
On Finding Longest Palindromic Subsequences
using Longest Common Subsequences
Gerth Stølting Brodal #

Aarhus University, Denmark

Rolf Fagerberg #

University of Southern Denmark, Odense, Denmark

Casper Moldrup Rysgaard #

Aarhus University, Denmark

Abstract
Two standard textbook problems illustrating dynamic programming are to find the longest common
subsequence (LCS) between two strings and to find the longest palindromic subsequence (LPS) of
a single string. A popular claim is that the longest palindromic subsequence in a string can be
computed as the longest common subsequence between the string and the reversed string. We prove
that the correctness of this claim depends on how the longest common subsequence is computed.
In particular, we prove that the classical dynamic programming solution by Wagner and Fischer
[JACM 1974] for finding an LCS in fact does find an LPS, while a slightly different LCS backtracking
strategy makes the algorithm fail to always report a palindrome.
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1 Introduction

This paper addresses the frequently appearing statement that the longest palindromic
subsequence of a string can be computed as the longest common subsequence between the
string and the reversed string—a statement also given by AI assistants (see Appendix A). We
show that the correctness of this statement depends on how the longest common subsequence
is computed.

The statement appears in the context of dynamic programming, a standard algorithmic
design technique taught in most undergraduate courses on algorithms. In textbooks, the
longest common subsequence (LCS) problem on two input strings is the prevailing example
of a problem solvable by dynamic programming. The LCS problem asks to find a longest
possible string that is a subsequence of two given input strings, or equivalently, to delete the
fewest possible symbols from the two strings, such that they become equal. Figure 1 (left)
illustrates that the two strings abcaabcabc and bcabbbac have bcabbc as an LCS. The LCS
is in general not unique—for instance, bcabac is also an LCS for these two strings. Solving
the LCS problem on two strings of length m and n, respectively, takes O(mn) time using
dynamic programming. In the standard textbook exposition, the lengths of optimal solutions
for subproblems are tabulated first, and an actual string solution is found as a postprocessing
step backtracking through the tabulated results.
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The longest palindromic subsequence (LPS) problem on a single input string is sometimes
presented (e.g., in an exercise) as another example of a problem solvable by dynamic
programming. The LPS problem asks to find a longest subsequence of a string that is a
palindrome, i.e., the subsequence should read the same forwards and backwards. Solving the
LPS problem on a string of length n using textbook dynamic programming takes time O(n2).

The arguments behind the recurrences for the two problems have some analogies, but the
resulting recurrences are distinct. For instance, the recurrence for LCS fills out a table of
rectangular shape, while the recurrence for LPS uses a triangular tabular area. Still, there is
a strong connection: the length of LPS solutions on a string s is the same as the length of
LCS solutions on s and the reversed string sR. This statement can be found repeated several
places on the web, but usually without a proof. Indeed, a proof is complicated by the fact
that the set of LPS solutions on a string s is not the same as the set of LCS solutions on s

and the reversed string sR: members of the first set are easily seen to be members of the
second set, but the reverse inclusion is not always true. One example of this is s = abccab,
where accb is an LCS of s and sR, but accb is not a palindrome. Figure 1 (right) contains
another example.

So, a natural question is, how to arrive at an LPS solution via the LCS route. As
mentioned, textbook explanations of LCS often include a method for producing an actual
solution. The method consists of backtracking over the LCS table, following optimal choices
in the LCS recurrence. The recurrence for LCS can actually take on a few variations, but
almost all textbooks (including, e.g., [11, pages 397–398]) use the same variant and hence
the same backtracking algorithm for producing a solution, namely the one from the classical
paper by Wagner and Fischer [28].

The starting point of this paper is the empirical observation that the above backtracking
algorithm always finds a palindromic solution to LCS on s and sR, while some other variants
of it do not. In this paper, we set out to find out why.

1.1 Previous work on LCS
The LCS problem and its applications have been studied intensely in the literature. Here,
we briefly review some of the main results and refer the reader to the surveys by Bergroth,
Hakonen, and Raita [4] and Navarro [25] for further references on the LCS problem.

Wagner and Fischer [28] presented the classical O(mn) time dynamic programming
algorithm for finding an LCS between two strings s and t of length m and n, respectively.
Their solution requires space O(mn). The same time bound is also achieved by Sankoff [27]
and the bound is mentioned by Chvatal, Karner and Knuth [10, Problem 35], who ask if
one can do better. Navarro [25] gives an overview of several concurrent inventions of the
algorithm. Hirschberg [17] improved the space usage to O(m + n). Masek and Paterson [23]
improved the running time to O(n·max(1, m/ log n)), when m ≤ n and the alphabet Σ for the
strings is finite, by applying the “the four Russians” tabulation technique to the algorithm by
Wagner and Fischer. Subsequently, Bille and Farach-Colton [5] and Grabowski [14] improved
and generalized the result to arbitrary alphabet sizes achieving O(n + mn(log log n)2/ log2 n)
time and O(mn log log n/ log2 n) time, respectively.

Hunt and Szymanski [19] presented an algorithm with running time O((r + n) log n) for
two strings of length n, where 0 ≤ r ≤ n2 is the number of pairs of positions at which the two
strings match, i.e., the running time is between O(n log n) and O(n2 log n), depending on r.
For m ≤ n and k denoting the length of an LCS, Hirschberg [18] presented two algorithms with
running time O(kn + n log n) and O(k(m + 1− k) log n + m log n), respectively, and Nakatsu,
Kambayashi and Yajima [24] presented an algorithm with running time O((m + 1− k)n).



