
Dynamic Convex Hulls for Simple Paths∗

Bruce Brewer #�

Kahlert School of Computing, University of Utah, Salt Lake City, UT 84112, USA

Gerth Stølting Brodal # �

Department of Computer Science, Aarhus University, Aabogade 34, 8200 Aarhus N, Denmark

Haitao Wang #�

Kahlert School of Computing, University of Utah, Salt Lake City, UT 84112, USA

Abstract
We consider the planar dynamic convex hull problem. In the literature, solutions exist supporting
the insertion and deletion of points in poly-logarithmic time and various queries on the convex hull
of the current set of points in logarithmic time. If arbitrary insertion and deletion of points are
allowed, constant time updates and fast queries are known to be impossible. This paper considers
two restricted cases where worst-case constant time updates and logarithmic time queries are possible.
We assume all updates are performed on a deque (double-ended queue) of points. The first case
considers the monotonic path case, where all points are sorted in a given direction, say horizontally
left-to-right, and only the leftmost and rightmost points can be inserted and deleted. The second
case assumes that the points in the deque constitute a simple path. Note that the monotone case
is a special case of the simple path case. For both cases, we present solutions supporting deque
insertions and deletions in worst-case constant time and standard queries on the convex hull of the
points in O(log n) time, where n is the number of points in the current point set. The convex hull of
the current point set can be reported in O(h + log n) time, where h is the number of edges of the
convex hull. For the one-sided monotone path case, where updates are only allowed on one side, the
reporting time can be reduced to O(h), and queries on the convex hull are supported in O(log h)
time. All our time bounds are worst case. In addition, we prove lower bounds that match these
time bounds, and thus our results are optimal. For a quick comparison, the previous best update
bounds for the simple path problem were amortized O(log n) time by Friedman, Hershberger, and
Snoeyink [SoCG 1989].

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Dynamic convex hull, convex hull queries, simple paths, path updates, deque

Funding Bruce Brewer : Supported in part by NSF under Grant CCF-2300356.
Gerth Stølting Brodal: Supported by Independent Research Fund Denmark, Grant 9131-00113B.
Haitao Wang: Supported in part by NSF under Grant CCF-2300356.

1 Introduction

Computing the convex hull of a set of n points in the plane is a classic problem in computa-
tional geometry. Several algorithms can compute the convex hull in O(n log n) time in the
static setting. For example, Graham’s scan [17] and Andrew’s vertical sweep [2]. Andrew’s
algorithm can construct the convex hull in O(n) time if the points are already sorted by
either the x-coordinates or the y-coordinates. This has been generalized by Graham and
Yao [18] and by Melkman [28] to construct the convex hull of a simple path in O(n) time.
Output-sensitive algorithms of O(n log h) time have also been achieved by Kirkpatrick and
Seidel [26] and by Chan [9], where h is the size of the convex hull.

∗ A preliminary version of this paper appeared in Proceedings of the 40th International Symposium on
Computational Geometry (SoCG 2024) [4].

mailto:bruce.brewer@utah.edu
mailto:gerth@cs.au.dk
mailto:haitao.wang@utah.edu

2 Dynamic Convex Hulls for Simple Paths

p1
pn

t1

t2

e1

e2

pρ

ρ
q

ℓ

Figure 1 The convex hull (dashed) of a simple path p1, . . . , pn (solid). Three types of convex hull
queries are shown (dotted): the tangent points t1 and t2 with a query point q outside the convex hull;
the extreme point pρ in direction ρ; and the two convex hull edges (bridges) e1 and e2 intersecting a
line ℓ.

Overmars and van Leeuwen [30] studied the problem in the dynamic context where points
can be inserted and deleted. Since a single point insertion and deletion can imply a linear
change in the number of points on the convex hull, it is not desirable to report the entire
convex hull explicitly after each update. Instead, one maintains a representation of the convex
hull that can be queried. Overmars and van Leeuwen support the insertion and deletion of
points in O(log2 n) time, where n is the number of points stored. They maintain the points
in sorted order in one dimension as the elements of a binary tree and bottom-up maintain a
hierarchical decomposition of the convex hull. Since the convex hull is maintained explicitly
as essentially a linked list at the root, the h points on the hull can be reported in O(h) time,
and queries on the convex hull can be supported in O(log n) time using appropriate binary
searches. Some examples of convex hull queries are (see Figure 1): Determine whether a
point q is outside the convex hull, and if yes, compute the tangents (i.e., find the tangent
points) of the convex hull through q. Given a direction ρ, compute an extreme point on the
convex hull along ρ. Given a line ℓ, determine whether ℓ intersects the convex hull, and if
yes, find the two edges (bridges) on the convex hull intersected by ℓ. Tangent and extreme
point queries are examples of decomposable queries, which are queries whose answers can be
obtained in constant time from the query answers for any constant number of subsets that
form a partition of the point set. In contrast, bridge queries are not decomposable.

Chan [10] improved the update (insertion/deletion) time to amortized O(log1+ε n), for
any ε > 0, by not maintaining an explicit representation of the convex hull. Tangent and
extreme point queries are supported in O(log n) time, allowing the h points on the convex
hull to be reported in O(h log n) time. The bridge query time was increased to O(log3/2 n).
The update time was subsequently improved to amortized O(log n log log n) by Brodal and
Jacob [6] and Kaplan, Tarjan, Tsioutsiouliklis [25], and to amortized O(log n) by Brodal and
Jacob [7]. Chan [11] improved the time for bridge queries to 2O

(√
log log n log log log n

)
log n,

with the same amortized update time. It is known that sub-logarithmic update time and
logarithmic query time are not possible. For example, to achieve O(log n)-time extreme point
queries, an amortized update time of Ω(log n) is necessary [6].

B. Brewer, G. S. Brodal, and H. Wang 3

In this paper, we consider the dynamic convex hull problem for restricted updates, where
we can achieve worst-case constant update time and logarithmic query time. In particular,
we assume that the points are inserted and deleted in a deque (double-ended queue) and that
they are geometrically restricted. We consider two restrictions: The first is the monotone
path case, where all points in the deque are sorted in a given direction, say horizontally
left-to-right, and only the leftmost and rightmost points can be inserted and deleted. The
second case allows the points to form a simple path (i.e., a path that does not intersect
itself), where updates are restricted to both ends of the path. The simple path problem
was previously studied by Friedman, Hershberger, and Snoeyink [16], who supported deque
insertions in amortized O(log n) time, deletions in amortized O(1) time, and queries in
O(log n) time. Bus and Buzer [8] considered a special case of the problem where insertions
only happen to the “front” end of the path and deletions are only on points at the “rear”
end. Based on the algorithm in [28], which can compute the convex hull of a simple path in
linear time, they achieved O(1) amortized update time to support O(h)-time hull reporting.
However, hull queries were not considered in [8]. Wang [35] recently considered a special
monotone path case where updates are restricted to queue-like updates, i.e., insert a point
to the right of the point set and delete the leftmost point of the point set. Wang called
these window-sliding updates and achieved amortized constant time updates, hull queries in
O(log h) time,1 and hull reporting in O(h) time.

1.1 Our results

We present dynamic convex hull data structures for both the monotone path and the simple
path variants. For both problems, we support deque insertions and deletions in worst-case
constant time. We can answer extreme point, tangent, and bridge queries in O(log n) time,
and we can report the convex hull in O(h + log n) time. For the one-sided monotone case,
where updates are only allowed on one side, the reporting time can be reduced to O(h),
and convex hull queries are supported in O(log h) time. That is, they are only dependent
on the current hull size and independent of the number of points in the set. In addition,
we show that these time bounds are the best possible by proving matching lower bounds.
The previous and new bounds for the various restricted versions of the dynamic convex hull
problem are summarized in Table 1.

