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Abstract
We present an optimal partially-persistent external-memory search tree with amortized I/O bounds
matching those achieved by the non-persistent Bε-tree by Brodal and Fagerberg [SODA 2003]. In
a partially-persistent data structure, each update creates a new version. All past versions can be
queried, but only the current version can be updated. Operations should be efficient with respect to
the size Nv of the accessed version v. For any parameter 0 < ε < 1, our data structure supports
insertions and deletions in amortized O

(
1

εB1−ε logB Nv

)
I/Os, where B is the external-memory block

size. It also supports successor and range reporting queries in amortized O
(

1
ε

logB Nv + K/B
)

I/Os,
where K is the number of keys reported. The space usage of the data structure is linear in the total
number of updates. We make the standard and minimal assumption that the internal memory has
size M ≥ 2B. The previous state-of-the-art external-memory partially-persistent search tree by Arge,
Danner and Teh [JEA 2003] supports all operations in worst-case O(logB Nv + K/B) I/Os, matching
the bounds achieved by the classical B-tree by Bayer and McCreight [Acta Informatica 1972]. Our
data structure successfully combines buffering updates with partial persistence. The I/O bounds
can also be achieved in the worst-case sense, by slightly modifying our data structure and under the
requirement that the memory size M = Ω

(
B1−ε log2(maxv Nv)

)
. For updates, where the I/O bound

is o(1), we assume that the I/Os are performed evenly spread out among the updates (by performing
buffer-overflows incrementally). The worst-case result slightly improves the memory requirement
over the previous ephemeral external-memory dictionary by Das, Iacono, and Nekrich (ISAAC 2022),
who achieved matching worst-case I/O bounds but required M = Ω(B logB N), where N is the size
of the current dictionary.
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1 Introduction

Developing data structures for storing a set of keys from a totally ordered set subject to
insertions, deletions, successor and predecessor queries, and range reporting queries is a
fundamental problem in computer science. The classical solution in external-memory is
the B-tree by Bayer and McCreight [5] which supports all the operations in worst-case
O(logB N + K/B) I/Os, where N is the current size of the set, K is the number of reported
keys, and B is the external-memory block size. While the B-tree achieves the optimal number
of I/Os for queries, for any 0 < ε < 1, the Bε-tree by Brodal and Fagerberg [10] significantly
improves update efficiency by attaching buffers to the internal nodes of a B-tree. This design
supports updates with amortized O

( 1
εB1−ε logB N

)
I/Os. The εB1−ε factor improvement

© Gerth Stølting Brodal, Casper Moldrup Rysgaard, Rolf Svenning;
licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 80; pp. 80:1–80:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gerth@cs.au.dk
https://orcid.org/0000-0001-9054-915X
mailto:rysgaard@cs.au.dk
https://orcid.org/0000-0002-3989-123X
mailto:rolfsvenning@cs.au.dk
https://orcid.org/0000-0002-9903-4651
https://doi.org/10.4230/LIPIcs.ESA.2025.80
https://arxiv.org/abs/2503.08211
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


80:2 Buffered Partially-Persistent External-Memory Search Trees

over traditional B-trees is significant when considering typical parameters of, e.g., ε = 1/2
and B = 1000 [4] and the Bε-tree has found important applications in high-performance
industry software such as TokuDB [9] and BetrFS [25].

Although the Bε-tree optimizes update efficiency, it is ephemeral, like most dynamic
data structures, meaning that each update overwrites the previous version, and only the
current version can be queried. In many applications, maintaining access to past versions
is beneficial or even essential. A persistent data structure supports such accesses, and in
their seminal 1989 paper, Driscoll, Sarnak, Sleator, and Tarjan introduced general techniques
for making ephemeral data structures persistent [20]. A partially-persistent data structure
supports queries in all past versions of the data structure but only the current version
can be updated. Multiple authors have adapted these techniques to the external-memory
model, developing partially-persistent B-trees that support updates and queries in worst-
case O(logB Nv + K/B) I/Os, where Nv is size of the accessed version v, matching the
performance of classical B-trees [3, 6, 32].

In this paper, we present the first buffered partially-persistent external-memory search
tree that retains the optimal update and query performance of the (ephemeral) Bε-tree. Our
approach combines buffering techniques, which are essential for efficient updates in external
memory, with a geometric view of persistence.

1.1 The External-Memory Model
For problems on massive amounts of data that do not fit in internal memory, the standard
model of computation is the I/O-model by Aggarwal and Vitter [1]. In this model, all
computation occurs in an internal memory of size M , while an infinite external memory is
used for storage. Data is transferred between internal and external memory in blocks of
B consecutive elements, with each transfer counting as an I/O. The I/O complexity of an
algorithm is defined as the total number of I/Os it performs, and the space usage is the
maximum number of external-memory blocks used at any given time. The only operation
we allow on stored keys are comparisons and we follow the standard assumption that the
parameters B ≥ 2 and M ≥ 2B. Aggarwal and Vitter proved that the optimal bound for
sorting in external memory is sort(N) = Θ

(
N
B logM/B

N
B

)
I/Os [1]. An algorithm is called

cache oblivious if it is designed without explicit knowledge of B and M but is still analyzed
in the I/O model for arbitrary values of these parameters, assuming an optimal offline cache
replacement strategy [22]. Some authors make stronger assumptions on the size of the
internal memory, such as the tall-cache assumption M ≥ B1+δ, for some constant δ > 0.
For cache-oblivious algorithms, a tall-cache assumption is necessary to achieve optimal
comparison-based external-memory sorting [11].

Considering the I/O-behavior of algorithms can be crucial in practice, as demonstrated by
Streaming B-trees [8], the generation of massive graphs for the LFR benchmark [24, 27, 28],
and the FlashAttention algorithm used in Transformer models [15].

1.2 Interface of a Partially-Persistent Search Tree
A partially-persistent search tree stores an ordered set of keys supporting the interface
below (in our examples we use integers, but our data structure works for any totally ordered
set). Each version is identified by a unique integer version identifier v, with zero being the
initial version and the current version denoted by vc. Further, we let Sv denote the set of
keys contained in version v, and Nv the size of Sv. Initially vc = 0 and Svc = ∅. Updates
(insertions and deletions) can only be performed on the current set Svc

, and any update
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advances the current version identifier, i.e., each version of the set Sv only differs from the
previous version Sv−1 by at most a single key. Queries can be performed on any version.

Insert(x) Creates Svc+1 = Svc ∪ {x}, increments vc, and returns vc.
Delete(x) Creates Svc+1 = Svc

\ {x}, increments vc, and returns vc.
Range(v, x, y) Reports all keys in Sv ∩ [x, y] in increasing order.
Search(v, x) Returns the successor of x in Sv, i.e., min{y ∈ Sv | x ≤ y}.

