukal [24]. The total space for the internal part is O(M).

Insert(e) first compares e to the pivot p. If e ≤ p, e is inserted in the min-buffer using
the min-buffer’s Insert operation. Otherwise, e is appended to the insert-buffer. If the
min-buffer overflows, i.e., gets size M + 1, we find a new pivot p′ by applying the linear-time
internal-memory median finding algorithm by Blum, Floyd, Pratt, Rivest, and Tarjan [5] to
the elements in the min-buffer. The median, i.e., the

(M
2 + 1

)
th smallest element, becomes

the new pivot p′, the M
2 larger elements and the old pivot p are appended to the insert-buffer,

and the M
2 smaller elements are inserted into a new empty min-buffer structure using its

Insert operations. If the insert-buffer overflows, i.e., gets size > M (due to the insertion
of a single element or the old pivot p and M

2 elements being moved from the min-buffer to
the insert-buffer), we transfer M elements from the insert-buffer to the external part (see
Section 4).

For DeleteMin, if the min-buffer is non-empty, the smallest element is extracted from
the min-buffer using the min-buffer’s DeleteMin operation and returned. Otherwise, the
min-buffer is empty and the pivot p is the smallest element to be returned. To establish a
new pivot p′ and min-buffer, the M

2 smallest elements are extracted from external memory
(see Section 4) and transferred to the insert-buffer (except when the external part is empty).
This ensures that the M

2 smallest elements in the insert-buffer are now smaller than or equal
to all elements in the external part. The M

2 th smallest element in the insert-buffer is selected
as the new pivot p′ in linear time using the internal-memory selection algorithm [5]. If the
insert-buffer contains < M

2 elements, we set the pivot p to be +∞. The at most M
2 − 1

elements smaller than or equal to the new pivot p′ in the insert-buffer are deleted from the
insert-buffer and inserted into the min-buffer structure using its Insert operation. The old
pivot p is returned as the extracted minimum.

Note that a transfer either moves M elements from the internal to the external part, or
M
2 elements from the external to the internal part, i.e., the external memory always contains

a multiple of M
2 elements. Note also that the size of the insert-buffer is unchanged during

DeleteMin, provided that there are elements in external memory. Otherwise, the number
of elements in the insert-buffer decreases by M

2 .
Initially, the pivot p = +∞, such that all elements are inserted into the min-buffer until

the priority queue contains M + 1 elements, where a real element is selected as the pivot
and M

2 elements are moved to the insertion-buffer and a new min-buffer is created for the
M
2 smallest elements using repeated insertions.

4 The external-memory part

The external-memory part supports the insertion of a batch of M elements and the extraction
of the M/2 smallest elements. It consists of a set of ∆-heaps, where ∆ = M

B ≥ 2. A ∆-heap
with height h is a tree where all leaves have depth h (the root having depth zero), and all
non-leaves have exactly ∆ children. Each node contains a buffer storing up to M elements.
The elements must satisfy extended heap order, i.e., the elements in the buffer of a node u

are smaller than or equal to any element in the buffers of the children of u. A ∆-heap is a
generalization of a binary heap [32] and is very similar to the external-memory priority queue
of Fadel, Jakobsen, Katajainen and Teuhola [18], except that we do not require buffers to be
sorted (this would not be possible when insertions only perform amortized O(1) comparisons.)
The buffers in a ∆-heap store elements in various degrees of sortedness to be able to achieve
the stated insertion cost: non-leaves are semi-sorted, whereas leaves are lazy semi-sorted as

Brodal, Goodrich, Iacono, Lo, Meyer, Pagan, Sitchinava, Svenning 3:7

discussed in Sections 5 and 6, respectively.
The ∆-heaps are maintained as a sequence of collections C0, . . . , CH , where Ch contains

all ∆-heaps with height h. We maintain the invariant (I1) that |Ch| < ∆ and that the total
number of leaves in the ∆-heaps is ≤ I

M (Lemma 7), where I is the total number of insertions.
This invariant ensures that the maximum height H of a ∆-heap is ≤

⌊
log∆

I
M

⌋
. The buffers

of all nodes must satisfy the following invariant (I2): The buffer of a node u stores at most
M elements. If no descendant of u stores elements, there is no lower bound on the buffer size
of u. Otherwise, the buffer of u contains at least M

2 elements. Together with the extended
heap order, this invariant implies that the M

2 smallest elements in a ∆-heap are stored in the
root buffer, except if the ∆-heap contains fewer than M

2 elements, in which case all elements
are stored in the root buffer.