Our results are obtained by a combination of several ideas. To support deque updates,
we partition the deque into left and right parts and treat these parts as two independent
stack problems. Queries then need to compose the convex hull information from both the
stack problems. This strategy has previously been used by Friedman, Hershberger, and
Snoeyink [16] and by Wang [35]. To support deletions in the stack structures, we store
rollback information when performing insertions. When one of the stacks becomes nearly
empty, we repartition the deque into two new stacks of balanced sizes. To achieve worst-case
bounds, the repartition is done with incremental global rebuilding ahead of time [29]. To
achieve worst-case insertion time, we perform incremental merging of convex hull structures,
where we exploit the fact that the convex hulls of two horizontally separated sets can be
combined in worst-case O(log n) time [30] and that the convex hulls of a bipartition of a
simple path can be combined in O(log2 n) time [19]. To reduce the query bounds for the
one-sided monotone path problem to be dependent on h instead of n, we adopt ideas from

1 The runtime was O(log n) in the conference paper but was subsequently improved to O(log h) in the
arXiv version https://arxiv.org/abs/2305.08055.

https://arxiv.org/abs/2305.08055

4 Dynamic Convex Hulls for Simple Paths

Table 1 Known and new results for dynamic convex hull on paths. OA are amortized time
bounds. – denotes operation is not supported. For an update, h denotes the maximum size of the
hull before and after the update. DL = delete left, IR = insert right, etc.

Reference DL IL IR DR Queries Reporting
No geometric restrictions
Preparata [31] + rollback – – O(log h) O(log h) O(log h) O(h)
Monotone path
Andrews’ sweep [2] – OA(1) OA(1) – O(log h) O(h)
Wang [35] OA(1) – OA(1) – O(log h) O(h)
New (Theorem 5) O(1) O(1) O(1) O(1) O(log n) O(h + log n)
New (Theorem 6) – – O(1) O(1) O(log h) O(h)
Simple path
Friedman et al. [16] OA(1) OA(log n) OA(log n) OA(1) O(log n) –
Bus and Buzer [8] OA(1) – OA(1) – – O(h)
New (Theorem 7) O(1) O(1) O(1) O(1) O(log n) O(h + log n)

Sundar’s priority queue with attrition [33]. In particular, we partition the stack of points
into four lists (possibly with some interior “redundant” points removed), of which three lists
are in convex position, and three lists have size O(h). We believe this idea is interesting in
its own right as, to our knowledge, this is the first time Sundar’s approach has been used to
solve a geometric problem.

1.2 Other related work
Andrew’s static algorithm [2] is an incremental algorithm that explicitly maintains the convex
hull of the points considered so far. It can add the next point to the right and left of the
convex hull in amortized constant time.

Preparata [31] presented an insertion-only solution maintaining the convex hull in an
AVL tree [1] that supports the insertion of an arbitrary point in O(log h) time, queries on
the convex hull in O(log h) time, and reporting queries in O(h) time. For the stack version
of the dynamic convex hull problem, where updates form a stack, a general technique to
support deletions is by having a stack of rollback information, i.e., the changes performed by
the insertions. The time bound for deletions will then match the time bound for insertions,
provided that insertion bounds are worst-case. Applying this idea to [31], we have a stack
dynamic convex hull solution with O(log h)-time updates. Note that these time bounds hold
for arbitrary new points inserted without geometric restrictions. The only limitation is that
updates form a stack.

Hershberger and Suri [23] considered the offline version of the dynamic convex hull
problem, assuming the sequence of insertions and deletions is known in advance, supporting
updates in amortized O(log n) time. Hershberger and Suri [22] also considered the semi-
dynamic deletion-only version of the problem, supporting initial construction and a sequence
of n deletions in O(n log n) time.

Given a simple path of n vertices, Guibas, Hershberger, and Snoeyink [19] considered
the problem of processing the path into a data structure so that the convex hull of a query
subpath (specified by its two ends) can be (implicitly) constructed to support queries on the
convex hull. Using a compact interval tree, they gave a data structure of O(n log log n) space
with O(log n) query time. The space was recently improved to O(n) by Wang [36]. There are
also other problems in the literature regarding convex hulls for simple paths. For example,

B. Brewer, G. S. Brodal, and H. Wang 5

Hershberger and Snoeyink [21] considered the problem of maintaining convex hulls for a
simple path under split operations at certain extreme points, which improves the previous
work in [13].

Notation. We define some notation that will be used throughout the paper. For any
compact subset R of the plane (e.g., R is a set of points or a simple path), let H(R) denote
the convex hull of R and let |H(R)| denote the number of vertices of H(R). We also use ∂R

to denote the boundary of R.
For a dynamic set P of points, we define the following five operations: InsertRight:

Insert a point to P that is to the right of all of the points of P ; DeleteRight: Delete the
rightmost point of P ; InsertLeft: Insert a point to P that is to the left of all the points of P ;
DeleteLeft: Delete the leftmost point of P ; HullReport: Report the convex hull H(P)
(i.e., output the vertices of H(P) in cyclic order around H(P)). We also use StandardQuery
to refer to standard queries on H(P). This includes all decomposable queries like extreme
point queries and tangent queries. It also includes certain non-decomposable queries like
bridge queries. Other queries, such as deciding if a query point is inside H(P), can be reduced
to bridge queries.

We define the operations for the dynamic simple path π similarly. For convenience, we
call the two ends of π the rear end and the front end, respectively. Therefore, instead of “left”
and “right”, we use “rear” and “front” in the names of the update operations. This means
that we have the following four updates: InsertFront, DeleteFront, InsertRear, and
DeleteRear, in addition to HullReport and StandardQuery as above.

Outline. We present our algorithms for the monotone path problem in Section 2 and for
the simple path problem in Section 3. In Section 4, we prove lower bounds that match our
results in the previous two sections.

2 The monotone path problem

In this section, we study the monotone path problem where updates occur only at the extremes
in a given direction, say, the horizontal direction. That is, given a set of points P ⊂ R2, we
maintain the convex hull of P , denoted by H(P), while points to the left and right of P

may be inserted into P and the rightmost and leftmost points of P may be deleted from P .
Throughout this section, we let n denote the size of the current set P and h = |H(P)|. For
ease of exposition, we assume that no three points of P are collinear.

If updates are allowed at both sides (resp., at one side), we denote it the two-sided (resp.
one-sided) problem. We call the structure for the two-sided problem the “deque convex hull”,
where we use the standard abbreviation deque to denote a double-ended queue (according
to Knuth [27, Section 2.2.1], E. J. Schweppe introduced the term deque). The one-sided
problem’s structure is called the “stack convex hull”.

In what follows, we start with describing a “stack tree” in Section 2.1, which will be used
to develop a “deque tree” in Section 2.2. We will utilize the deque tree to implement the
deque convex hull in Section 2.3 for the two-sided problem. The deque convex hull, along
with ideas from Sundar’s priority queues with attrition [33], will be used for constructing the
stack convex hull in Section 2.4 for the one-sided problem.

6 Dynamic Convex Hulls for Simple Paths

2.1 Stack tree
Suppose P is a set of n points in R2 sorted from left to right. Consider the following operations
on P (assuming P = ∅ initially). (1) InsertRight; (2) DeleteRight; (3) TreeRetrieval:
Return the root of a balanced binary search tree (BST) that stores all points of the current
P in the left-to-right order. We have the following lemma.

▶ Lemma 1. Let P be an initially empty set of points in R2 sorted from left to right. There
exists a “Stack Tree” data structure ST (P) for P supporting the following operations:
1. InsertRight: O(1) time.
2. DeleteRight: O(1) time.
3. TreeRetrieval: O(log n) time, where n is the current size of P .

In what follows, we describe the tree’s structure and then discuss the operations. Unless
otherwise stated, P refers to the current point set, and n = |P |.

Remark. It should be noted that the statement of Lemma 1 is not new. Indeed, one can
simply use a finger search tree [5, 20, 34] to store P to achieve the lemma (in fact, Tree-
Retrieval can even be done in O(1) time). We propose a stack tree as a new implementation
for the lemma because it can be applied to our dynamic convex hull problem. When we use
the stack tree, TreeRetrieval will be used to return the root of a tree representing the
convex hull of P ; in contrast, simply using a finger search tree cannot achieve the goal (the
difficulty is how to efficiently maintain the convex hull to achieve constant time update).
Our stack tree may be considered a framework for Lemma 1 that potentially finds other
applications as well.