1.3 Previous Work
In internal memory, the fat node and node copying techniques can make any ephemeral linked
data structure partially-persistent with constant overhead in both time and space, if the
in-degree of each node in the ephemeral structure is constant [20]. Becker, Gschwind, Ohler,
Seeger, and Widmayer [6] and Varman and Verma [32] adapted these techniques to B-trees in
external-memory. An elegant application of partial persistence appears in the design of linear
space planar point location data structures [31]. In this setting, the underlying set consists
of segments which are partially ordered (only a pair of segments intersected by a vertical line
can be compared). To adapt this approach to the external-memory setting, Arge, Danner,
and Teh strengthened the partially-persistent B-tree to require only a total order on keys
alive at any given version, leading to a static external-memory point-location structure [3].

A different approach to persistence is to interpret it geometrically, see Figure 1(left),
modeling it as a data structure problem on a dynamic set of vertical segments. Kolovson
and Stonebraker explored this perspective [26], though their reliance on R-trees led to poor
performance guarantees [23]. More recently, Brodal, Rysgaard, and Svenning [12] leveraged
this geometric approach to develop fully persistent B-trees, which allow both queries and
modifications to all past versions in O(logB Nv) I/Os. In a fully persistent data structure,
updating a version corresponds to cloning it and then applying the modification to the newly
cloned version, ensuring that existing versions remain unaffected. Such behavior contrasts
with retroactive data structures [17], where updates recursively propagate to cloned versions.

Concurrently with the work on persistent data structures in external-memory, there
were significant improvements to external-memory data structures by leveraging buffering
techniques to always process multiple updates and/or queries together. These include the
Buffer Tree by Arge [2] which can form the basis for external-memory sorting, priority queues
and batched dynamic algorithms [21] in amortized O

(
1
B logM/B

N
B

)
I/Os per operation.

For a batched operation the answer might not be immediately returned, which is often
sufficient, e.g., in many geometric plane-sweep algorithms where only the end result matters.
For standard (non-batched) data structures, a line of work has investigated the update-
query trade-off, beginning with the Buffered Repository Tree [14] performing updates in
amortized O

( 1
B logB N

)
I/Os and queries in O(log2 N) I/Os. This was later generalized

by the Bε-tree [10] which corresponds to the Buffered Repository Tree for ε ≈ 0 and to
the standard B-tree for ε ≈ 1. The amortized performance of the Bε-tree was improved to
high-probability [7] and worst-case [16] I/O bounds using stronger assumptions on the size
of B and M (see Table 1).

1.4 Contribution
Combining the two lines of research on persistence and buffered data structures has remained
an open challenge for the past 20 years, likely due to their seemingly conflicting principles.
Persistence requires maintaining access to past versions without affecting their structure,

ESA 2025
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Table 1 Overview of results on the I/O complexity of ephemeral and partially-persistent search
trees. Results marked by “am.” hold amortized, and results marked by “rand.” are randomized and
hold with high probability. All other bounds are worst case. The parameter ε must satisfy 0 < ε < 1.
All results assume M = Ω(B), further † assumes B = Ω(log N) and M = Ω

(
max{B logΘ(1) N, B2}

)
;

‡ assumes M = Ω(B logB N); and ∗ assumes M = Ω
(
B1−ε log2(maxv Nv)

)
. For both queries and

updates in [7, 16], we include the multiplicative dependency on 1
ε

(that can be omitted when
treating ε as a constant), allowing, for example, setting ε = 1

log2 B
. All ephemeral results use space

linear in N and all partial persistence results use space linear in the total number of updates.

Range Query Update
Ephemeral
Bayer and McCreigh [5] O(logB N + K/B) O(logB N)
Brodal and Fagerberg [10] O

(
1
ε

logB N + K/B
)

am. O
(

1
εB1−ε logB N

)
am.

Bender, Das, Farach-Colton,
Johnson, and Kuszmaul† [7] O

(
1
ε

logB N + K/B
)

O
(

1
εB1−ε logB N

)
rand.

Das, Iacono, and Nekrich‡ [16] O
(

1
ε

logB N + K/B
)

O
(

1
εB1−ε logB N

)
Partial Persistent
Becker, Gschwind, Ohler,

Seeger, and Widmayer [6]


O(logB Nv + K/B) O(logB Nv)Varman and Verma [32]

Arge, Danner, and Teh [3]
This paper (Theorem 1) O

(
1
ε

logB Nv + K/B
)

am. O
(

1
εB1−ε logB Nv

)
am.

This paper (Theorem 2)∗ O
(

1
ε

logB Nv + K/B
)

O
(

1
εB1−ε logB Nv

)
This paper (Theorem 3) O

(
1
ε

logB Nv + γ + K/B
)

O
(

1
B1−ε

(
1
ε

logB Nv + γ
))

γ = sort
(
B1−ε log2 Nv

)
= log2 Nv

Bε logM/B
log2 Nv

Bε

while buffers essentially hold updates to past versions before applying them. Our work
demonstrates that these two ideas can be effectively unified by developing partially-persistent
external-memory search trees that achieve bounds matching those of ephemeral Bε-trees. In
Section 2 we prove the following theorem.

▶ Theorem 1. Given any parameter 0 < ε < 1 and M ≥ 2B, there exist partially-persistent
external-memory search trees over any totally ordered set, that support Insert and Delete
in amortized O

( 1
εB1−ε logB Nv

)
I/Os, Search in amortized O

( 1
ε logB Nv

)
I/Os, and Range

in amortized O
( 1

ε logB Nv + K/B
)

I/Os. Here Nv denotes the number of keys contained in
version v, and K the number of keys reported by Range. The space usage is linear in the
total number of updates.

Our construction is essentially a Bε-tree with buffers of O(B) delayed updates at each
internal node, leaves storing Θ

( 1
ε B logB Nv

)
updates, and where partially persistence is

obtained using path copying of nodes, where an internal node is only copied when its buffer
is empty.

The query Search can trivially also answer a member query “x ∈ Sv?” by checking if
Search(v, x) returns x. Our data structure also supports predecessor queries along with
successor queries, as well as strict predecessor and successor queries, i.e., the returned key
should be strictly smaller or larger than the query key x. The structure can also handle the
case when S0 ̸= ∅, where the initial structure can be constructed using O(1 + |S0|/B) I/Os
(essentially this is Section 2.6, where a structure is constructed for a given sorted set of keys).
Our data structure is stated as maintaining a set of keys, but it can easily be extended to
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support dictionaries storing key-value pairs (each vertical segment in Figure 1 now stores
a key-value pair, where the first axis is the key. Changing the value for key x at version v

starts a new vertical segment at (x, v) with the new value).
In Section 3 we describe how to convert the amortized I/O bounds of Theorem 1 to

worst-case bounds under the assumption that M = Ω
(
B1−ε log2(maxv Nv)

)
(Theorem 2), a

weaker or equal assumption on the memory size than used in [7] and [16] for high-probability
and worst-case bounds for Bε-trees, respectively. Under the weakest assumption that
M ≥ 2B, we achieve the worst-case bounds in Theorem 3 with an additional term of at
most O

(
sort

(
B1−ε log2 Nv

))
I/Os, where B1−ε log2 Nv is an upper bound on the number of

buffered updates on a root-to-leaf path in our buffered Bε-tree that should be flushed to a
leaf. For updates, where the I/O bound can be o(1), we assume that the I/Os are performed
evenly spread out among the updates.