When M elements are transferred from the internal to the external part, the M elements
become a single node ∆-heap with height zero that is added to collection C0. If the collection
is full, that is, |C0| = ∆, then a new root r is created for a ∆-heap of height one with each leaf
of C0 as its children. Invariant I2 is established for r by recursively pulling the M

2 smallest
elements from its children and inserting them in the buffer (the pull operation is described
below). This leaves C0 empty, and r is promoted to C1. As in a ∆-ary number system, this
promotion may propagate up through the collections, repeatedly combining ∆ ∆-heaps with
height h to a ∆-heap with height h + 1.

For a node with < M
2 elements in its buffer, a pull operation moves M

2 elements from its
children to the buffer of the node while preserving extended heap order, using Lemma 5 in
Section 5. Note that this will make the buffer contain at least M

2 elements and less than M.
If a child buffer gets size < M

2 , we recursively apply the pull operation to the child, provided
that not all subtrees below the child are exhausted.

To extract the M
2 smallest elements from the external part, first, for each collection Ci,

the M
2 smallest elements are found by considering the elements in the buffers of the roots by

applying Lemma 5 to the roots of the collection. As the elements are just identified but not
pulled from the roots, we call this a virtual pull. Second, the M

2 smallest elements among
the (H + 1) M

2 candidates from the virtual pulls are found by applying a linear-time selection
algorithm, Corollary 3 below. These elements are removed from their respective roots and
transferred to the internal part. For each root buffer now containing < M

2 elements, we
recursively pull M

2 elements from its children, to the extent possible.
Note that the total number of elements in external memory is always a multiple of M

2 ,
but this is not necessarily true for each ∆-heap due to the extractions of the smallest M

2
elements across all ∆-heaps.

5 Semi-sorted lists

Given two sequences X and Y , we say X ⪯ Y , if for every x ∈ X and y ∈ Y : x ≤ y. Note
that X ⪯ Y implies no specific order within each individual sequence X or Y .

A buffer in external memory is a linked list of blocks b1, b2, . . . , bδ, where each block
contains B elements, except possibly the first and last blocks, which contain ≤ B elements. In
the following, we simply denote such a linked list as a list. We define a list to be semi-sorted
if bi ⪯ bi+1 for every 1 ≤ i < δ. All buffers of non-leaf nodes in a ∆-heap are stored as
semi-sorted lists. The following are useful tools for working with semi-sorted buffers.

Blum, Floyd, Pratt, Rivest, and Tarjan [5] proved that the kth smallest element in a list
with N elements can be found using O(N) comparisons using a double recursion making
repeated use of scanning lists. Analyzed in the external-memory model, this immediately

ESA 2025

3:8 External-Memory Priority Queues with Optimal Insertions

implies that selection can be performed in a linear number of I/Os, and we have the following
corollary.

▶ Corollary 3 (Blum et al. [5]). Given a list of N elements and an integer 1 ≤ k ≤ N ,
the list can be partitioned into two lists X and Y , with |X| = k and X ⪯ Y , using O(N)
comparisons and O

(
N
B

)
I/Os.

▶ Lemma 4 (Constructing semi-sorted buffer). An unsorted list of Bδ ≤ M elements can be
converted into a semi-sorted list using O(Bδ lg δ) comparisons and O(δ) I/Os.

Proof. Recursively apply [5] to partition an unsorted list with δB elements into two
subproblems with ⌈δ/2⌉ B and ⌊δ/2⌋ B elements, until the subproblems are of size exactly B.
The result follows since there are ⌈lg δ⌉ levels of recursion with a linear number of comparisons
per level, and we only perform I/Os to read the initial list into internal memory and to write
the final list to external memory, since the problem fits in internal memory. ◀

▶ Lemma 5 (Pulling from semi-sorted lists). Given at most ∆ = M
B semi-sorted lists, a

semi-sorted list of the M
2 smallest elements of their union can be computed in O(M lg ∆)

comparisons and O
(M

B

)
I/Os.

Proof. Read the first block from each semi-sorted list into internal memory and insert the
largest element of each block into a binary min-heap Q [32]. Then, delete the smallest
element from Q, read the next block from the corresponding semi-sorted list, and insert the
largest element of this block into Q. Let X denote the elements in blocks whose maximums
have been deleted from Q, and Y the elements in blocks whose maximums are in Q. Repeat
this process of reading blocks until |X| ≥ M

2 . In total, Θ
(M

B

)
blocks are read, where the

maximum is computed of each block and each block requires O(1) heap operations on Q,
where |Q| ≤ ∆. This initial phase requires a total of O

(
M + M

B · lg ∆
)

comparisons and
Θ

(M
B

)
I/Os.