Structure of the stack tree. The structure of the stack tree is illustrated in Figure 2
to the right of the line ℓ. The stack tree ST (P) consists of a sequence of trees Ti for
i = 0, 1, . . . , ⌈log log n⌉. Each Ti is a balanced BST storing a contiguous subsequence of P

such that for any j < i, all points of Ti are to the left of each point of Tj . The points of all
Ti form a partition of P . We maintain the invariant that 0 ≤ |Ti| ≤ 22i+1 , and for i ≥ 1, |Ti|
is a multiple of 22i , where |Ti| represents the number of points stored in Ti.

In order for our construction to achieve worst-case constant time insertions, the joining
of two trees is performed incrementally over subsequent insertions. Specifically, we apply the
recursive slowdown technique of Kaplan and Tarjan [24], where every 2i+1-th insertion, i ≥ 1,
performs delayed incremental work toward joining Ti−1 with Ti, if such a join is deemed
necessary.

Remark. The critical observation of our algorithm is that because the ranges of the trees
do not overlap, we can join adjacent trees Ti and Ti+1 to obtain (the root) of a new
balanced BST that stores all points in Ti ∪ Ti+1 in O(log(|Ti| + |Ti+1|)) time. Later in the
paper, we generalize this idea to horizontally neighboring convex hulls which can be merged
in O(log(|H(Ti)| + |H(Ti+1)|)) time [30] and to convex hulls over consecutive subpaths of
a simple path which can be merged in O(log |H(Ti)| · log |H(Ti+1)|) time [19]. In fact, the
stack tree may be applied to solve other problems with polylogarithmic joining time so that
TreeRetrieval (or other operations) can be performed efficiently.

InsertRight. Suppose we wish to insert into P a point p that is to the right of all points
of P .

B. Brewer, G. S. Brodal, and H. Wang 7

22
0

22
1

22
⌈log logn−1⌉

22
⌈log logn⌉

22
0

22
1

22
⌈log logn−1⌉

22
⌈log logn⌉

ℓ

Stack Tree STL(PL) Stack Tree STR(PR)

Figure 2 Illustrating a deque tree, comprising two stack trees separated by the vertical line ℓ.

We start with inserting p into the tree T0, which takes O(1) time as |T0| = O(1). Next, we
perform O(1) delayed incremental work on a tree Ti for a particular index i. To determine i,
we maintain a counter N that is a binary number. Initially, N = 1, and it is an invariant
that N = 1 + n (recall that n is the size of the current point set P). For each insertion, we
increment N by one and determine the index i of the digit that flips from 0 to 1, indexed
from the right where the rightmost digit has index 0. Note that there is exactly one such
digit. Then, if i ≥ 1, we perform incremental work on Ti (i.e., joining Ti−1 with Ti). To find
the digit i in O(1) time, we represent N by a sequence of ranges, where each range represents
a contiguous subsequence of digits of 1’s in N . For example, if N is 101100111, then the
ranges are [0, 2], [5, 6], [8, 8]. After N is incremented by one, N becomes 101101000, and
the ranges become [3, 3], [5, 6], [8, 8]. Therefore, based on the first two ranges in the range
sequence, one can determine the digit that flips from 0 to 1 and update the range sequence
in O(1) time (note that this can be easily implemented using a linked list to store all ranges
without resorting to any bit tricks).

After i is determined, we perform incremental work on Ti as follows. We use a variable nj

to maintain the size of each tree Tj , i.e., nj = |Tj |. For each tree Tj , with j ≥ 1, we say
that Tj is “blocked” if there is an incremental process for joining the previous Tj−1 with Tj

(more details to be given later) and “unblocked” otherwise (T0 is always unblocked). If Ti is
blocked, then the incremental process joining the previous Ti−1 with Ti will complete within
time linear in the height of Ti, which is O(2i), since |Ti| ≤ 22i+1 . We perform the next c

steps for the process for a sufficiently large constant c. If the joining process is completed
within the c steps, we set Ti to be unblocked.

Next, if Ti is unblocked and ni ≥ 22i+1 (in this case we prove in Observation 2 that ni

must be exactly equal to 22i+1), then our algorithm maintains the invariant that Ti+1 must
be unblocked, which will be proved in Lemma 3. In this case, we first set Ti+1 to be blocked,
and then we start an incremental process to join Ti with Ti+1 without performing any actual
steps. For reference purpose, let T ′

i refer to the current Ti and let Ti start over from ∅.
Using this notation, we are actually joining T ′

i with Ti+1. Although the joining process
has not been completed, we follow the convention that T ′

i is now part of Ti+1; hence, we
update ni+1 = ni+1 + ni. Also, since Ti is now empty, we reset ni = 0. This finishes the
work due to the insertion of p.

▶ Observation 2. 1. If ni ≥ 22i+1 , then ni = 22i+1 .
2. It holds that ni = 0 or 22i ≤ ni ≤ 22i+1 for i ≥ 1, and n0 ≤ 4.

Proof. According to our algorithm, T0 is never blocked and n0 = 4 whenever N = 1 + 4k for
k = 1, 2, 3, . . ., where n0 is reset to 0 (this is because whenever n0 ≥ 4, T1 must be unblocked,

8 Dynamic Convex Hulls for Simple Paths

which is proved in Lemma 3). Hence, n0 ≤ 4 always holds. In the following, we prove the
case for i ≥ 1.

Observe that starting from ni = 0, whenever ni increases, it increases by exactly the
amount 22i . Hence, whenever ni ≥ 22i+1 for the first time, it always holds that ni = 22i+1 .
According to our algorithm, whenever ni ≥ 22i+1 , ni is reset to 0 (this is because whenever
ni ≥ 22i+1 , Ti+1 must be unblocked, which is proved in Lemma 3). The observation thus
follows. ◀

The following lemma proves the algorithm invariant mentioned above.

▶ Lemma 3.
1. If n0 ≥ 4, then T1 must be unblocked.
2. If i ≥ 1 and ni ≥ 22i+1 right after the process of joining Ti−1 with Ti is completed, then

Ti+1 must be unblocked.

Proof. Recall that N equals one plus the number of insertions performed, i.e., N can be
considered a timer.

Proof of the first lemma statement. We have n0 = 4 exactly when N = 1 + 4k for
k = 1, 2, 3, . . . , where n0 is reset to 0, an incremental join at T1 is initiated, and T1 becomes
blocked. But for the next insertion, i.e., when N = 2 + 4k for k = 1, 2, 3, . . ., we have
always n0 = 1 and all the incremental O(1) work at T1 is processed if we make c large enough,
and T1 becomes unblocked and remains unblocked until n0 = 4 again. This proves the first
lemma statement.

Proof of the second lemma statement. We assume that the process of joining Ti−1 with Ti

is completed due to the insertion of p and ni ≥ 22i+1 .
Let N ′ be the most recent timer where Ti+1 changed status from unblocked to blocked.

Hence, at N ′, Ti = ∅, and the process of joining T ′
i with Ti+1 started at N ′ and Ti+1 has

been blocked due to that process. We argue below that by the time N , the incremental
process for joining T ′

i with Ti+1 has already been completed.
Indeed, the joining process takes O(2i+1) time as the height of Ti+1 is O(2i+1). Whenever

the (i + 1)-th bit of the counter N flipped from 0 to 1, c steps of the joining process will
be performed. Note that the (i + 1)-th bit of the counter N flipped from 0 to 1 every 2i+2

insertions. Hence, for a sufficiently large constant c, the joining process will be completed
within 2i+1 · 2i+2 = 22i+3 insertions. If we make c larger, then we can say that the joining
process will be completed within 22i insertions.

On the other hand, at N ′, we have Ti = ∅. We argue that after 22i insertions, the size
of Ti cannot be larger than or equal to 22i+1 . Indeed, all points of Ti are originally from Tj

for all 0 ≤ j < i. At N ′, the total number of points in all trees Tj for 0 ≤ j < i is no larger
than 2 · 22i by Observation 2(2). Hence, after 22i insertions, the total number of points that
can be inserted into Ti is at most 2 · 22i + 22i, which is smaller than 22i+1 for i ≥ 1.