▶ Theorem 2. Given any parameter 0 < ε < 1 and M = Ω
(
B1−ε log2(maxv Nv)

)
, there

exist partially-persistent external-memory search trees over any totally ordered set, that
support Insert and Delete in worst-case O

( 1
εB1−ε logB Nv

)
I/Os, Search in worst-case

O
( 1

ε logB Nv

)
I/Os, and Range in worst-case O

( 1
ε logB Nv + K/B

)
I/Os. Here Nv denotes

the number of keys contained in version v, and K the number of keys reported by Range.
The space usage is linear in the total number of updates.

▶ Theorem 3. Given any parameter 0 < ε < 1 and M ≥ 2B, there exist partially-persistent
external-memory search trees over any totally ordered set, that support Insert and Delete
in worst-case O

( 1
B1−ε

( 1
ε logB Nv + γ

))
I/Os, Search in worst-case O

( 1
ε logB Nv + γ

)
I/Os,

and Range in worst-case O
( 1

ε logB Nv + γ + K/B
)

I/Os, where γ = sort
(
B1−ε log2 Nv

)
.

Here Nv denotes the number of keys contained in version v, and K the number of keys
reported by Range. The space usage is linear in the total number of updates.

Note that, for example, when Nv = 2O(Bε) then B1−ε log2 Nv = O(B) and γ = O(1) and
the I/O bounds of Theorem 3 match those of Theorem 2, with only the assumption M ≥ 2B.
This observation can be further strengthened, as when γ = O

( 1
ε logB Nv

)
the I/O bounds

match similarly, which holds when Nv = 2Bε( M
B )O( Bε

ε log2 B )
.

Outline of Data Structure. Previous work on partially-persistent search trees in external
memory directly adapted the general pointer-based transformations for persistence [20]. In
contrast, our approach embraces the geometric interpretation of partial persistence like in [12],
where the state of the data structure is embedded in a two-dimensional plane with keys on
the first axis and versions on the second axis, see Figure 1(left). Under this interpretation,
each update corresponds to the start or end of a vertical segment in the plane. Since
partially-persistent updates are applied to the current version, it always affects the top of the
plane. Successor and predecessor queries correspond to horizontal ray shooting to the right
and left, respectively, and range queries to reporting the intersections between a horizontal
query segment among vertical segments.

To efficiently update and query the geometric view, we partition the plane into rectangles,
each containing Θ

( 1
ε B logB N

)
vertical segments in lexicographic order. For now, we assume

that all versions have size Θ
(
N

)
, for a fixed N . This assumption is lifted using global

rebuilding, see Section 2.6. In the geometric persistent view, a vertical segment crossing
multiple rectangles is split into multiple smaller segments, one for each rectangle, and each
smaller segment is inserted into one rectangle.

At a high level, our data structure is divided into two parts, see Figure 1(right). The top
part consists of all the open rectangles containing the current set Svc

, which may still be

ESA 2025
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S11

Range(9, 2, 7)

Search(4, 2)

1 2 3 4 5 6 7
key

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

version

Insert(1)
Insert(5)
Insert(6)
Delete(5)
Insert(4)
Insert(2)
Delete(2)
Insert(3)
Insert(5)
Delete(3)
Delete(6)
Insert(2)
Delete(1)
Delete(4)

r1 r2

r5

r3

r6

r4

x yz

v

w

vc

key

ve
rs

io
n

Bε-tree

< 2∆

< 2∆F

H

Figure 1 (Left) A list of updates performed on an initially empty set and the geometric
interpretation of the updates. Vertical lines illustrate the half-open intervals of versions containing
a key. Note that the key 3 is contained in versions [8, 10[, i.e., versions 8 and 9, whereas the
key 2 is contained in version 6 and versions [12, ∞[. The topmost dashed line shows that version
11 of the set is S11 = {1, 4, 5}, the dashed line segment at version 9 shows that the result of the
query Range(9, 2, 7) is {3, 4, 5, 6}, and the bottommost dashed arrow shows that the result of
the successor search Search(4, 2) is 6. (Right) A Bε-tree of the open rectangles and below the
geometric interpretation of the updates, split into multiple rectangles, where gray rectangles are open
rectangles. The black endpoints represent updates present in the rectangles and the gray endpoints
represent buffered updates present in the buffers at the internal nodes of the Bε-tree. A query
Range(v, x, y) is represented as the dashed line between two square endpoints, spanning rectangles
r1, r2, r3, and r4, and a successor query Search(w, z) is represented as the dashed arrow from a
square endpoint, spanning two rectangles r5 and r6. Black dots on vertical segments correspond to
the upper endpoint of the segment in the rectangle below and the lower endpoint of the segment in
the rectangle above.

updated. The entry point of this data structure is a Bε-tree T on the key axis to facilitate
buffered updates and to find the relevant rectangle(s) for updates and queries. Since updates
are buffered, the geometric view stored in the rectangles may be incomplete, since buffered
updates (segment endpoints) will first be added to the rectangle when buffers are flushed.
The bottom part consists of all the finalized rectangles, i.e., rectangles which can be queried
but not updated. The entry point to the bottom part is a point location data structure
P to find the relevant rectangle(s) for a query. We implement P as an external-memory
adaption of the classical planar point location solution using partial persistence [3, 31], more
specifically a B-tree with path copying during updates.

2 The Buffered Persistent Data Structure

In this section, we describe our partially-persistent Bε-tree structure. Versions are identified
by the integers 0, 1, 2, . . ., where vc denotes the identifier of the current version. We let Sv

denote the set at version v, where keys are from some totally ordered set. The initial set
S0 = ∅, and Sv+1 = Sv ∪ {x} if the v + 1’th update is Insert(x), and Sv+1 = Sv \ {x} if the
v + 1’th update is Delete(x). Note that Sv+1 = Sv if the (v + 1)’th update inserts a key
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already in Sv or is deleting a key not in Sv.

2.1 Geometric Interpretation of Partial Persistence
The problem has a natural geometric interpretation in a two-dimensional space, with the
first dimension representing the keys and the second dimension representing the versions,
see Figure 1(left). On this two-dimensional plane, a key x existing in a half-open interval of
versions [v, w[, is represented by the vertical line segment {x} × [v, w[, i.e., x is inserted in
version v and deleted in version w. If x ∈ Svc , then w = +∞ (x has not been deleted yet).