Let x be the last element deleted from Q. We have max (X) ≤ x, since when the lists
are semi-sorted, elements will be extracted in non-decreasing order from Q. From each list,
we have a block represented in Q with maximum ≥ x, so all remaining unread elements in
the lists are also ≥ x. Thus, the M

2 smallest elements can be found by a single partition
of X ∪ Y using O(M) comparisons and O

(M
B

)
I/Os per Corollary 3. They can then be

converted to a semi-sorted list using additional O(M lg ∆) comparisons per Lemma 4. ◀

6 Lazy semi-sorted lists

Since I insertions can create Θ(I/M) leaf buffers of size M, they cannot all be semi-sorted,
as that would require Θ(I lg ∆) comparisons. The lower bound of Ω(M lg ∆) comparisons
for the multiple selection problem for each buffer is due to Dobkin and Munro [2, Theorem 1].
Instead, a leaf buffer with M elements is stored as a lazy semi-sorted list, see Figure 2. A
lazy semi-sorted list stores the M elements as a sequence of chunks c1 ⪯ c2 ⪯ · · · ⪯ cd,
where d =

⌈
lg M

B

⌉
+ 1 and, initially, the elements inside a chunk are stored in arbitrary order.

Chunk c1 stores B elements, ci stores B2i−2 elements for 2 ≤ i < d, and cd stores the largest
M − B2d−2 elements. If each chunk is converted into a semi-sorted list, and all chunks are
concatenated, we have a semi-sorted list for the buffer. The basic idea is to exploit that a
∆-heap always accesses the blocks of a semi-sorted buffer left-to-right, implying that we can
delay expanding a chunk into a semi-sorted sequence of blocks using Lemma 4 until the first
block of the (semi-sorted version of the) chunk is accessed, hence the name lazy semi-sorted.

Brodal, Goodrich, Iacono, Lo, Meyer, Pagan, Sitchinava, Svenning 3:9

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14

c1 c2 c3 c4 c5

c5

⪯ ⪯ ⪯ ⪯

⪯ ⪯ ⪯ ⪯ ⪯ ⪯ ⪯ ⪯

Figure 2 A lazy semi-sorted list. Top: Initial unsorted list of blocks b1, . . . , bM/B . Middle: Initial
chunks c1 ⪯ · · · ⪯ c5. Bottom: The state after the first five blocks b1, . . . , b5 in the semi-sorted list
have been accessed, i.e., the chunks c1, . . . , c4 have been made into semi-sorted sublists.

The initial partitioning of a buffer into chunks is done by recursively partitioning the half
with the smaller elements using Corollary 3.

▶ Lemma 6 (Lazy access cost). Initializing a lazy semi-sorted list of M elements requires
O(M) comparisons and O

(M
B

)
I/Os. The cost of accessing the first k ≤ M

B blocks of the
lazy semi-sorted list requires O(Bk lg k) comparisons and O(k) I/Os.

Proof. To initialize the lazy semi-sorted list, all M elements are first read into internal
memory using O

(M
B

)
I/Os. No further I/Os are performed, except for eventually writing

the output to external memory. The initial chunks, with elements in arbitrary order, are
constructed one at a time by repeatedly applying Corollary 3 to find the appropriate number
of largest elements. By constructing the chunks in the order cd, cd−1, . . . c0 from the largest
to the smallest, the number of remaining elements decreases geometrically, leading to a total
of O(M) comparisons.

If the k first blocks of elements have been accessed, then chunks c1, . . . , c⌈lg k⌉+1 have
been semi-sorted, i.e., fewer than 2k blocks. Note that c1 and c2 only consist of a single
block, i.e., they are already semi-sorted at initialization. By applying Lemma 4, semi-
sorting the remaining ⌈lg k⌉−1 accessed chunks requires O

(∑⌈lg k⌉−1
i=1 B2i lg 2i

)
= O(Bk lg k)

comparisons and O
(∑⌈lg k⌉−1

i=1 2i
)

= O(k) I/Os. ◀

The idea of lazy semi-sorted buffers is that they allow us to charge the non-linear
comparison cost of constructing a semi-sorted buffer to the pull operations on the buffer, in
particular, the pull operations triggered by deletions.

7 Analysis

When Insert and DeleteMin can be performed entirely within the internal part, no I/Os
are performed. The number of comparisons is O(1) for Insert and O(lg min(M, I)) for
DeleteMin, plus the cost of moving elements from the min-buffer to the insert-buffer. If an
insertion causes the min-buffer to overflow, we spend O(M) comparisons moving elements
to the insert-buffer and building a new min-buffer. This can only happen once every M

2
insertion, so the total cost for this is O(I) comparisons and no I/Os.

A transfer either moves M elements from the internal to the external part, or M
2 elements

from the external to the internal part. The following lemma bounds the number of transfers
in each direction in terms of I and D.