The above implies that by the time N when ni ≥ 22i+1 , the incremental process for
joining T ′

i with Ti+1 has already been completed, and therefore, Ti+1 cannot be blocked.
This proves the second lemma statement. ◀

As we only perform O(1) incremental work, the total time for inserting p is O(1).

B. Brewer, G. S. Brodal, and H. Wang 9

DeleteRight. To perform DeleteRight, we maintain a stack that records the changes
made on each insertion. To delete a point p, p must be the most recently inserted point, and
thus all changes made due to the insertion of p are at the top of the stack. To perform the
deletion, we pop the stack and roll back all the changes made during the insertion of p.

TreeRetrieval. To perform TreeRetrieval, we start by completing all incremental joining
processes. Then, we join all trees Ti in their index order. This results in a single BST T

storing all points of P . In applications, we usually need to perform binary searches on T ,
after which we need to continue processing insertions and deletions on P . To this end, when
constructing T as above, we maintain a stack that records the changes we have made. Once
we are done with queries on T , we use the stack to roll back the changes and return the
stack tree to its original form right before the TreeRetrieval operation.

For the time analysis, it takes O(2i) steps to finish an incremental joining process
for each Ti (i.e., merging Ti−1 with Ti). In total, it takes O

(∑⌈log log n⌉
i=1 2i

)
= O(log n)

time to finish all such processes. Next, joining all trees Ti in their index order takes
O

(∑⌈log log n⌉
i=0 2i

)
= O(log n) time in total. Consequently, the stack used to record changes

made during the operation has size O(log n) because it stores O(log n) changes. Rolling back
all changes in the stack thus takes O(log n) time as well. Therefore, TreeRetrieval can
be performed in O(log n) time.

2.2 Deque tree
We now introduce the deque tree, which is built upon stack trees. We have the following
lemma, where TreeRetrieval is defined in the same way as in Section 2.1.

▶ Lemma 4. Let P be an initially empty set of points in R2 sorted from left to right. There
exists a “Deque Tree” data structure DT (P) for P supporting the following operations:
1. InsertRight: O(1) time.
2. DeleteRight: O(1) time.
3. InsertLeft: O(1) time.
4. DeleteLeft: O(1) time.
5. TreeRetrieval: O(log n) time, where n is the size of the current set P .

As with Lemma 1, the statement of Lemma 4 is not new because we can also use a finger
search tree [5, 20] to achieve it. Here, we propose a different implementation for solving our
dynamic convex hull problem.

The deque tree DT (P) is built from two stack trees STL(PL) and STR(PR) from opposite
directions, where PL and PR refer to the subsets of P to the left and right of a vertical dividing
line ℓ, respectively (see Figure 2). To insert a point to the left of P , we insert it to STL(PL).
To delete the leftmost point of P , we delete it from STL(PL). For insertion/deletion on
the right side of P , we use STR(PR). For TreeRetrieval, we perform TreeRetrieval
operations on both STL(PL) and STR(PR), which produces two balanced BSTs; then, we
join these two trees into a single one. The time complexities of all these operations are as
stated in the lemma.

To make this idea work, we need to make sure that neither STL(PL) nor STR(PR) is
empty when n is sufficiently large (if n < c for a constant c, then we can do everything by
brute force). To this end, we apply incremental global rebuilding [29, Section 5.2.2], where we
dynamically adjust the dividing line ℓ. Specifically, we maintain an invariant that |PL| and
|PR| differ by at most a factor of 4, i.e., 1

4 ≤ |PL|
|PR| ≤ 4. To achieve this, when the condition

10 Dynamic Convex Hulls for Simple Paths

1
2 ≤ |PL|

|PR| ≤ 2 is first violated after an update, we set ℓ′ to be the vertical line partitioning
the current P into two equal-sized subsets. Once ℓ′ is set, we begin building STL(P ′

L) on
the subset P ′

L of points of P to the left of ℓ′ and STR(P ′
R) on the subset P ′

R of points to
the right of ℓ′. It takes O(n) time to build STL(P ′

L) and STR(P ′
R), and there will be Ω(n)

updates (e.g., at least n
6 updates, where n is the size of |P | when the rebuilding procedure

starts) between the time when the condition 1
2 ≤ |PL|

|PR| ≤ 2 is first violated and the time
when the condition 1

4 ≤ |PL|
|PR| ≤ 4 is first violated, so we can perform O(1) incremental work

to progressively build STL(P ′
L) and STR(P ′

R) for the next O(n) updates (e.g., the next n
6

updates). As soon as the above second condition is met, if ever, we replace STL(PL) and
STR(PR) with STL(P ′

L) and STR(P ′
R). This returns us to the state where 1

2 ≤ |PL|
|PR| ≤ 2 (in

fact, when the rebuilding terminates, we have a stronger guarantee 2
3 ≤ |PL|

|PR| ≤ 3
2).

2.3 Two-sided monotone path dynamic convex hull
We can tackle the two-sided monotone path dynamic convex hull problem using the deque
tree. Suppose P is a set of n points in R2. In addition to the operations InsertRight,
DeleteRight, InsertLeft, DeleteLeft, HullReport, as defined in Section 1, we also
consider the operation HullTreeRetrieval: Return the root of a BST of height O(log h)
that stores all vertices of the convex hull H(P) (so that binary search based operations
on H(P) can all be supported in O(log h) time). We will prove the following theorem.

▶ Theorem 5. Let P ⊂ R2 be an initially empty set of points, with n = |P | and h = |H(P)|.
There exists a “Deque Convex Hull” data structure DH(P) of O(n) space that supports the
following operations:
1. InsertRight: O(1) time.
2. DeleteRight: O(1) time.
3. InsertLeft: O(1) time.
4. DeleteLeft: O(1) time.
5. HullTreeRetrieval: O(log n) time.
6. HullReport: O(h + log n) time.

Remark. The time complexities of the four update operations in Theorem 5 are obviously
optimal. We will show in Section 4 that the other two operations are also optimal. In
particular, it is not possible to reduce the time of HullTreeRetrieval to O(log h) or
reduce the time of HullReport to O(h) (but this is possible for the one-sided case as shown
in Section 2.4).

The deque convex hull is a direct application of the deque tree from Section 2.2. We
maintain the upper hull and lower hull of H(P) separately. In the following, we only discuss
how to maintain the upper hull, as maintaining the lower hull is symmetric. By slightly
abusing the notation, let H(P) refer to the upper hull only in the following discussion.

We use a deque tree DT (P) to maintain H(P). The DT (P) consists of two stack trees
STL and STR. Each stack tree is composed of a sequence of balanced search trees; each such
tree Ti stores left-to-right the points of the convex hull H(P ′) for a contiguous subsequence P ′

of P . We follow the same algorithm as the deque tree with the following changes. During the
process of joining Ti−1 with Ti, our task here becomes merging the two hulls stored in the two
trees. To perform the merge, we first compute the upper tangent of the two hulls. This can be
done in O(log(|Ti−1|+ |Ti|)) time using the method of Overmars and van Leeuwen [30]. Then,
we split the tree Ti−1 into two portions at the tangent point; we do the same for Ti. Finally,

B. Brewer, G. S. Brodal, and H. Wang 11

we join the relevant portions of the two trees into a new tree that represents the merged hull
of the two hulls. The entire procedure takes O(log(|Ti−1| + |Ti|)) time. This time complexity
is asymptotically the same as joining two trees Ti−1 and Ti as described in Section 2.1, and
thus we can still achieve the same performances for the first five operations as in Lemma 4;
in particular, to perform HullTreeRetrieval, we simply call TreeRetrieval on the
deque tree. Finally, for HullReport, we first perform HullTreeRetrieval to obtain
a tree representing H(P). Then, we perform an in-order traversal on the tree, which can
output H(P) in O(h) time. Thus, the total time for HullReport is O(h + log n).

2.4 One-sided monotone path dynamic convex hull
We now consider the one-sided monotone problem. Suppose P is a set of n points in R2.
Consider the following operations on P (assume that P = ∅ initially): InsertRight, Delete-
Right, HullTreeRetrieval, HullReport, as in Section 2.3. Applying Theorem 5, we can
perform HullTreeRetrieval in O(log n) time and perform HullReport in O(h + log n)
time. We will prove the following theorem, which reduces the HullTreeRetrieval time
to O(log h) and reduces the HullReport time to O(h).