G. S. Brodal, R. Fagerberg and C. M. Rysgaard 30:3

a b c a a b c a b c

b c a b b b a c

s

t

a c b c a b b a a c

c a a b b a c b c a

s

sR

a c b c a b b a a c

c a a b b a c b c a

s

sR

Figure 1 (left) the LCS bcabbc between two strings s and t; (center) the LCS aabbaa between
s and sR is a palindrome; (right) the LCS cabbaa between s and sR is not a palindrome; (center)
and (right) are obtained by the backtracking strategies ⟨↖, ↑,←⟩ and ⟨↑,←,↖⟩, respectively (see
Section 3 for the definition of a backtracking strategy).

Aho, Hirschberg and Ullman [2] considered decision tree lower bounds for the LCS problem.
Abboud, Backurs and Williams [1], and independently Bringmann and Künnemann [7],
showed that the LCS problem cannot be solved in time O

(
n2−ε

)
, for any ε > 0, under the

strong exponential time hypothesis (SETH). This explains the lack of essential improvements
over the O(n2) bound from Wagner and Fischer. Due to the SETH lower bound, recent work
on the LCS problem has been in the direction of approximation algorithms, see, e.g., recent
work by Bringmann, Cohen-Addad and Das [6].

1.2 Previous work on LPS
Algorithms for finding palindromes in strings is discussed in many textbooks on string
algorithms, like Gusfield [15] and Crochemore and Rytter [12], although the focus is on finding
longest palindromic substrings instead of subsequences, and variations like approximate
palindromes [26] and gapped palindromes [21]. Whereas the LCS problem is covered in
detail in textbooks as a canonical example of dynamic programming, the LPS problem
appears more rarely, and if so often as an exercise—for instance, Cormen, Leiserson, Rivest
and Stein et al. [11, Problem 14-2] ask for an efficient algorithm for the LPS problem
and Dasgupta, Papadimitriou and Vazirani [13, Problem 6.7] ask explicitly for an O(n2)
algorithm.

Manacher [22] described a linear time algorithm to identify all palindromic prefixes of a
string. As observed by, e.g., Apostolico, Breslauer and Galil [3], Manacher’s algorithm also
identifies for each position in the string the longest palindromic substring centered at this
position, i.e., solves the longest palindromic substring problem in linear time. Chowdhury,
Hasan, Iqdal and Rahman [8] initiated the study of finding the longest common palindromic
subsequence in two strings (without reference to the simpler LPS problem for a single string).

Hasan, Islam, Rahman and Sen [16] described an automaton (denoted a palindromic
subsequence automaton) that is a compact representation of all palindromic subsequences of
a string of length n. Their construction uses space O(n2), improving upon the exponential
space used by Chuang, Lee and Hunag [9]. As an application, Hasan et al. showed how to
use their automaton to compute the longest common palindromic subsequence for two strings
of length n in worst-case time O

(
n4|Σ|

)
, but the algorithm can be faster depending on the

size of the automatons for the two strings. Their paper makes crucial use of the following
claim [16, page 221] (rephrased to use our notation): “Intuitively, we can always obtain a
longest palindromic subsequence of s by first taking the longest common subsequence (LCS) t

of s and sR and then “reflecting” the first half of the result onto the second half; that is, if t

has k symbols, then we replace the last ⌊k/2⌋ symbols of t by the reverse of the first ⌊k/2⌋
symbols of t.” In Section 2 we provide a proof of this statement and the implication that the
length of an LCS for s and sR equals the length of an LPS for s.

The LCS and LPS problems are equally hard. This follows from the facts that we can
use an LCS algorithm to compute an LPS (Lemma 3) and that an LCS between two strings

ESA 2024



30:4 Finding Longest Palindromic Subsequences
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Figure 2 The reduction of LCS(s, t) to LPS(s$ntR). The circled symbols are an LPS of s$ntR,
and the circled symbols of s are the corresponding LCS of s and t.

s and t of length n can be computed by finding an LPS of s$ntR (see Figure 2). Inenaga and
Hyyrö [20, Section 3] gave a generalized version of this reduction for the case of finding the
longest common subsequence among four strings to finding a longest common palindromic
subsequence in two strings. Note that while a longest palindromic substring can be found in
O(n) time [22], finding a longest palindromic subsequence requires worst-case time Ω(n2−ε),
for any ε > 0, under the strong exponential time hypothesis (SETH), by the above reduction
and the conditional lower bound for the LCS problem [1, 7].

1.3 Results of this paper
In this paper we perform a detailed study of how to find an LPS of a string s by computing
an LCS of s and sR.

In Section 2, we provide proofs for the following two facts. These facts are folklore, but
proofs appear to be scarce in the literature. For completeness, we fill this gap.

1. The length an LCS equals the length of an LPS (Lemma 2).
2. Reflecting an LCS in the middle (as described by Hasan et al. [16]) gives an LPS

(Lemma 3).

Interestingly, one does not always need to reflect the found LCS to obtain an LPS. In
particular, our starting point for this paper was the empirical observation that the Wagner
and Fischer algorithm [28] seems to always find a palindrome. In Section 3, we prove the
following new results:

3. The Wagner and Fischer algorithm [28] always reports a palindrome (Theorem 14).
4. The backtracking in a dynamic programming based solution for LCS, like the Wagner

and Fischer algorithm [28], can be ordered in six different ways. Four of these always
return a palindrome (Theorem 14), whereas two fail to do so (Lemma 15). See Table 1.