▶ Lemma 7 (Bounding transfers). The number of transfers from the internal to the external
part is ≤ I

M . The number of transfers from the external to the internal part is ≤ 2D
M .

Proof. We first consider the number of transfers from the internal to the external part. Let
ϕ ≥ 0 be the number of elements in the min-buffer beyond the first M

2 elements plus the

ESA 2025

3:10 External-Memory Priority Queues with Optimal Insertions

number of elements in the insert-buffer. Insertions cause ϕ to increase by at most one, and
deletions do not cause ϕ to increase. A transfer to the external part decreases ϕ by M,
whereas a transfer to the internal part of M

2 elements leaves ϕ unchanged, since the min-buffer
gets size M

2 − 1 and the size of the insert-buffer does not change. It follows that ϕ only
increases during the I insertions, where the total increase is ≤ I, and each transfer to the
external part decreases ϕ by M, i.e., the number of transfers to the external part is at
most I

M .
The size of the min-buffer can only decrease below M

2 due to a deletion, where it decreases
by one. (When the size of the min-buffer decreases because half of the elements are moved to
the insert-buffer, the min-buffer changes size from M + 1 to M

2 .) A transfer to the internal
part occurs when the size of the min-buffer is zero before the deletion, but then the min-buffer
has size M

2 − 1 after the deletion and the next M
2 − 1 deletions do not cause a transfer

to the internal part. It follows that at most every M
2 deletion can cause a transfer to the

internal part. The first transfer to the internal part can only happen after a transfer to
the external part has occurred, which first can happen after the pivot p ̸= +∞, where the
size of the min-buffer is M

2 , i.e., there must have been at least M
2 deletions before the first

transfer to the internal part. It follows that the number of transfers to the internal part is at
most 2D

M . ◀

The key part of the analysis is threefold. First, we bound the cost to restore invariants I1
and I2 whenever elements are removed from the internal nodes of the external part. Second,
we bound the cost of accessing the lazy semi-sorted leaves. The access cost of a leaf refers to
the cost of semi-sorting its chunks. Third, we bound the cost involved with transfers between
internal and external memory. We define the height of a node in a ∆-heap to be the height
of the subtree rooted at the node (leaves have height zero).

▶ Lemma 8 (Total pull cost excluding leaf access). The total number of pulls is O
(

I
M∆ + DH

M
)

and their total cost is O
(

I lg ∆
∆ + D lg I

M

)
comparisons and O

(
I

M + DH
B

)
I/Os, excluding

the cost of accessing the leaves.

Proof. A pull at a node increases the height of M
2 elements from the buffers of the children

by one, except the last pull at a node that exhausts all subtrees at the children, where at
most M

2 elements have their height increased by one. By Lemma 7, at most I
M leaves are

created, i.e., the maximum height of a ∆-heap is H ≤ log∆
I

M . For a height h, 1 ≤ h ≤ H,
we bound the number of pulls Ph to nodes with height h by bounding the number of elements
that could have been moved to a height ≥ h or transferred to the internal memory, the
latter being bounded by D by Lemma 7. Since there are ≤ I

M leaves, the number of nodes
at height h is ≤ I

M∆h , implying that the number of elements that could ever have been
pulled to height h (and possibly further up) is at most D + M

∑H
j=h

I
M∆j . Since each

non-exhausting pull moves M
2 elements one level up, and each node with height h can have

one final pull exhausting all children, we get that the final number of pulls to height h is
Ph ≤

(
D + M

∑H
j=h

I
M∆j

)
/ M

2 + I
M∆h = O

(
I

M∆h + D
M

)
, as ∆ ≥ 2.

The total number of pulls is then
∑H

h=1 Ph = O
(

I
M∆ + DH

M
)
. Excluding the cost of

accessing the leaves, we may treat each pull as being from semi-sorted lists. Applying Lemma 5,
the total number of comparisons is O

((
I

M∆ + D
M log∆

I
M

)
M lg ∆

)
= O

(
I lg ∆

∆ + D lg I
M

)
and the number of I/Os is O

((
I

M∆ + DH
M

) M
B

)
= O

(
I

M + DH
B

)
I/Os. ◀

▶ Lemma 9 (Total leaf access cost). The total cost of constructing the lazy semi-sorted leaves
and accessing them is O(I + D lg ∆) comparisons and O

(
I
B + D

B

)
I/Os.

Brodal, Goodrich, Iacono, Lo, Meyer, Pagan, Sitchinava, Svenning 3:11

Proof. As described in the proof of Lemma 8, the number of pulls from the leaves is
P1 = O

(
I

M∆ + D
M

)
. Virtual pulls may, however, also access elements in the leaves. Since

each transfer to the internal part causes one virtual pull from C0, the number of virtual pulls
from the leaves is bounded by 2D

M by Lemma 7. The total number of pulls and virtual pulls
from the leaves is O

(
I

M∆ + D
M

)
.