▶ Theorem 6. Let P ⊂ R2 be an initially empty set of points, with n = |P | and h = |H(P)|.
There exists a “Stack Convex Hull” data structure SH(P) of O(n) space that supports the
following operations:
1. InsertRight: O(1) time.
2. DeleteRight: O(1) time.
3. HullTreeRetrieval: O(log h) time.
4. HullReport: O(h) time.

The main idea to prove Theorem 6 is to adapt ideas from Sundar’s algorithm in [33] for
priority queue with attrition as well as the deque convex hull data structure from Section 2.3.
As in Section 2.3, we maintain the upper and lower hulls of H(P) separately. In the following,
we only discuss how to maintain the upper hull. By slightly abusing the notation, let H(P)
refer to the upper hull only in the following discussion.

2.4.1 Structure of the stack convex hull
For any two disjoint subsets P1 and P2 of P , we use P1 ≺ P2 to denote the case where all
points of P1 are to the left of each point of P2. Our data structure maintains four subsets
A1 ≺ A2 ≺ A3 ≺ A4 of P . Each Ai, 1 ≤ i ≤ 3, is a convex chain, but this may not be true
for A4. Further, the following invariants are maintained during the algorithm. See Figure 3.

1. Vertices of H(P) are all in
⋃4

i=1 Ai.
2. A1 is a prefix of the vertices of H(P) sorted from left to right.
3. A1 ∪ A2 and A1 ∪ A3 are both convex chains.
4. BIAS: |A1| ≥ |A3| + 2 · |A4|.

The partition of the sequences of points into four subsequences and the above invariants
are strongly inspired by Sundar’s construction [33] for a priority queue supporting Insert
and DeleteMin in worst-case constant time, and where insertions have the side-effect of
deleting all elements larger than the inserted element from the priority queue.

The convex chains A1, A2, and A3 are stored as finger search trees so that updates at
both ends can be supported in O(1) time [5, 20, 34]. The set A4 is stored using the deque
convex hull structure of Theorem 5.

12 Dynamic Convex Hulls for Simple Paths

A1

A2
A3

A4
R

ig
ht

2(
A

1)
R

ig
ht

(A
1)

Le
ft

(A
2)

Le
ft

(A
3)

Figure 3 Stack convex hull. Black nodes are nodes in Ai ⊂ P , white nodes are P \ (A1 ∪ A2 ∪
A3 ∪ A4). There cannot be nodes above the dotted line through Right2(A1) and Right(A1), since
A1 ⊂ H(P). The dashed lines show that A1 ∪ A2 and A1 ∪ A3 are convex chains.

For 1 ≤ i ≤ 4, we let Left(Ai) and Right(Ai) denote the leftmost and rightmost points
of Ai, respectively, and let Left2(Ai) and Right2(Ai) denote the second leftmost and
second rightmost point of Ai, respectively (see Figure 3). For any three points p1 ≺ p2 ≺ p3,
we use p1 → p2 → p3 to refer to the traversal from p1 to p2 and then to p3; we often need to
determine whether p1 → p2 → p3 makes a left turn or right turn.

2.4.2 InsertRight and DeleteRight
The basic idea is to perform insertions into A4 (possibly after emptying A1, A3 and A4, see
Algorithm 1). This may cause the BIAS invariant to be violated since |A4| increases by
one. To restore it, we will perform the Bias procedure (Algorithm 2) twice. Running the
Bias procedure once will increase |A1| − |A3| − 2 · |A4| by at least one, unless A3 = A4 = ∅
(in which case the BIAS invariant trivially holds). This is done by one of the following
operations: (1) remove a point from A3; (2) move a point from A4 to A3; (3) move a point
from A2 to A1; (4) move a point from A3 to A1.

Algorithm 1 InsertRight
Input: A1, A2, A3, A4, and p, a point to be inserted

1 if |A1| ≥ 2 and Right2(A1) → Right(A1) → p makes a left turn then
2 Set A2 to refer to A1

3 Set A1, A3, and A4 to empty
4 InsertRight(A4, p)
5 Run the Bias procedure twice // Restore BIAS invariant

Note that the Bias procedure preserves invariants 1, 2, and 3. To see this, notice that
Lines 1-5 of Algorithm 2 are essentially performing steps of Graham’s scan, adding the
leftmost point of A4 to the convex chain A1 ∪ A3. When A4 is empty, Lines 6-13 are
trying to empty A2 and A3 by: (1) deleting Left(A3) if Left(A3) /∈ ∂H(P), identified by
Left(A2) → Left(A3) → Left2(A3) making a left turn; (2) moving Left(A2) to A1 if
Left(A2) ∈ ∂H(P) and A1 ∪ {Left(A2)} ∪ A3 is a convex chain; (3) deleting all points of
A2 if A2 ∩ ∂H(P) = ∅.

The Bias procedure takes O(1) time because the representations of each Ai allow insertion
and deletion at both ends in O(1) time. With the Bias procedure in hand, we perform the
InsertRight operation as shown in Algorithm 1. Notice that the check on Line 1 ensures

B. Brewer, G. S. Brodal, and H. Wang 13

Algorithm 2 Bias
Input: A1, A2, A3, and A4

1 if |A4| > 0 then
2 if (|A3| ≥ 2 and Right2(A3) → Right(A3) → Left(A4) is a left turn) or (|A3| = 1

and |A1| ≥ 1 and Right(A1) → Right(A3) → Left(A4) is a left turn) then
3 DeleteRight(A3)
4 else

// Delete the leftmost point from A4 and insert it to the right of A3.
5 InsertRight(A3, DeleteLeft(A4))

6 else if |A3| > 0 then
7 if |A2| > 0 and |A3| ≥ 2 and Left(A2) → Left(A3) → Left2(A3) is a left turn then
8 DeleteLeft(A3)
9 else if |A2| > 0 and (|A1| = 0 or Right(A1) → Left(A2) → Left(A3) is a right turn)

then
10 InsertRight(A1, DeleteLeft(A2))
11 else
12 Set A2 to empty
13 InsertRight(A1, DeleteLeft(A3))

that Invariant 2 is preserved. If the condition is true, then the invariants are preserved
trivially. If the condition is false, then inserting p to A4 does not violate Invariant 2. In both
cases, two calls to the Bias procedure ensure that the BIAS invariant is preserved. Due to
the way we implement each Ai, InsertRight can be done in O(1) time.

To handle DeleteRight, we use a stack to record changes made during each insertion.
To delete a point p, we use the stack to roll back the changes done during the insertion
of p (these changes must be at the top of the stack). Since each InsertRight takes O(1)
time, there are O(1) changes due to the insertion of p, and thus DeleteRight can be
accomplished in O(1) time as well.

2.4.3 HullTreeRetrieval

We wish to (implicitly) construct a BST of height O(log h) to represent the upper hull H(P).
Recall that h = |H(P)|. The second and fourth invariants together imply that |A1|, |A3|,
and |A4| are all bounded by O(h). Recall that for each Ai, 1 ≤ i ≤ 3, Ai is a convex chain
stored by a finger search tree, denoted by Ti. Since |A1|, |A3| = O(h), the heights of both T1
and T3 are O(log h). For A4, it is represented by a deque convex hull data structure. Since
|A4| = O(h), by Theorem 5, we can obtain in O(log h) time a tree T4 of height O(log h) to
store H(A4). For A2, the only guaranteed upper bound for its size is O(n). Hence, the height
of T2 is O(log n), instead of O(log h). By our algorithm invariants, H(P) is the upper hull of
A1 ∪ A2 ∪ A3 ∪ H(A4). As A1 ≺ A2 ≺ A3 ≺ A4, we can compute H(P) by merging all four
convex chains from left to right. This can be done in O(log n) time by using the trees Ti,
1 ≤ i ≤ 4, and the binary search method of Overmars and van Leeuwen [30] for finding the
upper tangents.