The proof of our main result (Theorem 14) is composed of the following steps: We
first prove that the standard textbook algorithm [28] for constructing an LCS path always
produces the same solution—although not necessarily via the same path in the LCS table—as
the algorithm whose path is the “right-most extreme path”. We then prove that for the
LCS of s and sR, the set of edges from all paths in the table must be symmetric around a
table diagonal. From this follows that the right-most extreme path itself must be symmetric,
which implies that it spells out a palindrome. Hence, the textbook algorithm must always
return a palindrome.

1.4 Preliminaries
We let s = s1s2 · · · sn denote a string of length |s| = n with symbols si from an alphabet Σ.
The reversed string is denoted sR = snsn−1 · · · s2s1. For 1 ≤ i ≤ j ≤ n, s[i..j] = sisi+1 · · · sj

denotes a substring of s of length j − i + 1. For i > j, s[i..j] denotes the empty string. A
subsequence of s is a string si1si2 · · · sik

, where 0 ≤ k ≤ n and 1 ≤ i1 < i2 < · · · < ik ≤ n.
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Table 1 The six different strategies to deterministically backtrack when computing LCS(s, sR).
E.g., ⟨↖, ↑,←⟩ denotes that the prioritized backtracking order of moving from (i, j) is to (i−1, j−1),
(i− 1, j), (j − 1, j) (this corresponds to the Wagner and Fischer algorithm [28]). We prove in this
paper that the four strategies on the left always report a palindrome, whereas the two strategies on
the right might fail to report a palindrome.

LCS(s, sR) is always a palindrome LCS(s, sR) can be non-palindromic
⟨↖, ↑,←⟩ ⟨↖,←, ↑⟩ ⟨↑,↖,←⟩ ⟨←,↖, ↑⟩ ⟨↑,←,↖⟩ ⟨←, ↑,↖⟩

For strings s and t, LCS(s, t) denotes the length of a longest common subsequence of the
two strings, i.e., the maximal length over all strings which are subsequences of both s and t.
For two strings s and t of length m and n, respectively, and 0 ≤ i ≤ m and 0 ≤ j ≤ n, we let
LCS(i, j) = LCS(s[1..i], t[1..j]), when s and t are obvious from the context. A string s is a
palindrome if s = sR. We let LPS(s) denote the length of a longest palindromic subsequence
of s.

The six LCS dynamic programming algorithms that we study are all captured by the
following recurrence. Let s and t be two strings of length m and n, respectively, and let lcsi,j

denote an LCS of the first i and j symbols in s and t, respectively. Finding an LCS of s

and t is then to find lcsm,n. One way to compute lcsi,j is by the recurrence

lcsi,j =


ε if i = 0 ∨ j = 0
longest(lcsi−1,j , lcsi,j−1) if i > 0 ∧ j > 0 ∧ si ̸= tj

longest(lcsi−1,j , lcsi,j−1, lcsi−1,j−1 · si) if i > 0 ∧ j > 0 ∧ si = tj ,

(1)

where ε denotes the empty string, · denotes string concatenation, and longest(. . .) returns
a longest string among a list of strings. What LCS is identified as lcsm,n only depends on
what string longest(. . .) returns in case of multiple strings of equal length. These choices
correspond to the choices one has to do when backtracking a dynamic programming table to
produce an LCS string. Typical dynamic programming solutions observe that the last case
in the recurrence can be simplified to lcsi−1,j−1 · si, limiting the possible LCSs that can be
produced.

2 Relationship between LCS and LPS

In this section, we furnish proofs of two core statements on the relationship between
LCS(s, sR) and LPS(s), namely Lemma 2 and Lemma 3. Potential novelty in this sec-
tion lies in the exposition, not in the results stated.1

▶ Lemma 1. Let t be a common subsequence of s and sR, where |t| = k. Then there exist
two (possibly identical) palindromic subsequences of s of combined length 2k.

Proof. A symbol of t is a match between a symbol si in s and a symbol sj in sR. In this
proof, we let both indices i and j refer to positions in s (see Figure 3), i.e., the match is
between the ith first symbol in s and the jth last symbol in sR. Let “<”, “=”, and “>”
designate the sets of matchings in t for which i < j, i = j, and i > j, respectively.

1 We do note, though, that we have so far been unable to find solid arguments for these statements in the
literature. The only close contender found is [29] (which does not consider the length of the underlying
string when reversing the first half of the LCS, hence the reversing may fail—the proof can be completed
by arguing that the reversing can only fail in one of the directions).
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Figure 3 Proof of Lemma 1: A common subsequence between s and sR (shown as circled symbols)
and its partition into two palindromic subsequences (blue and red), depending on whether an index
is matched to itself (right, index 4) or not (left).

If the set “=” is empty, consider the subsequence of symbols in s identified by the
matchings of the set “<”, as pointed out by the blue arrow in Figure 3 (left). More precisely,
consider the symbols in circles passed by the blue arrow, taken in the order of that arrow.
These symbols constitute a subsequence of s (as their indices in s are increasing) and
constitute a palindrome of even length by the matchings of t. The same holds for the
subsequence of symbols in s identified by the matchings of the set “>”, as pointed out in a
similar manner by the red arrow. Combined, these two subsequences cover all symbols of s

and sR which are matched by t, hence the two subsequences have a combined length of 2k.
If the set “=” is non-empty, it must have size one, as indices in s of the matchings of t

increase in the top row and decrease in the bottom row of Figure 3. The matchings of the
two sets “<” and “>”, each together with one end of the single matching from the set “=”,
give two palindromic subsequences with the same properties (except for having odd lengths),
as pointed out by the blue and red arrows in Figure 3 (right). ◀

From Lemma 1 we can derive that the length of an LPS of a string s equals the length of
an LCS of s and sR.