By Lemma 6, the cost for the initial construction of the at most I
M leaves as lazy semi-

sorted lists is O(I) comparisons and O
(

I
B

)
I/Os. Since, by Lemma 5, each pull and virtual

pull performs O(M lg ∆) comparisons and accesses O
(M

B

)
blocks, we have, by Lemma 6, that

at the leaves, the total number of comparisons is O
(
I +

(
I

M∆ + D
M

)
M lg ∆

)
= O(I + D lg ∆)

comparisons and the total number of I/Os is O
(

I
B +

(
I

M∆ + D
M

) M
B

)
= O

(
I
B + D

B

)
I/Os. ◀

▶ Lemma 10 (Cost of transfers excluding pulls and leaf accessing). The total cost of transfers
between the internal and external part is O

(
D lg I

M
)

comparisons and O
(

I
B + D

B log∆
I

M
)

I/Os, excluding the cost of pulling to restore the invariants and to access the leaves.

Proof. By Lemma 7, there are at most I
M transfers to the external part, each moving M

elements from the input-buffer to a new leaf, with no comparisons and O
(M

B

)
I/Os.

By Lemma 7, there are at most 2D
M transfers to the internal part. Each transfer involves

finding the M smallest elements among the elements in the buffers of all roots in all collections.
First, for each collection, we perform a virtual pull from the semi-sorted roots. We exclude
the access cost for the leaves and treat them as semi-sorted. Applying Lemma 5 for each
of the O(H) = O

(
log∆

I
M

)
collections leads to a cost of O

(
M lg ∆ log∆

I
M

)
= O

(
M lg I

M
)

comparisons and O
(M

B log∆
I

M
)

I/Os. Then among these O
(
M log∆

I
M

)
elements, we find

the M
2 smallest elements by applying Corollary 3. These elements are then transferred to

the insert-buffer and removed from their respective roots. This may trigger pulls to restore
the invariants, the cost of which we exclude here and is accounted for in Lemma 8. These
operations do not asymptotically increase the total cost, which is O

(
D lg I

M
)

comparisons
and O

(
D
B log∆

I
M

)
I/Os. Finally, a transfer to the internal part causes O(M) comparisons

to build the new min-buffer and insert-buffer, which sums up to O(D) comparisons for all
transfers to the internal part. ◀

Proof of Lemma 2. Summarizing the number of comparisons and I/Os performed, the total
number of comparisons is

O
(

(I + D lg M)︸ ︷︷ ︸
internal memory

+
(

I
lg ∆
∆ + D lg I

M

)
︸ ︷︷ ︸

pulls

+ (I + D lg ∆)︸ ︷︷ ︸
leaves

+
(

D lg I

M

)
︸ ︷︷ ︸

transfers

)
= O(I + D lg I) ,

and the total number of I/Os is

O
((

I

M
+ DH

B

)
︸ ︷︷ ︸

pulls

+
(

I

B
+ D

B

)
︸ ︷︷ ︸

leaves

+
(

I

B
+ D

B
log∆

I

M

)
︸ ︷︷ ︸

transfers

)
= O

(
I

B
+ D

B
log∆

I

M

)
.

Lemma 2 follows from M = Θ(M) and ∆ = M
B . ◀

8 Dependence on current priority queue size

In Sections 3–7, I denotes the total number of insertions performed, allowing the current
size N to be arbitrarily smaller than I. Since the comparison and I/O bounds of Lemma 2
are dependent on I, the bounds are not a function of the current number of elements N in

ESA 2025

3:12 External-Memory Priority Queues with Optimal Insertions

the priority queue. To achieve this, we apply the standard technique of global rebuilding [28,
Chapter 5].

Proof of Theorem 1. Let N0 denote the size of the priority queue at the last global rebuilding
of the priority queue, and let I0 and D0 denote the number of insertions and deletions since
the last global rebuilding, respectively. We rebuild the priority queue whenever I0 +D0 > N0

2 .
Rebuilding a priority queue containing N elements is performed by scanning over the structure,
collecting the N elements into a list, and then repeatedly inserting these into a new empty
priority queue using Insert. By Lemma 2, the resulting priority queue is constructed using
O(N) comparisons and O