We now reduce the time to O(log h). The O(log n) time of the above algorithm is due to
the fact that the height of T2 is O(log n) instead of O(log h). This is because our algorithm
invariants do not guarantee |A2| = O(h). Therefore, to have an O(log h)-time algorithm, we
need a clever way to merge A2 with the other convex chains.

14 Dynamic Convex Hulls for Simple Paths

We first merge T3 and T4 to obtain in O(log h) time a new tree T34 of height O(log h) to
represent the upper hull H(A3 ∪ A4). Since A1 is part of H(P) by our algorithm invariant,
we have the following two cases for H(P): (1) no point of A2 is on ∂H(P); (2) at least one
point of A2 is on ∂H(P). In the first case, H(P) can be obtained by simply merging T1
and T34 in O(log h) time. In the second case, let p2p3 be the upper tangent between A2 and
H(A3 ∪ A4) with p2 ∈ A2 and p3 ∈ ∂H(A3 ∪ A4). Then the vertices of H(P) from left to
right are: all points of A1, points of A2 from Left(A2) to p2, and points of H(A3 ∪ A4) from
p3 to the right end. Hence, to compute H(P) in the second case, the key is to compute the
tangent p2p3. We show below that this can be done in O(log h) time by an “exponential
search” on A2 and using the method of Overmars and van Leeuwen [30], in the following
referred to as the OvL algorithm.

Note that which of the above two cases happens can be determined in O(log h) time.
Indeed, we can first merge T1 and T34 to obtain a tree T134 of height O(log h) representing
the upper hull H(P \ A2). Then, due to our algorithm invariants, the first case happens if
and only if Left(A2) is below H(P \ A2), which can be determined in O(log h) time using
the tree T134.

We now describe an algorithm to compute the common tangent p2p3 in the second case.
Let H34 = H(A3 ∪ A4). Applying the OvL algorithm directly with T2 and T34 will take
O(log(|A2| + |A3 ∪ A4|)) = O(log n) time to find p2p3. We next reduce the time to O(log h).

The OvL algorithm uses the binary search strategy. In each iteration, it picks two
candidate points p′

2 ∈ A2 and p′
3 ∈ H34 (initially, p′

2 is the middle point of A2 and p′
3 is the

middle point of H34), and in O(1) time, the algorithm can determine at least one of the
three cases: (1) p2 = p′

2 and p3 = p′
3; (2) p2 is to the left or right of p′

2; (3) p3 is to the left or
right of p′

3. In the first case, the algorithm stops. In the second case, half of the remaining
portion of A2 is pruned and p′

2 is reset to the middle point of the remaining portion of A2
(but p′

3 does not change). The third case is processed analogously.

When we apply the OvL algorithm, the way we set p′
3 is the same as described above.

However, for p′
2, we set it by following the exponential search strategy using T2 (or the

standard finger search with a finger at the leftmost leaf of T2 [5, 20,34]). Specifically, we first
reset p′

2 to the leftmost node of T2 and then continue the search on its parent and so on,
until the first time we find p2 is left of p′

2, at which point we search downwards on T2. This
will eventually find p2p3.

We claim that the runtime is O(log h). Indeed, since the height of T34 is O(log h), the
time the algorithm spends on resetting p′

3 in the entire algorithm is O(log h). To analyze
the time the algorithm spends on resetting p′

2, following the standard finger search (with a
finger at the leftmost leaf of the tree) or exponential search analysis, the number of times
the algorithm resets p′

2 is O(log m), where m is the number of points of T2 to the left of p2.
Observe that all points of T2 to the left of p2 are on H(P); thus, we have m ≤ h. Hence, the
runtime of the algorithm for computing the tangent p2p3 is O(log h).

After p2p3 is computed, we split T2 at p2 and obtain a tree T ′
2 of height O(log h)

representing all points of T2 left of p2. Then, we merge T ′
2 with T1 and T34 to finally obtain a

tree of height O(log h) representing H(P) in O(log h) time. The total time of the algorithm
is O(log h).

As before, we use a stack to record changes due to the above algorithm for constructing
the tree representing H(P). Once we finish the queries using the tree, we roll back the
changes we have made by popping the stack. This also takes O(log h) time.

B. Brewer, G. S. Brodal, and H. Wang 15

2.4.4 HullReport
To output the convex hull H(P), we first perform HullTreeRetrieval to obtain a tree of
height O(log h) that stores H(P) in O(log h) time. Then, using this tree, we can output H(P)
in additional O(h) time. Hence, the total time for reporting H(P) is O(h).

3 The simple path problem

In this section, we consider the dynamic convex hull problem for a simple path. Let π be a
simple path of n vertices in the plane. Unless otherwise stated, a “point” of π always refers
to a vertex of it (this is for convenience and also to be consistent with the terminology in
Section 2). For ease of discussion, we assume that no three vertices of π are collinear.

For any subpath π′ of π, let |π′| denote the number of vertices of π′, and H(π′) the convex
hull of π′, which is also the convex hull of all vertices of π′.

We designate the two ends of π as the front end and the rear end, respectively. We consider
the following operations on π: InsertFront, DeleteFront, InsertRear, DeleteRear,
StandardQuery, and HullReport, as defined in Section 1. The following theorem
summarizes the main result of this section.

▶ Theorem 7. Let π ⊂ R2 be an initially empty simple path, with n = |π| and h = |H(π)|.
There exists a “Deque Path Convex Hull” data structure PH(π) of O(n) space that supports
the following operations:
1. InsertFront: O(1) time.
2. DeleteFront: O(1) time.
3. InsertRear: O(1) time.
4. DeleteRear: O(1) time.
5. StandardQuery: O(log n) time.
6. HullReport: O(h + log n) time.

Remark. We will show in Section 4 that all these bounds are optimal even for the “one-
sided” case. In particular, it is not possible to reduce the time of HullTreeRetrieval to
O(log h) or reduce the time of HullReport to O(h). This is why we do not consider the
one-sided simple path problem separately. For answering standard queries, our algorithm
first constructs four BSTs representing convex hulls of four (consecutive) subpaths of π whose
union is π and then uses these trees to answer queries. The heights of the two trees for
the two middle subpaths are O(log n) while the heights of the other two are O(log log n).
This means that all decomposable queries can be answered in O(log n) time. We show that
certain non-decomposable queries can also be answered in O(log n) time, such as bridge
queries. We could further enhance the data structure so that a BST of height O(log h)
that represents H(π) can be obtained in O(log n log log n) time; this essentially performs the
HullTreeRetrieval operation (as defined in Section 2.3) in O(log n log log n) time.

In what follows, we prove Theorem 7. One crucial property we rely on is that the
convex hulls of two subpaths of a simple path intersect at most twice and thus have at
most two common tangents as observed by Chazelle and Guibas [12]. Let π1 and π2 be
two consecutive subpaths of π. Suppose we have two BSTs representing H(π1) and H(π2),
respectively. Compared to the monotone path problem, one difficulty here (we refer to it as
the “path-challenge”) is that we do not have an O(log n)-time algorithm to find the common
tangents between H(π1) and H(π2) and thus merge the two hulls. The best algorithm we

16 Dynamic Convex Hulls for Simple Paths

q1

e

q2

π1

π2
ρ

p

q1

e′

e

π1

q2

π2ρ

ρ′

p

Figure 4 Illustrating the two cases in the proof of Lemma 8. The grey region in each case is
H(π1). ρ is the normal of e and ρ′ is the normal of e′.

have takes O(log2 n) time by a nested binary search, assuming that we have two “helper
points”: a point on each convex hull that is outside the other convex hull [19].

It is tempting to apply the deque convex hull idea of Theorem 5 (i.e., instead of considering
the points in left-to-right order, we consider the points in the “path order” along π). We could
get the same result as in Theorem 5 except that the HullTreeRetrieval operation now
takes O(log2 n) time and HullReport takes O(h + log2 n) time due to the path-challenge.
Our main effort below is to achieve O(log n) time for StandardQuery and O(h + log n)
time for HullReport.

Before presenting our data structure, we introduce in Section 3.1 several basic lemmas
that will be frequently used later.

3.1 Basic lemmas
The following lemma was given in [19], and we sketch the proof here to make the paper more
self-contained. Later, we will need to modify the algorithm for other purposes.