▶ Lemma 2. For all strings s, we have LCS(s, sR) = LPS(s).

Proof. Consider a string s and a palindrome p that is a subsequence of s. Then pR is a
subsequence of sR. Since pR = p we have that p is a common subsequence of s and sR. This
shows LCS(s, sR) ≥ LPS(s).

Conversely, consider a common subsequence t between s and sR of length k. By Lemma 1,
we can find at least one palindromic subsequence of s of length at least k, which shows
LCS(s, sR) ≤ LPS(s). Combining the two inequalities, we get LCS(s, sR) = LPS(s). ◀

Given an LCS solution, an LPS solution can be produced using Lemma 1 by reflecting
the LCS string in the middle.

▶ Lemma 3. Let t be an LCS of s and sR, where |t| = k. Then both p1 = t
[
1..⌈k

2 ⌉
]
·t

[
1..⌊k

2 ⌋
]R

and p2 = t
[
⌊k+2

2 ⌋..k
]R · t

[
⌈k+2

2 ⌉..k
]

are LPS of s.

Proof. Since t is an LCS of s and sR, the two palindromic subsequences from Lemma 1 must
both have length k, as otherwise maximality of t would be contradicted. In that situation,
these two palindromic subsequences, i.e., the two subsequences in blue and red in Figure 3
(left or right, depending on whether k is even or odd), are exactly p1 and p2. ◀

As an example, Lemma 3 applied to the LCS accb of s = abccab and sR gives the two
palindromic LCSs acca and bccb.
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3 Properties of LCS algorithms

In this section we consider different backtracking based LCS algorithms and prove that two
of the algorithms, AlgMatch and AlgContour, report identical subsequences, while a
third algorithm, AlgSkip, not always reports the same LCS subsequences as the first two.

The standard textbook recurrence for calculating the length of an LCS between two
strings s and t of length m and n, respectively, is the following (see, e.g., [11, page 396])

LCS(i, j) =


0 if i = 0 ∨ j = 0
max{LCS(i− 1, j), LCS(i, j − 1)} if i > 0 ∧ j > 0 ∧ si ̸= tj

1 + LCS(i− 1, j − 1) if i > 0 ∧ j > 0 ∧ si = tj ,

(2)

where 0 ≤ i ≤ m, 0 ≤ j ≤ n, and LCS(i, j) is the length of an LCS of s[1..i] and t[1..j]. By
tabulating the formula over all indexes i and j, a table of the LCS for all combinations of
prefixes of the input strings is obtained. See Figure 4 for an example of such a table.

LCS strings can be produced by backtracking a path in the table starting in the lower-right
corner cell (m, n). At each cell (i, j), one has the option to go up (↑) to cell (i−1, j) if i > 0 and
LCS(i−1, j) = LCS(i, j), go left (←) to cell (i, j−1) if j > 0 and LCS(i, j−1) = LCS(i, j),
and diagonal up-left (↖) to cell (i− 1, j − 1) if i > 0 and j > 0 and si = tj . When going
diagonal up, the symbol si is reported. These options correspond exactly to the possible
choices in the recurrence of Equation 1 (in Section 1.4).

In cells where there is a choice between multiple options, different prioritization among
them gives rise to different backtracking algorithms. These will follow different paths, but
each will produce an LCS. Indeed, the set of oriented paths from cell (m, n) to cell (0, 0)
which only contain edges corresponding to the options above exactly captures all LCSs, hence
we call such paths LCS paths.

▶ Lemma 4. Any LCS path will produce an LCS, and for any LCS there is an LCS path
producing it.

Proof. Any LCS path starts in cell (m, n) with cell value LCS(m, n) and ends in cell (0, 0)
with cell value zero. Cell values along the path change only when traversing ↖ edges, and
this change is a decrease by one in the cell value. Hence, such edges are traversed exactly
LCS(m, n) times, which will produce a common subsequence (in backwards order) of this
length.

Conversely, let ℓ be any LCS of s and t. Then ℓ is a sequence of matchings of symbols of
s and t. An LCS path producing ℓ can be created by having a ↖ edge for all indices (i, j)
where si and tj is a matching in ℓ, and then connecting these by edges of the types←’s and ↑.
We now prove that the latter is possible. Let the kth matching of ℓ be between si and tj ,
and let the (k + 1)th matching in ℓ be between si′ and tj′ , where i < i′ and j < j′. We have
LCS(i, j) = k, since the first k matchings of ℓ constitute a common subsequence of s[1..i]
and t[1..j] and must be optimal for those strings (or ℓ would not be optimal). Similarly,
LCS(i′, j′) = k + 1. By the third line of Equation 2 we have LCS(i′ − 1, j′ − 1) = k. As it
follows from Equation 2 that cell values are non-increasing when moving up or left, we can
conclude that the rectangular subset of the table having cell (i, j) as the upper left corner
and cell (i′ − 1, j′ − 1) as the lower right corner all will have cell values equal to k. Thus,
this rectangle can be traversed by any combination of edges of the types ← and ↑, which
was what we wanted to prove. ◀

We denote the union of all LCS paths the profile of the LCS table. See Figure 4a for an
illustration of a profile (directions of edges omitted for clarity).
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(a) Profile of the LCS table in
red.