2.2 Partitioning the Plane into Rectangles
We consider the sequence of versions partitioned into intervals [v0, v1[, . . . , [vk−1, vk[, [vk, ∞[,
for some versions 0 = v0 < v1 < · · · < vk ≤ vc. In Section 2.6 we show how to maintain
the version intervals. We let v = vk and N = |Sv|. In the following, we consider the
interval [v, ∞[, which contains the current version vc of the set. We allow up to α · N

partially-persistent updates during this interval of versions for a constant 0 < α < 1, i.e., all
versions v, v ≤ v ≤ vc, satisfy (1 − α) · N ≤ |Sv| ≤ (1 + α) · N .

Our data structure is built around four parameters:

∆ = ⌈Bε⌉ H = 1 +
⌈
log∆ N

⌉
F =

⌈
B1−ε

⌉
R = H · 2∆ · F

The basic idea is to have a Bε-tree T of degree at most 2∆ − 1 (and degree at least ∆,
if only insertions can be performed, and degree at least 1 if deletions are allowed), where
leaves (open rectangles) store between 4R and 10R updates (see Section 2.4) and all leaves
are at the same level of T . In Section 2.5 we prove that H is an upper bound on the height
of T (number of nodes on a root-to-leaf path, excluding the leaves). Each internal node of T

will have a buffer of at most 2∆F = Θ(B) updates yet to be applied to the leaves of the
subtree rooted at the node. Note that R is an upper bound on the total number of buffered
updates along a root-to-leaf path in T . The essential property of the parameters is that
R/B = Θ(H) = Θ

( 1
ε logB N

)
.

The geometric plane defined in Section 2.1 is partitioned into a set of axis aligned
rectangles [x, y[×[v, w[, such that the number of updates in each rectangle is Θ(R). For each
rectangle we store a list of the updates in the rectangle in lexicographical order by first the
key and secondly the version of that update. Note that equal keys are group consecutively in
the list. To allow efficiently locating a rectangle for a given version and key, we store a list
indexed by version identifier, where we for each version v store a pointer to the root of a
B-tree Pv over the rectangles left-to-right containing Sv (see Section 2.4). The tree Pv has
degree Θ(B) and does not store buffered updates. Further, we require that each rectangle
contains Ω(R) keys which are present in all versions the rectangle spans. We denote such a
key as spanning. If N = O(R), all updates are stored in a single list.

New updates are buffered, to achieve I/O efficient update bounds. The topmost rectangles,
which cover the current version vc, are all open, with all other rectangles being closed.
Crucially, new updates are always performed in the current version. We maintain the invariant
that for a buffered update, i.e., an update not having been flushed to the corresponding
rectangle yet, the rectangle must be open.

For the open rectangles, we store a Bε-tree T , such that recent updates to the open
rectangles are buffered. We let the maximum degree of an internal node in T be 2∆ − 1.
Each internal node of T contains a buffer of up to 2∆F updates, sorted lexicographically by
key and version. Additionally, each update stores if the update is an insertion or deletion.

ESA 2025
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Consider a full buffer, i.e., it contains at least 2∆F updates, where each update should be
flushed to one of the at most 2∆ − 1 children. Then, there must exist a subset of least F

updates that should be flushed to the same child.
The setup is illustrated on Figure 1(right). The vertical black and gray lines represent

the version intervals containing a key. The black lines represent updates present in the list of
updates contained in that rectangle, while the gray lines and endpoints represent updates
contained in buffers of T , which are illustrated at the top of the figure.

2.3 Handling Queries and Updates
When performing Search(v, x), first the rectangle r covering point (x, v) in the plane must
be found. By using the B-tree Pv associated with version v, r can be found using O(H) I/Os.
If r is closed, then all updates inside r are contained in the sorted list of updates stored in r,
and these can be scanned in O(R/B) I/Os. If r is open, then the result of the successor
query may be affected by buffered updates, which are not stored in r. The rectangle r must
therefore be actualized, by merging all updates in buffers on the path from the root of T

to r with the updates in r. The details of this operation are described in Section 2.4, where
the actualize operation is shown to take amortized O(H) I/Os. After r is actualized, the
query continues by scanning the updates of r. If the result of the successor query is not
contained in the rectangle r, then by the spanning requirement, the result of the query must
be in the neighboring rectangle to the right, that similarly is actualized if it is open. In total,
the operation spends amortized O(H + R/B) = O

( 1
ε logB N

)
I/Os. Note that the operation

easily can be modified to support member, predecessor, and strict predecessor or successor
queries.

A Range(v, x, y) query is performed very similarly to a Search query. The query may
however touch more than two rectangles. Note that for the at most two rectangles containing
the endpoints of the query we do not necessarily report all keys they contain at version v.
These rectangles can be found using amortized O(H + R/B) I/Os by the argument above.
For each intermediate rectangle accessed (and possibly actualized if it is open), then by the
spanning requirement, a constant fraction of the updates scanned result in reported keys.
Since accessing a rectangle takes amortized O(H + R/B) I/Os, and each rectangle contains
Θ(R) = Θ(B · H) keys at version v, then amortized O(1/B) I/Os are spent for each key
reported for an intermediate rectangle. In total, a Range query reporting K keys takes
amortized O(H + R/B + K/B) = O

( 1
ε logB N + K/B

)
I/Os.

Each update, either an Insert or Delete, is applied to the current version vc of the
set. The Bε-tree T contains all buffered updates to the open rectangles, which cover the
current version vc. For an update operation, a tuple with the update and vc is added to
the root buffer of T , which is stored in internal memory. In Section 2.4 it is shown that
adding the update to the root buffer and handling possible buffer overflows takes amortized
O(H/F ) = O

( 1
εB1−ε logB N

)
I/Os.

2.4 Flushing Buffers
To argue about the amortized cost of flushing the content of buffers down the tree T , we let
the potential of each buffered update be 1/F multiplied by the height of the buffer the update
is stored in, with the root buffer being at the largest height. One unit of released potential
can cover O(1) I/Os. When adding an update to the tree, the root buffer is always stored in
internal memory, and therefore no I/Os are needed to access it. However, the potential is
increased by at most 1/F · H, and the operation therefore uses amortized O(H/F ) I/Os.
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Buffer Overflows. Each buffer at an internal node of T contains at most 2∆F updates. If
a buffer contains more than 2∆F updates, then a buffer overflow is performed. Since each
node of T has at most 2∆ − 1 children, at least F updates from the buffer must be to the
same child. These updates can be moved together to the buffer of that child.

A buffer overflow can happen in two cases. Either when an update is placed into the
root buffer as the result of an update operation, or when updates are placed into a buffer
because the parent buffer is overflowing. Moving exactly F updates out of a buffer, is always
sufficient to make an overflowing buffer non-overflowing again. A buffer overflow therefore
only moves down a single path of T .