▶ Lemma 8. (Guibas, Hershberger, and Snoeyink [19, Lemma 5.1]) Let π1 and π2 be
two consecutive subpaths of π. Suppose the convex hull H(πi) is stored in a BST of height
O(log |πi|), for i = 1, 2. We can do the following in O(log(|π1| + |π2|)) time: Determine
whether H(π2) is completely inside H(π1) and if not find a “helper point” p ∈ ∂H(π2) such
that p ∈ ∂H(π1 ∪ π2) and p /∈ ∂H(π1).

Proof. We sketch the proof here. See [19, Lemma 5.1] for the details. Since π1 and π2 are
consecutive subpaths of π, let q1 ∈ π1 and q2 ∈ π2 be consecutive vertices of π.

If q1 is in the interior of H(π1), then q1 is in a single “bay” with a hull edge e such that:
if H(π2) is inside H(π1), then π2 must be inside the bay; otherwise, the path q1q2 ∪ π2 must
cross e (see the left of Figure 4). The edge e can be computed in O(log |π1|) time by binary
search since indices of vertices of H(π1) form a bimodal sequence [19]. Let ρ be the normal
of e toward outside H(π1). We compute the most extreme vertex p of H(π2) along ρ, which
takes O(log |π2|) time. Then, H(π2) is inside H(π1) if and only if p is in the same side of e

as H(π1). If p is on the opposite side of e as H(π1), then p is a helper point as defined in the
lemma statement.

If q1 ∈ ∂H(π1), then q1 is a common vertex of two edges e and e′ of H1 (see the right
of Figure 4), then we can determine whether H(π2) is inside H(π1) and if not find a helper

B. Brewer, G. S. Brodal, and H. Wang 17

point on ∂H(π2), using the normals of e and e′, in a similar way to the above. The total
time is still O(log(|π1| + |π2|)). ◀

The following lemma is also from [19] and uses Lemma 8. We again sketch the proof.

▶ Lemma 9. (Guibas, Hershberger, and Snoeyink [19, Section 2]) Let π1 and π2 be two
consecutive subpaths of π. Suppose the convex hull H(πi) is stored in a BST of height
O(log |πi|), i = 1, 2. We can compute a BST of height O(log(|π1| + |π2|)) that stores the
convex hull of π1 ∪ π2 in O(log |π1| · log |π2|) time.

Proof. We first use Lemma 8 to check whether one of the two convex hulls H(π1) and H(π2)
contains the other. If yes, then we simply return the tree of the larger convex hull. Otherwise,
we compute a helper point p1 ∈ ∂H(π1) and a helper point p2 ∈ ∂H(π2) by Lemma 8. Using
the two helper points, the two common tangents of H(π1) and H(π2) can be computed
in O(log |π1| · log |π2|) time by a nested binary search [19]. Consequently, a tree of height
O(log(|π1| + |π2|)) that stores H(π1 ∪ π2) can be obtained in O(log |π1| · log |π2|) time from
the two trees for H(π1) and H(π2). ◀

The following lemma provides a basic tool for answering bridge queries.

▶ Lemma 10. Let H1, H2, . . . , be a collection of O(1) convex polygons with a total of n

vertices, each represented by a BST or an array so that binary search on each convex polygon
can be supported in O(log n) time. Let H be the convex hull of all these convex polygons. We
can answer the following queries in O(log n) time each.
1. Bridge query: Given a query line ℓ, determine whether ℓ intersects H, and if yes, find

the edges of H that intersect ℓ.
2. Given a query point p, determine whether p ∈ H, and if yes, further determine whether

p ∈ ∂H.

Proof. It is not difficult to see that the second query can be reduced to a bridge query (e.g.,
we can apply a bridge query on the vertical line ℓ through p, and the answer to the query
on p can be obtained based on the bridge query outcome). In what follows, we focus on the
bridge query. Without loss of generality, we assume that ℓ is vertical.

We first find the leftmost vertex p1 of H, which can be done in O(log n) time by finding
the leftmost vertex of each Hi. Similarly, we find the rightmost vertex p2 of H. Then, ℓ

intersects H if and only if ℓ is between p1 and p2. Assuming that ℓ is between them, we next
compute the edges of H that intersect ℓ. For ease of discussion, we assume that ℓ does not
contain any vertex of any convex hulls. This means that ℓ intersects exactly one edge of the
upper hull of H and intersects exactly one edge of the lower hull. We only discuss how to
find the edge on the upper hull, denoted by e∗, since the edge on the lower hull can be found
similarly.

Observe that there are two cases for e∗: (1) The two vertices of e∗ are from the same
polygon Hk; (2) the two vertices of e∗ are from two different polygons Hi and Hj , respectively.
In the first case, e∗ is the edge of the upper hull of Hk intersecting ℓ. In the second case, e∗

is the edge of the upper hull of H(Hi ∪ Hj) that intersects ℓ. Based on this observation, our
algorithm works as follows.

To address the first case, for each Hk, we can compute the edge ek that intersects ℓ (if it
exists) in O(log n) time using a bridge query on Hk. To address the second case, for each
pair (Hi, Hj), we will show how to compute the edge eij of the upper hull of H(Hi ∪ Hj)
intersecting ℓ (if it exists) in O(log n) time. Then, based on the above observation, among the
edges ek for all Hk and the edges eij for all pairs (Hi, Hj), e∗ is the one whose intersection

18 Dynamic Convex Hulls for Simple Paths

with ℓ is the highest. This means that e∗ can be found in O(log n) time as there are O(1)
convex hulls. It remains to show how to compute eij for any pair (Hi, Hj) in O(log n) time.

Let Di be the data structure (an array or a BST) storing Hi. Let H l
i and Hr

i denote the
portions of Hi to the left and right of ℓ, respectively. Regardless of whether Di is an array
or a BST, binary search on each of H l

i and Hr
i can be supported in O(log n) time by Di.

Define Dj , H l
j , and Hr

j similarly.
If H l

i and Hr
j are both non-empty, let e1

ij be the upper common tangent of H l
i and Hr

j . If
H l

j and Hr
i are both non-empty, let e2

ij be the upper common tangent of H l
j and Hr

i . If Hi

intersects ℓ, let ei be the edge on the upper hull of Hi intersecting ℓ. If Hj intersects ℓ, let ej

be the edge on the upper hull of Hj intersecting ℓ. Observe that eij exists if at least one of e1
ij ,

e2
ij , ei, and ej exists, in which case it is whichever one has the highest point of intersection

with ℓ. Hence, to compute eij , it suffices to compute e1
ij , e2

ij , ei, and ej . Because H l
i and Hr

j

are separated by ℓ, e1
ij can be computed in O(log n) time with the data structures Di and Dj

using the binary search algorithm of Overmars and van Leeuwen [30]. The edge e2
ij can be

computed similarly. Computing ei and ej takes O(log n) time by performing bridge queries
on Hi and Hj . Finally, we can determine eij from e1

ij , e2
ij , ei, and ej in constant time by

comparing their intersections with ℓ. As previously argued, because we can compute eij in
O(log n) time for any pair (Hi, Hj), we can answer each bridge query in O(log n) time. ◀

3.2 Structure of the deque path convex hull P H(π)
For convenience, we assume that |π| is always greater than a constant number (e.g., |π| > 8).
We partition π into four (consecutive) subpaths πr, πr

m, πf
m, and πf in the order from the

rear to the front of π so that πr and πf contain the rear and front ends, respectively. Further,
let π+ = πf ∪ πf

m and π− = πr ∪ πr
m. Our algorithm maintains the following invariants.

1. 1
4 ≤ |π+|/|π−| ≤ 4.

2. |πf | = O(log2 |π+|) and |πr| = O(log2 |π−|).

Note that the invariants imply that |πf |, |πr| = O(log2 n) and |πf
m|, |πr

m| = Θ(n), where
n = |π|. The first invariant resembles the partition of P by a dividing line ℓ in our deque
tree in Section 2.2. As with the deque tree, in order to maintain the first invariant, when
1/2 ≤ |π+|/|π−| ≤ 2 is first violated, we pick a new center to partition π and start to build
a deque path convex hull data structure by incrementally inserting points around this new
center toward both front and rear ends. As will be seen later, since each insertion takes
O(1) time, it takes O(n) time to build this new data structure. Thus, we can spread the
incremental work over the next Θ(n) updates so that only O(1) incremental work on each
update is incurred to maintain this invariant.