(
N
B

)
I/Os (the previous structure can be scanned in O

(
N
B

)
I/Os,

since we argue below that N = Θ(N0) and at most 2N0+I0
M = O

(
N
M

)
buffers have been

created in external memory since the last global rebuilding).
Together with Lemma 2, the previous rebuilding and the subsequent I0 insertions

and D0 deletions, causing a total of N0 + I0 insertions and D0 deletions, imply a total
comparison cost of O(N0 + I0 + D0 lg(N0 + I0)) = O(N0 + D0 lg N0) and a total I/O cost
of O

(
N0
B + 1

B

(
(N0 + I0) + D0 logM/B

N0+I0
B

))
= O

(
N0
B + D0

B logM/B
N0
B

)
, since I0 ≤ N0

2 .
We charge the linear cost to the at least N0

3 priority queue operations between the last two
global rebuildings, and the remaining cost to the deletions since the last global rebuilding.
While no global rebuilding is triggered, we have 1

2 N0 ≤ N ≤ 3
2 N0, i.e., we have N = Θ(N0)

between two global rebuildings. Theorem 1 follows. ◀

9 Conclusion and open problems

The external-memory priority queue presented in this paper supports insertions with
asymptotically fewer comparisons and I/Os than previous results. This is particularly
beneficial in settings such as event-driven simulations or other incremental computations
where execution may terminate before all elements have been extracted from the queue and
the cost of insertions dominates. It should be noted that the amortized internal computation
time required by our construction is asymptotically the same as the number of comparisons
performed (which also holds for the black boxes used by the construction [5, 24, 31]).

The presented data structure is inherently cache-aware. This raises a natural question:
does there exist a cache-oblivious priority queue that achieves the same amortized bounds
on comparisons and I/Os?

The structure is also highly amortized (e.g., due to global rebuilding, transfers between
internal and external memory, recursive pulling, lazy semi-sorted buffers), and a single Insert
or DeleteMin operation might require Θ(N/B) I/Os in the worst-case. Another natural
question, is whether it is possible to achieve a solution with worst-case guarantees, e.g., such
that a window of B priority queue operations requires worst-case O(B lg N) comparisons
and O

(
logM/B

N
B

)
I/Os, while maintaining the improved amortized bounds for Insert.

References
1 Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116–1127, 1988. doi:10.1145/48529.48535.
2 David P. Dobkin andJ. Ian Munro. Optimal time minimal space selection algorithms. Journal

of the ACM, 28(3):454–461, 1981. doi:10.1145/322261.322264.
3 Lars Arge. The buffer tree: A technique for designing batched external data structures.

Algorithmica, 37(1):1–24, 2003. doi:10.1007/S00453-003-1021-X.

https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/322261.322264
https://doi.org/10.1007/S00453-003-1021-X

Brodal, Goodrich, Iacono, Lo, Meyer, Pagan, Sitchinava, Svenning 3:13

4 Lars Arge, Michael A. Bender, Erik D. Demaine, Bryan Holland-Minkley, and J. Ian Munro.
An optimal cache-oblivious priority queue and its application to graph algorithms. SIAM
Journal of Computing, 36(6):1672–1695, 2007. doi:10.1137/S0097539703428324.

5 Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre
Tarjan. Time bounds for selection. Journal of Computer and System Sciences, 7(4):448–461,
1973. doi:10.1016/S0022-0000(73)80033-9.

6 Klaus Brengel, Andreas Crauser, Paolo Ferragina, and Ulrich Meyer. An experimental study
of priority queues in external memory. In Jeffrey Scott Vitter and Christos D. Zaroliagis,
editors, Algorithm Engineering, 3rd International Workshop, WAE ’99, London, UK, July
19-21, 1999, Proceedings, volume 1668 of Lecture Notes in Computer Science, pages 346–360.
Springer, 1999. doi:10.1007/3-540-48318-7_27.

7 Gerth Stølting Brodal. A survey on priority queues. In Andrej Brodnik, Alejandro López-
Ortiz, Venkatesh Raman, and Alfredo Viola, editors, Space-Efficient Data Structures, Streams,
and Algorithms - Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday,
volume 8066 of Lecture Notes in Computer Science, pages 150–163. Springer, 2013. doi:
10.1007/978-3-642-40273-9_11.

8 Gerth Stølting Brodal and Rolf Fagerberg. Cache oblivious distribution sweeping. In
Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy,
Stephan J. Eidenbenz, and Ricardo Conejo, editors, Automata, Languages and Programming,
29th International Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings,
volume 2380 of Lecture Notes in Computer Science, pages 426–438. Springer, 2002. doi:
10.1007/3-540-45465-9_37.

9 Gerth Stølting Brodal and Rolf Fagerberg. Funnel heap — A cache oblivious priority queue.
In Prosenjit Bose and Pat Morin, editors, Algorithms and Computation, 13th International
Symposium, ISAAC 2002 Vancouver, BC, Canada, November 21-23, 2002, Proceedings, volume
2518 of Lecture Notes in Computer Science, pages 219–228. Springer, 2002. doi:10.1007/
3-540-36136-7_20.