An overflowing buffer can be stored in O(1) blocks, since 2∆F +F = O(B), and therefore
the F updates to move can be found in O(1) I/Os. If the overflowing updates are moved to
a child buffer, these can be inserted via a merge in O(1) I/Os. As F updates are moved one
level down the tree, then the potential decreases by 1, which is enough to cover the O(1)
I/O cost of the overflow operation.

If the child is not an internal node of T , but an open rectangle, then merging the F

overflowing updates into the list of updates in the rectangle takes O(R/B) = O(H) I/Os.
As buffer overflows only move down a single path of the tree, then Ω(H) overflows must have
occurred before the overflow reaches the open rectangle. Merging the overflow into the list of
updates in the open rectangle therefore does not increase the asymptotic amortized number
of I/Os performed.

Actualizing. When actualizing an open rectangle, all buffered updates to that open rectangle
must be moved into the rectangle. Note that all relevant updates are in the buffers on
the root-to-leaf path in T to the open rectangle. Each of these buffers contains at most
2∆F = O(B) buffered updates. The total number of buffered updates on the path is at most
H · 2∆ · F = R. For each node on the path from the root down to the rectangle the following
is done. Let U be the updates on the path from the levels above in sorted order. Initially,
U is empty. To extend U for each level top-down, U is merged with the relevant updates
of the next buffer. This requires O(1 + |U |/B) I/Os, by scanning U and the buffer. Since
the U updates are moved one level down, they release potential |U |/F ≥ |U |/B, that can
cover Θ(|U |/B) I/Os, i.e., the amortized cost for actualizing one level of the tree is O(1)
I/Os. As there are O(H) levels of the tree, the at most R relevant updates can be found
in sorted order in amortized O(H) I/Os. They can then be merged with the updates in
the open rectangle in O(R/B) I/Os. In total, the actualize operation requires amortized
O(H + R/B) = O(H) I/Os.

Finalizing. Each open rectangle is allowed to receive between R and 2R updates before it is
finalized, converting it into a closed rectangle. When finalizing an open rectangle, all buffered
updates to the rectangle are removed from T and merged with the rectangle, to ensure that
all buffered updates in T are only to open rectangles. We now argue that open rectangles
receive at most 2R updates in total by finalizing the rectangle as soon as R updates have
been added to it. A finalize operation can be triggered from an actualize operation or from a
buffer overflow. In both cases the number of updates in the rectangle before the operation is
at most R − 1. An actualize operation may add at most R buffered updates to a rectangle,
i.e., at most 2R − 1 total updates are placed in a finalized rectangle. If the rectangle receives
an update from a buffer overflow, then the overflow must have been triggered by an update
in the root buffer. Buffered updates to add to the rectangle can only be the R updates in
buffers on the path, and the new update, which in total is at most (R − 1) + R + 1 = 2R
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updates to add to the open rectangle. Thus, by finalizing a rectangle as soon as it receives
at least R updates, it will receive between R and 2R updates.

Spanning Requirement. We require that the first version of a rectangle contains [4R, 8R[
keys. When finalizing a rectangle, [R, 2R] updates have been performed and therefore at least
2R of the initial keys are still present, that is, span all versions of the rectangle. This ensures
that the Ω(R) spanning keys requirement is met. When finalizing a rectangle, [2R, 10R[ keys
are contained in the rectangle at version vc. New open rectangles must be created to span
the key range of the closed rectangle, containing the keys present at version vc. If [4R, 8R[
keys are present at version vc, then a single rectangle suffices. If [8R, 10R[ keys are present
at version vc, then the range is split in two rectangles at the median key, both with [4R, 5R]
keys, and T must be updated as described below. Otherwise, at version vc the rectangle
contains [2R, 4R[ keys. In this case a sibling rectangle is finalized, to allow for a merge of
two rectangles. The sibling rectangle holds [2R, 10R[ keys at version vc. Concatenation the
keys present at version vc from the two closed rectangles gives a sorted list of [4R, 14R[ keys
for a new open rectangle. A split may need to be performed if there are 8R or more keys,
i.e., the result is one or two new open rectangles.

Updating the Bε-Tree T . After finalizing open rectangles, the Bε-tree must be updated
accordingly. If an open rectangle was split, then a new child is added to the parent node
in T of the updated rectangle. If this increases the degree of the node to 2∆, it is split by
distributing its children into two new nodes, each with degree ∆. Its buffer is also partitioned
so that each buffered update is placed in the buffer containing its relevant child. Splitting the
node further introduces a new child to the parent of the node. Note that this may cascade
up the tree, but only on the path towards the root. If a merge of the rectangle occurs, then
a child is deleted from the parent. When merging rectangles, the merged rectangles must
be siblings in the tree. The rectangle is merged with the left or right neighbor rectangle,
which has a nearest common ancestor with the rectangle in T , to ensure that the key range
of existing nodes only increase. This may cause the degree of nodes to be below ∆. Notably,
we do not merge internal nodes of T , as this could create a large buffer that requires multiple
flushes in different directions, known as flushing cascades [7]. We instead allow nodes to have
a degree down to one, where deleting the last child results in deleting the path of consecutive
degree-one from the child towards the root. As we show in Section 2.5, this does not affect
the asymptotic height of the tree.

Updating the rectangles and the Bε-tree T upon finalizing therefore requires scanning
O(R) keys and traversing a constant number of paths of length O(H) in T , which takes
O(R/B + H) = O(R/B) I/Os. As Ω(R) updates must be applied to a rectangle before
finalizing it, this does not increase the asymptotic amortized cost of an update operation.
Queries may also finalize rectangles, but already use amortized O(H) I/Os, causing no
asymptotic query overhead.

Recall, that we maintain a list that for any version v stores a pointer to the root of a
B-tree Pv over the rectangles left-to-right for version v. If the set of rectangles is unchanged
from version vc − 1 to vc, we have Pvc

= Pvc−1. If a rectangle is finalized during version v,
the set of rectangles changes and we need to create a new Pvc from Pvc−1. Since only O(1)
rectangles are removed and created in the new version, we can create Pvc

from Pvc−1 partially
persistently by standard B-tree updates and rebalancing using naive path copying [31], using
O(logB(Nv/R)) = O(H) I/Os and O(H) = O(R/B) blocks of space.
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Space Usage. When finalizing a rectangle, Ω(R) updates must have occurred in that
rectangle. New rectangles are then created, which in total copies O(R) updates, and one
path of the tree is copied. As the height of the tree is at most H = O(R/B), and the updates
of the rectangles are stored in lists, the newly allocated space is O(R/B), which can be
amortized over the Ω(R) updates required for the finalization to happen. In addition to
the updates, initially N keys are stored across O

(
N/R

)
rectangles in lists, and an initial

balanced Bε-tree is built on these initial rectangles, causing an initial space of O
(
N/B

)
blocks. As the structure allows for at most α · N updates, the total space usage is O

(
N/B

)
blocks.