(b) LCS path produced by
AlgMatch in blue.

(c) Contour of the profile in
blue. This is also the LCS path

produced by AlgContour.

Figure 4 LCS table of the strings s = cacacabbaaba and t = acbaacaa, with the LCS values in
gray and the profile overlayed.

▶ Definition 5 (profile). The profile is the union of all edges of all LCS paths.

The following lemma shows that the profile contains no further paths than the LCS paths
present by construction.

▶ Lemma 6. L is an LCS path ⇐⇒ L is a path from cell (m, n) to cell (0, 0) in the profile.

Proof. The ⇒ direction follows from the definition of the profile from Definition 5. For the
⇐ direction, each edge of the profile exists in some LCS path, and must therefore fulfill the
conditions on cell contents and string symbols associated with the edge. Hence, a path from
(m, n) to (0, 0), using only edges in the profile, is an LCS path. ◀

To produce an LCS solution, a natural method is to fix a deterministic choice in case
of ties in the recurrence (implying nodes in the profile with outdegree more than one).
For instance, based on the recursive LCS definition in Equation 2, a very common choice
(including in [11]) is the one of AlgMatch2 in Figure 5 (left). The particular algorithm
chooses to match symbols whenever possible, i.e., following the edge ↖ whenever it can. If it
cannot follow this edge, then it chooses to follow ↑ and then ←. This can be summarized
as the strategy of AlgMatch being ⟨↖, ↑,←⟩. See Figure 4b for an example of the path
chosen by AlgMatch.

Any strategy for the order on the edges of the profile to follow produces an LCS by
Lemma 6. The strategy ⟨↑,↖,←⟩ follows the upper right most part of the profile, as choosing
to go up as long as possible and waiting with going left as long as possible leaves no other
LCS path above or to the right of it. This strategy is defined as the AlgContour algorithm,
as it follows the contour of the profile. The contour is defined in Definition 7. See Figure 5
(right) for an implementation of AlgContour and Figure 4c for an illustration of the
contour.

2 Note this is the same algorithm as that of Wagner and Fischer [28]. The renaming in this paper is to
clearly show that this is the backtracking strategy which prioritizes to match symbols first.
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AlgMatch(s, t)
1 Compute table L by LCS
2 i← m, j ← n

3 lcs← ε

4 while i > 0 and j > 0
5 if si = ti

6 // Follow ↖
7 lcs← si · lcs
8 i← i− 1, j ← j − 1
9 elseif L(i, j) = L(i− 1, j)

10 // Follow ↑
11 i← i− 1
12 else
13 // Follow ←
14 j ← j − 1
15 return lcs

AlgContour(s, t)
1 Compute table L by LCS
2 i← m, j ← n

3 lcs← ε

4 while i > 0 and j > 0
5 if L(i, j) = L(i− 1, j)
6 // Follow ↑
7 i← i− 1
8 elseif si = ti

9 // Follow ↖
10 lcs← si · lcs
11 i← i− 1, j ← j − 1
12 else
13 // Follow ←
14 j ← j − 1
15 return lcs

Figure 5 Pseudocode implementations of (left) AlgMatch, which is the backtracking of the
LCS table using strategy ⟨↖, ↑,←⟩ and (right) AlgContour using strategy ⟨↑,↖,←⟩.

▶ Definition 7 (Contour). The contour of a profile is the upper right most path of the profile.

▶ Corollary 8. The contour of a profile is an LCS path.

Proof. The contour is a path in the profile, which by Lemma 6 must be an LCS path. ◀

We are now ready to prove that the two algorithms AlgMatch and AlgContour
compute the same output LCS strings.

▶ Lemma 9. For all pairs of input strings s and t, algorithms AlgMatch and AlgContour
produce the same LCS string.

Proof. Recall that the strategies of AlgMatch and AlgContour are ⟨↖, ↑,←⟩ and
⟨↑,↖,←⟩, respectively, cf. the pseudocode in Figure 5. Any LCS path must cross exactly n

columns. This happens via the ↖ and ← steps of the path. A path outputs symbols of
the LCS exactly when moving by a ↖ step, hence paths can only output symbols when
changing column. Define Mj to be the row where the LCS path of AlgMatch first enters
column j and Cj to be the row where the LCS path of AlgContour first enters column j.
Clearly, Mj ≥ Cj for all columns j, as AlgContour is the upper right most LCS path of
all LCS paths. Also note that in any LCS table, it follows from Equation 2 that cell values
are non-increasing when moving up or left.

The key element of the proof is the following claim: If the table values LCS(Mj , j) and
LCS(Cj , j) are equal, then

1. The LCS path of AlgMatch must leave column j by the same type of step (↖ or ←)
as the LCS path of AlgContour leaves column j by.

2. The table values LCS(Mj−1, j − 1) and LCS(Cj−1, j − 1) are also equal.

Since both LCS paths start in the same table cell (m, n), the condition of the claim
trivially holds in the beginning. Hence, by induction on (decreasing values of) j, the two
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Figure 6 Behavior of AlgContour (in blue, starting in row Cj) and AlgMatch (in green,
starting in row Mj), when (left) AlgContour leave column j by ↖, and (right) AlgContour
leave by ←.

paths leave exactly the same columns by ↖ steps, hence they produce the same LCS string,
assuming the claim is true.

To prove the claim, we make a case analysis on the step type by which AlgContour
leaves column j. Let k denote the shared table value k = LCS(Mj , j) = LCS(Cj , j).