10 Gerth Stølting Brodal and Rolf Fagerberg. On the limits of cache-obliviousness. In Lawrence L.
Larmore and Michel X. Goemans, editors, Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, June 9-11, 2003, San Diego, CA, USA, pages 307–315. ACM, 2003.
doi:10.1145/780542.780589.

11 Gerth Stølting Brodal, Rolf Fagerberg, Ulrich Meyer, and Norbert Zeh. Cache-oblivious data
structures and algorithms for undirected breadth-first search and shortest paths. In Torben
Hagerup and Jyrki Katajainen, editors, Algorithm Theory - SWAT 2004, 9th Scandinavian
Workshop on Algorithm Theory, Humlebaek, Denmark, July 8-10, 2004, Proceedings, volume
3111 of Lecture Notes in Computer Science, pages 480–492. Springer, 2004. doi:10.1007/
978-3-540-27810-8_41.

12 Gerth Stølting Brodal and Jyrki Katajainen. Worst-case external-memory priority queues. In
Stefan Arnborg and Lars Ivansson, editors, Algorithm Theory - SWAT ’98, 6th Scandinavian
Workshop on Algorithm Theory, Stockholm, Sweden, July, 8-10, 1998, Proceedings, volume
1432 of Lecture Notes in Computer Science, pages 107–118. Springer, 1998. doi:10.1007/
BFB0054359.

13 Mark R. Brown. Implementation and analysis of binomial queue algorithms. SIAM Journal
of Computing, 7(3):298–319, 1978. doi:10.1137/0207026.

14 Svante Carlsson, J. Ian Munro, and Patricio V. Poblete. An implicit binomial queue with
constant insertion time. In Rolf G. Karlsson and Andrzej Lingas, editors, SWAT 88, 1st
Scandinavian Workshop on Algorithm Theory, Halmstad, Sweden, July 5-8, 1988, Proceedings,
volume 318 of Lecture Notes in Computer Science, pages 1–13. Springer, 1988. doi:10.1007/
3-540-19487-8_1.

15 Rezaul Alam Chowdhury and Vijaya Ramachandran. Cache-oblivious shortest paths in graphs
using buffer heap. In Phillip B. Gibbons and Micah Adler, editors, SPAA 2004: Proceedings of

ESA 2025

https://doi.org/10.1137/S0097539703428324
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1007/3-540-48318-7_27
https://doi.org/10.1007/978-3-642-40273-9_11
https://doi.org/10.1007/978-3-642-40273-9_11
https://doi.org/10.1007/3-540-45465-9_37
https://doi.org/10.1007/3-540-45465-9_37
https://doi.org/10.1007/3-540-36136-7_20
https://doi.org/10.1007/3-540-36136-7_20
https://doi.org/10.1145/780542.780589
https://doi.org/10.1007/978-3-540-27810-8_41
https://doi.org/10.1007/978-3-540-27810-8_41
https://doi.org/10.1007/BFB0054359
https://doi.org/10.1007/BFB0054359
https://doi.org/10.1137/0207026
https://doi.org/10.1007/3-540-19487-8_1
https://doi.org/10.1007/3-540-19487-8_1

3:14 External-Memory Priority Queues with Optimal Insertions

the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, June
27-30, 2004, Barcelona, Spain, pages 245–254. ACM, 2004. doi:10.1145/1007912.1007949.

16 James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert Endre Tarjan. Relaxed
heaps: An alternative to fibonacci heaps with applications to parallel computation.
Communications of the ACM, 31(11):1343–1354, 1988. doi:10.1145/50087.50096.

17 Kasper Eenberg, Kasper Green Larsen, and Huacheng Yu. Decreasekeys are expensive
for external memory priority queues. In Hamed Hatami, Pierre McKenzie, and Valerie
King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 1081–1093. ACM,
2017. doi:10.1145/3055399.3055437.

18 R. Fadel, K. V. Jakobsen, Jyrki Katajainen, and Jukka Teuhola. Heaps and heapsort on
secondary storage. Theoretical Computer Science, 220(2):345–362, 1999. doi:10.1016/
S0304-3975(99)00006-7.

19 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987. doi:10.1145/
28869.28874.

20 Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In 40th Annual Symposium on Foundations of Computer Science, FOCS
’99, 17-18 October, 1999, New York, NY, USA, pages 285–298. IEEE Computer Society, 1999.
doi:10.1109/SFFCS.1999.814600.