2.5 Bounding the Tree Height
In this section we show that H is an upper bound on the height of the Bε-tree T .

We define the weight of a node at height i in T to be the number of updates on keys in
the key range of the node, and let wi be a lower bound for the weight of a node at height i.
The rectangles are at height 0 of the tree, with the nodes of the tree starting at height 1.
The updates are both the N initial keys as well as the up to α · N additional updates. It
holds that the weight of a node is the sum of the weights of its children. By induction on the
number of updates we show that wi ≥ B∆i for all nodes at all heights, except for the root.
First note that the inequality holds for i = 0, as any rectangle contains at least 4R ≥ B

updates when it was created. Initially, N updates are distributed into at most N/(4R)
rectangles, where the number of updates in each rectangle is at least 4R ≥ B. Each internal
node initially has degree [∆, 2∆[, except for the root that has degree [2, 2∆[. By induction on
the tree height i, it holds that the initial tree satisfies wi ≥ B∆i, except for the root. Each
update affects a root-to-leaf path of the tree. If the tree is not updated, then the weights of
the nodes on the path can only grow, and therefore the inequality holds. If rectangles are
merged, then one rectangle disappears together with all the ancestors having only this single
rectangle as a leaf. The other rectangle and its ancestors up to the least common ancestor of
the two merged leaves get their key ranges expanded. It follows that the surviving nodes
after merging rectangles only can have their key range increase, and therefore the inequality
holds. If a split occurs in any node at height i, then the degree of the node before the split
is 2∆. The node is split into two nodes at height i, each with ∆ children. The weight of
each of the two nodes is therefore at least ∆ · wi−1 ≥ ∆ · B∆i−1 = B∆i. Therefore, it holds
that wi ≥ B∆i.

Since the number of updates is at most (1 + α) · N , we have B∆i ≤ (1 + α) · N for all
nodes at height i, except for the root. Since by definition 2 ≤ ∆ ≤ B and α < 1, we have
∆i+1 ≤ 2N , i.e., i ≤ log∆

(
2N

)
− 1 ≤ log∆ N . The height of T is then at most the largest

value of i satisfying this inequality, plus one for the root, i.e., the height of T is at most
1 + log∆ N ≤ 1 +

⌈
log∆ N

⌉
= H.

2.6 Global Rebuilding
The data structure above allows for an initial set of N keys to receive up to α · N persistent
updates, for a constant 0 < α < 1. For any version v, we have (1 − α) · N ≤ Nv ≤ (1 + α) · N ,
i.e., Nv = Θ

(
N

)
. Therefore, the asymptotic costs of all operations also hold with N replaced

by Nv.
To allow for more than α ·N updates, we create multiple copies of the data structure above

using global rebuilding [29, 30]. Whenever the current data structure reaches α · N updates,
a new data structure is created with initial set Svc

and Nnew = |Svc
| (and new H and R
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parameters), with a new set of rectangles and a new Bε-tree T , where all buffers are empty.
We compute Svc by performing Range(vc, −∞, ∞) in amortized O

( 1
ε logB N + K/B

)
=

O
(
N/B

)
I/Os. This actualizes all open rectangles which now can be closed. The new data

structure can be build using O
(
N/B

)
I/Os by a single scan of the sorted list containing Svc .

In the old data structure α · N updates have been performed before this rebuild is performed.
By amortizing the rebuild cost over these updates, the amortized cost of each update is
increased by O(1/B) I/Os, i.e., the asymptotic amortized cost of an update is not increased.
As the space usage of the new data structure is O

(
N/B

)
blocks, a similar argument can be

used to amortize the space usage over the updates, maintaining a linear space usage in the
total number of updates. This concludes the proof of Theorem 1.

3 Worst-Case Bounds

In this section, we describe how to achieve worst-case I/O guarantees instead of amortized
under progressively weaker assumptions on the internal memory size M . Previous approaches
to improving the amortized performance of ephemeral Bε-trees, both in the randomized [7]
and worst-case [16] setting, assumed at least that M = Ω

( 1
ε B logB N

)
= Ω(HB), which

allows all buffers on a path to be sorted in internal memory, i.e., O(sort(HB)) = O(H)
I/Os. First, in Section 3.1, we show that if M = Ω(HB), our persistent structure can be
deamortized without asymptotic overhead, by applying incremental global rebuilding for
handling changing N and performing the flushing along a root-to-leaf path incrementally.
Then, in Section 3.2, we relax the assumption to M = Ω

(
B1−ε log2 N

)
(Theorem 2). We

apply the subtracting game studied by Dietz and Raman [18] to argue that the buffer of a
node can at most store O(F log2 ∆) updates towards each child, if we always recursively flush
F updates to the child with most updates when a node receives F updates from its parent.
This represents an improvement by a factor Bε/log2 B on the assumption for the size of the
internal memory. Finally, in Section 3.3, we show worst-case results when only assuming
M ≥ 2B, which introduces a small additive overhead on all operations (Theorem 3). We
employ the zeroing game by Dietz and Sleator [19, Theorem 5] to avoid a multiplicative
overhead for Range queries, by incrementally splitting and merging the open rectangle with
the most updates.

3.1 Large Internal Memory Assumption
We first consider the case when M = Ω(HB). When actualizing a rectangle (see Section 2.3),
the buffers at the O(H) nodes along the root-to-leaf path, with a total size of O(HB), are
merged to produce a sorted list of updates to apply to the rectangle. As shown in Section 2.4,
this can be done in amortized O(H) I/Os, by merging the buffers top-down. In the worst
case, this requires O

(
H2)

I/Os. By instead merging the buffers using an external memory
sorting algorithm, the worst-case number of I/Os can be improved to O(sort(HB)). Previous
approaches to improving the amortized performance of Bε-trees in the randomized [7] and
worst-case [16] settings both assumed at least that M = Ω(HB), in which case the sorting
term trivially disappears by performing the sorting internally after reading the H buffers
into internal memory. The remaining challenge was handling flushing cascades, which occur
when merging internal nodes of T results in large buffers requiring many flushes in different
directions. For our structure, we avoid this issue, by never merging internal nodes, and
instead maintain the height of T using global rebuilding. For the remainder of this section, we
assume a large internal memory of size M = Ω(HB) and describe how to achieve worst-case
guarantees by incrementally performing amortized work.
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Queries. Finding and actualizing a relevant rectangle for a query takes O(H + sort(HB)) =
O(H) I/Os when M = Ω(HB). The worst case for a Search and Range query is therefore
O(H) and O((1 + K/R) H) = O(H + K/B) I/Os, respectively. Note that for a Range
query, for each rectangle that intersects the query, except for the leftmost and rightmost
ones, Ω(R) keys are reported due to the Ω(R) spanning keys in each rectangle.