Case 1: AlgContour leaves column j by a ↖ step. The situation is depicted in
Figure 6 (left). Before this step, AlgContour takes ℓ steps of type ↑, for ℓ ≥ 0. All ℓ table
cells passed must also have the value k, by the condition for making ↑ steps. Hence, the
cell (Cj−1, j − 1) arrived at in column j − 1 by the ↖ step must have value k − 1, by the
condition for making ↖ steps. By the precondition k = LCS(Mj , j) = LCS(Cj , j) of the
claim and the vertical monotonicity of cell values, the cells in column j between cell (Mj , j)
and the cell (Cj − ℓ, j) where the LCS path of AlgContour made the ↖ step must all
have the value k. By the strategy of AlgMatch, this algorithm will never take a← step if ↑
steps are possible, which is the case in column j by the vertical repetition of the cell value k.
Hence, the LCS path of AlgMatch can only leave column j by a↖ step. This must happen
either before it reaches the cell (Cj − ℓ, j) where the LCS path of AlgContour made the
↖ step, or at the latest when it reaches that cell, since the LCS path of AlgContour is
the upper right most path. By the conditions for making a ↖ step, the cell arrived at in
column j − 1 by the LCS path of AlgMatch must have value k − 1. This establishes the
claim in this case.

Case 2: AlgContour leaves column j by a ← step. The situation is depicted in
Figure 6 (right). Again, AlgContour may first take ℓ steps of type ↑, for ℓ ≥ 0, and
all cells passed during these must also have the value k. By the condition for making ←
steps, the cell (Cj − ℓ, j) arrived at in column j − 1 by the ← step must have value k. By
monotonicity, the cells in column j − 1 from cell (Cj−1, j − 1) and down to cell (Mj , j − 1)
must all have value k. As the LCS path of AlgMatch must leave column j before it reaches
the cell (Cj − ℓ, j) where the LCS path of AlgContour made the ← step, or at the latest
when it reaches that cell, it cannot leave by a ↖ step, as this would need to end up in a
cell in column j − 1 of value k − 1, by the conditions for such steps. Hence, it must leave
column j by a ← step, and must end up in a cell of value k. As the strategy of AlgMatch
priorities ↑ over ←, it actually must leave column j from the same cell as AlgContour.
This establishes the claim in the second case. ◀

Another strategy is ⟨↑,←,↖⟩, i.e., to choose to skip symbols over matching them. We
denote the algorithm using this strategy as AlgSkip, see Figure 7 for the pseudocode for this
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backtracking algorithm. Using this strategy may seen at a first glance like a non-intuitive
way of implementing a traversal of the LCS table. However, in favor of this algorithm is the
observation that it only performs comparisons of values in the LCS table, while comparisons
of string symbols are not needed. Thus, if only the LCS indexes in s and t are to be reported,
access to the strings is never needed.

AlgSkip(s, t)
1 Compute table L by LCS
2 i← m, j ← n

3 lcs← ε

4 while i > 0 and j > 0
5 if L(i, j) = L(i− 1, j)
6 // Follow ↑
7 i← i− 1
8 elseif L(i, j) = L(i, j − 1)
9 // Follow ←

10 j ← j − 1
11 else
12 // Follow ↖
13 lcs← si · lcs
14 i← i− 1, j ← j − 1
15 return lcs

Figure 7 Pseudocode implementation AlgSkip, which is the backtracking of the LCS table using
strategy ⟨↑,←,↖⟩.

The AlgSkip algorithm is not guaranteed to output the same LCS string as Alg-
Contour. Trying to prove Lemma 9 breaks for AlgSkip in the case where AlgSkip and
AlgContour start on the same cell, and AlgSkip is allowed to leave the column by ←,
with AlgContour leaving by ↖. Concretely, on input strings s = cacacabbaaba and
t = acbaacaa from Figure 4, AlgSkip produces the LCS string acacaa, while AlgContour
produces the string caacaa.

This covers the three basic strategies. Three other strategies can be obtained by switching
the order of ↑ and ← in the three presented algorithms. Switching ↑ and ← is equal to
switching the input strings s and t in the LCS table. Therefore, the switched AlgContour
algorithm, strategy ⟨←,↖, ↑⟩, instead follows the lower left contour of the profile. The
switched AlgMatch algorithm, strategy ⟨↖,←, ↑⟩, outputs the same indexes in s as the
switched AlgContour algorithm, leading it to agree with a contour of the profile. The
switched AlgSkip algorithm, strategy ⟨←, ↑,↖⟩, similarly has no guarantee to output the
same string as the switched AlgContour.

4 Computing an LPS using an LCS algorithm

In Section 3 it was shown that AlgMatch outputs the same string as AlgContour. In
this section we show that AlgContour(s, sR) outputs an LPS of a string s, which implies
that AlgMatch(s, sR) outputs an LPS of s.