21 Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. ACM Transactions on Algorithms, 8(1):4:1–4:22, 2012. doi:10.1145/
2071379.2071383.

22 Bernhard Haeupler, Richard Hladík, Václav Rozhon, Robert E. Tarjan, and Jakub Tetek.
Universal optimality of Dijkstra via beyond-worst-case heaps. In 65th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2024, Chicago, IL, USA, October 27-30, 2024,
pages 2099–2130. IEEE, 2024. doi:10.1109/FOCS61266.2024.00125.

23 Bernhard Haeupler, Richard Hladík, Václav Rozhon, Robert E. Tarjan, and Jakub Tetek.
Bidirectional Dijkstra’s algorithm is instance-optimal. In Ioana Oriana Bercea and Rasmus
Pagh, editors, 2025 Symposium on Simplicity in Algorithms, SOSA 2025, New Orleans, LA,
USA, January 13-15, 2025, pages 202–215. SIAM, 2025. doi:10.1137/1.9781611978315.16.

24 Nicholas J. A. Harvey and Kevin C. Zatloukal. The post-order heap. In Proceedings
Third International Conference on Fun with Algorithms (FUN 2004), Elba, Italy, May
2004, 2004. URL: http://people.csail.mit.edu/nickh/Publications/PostOrderHeap/
FUN04-PostOrderHeap.pdf.

25 John Iacono, Riko Jacob, and Konstantinos Tsakalidis. External memory priority queues
with decrease-key and applications to graph algorithms. In Michael A. Bender, Ola Svensson,
and Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms, ESA 2019,
September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages 60:1–60:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.ESA.2019.60.

26 Shunhua Jiang and Kasper Green Larsen. A faster external memory priority queue with
decreasekeys. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,
2019, pages 1331–1343. SIAM, 2019. doi:10.1137/1.9781611975482.81.

27 Vijay Kumar and Eric J. Schwabe. Improved algorithms and data structures for solving graph
problems in external memory. In Proceedings of the Eighth IEEE Symposium on Parallel
and Distributed Processing, SPDP 1996, New Orleans, Louisiana, USA, October 23-26, 1996,
pages 169–176. IEEE Computer Society, 1996. doi:10.1109/SPDP.1996.570330.

28 Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes in
Computer Science. Springer, 1983. doi:10.1007/BFB0014927.

https://doi.org/10.1145/1007912.1007949
https://doi.org/10.1145/50087.50096
https://doi.org/10.1145/3055399.3055437
https://doi.org/10.1016/S0304-3975(99)00006-7
https://doi.org/10.1016/S0304-3975(99)00006-7
https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/28869.28874
https://doi.org/10.1109/SFFCS.1999.814600
https://doi.org/10.1145/2071379.2071383
https://doi.org/10.1145/2071379.2071383
https://doi.org/10.1109/FOCS61266.2024.00125
https://doi.org/10.1137/1.9781611978315.16
http://people.csail.mit.edu/nickh/Publications/PostOrderHeap/FUN04-PostOrderHeap.pdf
http://people.csail.mit.edu/nickh/Publications/PostOrderHeap/FUN04-PostOrderHeap.pdf
https://doi.org/10.4230/LIPICS.ESA.2019.60
https://doi.org/10.1137/1.9781611975482.81
https://doi.org/10.1109/SPDP.1996.570330
https://doi.org/10.1007/BFB0014927

Brodal, Goodrich, Iacono, Lo, Meyer, Pagan, Sitchinava, Svenning 3:15

29 Nir Shavit and Itay Lotan. Skiplist-based concurrent priority queues. In Proceedings 14th
International Parallel and Distributed Processing Symposium. IPDPS 2000, pages 263–268.
IEEE, 2000. doi:10.1109/IPDPS.2000.845994.

30 Mikkel Thorup. On RAM priority queues. SIAM Journal on Computing, 30(1):86–109, 2000.
doi:10.1137/S0097539795288246.

31 Jean Vuillemin. A data structure for manipulating priority queues. Communications of the
ACM, 21(4):309–315, 1978. doi:10.1145/359460.359478.

32 John William Joseph Williams. Algorithm 232: Heapsort. Communications of the ACM,
7(6):347–348, 1964. doi:10.1145/512274.512284.

ESA 2025

https://doi.org/10.1109/IPDPS.2000.845994
https://doi.org/10.1137/S0097539795288246
https://doi.org/10.1145/359460.359478
https://doi.org/10.1145/512274.512284

	1 Introduction
	2 External-memory priority queue
	3 The internal-memory part
	4 The external-memory part
	5 Semi-sorted lists
	6 Lazy semi-sorted lists
	7 Analysis
	8 Dependence on current priority queue size
	9 Conclusion and open problems