Updates. When performing an update, it may be the
⌈
α · N

⌉
’th update, which triggers a

global rebuild of the structure based on a new N , which uses O
(
N/B

)
I/Os, as described in

Section 2.6. However, by performing the global rebuilding incrementally [29, 30] over the
next Θ

(
N

)
updates, this does not increase the asymptotic worst-case number of I/Os of

each update. While initializing the new structure there are still updates happening which
must then be applied before it can take over. By performing updates to the new structure at
a sufficiently fast rate compared to the live structure this ensures that they stay within a
constant factor of each other in size until the new structure takes over. Therefore, only the
I/O cost of an update without global rebuilding needs to be considered.

Updates are inserted in the root buffer of the Bε-tree, as described in Section 2.4. By
keeping the root buffer in internal memory this uses no I/Os. If the root buffer overflows,
it may cause buffer overflows along a root-to-leaf path down to an open rectangle, which
may then be finalized by performing an actualize operation followed by a path copy. The
update therefore requires O(H) I/Os in total under the large internal memory assumption.
However, each time the root buffer overflows, F updates are removed from it, meaning this
occurs at most every F th update. Thus, when the root buffer overflows, we incrementally
apply the update to the structure over the next F updates, ensuring that O(H/F ) I/Os
are performed per update in the worst case. To not interfere with the incremental work,
we place new updates in a separate buffer while it is in progress and merge them with the
root buffer when it is finished. If a path copy has occurred, the root pointers of the F most
recent versions must be updated to the new root. Since they are stored together in an array
indexed by their version identifier this takes O(1) I/Os. If a query occurs while an update is
being performed incrementally, we complete the update before executing the query. This
does not increase the asymptotic worst-case number of I/Os for queries.

3.2 Smaller Buffers on All Paths Using the Subtraction Game
In the previous section, we showed that there is no overhead on worst-case queries and
updates compared to the amortized bounds, if the internal memory can hold all keys on a
root-to-leaf path towards the same open rectangle. To lower the possible number of such keys,
we slightly change the flushing strategy described in Section 2.4 where we only performed
a flush when a buffer overflowed. Instead, for every F ’th update, we flush along an entire
root-to-leaf path, always flushing towards the child where most of the updates are going. We
still flush at most F keys, which preserves the property that internal nodes of T contain
at most 2∆F updates. In the following, we show that this flushing strategy guarantees
that all buffers contain O(F log2 ∆) updates going towards the same child, and therefore
also the same leaf. This implies that the assumption M = Ω(HF log2 ∆) = Ω

(
B1−ε log2 N

)
is sufficient to achieve no overhead for worst-case queries and updates. This is a factor
Θ(Bε/ log2 B) improvement over the previous smallest assumption on M [16].

We can view each node as playing the subtracting game studied by Dietz and Raman [18]
for the number of updates x1, x2, x3, ..., x2∆−1 going towards each of its at most 2∆ − 1
children. When at most F updates are flushed towards a node, and δi new updates are going
towards the ith child, then variable xi is increased by δi. We flush towards the child j where
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most of the updates are going which sets the variable xj = max{xj − F, 0}. Following [18,
Theorem 3], scaled by a factor of F , this guarantees xi = O(F log2 ∆) for any i.

We also need to consider how merging and splitting nodes in T impacts the subtraction
games. Only leaves of T , corresponding to open rectangles, are merged. When an internal
node is split, it corresponds to evenly distributing the xi variables from one game to two new
games, except for one variable that is split into two new variables, each with a smaller or
equal value. When a leaf, i.e., an open rectangle, is merged or split, the one or two rectangles
involved are first actualized, which sets their variables to zero, a stronger operation than
subtracting. Thus, the variable for a new rectangle is always zero and variables on root-to-leaf
paths to actualized rectangles may be decremented. In all cases and for all games, variables
are either decremented without adding to the game, or a copy of an existing game is created,
where all variables in the copy are equal or smaller in value than before. This concludes the
proof of Theorem 2.

3.3 Improving Worst-Case Range Queries Using the Zeroing Game

In this section, we consider the small-memory setting with M ≥ 2B, to overcome the
theoretical limitation of the memory assumptions made in Sections 3.1 and 3.2. Actualizing
a rectangle by merging the relevant updates on a root-to-leaf path to a rectangle requires
O(H + γ) total I/Os, where γ = sort

(
B1−ε log2 N

)
. The construction from the previous

section directly results in worst-case Search queries using O(H + γ) I/Os and updates using
O

( 1
F (H + γ)

)
I/Os. However, since Range queries are performed by repeatedly searching

for the Θ(1 + K/R) rectangles intersecting the query, the worst-case number of I/Os is
Θ((1 + K/R) (H + γ)) = Θ

(
H + γ + K

B

(
1 + ε log2 B

Bε logM/B

(
B−ε log2 N

)))
, notably with

a multiplicative non-constant overhead on the reporting term. In this section, we describe
how to guarantee Range queries in worst-case Θ

(
H + γ + K

B

)
I/Os when M ≥ 2B.

The worst-case I/O cost of a Range query can be improved by merging all the buffered
updates to the open rectangles intersecting the query in a top-down, level-by-level fashion.
That is, by essentially actualizing all the open rectangles intersected by the Range query
simultaneously. We denote the updates already present in the rectangles the partial output
list. Rather than applying the buffered updates to the rectangles, we merge them with the
partial output list to obtain the final output. A given query Range(v, x, y) reports Ω(R) keys
from each intermediate rectangles, i.e., all rectangles intersecting the query except for the two
that contain the endpoints x and y. Thus, in O((1 + K/R)H + (R + K)/B) = O(H + K/B)
I/Os we can find all the relevant rectangles and compute the partial output list. To collect
the buffered updates in T for the intermediate open rectangles in sorted order, we merge the
updates down level-by-level. We only move down the updates to versions earlier or equal
to v since only these can affect the query result. Once obtained, these updates are merged
with the partial output list using linear I/Os to report the output of the Range query.