To argue that AlgContour outputs a palindrome, we observe that the profile is
symmetric when the LCS is over some string s and the reversed string sR. In Figure 8a, the
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0 1 2 2 2 2 2 2 2 3 4 5 5 5

0 1 2 2 3 3 3 3 3 3 4 5 6 6

0 1 2 3 3 3 4 4 4 4 4 5 6 7

0 1 2 3 3 3 4 5 5 5 5 5 6 7

0 1 2 3 4 4 4 5 6 6 6 6 6 7

0 1 2 3 4 5 5 5 6 6 6 6 7 7

0 1 2 3 4 5 6 6 6 6 6 6 7 8

0 1 2 3 4 5 6 6 6 7 7 7 7 8

0 1 2 3 4 5 6 7 7 7 7 7 7 8

(a) Symmetry of the profile over the top-right to the bottom-left diagonal (dotted).
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0 1 2 3 4 4 4 5 6 6 6 6 6 7
0 1 2 3 4 5 5 5 6 6 6 6 7 7
0 1 2 3 4 5 6 6 6 6 6 6 7 8
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0 1 2 3 4 5 6 7 7 7 7 7 7 8

b c b a a b b a c c c a b

b
a
c
c
c
a
b
b
a
a
b
c
b

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 2 2 2 2 2 2 2 2 2 2
0 1 2 2 2 2 2 2 2 3 3 3 3 3
0 1 2 2 2 2 2 2 2 3 4 4 4 4
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0 1 2 3 4 5 5 5 6 6 6 6 7 7
0 1 2 3 4 5 6 6 6 6 6 6 7 8
0 1 2 3 4 5 6 6 6 7 7 7 7 8
0 1 2 3 4 5 6 7 7 7 7 7 7 8

(b) Path using ⟨↑,↖,←⟩,
output string: baabbaab.

(c) Path using ⟨↖, ↑,←⟩,
output string: baabbaab.

(d) Path using ⟨↑,←,↖⟩,
output string: bcabbaab.
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0 1 2 2 2 2 2 2 2 3 4 5 5 5
0 1 2 2 3 3 3 3 3 3 4 5 6 6
0 1 2 3 3 3 4 4 4 4 4 5 6 7
0 1 2 3 3 3 4 5 5 5 5 5 6 7
0 1 2 3 4 4 4 5 6 6 6 6 6 7
0 1 2 3 4 5 5 5 6 6 6 6 7 7
0 1 2 3 4 5 6 6 6 6 6 6 7 8
0 1 2 3 4 5 6 6 6 7 7 7 7 8
0 1 2 3 4 5 6 7 7 7 7 7 7 8
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0 1 2 2 2 2 2 2 2 3 4 4 4 4
0 1 2 2 2 2 2 2 2 3 4 5 5 5
0 1 2 2 3 3 3 3 3 3 4 5 6 6
0 1 2 3 3 3 4 4 4 4 4 5 6 7
0 1 2 3 3 3 4 5 5 5 5 5 6 7
0 1 2 3 4 4 4 5 6 6 6 6 6 7
0 1 2 3 4 5 5 5 6 6 6 6 7 7
0 1 2 3 4 5 6 6 6 6 6 6 7 8
0 1 2 3 4 5 6 6 6 7 7 7 7 8
0 1 2 3 4 5 6 7 7 7 7 7 7 8
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0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 2 2 2 2 2 2 2 2 2 2
0 1 2 2 2 2 2 2 2 3 3 3 3 3
0 1 2 2 2 2 2 2 2 3 4 4 4 4
0 1 2 2 2 2 2 2 2 3 4 5 5 5
0 1 2 2 3 3 3 3 3 3 4 5 6 6
0 1 2 3 3 3 4 4 4 4 4 5 6 7
0 1 2 3 3 3 4 5 5 5 5 5 6 7
0 1 2 3 4 4 4 5 6 6 6 6 6 7
0 1 2 3 4 5 5 5 6 6 6 6 7 7
0 1 2 3 4 5 6 6 6 6 6 6 7 8
0 1 2 3 4 5 6 6 6 7 7 7 7 8
0 1 2 3 4 5 6 7 7 7 7 7 7 8

(e) Path using ⟨←,↖, ↑⟩,
output string: bcbaabcb.

(f) Path using ⟨↖,←, ↑⟩,
output string: bcbaabcb.

(g) Path using ⟨←, ↑,↖⟩,
output string: bcabbaab.

Figure 8 LCS table of the string bacccabbaabcb and the reversed string, including the profile
(in red) with (top) highlighted mirror line and (bottom) different LCS paths (in blue) dependent on
strategy.
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profile is its own mirror over the dotted diagonal from the top-right to the bottom-left corner,
when not considering the underlying orientation of the edges. In this mirroring, a cell (i, j) is
mirrored to cell (n− j, n− i). The individual edges are only of type ↖, ↑, and ←, and under
the mirroring new types of edges should not be created. An edge (i, j)→ (i′, j′) is therefore
mirrored to (n− j′, n− i′)→ (n− j, n− i), i.e., the endpoints of the edge are mirrored and
then the orientation is reversed, to preserve the set of types of edges. This results in ↖
mirrored to ↖, ↑ mirrored to ←, and ← mirrored to ↑. Note that a ↖ originating from cell
(i, j) in the mirror becomes a ↖ originating from cell (n + 1− j, n + 1− i). In the following,
define for an LCS path L the mirror LR, as the edges of L mirrored and their order reversed.

▶ Definition 10 (Symmetric). A profile is defined to be symmetric when the set of edges in
the profile is equal to the set of mirrored edges. An LCS path L is defined to be symmetric
when L = LR, i.e., it is equal to its own mirror.

▶ Lemma 11. The profile of the LCS table of s and sR is symmetric.

Proof. Any edge in the profile must be included in some LCS path L. By showing that LR

is in the profile, it shows that the mirrored edge is in the profile.
If a cell (i, j) contains a ↖, then it must hold that si = sR

j . By definition of reversing
a string it must hold that si = sR

n+1−i, i.e., that the i’th symbol of s is equal to the
i’th last symbol of sR. Therefore it also holds that sn+1−j = sR

n+1−i, which results in
cell (n + 1− j, n + 1− i) also contains a ↖.

All ↖ in L become ↖ in LR, and by the above argument, all ↖ of LR exist in the table.
All other steps of LR are ↑ or ←, which must exist as subpaths between pairs of ↖. As LR

contains the same number of ↖ as L, then using a similar argument as in Lemma 4, these
subpaths exist, and therefore LR is an LCS path, concluding that LR is in the profile. ◀

▶ Lemma 12. Any symmetric LCS path L outputs a palindromic string.

Proof. The proof goes by induction on the number of ↖ in L. If there is at most one ↖
in L, then the output string contains at most one symbol, and is therefore a palindrome.

Assume that L contains two or more ↖. Traverse L until the first ↖ is reached in
cell (i, j). By symmetry of L, then the last ↖ of L is in cell (n + 1− j, n + 1− i). The first
symbol L outputs is si and the last symbol is sR

n+1−i, which, by definition of sR, are equal.
By induction on the remaining of L, the output string is a palindrome. ◀

▶ Lemma 13. The contour of the profile of the LCS table of s and sR is symmetric.

Proof. Assume for contradiction that the contour is not symmetric. Define the contour as C.
By Lemma 11 it holds that the mirror CR of the contour C is contained in the profile. As C

is not symmetric, then there must be some part of C and CR which is non overlapping. By
the mirroring, this part exists with CR above and/or to the right of C. Therefore C is not
the top right most part of the profile, leading to the contradiction that C is not the contour.
Therefore, the contour is symmetric. ◀

▶ Theorem 14. The string produced by AlgMatch of s and sR is a palindrome.

Proof. By Lemma 9, the string produced by AlgMatch is equal to the string produced
by AlgContour on any pairs of input strings, and therefore also on input s and sR. By
Lemma 13 and Lemma 12 the contour outputs a palindromic string. Therefore, the string
produced by AlgMatch is a palindrome. ◀
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This implies that the first four strategies from Table 1 always outputs a palindromic string,
as the first two strategies, ⟨↖, ↑,←⟩ and ⟨↖,←, ↑⟩, corresponds to the AlgMatch and
the switched AlgMatch algorithms, with the next two strategies, ⟨↑,↖,←⟩ and ⟨←,↖, ↑⟩,
being the AlgContour and the switched AlgContour algorithms. To show that the last
two strategies can output non-palindromic strings, Lemma 15 below shows this by example,
using the string from Figure 8.

▶ Lemma 15. The string produced by AlgSkip can be non-palindromic.

Proof. AlgSkip follows the strategy ⟨↑,←,↖⟩. On input string s = bacccabbaabcb and
the reversed string sR the output LCS string is bcabbaab, which is non-palindromic. See
Figure 8d. ◀
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A AI assistants

A frequent statement on the internet3 is that an LPS of a string can be computed as an LCS
of the string and the reversed string4,5, which is reflected in the suggestions from AI assistants
like GitHub Copilot6, Google Gemini7, and Open AI ChatGPT8. The Python 3.12 code in
Figure 9 was given to the free versions of GitHub Copilot, Google Gemini, and OpenAI
ChatGPT 3.5, without the implementation for palindrome but including its docstring. All
three AI assistants suggested return lcs(x, x[::-1]) as the completion of the code, i.e.,
to return the LCS of the string and the reversed string. This suggestion would be correct
if lcs(x, y) was implemented using Wagner and Fischer [28], but in the code provided
to the AI assistants, the lcs function uses a dynamic programming implementation with
strategy ⟨↑,←,↖⟩ as the backtracking prioritization, and the reported subsequence is not a
palindrome.

Identical suggestions were obtained on lmsys.org9 for ChatGPT 4 (gpt-4o-2024-05-13),
Meta Llama 3 (llama-3-70b-instruct), Claude 3.5 Sonnet (version claude-3-5-sonnet-20240620),
Databricks DBRX (dbrx-next), Microsoft Phi-3 mini (phi-3-mini-4k-instruct), NVIDIA
Nenotron-4 340B (nemotron-4-340b), Alibaba Cloud Qwen2 (qwen2-72b-instruct) and others
(deepseek-coder-v2, glm-4-0520, reka-flash-preview-20240611, yi-large-preview).

from functools import cache

@cache
def lcs(x, y):

’’’Longest common subsequence of strings x and y. ’’’

if not x or not y:
return ’’

if x[-1] == y[ -1]:
return max(lcs(x[:-1], y), lcs(x, y[: -1]) ,

lcs(x[:-1], y[: -1]) + x[-1], key=len)
return max(lcs(x[:-1], y), lcs(x, y[: -1]) , key=len)

def palindrome (x):
’’’Longest palindromic subsequence of string x. ’’’

# Suggestion by GitHub Copilot , Google Gemini , OpenAI ChatGPT
return lcs(x, x[:: -1])

print(f"{ palindrome (’ acbcabbaac ’) = }")

Output
palindrome (’acbcabbaac ’) = ’cabbaa ’

Figure 9 Implementation of palindrome according to GitHub Copilot, Google Gemini, and
OpenAI ChatGPT 3.5.

3 All links in this section were accessed June 25, 2024.
4 https://www.geeksforgeeks.org/print-longest-palindromic-subsequence/
5 https://www.educative.io/answers/longest-palindromic-subsequence-algorithm
6 https://github.com/features/copilot/
7 https://gemini.google.com/
8 https://chat.openai.com/
9 https://chat.lmsys.org/
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