The buffered updates are stored in T , which contains the open rectangles at version vc,
however, the Range query is on the rectangles present at version v. Let Tv denote the
Bε-tree on open rectangles at version v, i.e., the state of T when version v was created.
From Tv to T the tree may have changed, but no later updates are relevant for the query.
Thus, the total number of relevant updates does not increase from Tv to T , and each update
remains on the root-to-leaf path towards the open rectangle to which the update is relevant.
The relevant updates in T can be collected in sorted lists ordered by level by traversing each
root-to-leaf path in T towards open rectangles intersecting the query using O((1 + K/R)H)
I/Os. To bound the I/Os to move the updates down level-by-level, we show that the total



G. S. Brodal, C. M. Rysgaard and R. Svenning 80:15

number of updates is O
(
B1−ε log2 N + K/H

)
. To this end, we need the additional invariant

that the buffer of a degree one node is empty, which we show how to obtain below. Let T ′
v

be the subtree of Tv consisting of all nodes on root-to-leaf paths to rectangles intersecting
the query. Then split T ′

v into two root-to-leaf paths px and py to x and y, respectively, along
with all the subtrees hanging off px or py. For a node on px (symmetrically py) of degree at
least two there may be one or more subtrees Tsub hanging off the node. Since only the nodes
of Tsub with degree at least two have non-empty buffers, if Tsub has ℓ leaves, the number of
buffered updates in Tsub is at most O((ℓ − 1)B). Thus, the number of buffered updates in T ′

v

excluding degree one nodes on px and py is O(K/H). A degree one node on px and py may
have a large degree in Tv, but since it only has one child in the direction of the query, due to
the subtracting game, it stores at most O(F log2 ∆) relevant updates. The number of degree
one nodes on px and py is at most 2H, and they together contribute O

(
B1−ε log2 N

)
buffered

updates, which we locate and sort separately using O(H + γ) I/Os. For the remaining
O(K/H) buffered updates, we merge them level-by-level using O(H + K/B) I/Os. In total,
the worst-case number of I/Os to perform a Range query is O(H + γ + K/B) I/Os.

Empty Buffers for Degree one Nodes. To ensure that each node of degree one has an
empty buffer, we alter the buffer capacity of nodes to scale with the degree. Let the capacity
of the buffer of a node with degree d ≥ 2 be at most F · min{2d, 2∆}, with nodes of degree
one having a buffer capacity of 0. When flushing a node, as the maximum number of updates
in the buffer scales with the degree, then at least F updates going to the same child can be
found when overflowing. When splitting a node, it must have degree 2∆, resulting in the
two new nodes having degree ∆, which therefore does not decrease the buffer capacity, and
flushing is not needed. When a child of a node is removed due to merging rectangles, the
degree of the node is decreased by one. If the degree remains at least two, at most two flushes
are required to get the buffer capacity within bounds. Otherwise, if the degree drops from
two to one, at most four flushes are needed. To avoid cascading merges of rectangles, we do
not finalize a rectangle once it receives a certain number of updates. Instead, we finalize the
rectangle that has received the most updates, provided it has received at least R updates.
This last condition ensures a bound on the space usage. Including the initial flush from the
root buffer, then when a rectangle is finalized, at most 5F updates have been flushed into
open rectangles.

Let Ui denote the number of updates to the ith rectangle, excluding the initial insertions.
We extend the data structure to include an array over all open rectangles, where index j

stores a blocked-linked-list of all rectangles where the number of updates is Ui = j. Each
rectangle has a double linked pointer between its location in the array of lists and the
rectangle. This allows for moving a rectangle to a new entry in the array, when it receives
updates, as well as finding a rectangle which has received the most updates, by scanning the
list.

To show that Ui is bounded by O(R), we apply the zeroing game of Dietz and Sleator [19],
using the variables xi = max

{
0, Ui−R

5F

}
if rectangle i is open and xi = 0 if it is closed. For

open rectangles, xi counts the number of units of 5F updates received beyond the first R

updates. This ensures that the variables are incremented by at most 1 in total for each
round, when at most 5 flushes of size at most F are flushed into the open rectangles. When
finalizing a rectangle, it becomes closed, which ensures that xi = 0, matching the zeroing step.
We bound the total number of rectangles by N and therefore also the number of variables.
Following [19, Theorem 5] and the refined analysis in [13, Theorem 4], we have that for
all i, xi ≤ log2 N + 1 at all times. Consequently, it follows that Ui ≤ 5F (log2 N + 1) + R.
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It can be shown that 5F (log2 N + 1) ≤ 2R for N ≥ 4, by simplifying the inequality using
R = 2∆F

(
1 +

⌈
log∆ N

⌉)
and showing 5

4

(
1 + 1

log2 N

)
≤ ∆

log2 ∆ , for all ∆ ≥ 2 and N ≥ 4. It
therefore holds that each rectangle receives at most Ui ≤ 3R updates, due to the zeroing
game. Thus, when finalizing a rectangle, at least R updates have been performed. Including
the updates from the buffers on the path towards the rectangle, the total number of updates
applied is between R and 4R. By ensuring that each rectangle contains [8R, 16R[ initial keys,
the rebalancing operations are possible, and the spanning requirement remains satisfied.

An update therefore performs at most 5 flushes using O(H) I/Os, along with locating and
finalizing a single rectangle in respectively O(R/B) = O(H) and O(H + γ) I/Os. Performing
this operation incrementally allows for updates to spend worst-case O

( 1
F (H + γ)

)
I/Os. If

a query happens while an incremental update is being performed, the incremental update
is completed, using at most O(H + γ) I/Os, which does not increase the total cost of the
query. When a Search query happens, similar to the new Range query, we do not apply
the relevant updates on the path to the open rectangle to avoid queries interfering with the
zeroing game. This concludes the proof of Theorem 3.

4 Discussion and Open Problems

Global rebuilding, as described in Section 2.6, allows for constructing a partially-persistent
set of any sorted set in a linear number of I/Os, without recreating the set by a sequence
of insertions. Symmetrically, it is possible to purge all versions of the set older than some
threshold without performing all updates again. This problem was first motivated by Becker,
Gschwind, Ohler, Seeger, and Widmayer [6]. As our data structure consists of multiple
independent data structures covering disjoint version intervals, then all data structures which
only cover versions to be purged can be removed efficiently by a linear number of I/Os. For
both use cases, space usage is asymptotically linear in the size of the oldest stored set and
the number of updates performed.

Further, global rebuilding allows for a crude fully persistent data structure, which supports
efficient buffered updates and queries, but where cloning past versions requires a linear number
of I/Os. The fully persistent data structure by Brodal, Rysgaard, and Svenning [12] allows
cloning past versions in worst case O(1) I/Os. They do, however, not buffer updates, which
therefore are amortized and a factor O

(
εB1−ε

)
slower than our data structure. Our data

structure is therefore better when there are many updates, but few clones of past versions
happening. Further, our data structure is simpler. It remains an open problem to design
buffered fully-persistent search-trees that remain efficient for clone operations.

In Section 3 we showed how to achieve worst-case bounds matching those of ephemeral
Bε-trees, when M = Ω

(
B1−ε log2 N

)
. This is an improvement by a factor Θ(Bε/ log2 B) on

the required lower bound on M over the worst-case results of Bε-trees by Das, Iacono, and
Nekrich [16]. It remains an open problem to show a worst-case I/O lower bound dependency
on M , or alternatively, to find a structure with worst-case I/O guarantees matching the
amortized I/O bounds for M = 2B.
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