We use a stack tree ST (πf) to maintain the convex hull H(πf), with the algorithm in
Lemma 9 for merging two hulls of two consecutive subpaths. More specifically, we consider
the vertices of πf following their order along the path (instead of left-to-right order as in
Section 2.1) with insertions and deletions only at the front end. Whenever we need to join
two neighboring trees, we merge the two hulls of their corresponding subpaths by Lemma 9.2

2 The analysis is slightly different since we use a merging algorithm of bigger complexity. More specifically,
merging the hulls represented by the trees Ti and Ti+1 now takes O(log2 |Ti|) time, which is O(22i+2).
Nevertheless, we can still guarantee that the current incremental joining process for Ti+1 is completed
before the next joining process starts by slightly modifying the proof of Lemma 3. More specifically,
by making the constant c slightly larger, the joining process can be completed within 23i−1 insertions.
After 23i−1 insertions, the total number of points that can be inserted into Ti is at most 2 · 22i

+ 23i−1,
which is still smaller than 22i+1

for i ≥ 1.

B. Brewer, G. S. Brodal, and H. Wang 19

ST (πr): stack tree for H(πr)

|πr| = Θ(log2 n)

ST (πf): stack tree for H(πf)

|πf | = Θ(log2 n)

{ {
|πr

m| = Θ(n) |πf
m| = Θ(n)

BST BST

T r
m T f

m

{ {π− = πr ∪ πr
m π+ = πf

m ∪ πf

Figure 5 A schematic view of the deque path convex hull data structure P H(π).

Due to the second invariant, merging all trees of ST (πf) takes O(log2 log n) time, after which
we obtain a single tree of height O(log log n) that represents H(πf). Similarly, we build a
stack tree ST (πr) for H(πr) but along the opposite direction of the path. See Figure 5 for
an illustration.

Define n+ = |π+|. In order to maintain the second invariant, when πf is too big due
to insertions, we will split off a subpath of length Θ(log2 n+) from πf and concatenate it
with πf

m. When πf becomes too small due to deletions, we will split off a portion of πf
m of

length Θ(log2 n+) and merge it with πf ; but this split is done implicitly using the rollback
stack for deletions. Consequently, we need to build a data structure for maintaining πf

m so
that the above concatenate operation on πm can be performed in O(log2 n+) time (this is one
reason why the bound for πf in the second invariant is set to O(log2 n+)). We process π− in
a symmetric way. The way we handle the interaction between πf

m and πf (as well as their
counterpart for π−) is one main difference from our approach for the two-sided monotone
path problem in Section 2.3; again this is due to the path-challenge.

Our data structure for πf
m is simply a balanced BST T f

m, which stores the convex
hull H(πf

m). In particular, we will use T f
m to support the above concatenation operation

(denoted by Concatenate) in O(log2 n) time. For reference purpose, this is summarized in
the following lemma, which is an immediate application of Lemma 9.

▶ Lemma 11. Given a BST of height O(log |τ |) representing a simple path τ of length
O(log2 n) such that the concatenation of πf

m and τ is still a simple path, we can perform
the following Concatenate operation in O(log2 n) time3: Obtain a new tree T f

m of height
O(log n) that represents the convex hull H(πf

m), where πf
m is the new path after concatenating

with τ .

Similarly, we use a balanced BST T r
m to store the convex hull H(πr

m). We have a similar
lemma to the above for the Concatenate operation on πr

m.
The four trees ST (πr), T r

m, T f
m, and ST (πf) constitute our deque path convex hull data

structure PH(π) for Theorem 7; see Figure 5. In the following, we discuss the operations.

3 Applying Lemma 9 can obtain a time complexity of O(log n log log n), but O(log2 n) is sufficient for our
purpose.

20 Dynamic Convex Hulls for Simple Paths

3.3 Standard queries
For answering a decomposible query σ, we first perform a TreeRetrieval operation
on ST (πf) to obtain a tree Tf that represents H(πf). Since |πf | = O(log2 n), this takes
O(log2 log n) time as discussed before. We do the same for ST (πr) to obtain a tree Tr

for H(πr). Recall that the tree T f
m stores H(πf

m) while T r
m stores H(πr

m). We perform
query σ on each of the above four trees. Based on the answers to these trees, we can obtain
the answer to the query σ for H(π) because σ is a decomposable query. Since the heights
of Tf and Tr are both O(log log n), and the heights of T f

m and T r
m are O(log n), the total

query time is O(log n).
If σ is a bridge query, we apply Lemma 10 on the above four trees. The query time is

O(log n).

3.4 Insertions and deletions
We now discuss the updates. InsertFront and DeleteFront will be handled by the
data structure for π+, i.e., T f

m and ST (πf), while InsertRear and DeleteRear will be
handled by the data structure for π−.

InsertFront. Suppose we insert a point p to the front end of π. We first perform the
insertion using the stack tree ST (πf). To maintain the second invariant, we must handle the
interaction between the largest tree Tk of ST (πf) and the tree T f

m. Recall that n+ = |π+|
and n+ = Θ(n).

According to the second invariant and the definition of the stack tree ST (πf), we have
|Tk| = O(log2 n+), and we can assume a constant c such that the total size of all trees of
ST (πf) smaller than Tk is at most c · log2 n+. We set the size of Tk to be (c + 1) · log2 n+.
During the algorithm, whenever |Tk| > (c + 1) · log2 n+ and there is no incremental process
of joining Tk−1 with Tk, we let T ′

k = Tk and let Tk = ∅, and then start to perform an
incremental Concatenate operation to concatenate T ′

k with T f
m. The operation takes

O(log2 n+) time by Lemma 11. We choose a sufficiently large constant c1 so that each
Concatenate operation can be finished within c1 · log2 n+ steps. For each InsertFront
in future, we run c1 steps of this Concatenate algorithm. This means that within the next
log2 n+ InsertFront operations in future, the Concatenate operation will be completed.
If there is an incremental Concatenate operation (that is not completed), then we say that
T f

m is dirty; otherwise, it is clean.
If T f

m is dirty, an issue arises during a StandardQuery operation. Recall that during a
StandardQuery operation, we need to perform queries on H(πf

m) by using the tree T f
m.

However, if T f
m is dirty, we do not have complete information for T f

m. To address this
issue, we resort to persistent data structures [14,32]. Specifically, we use a persistent tree
for T f

m so that if there is an incremental Concatenate operation, the old version of T f
m

can still be accessed (we call it the “clean version”). A partially persistent tree suffices for
our purpose [14,32]. After the Concatenate is completed, we designate the new version
of T f

m as clean and the old version as dirty; in this way, at any time, there is only one clean
version we can refer to. During a StandardQuery operation, we can perform queries on the
clean version of T f

m. Similarly, during the query, if there is an incremental Concatenate
process, T ′

k is also dirty, and we need to access its clean version (i.e., the version right
before T ′

k started the Concatenate operation). To solve this problem, before we start
Concatenate, we make another copy of T ′

k, denoted by T ′′
k . After Concatenate is

completed, we make T ′′
k refer to null. The above strategy causes additional O(log2 n+) time,

B. Brewer, G. S. Brodal, and H. Wang 21

i.e., update the persistent tree T f
m and make a copy T ′′

k . To accommodate this additional
cost, we make the constant c1 large enough so that all these procedures can be completed
within the next log2 n+ InsertFront operations.

Recall that once we are about to start a Concatenate operation for T ′
k, Tk becomes

empty. We argue that Concatenate will be completed before another Concatenate
operation starts. To this end, it suffices to argue that the current Concatenate will be
completed before |Tk| becomes larger than (c + 1) · log2 n+ again. Indeed, we know that the
current Concatenate will be finished within the next log2 n+ InsertFront operations.
On the other hand, recall that the number of points in all trees of ST (πf) smaller than Tk

is at most c · log2 n+. Since all points of Tk come from those smaller trees plus newly
inserted points from the InsertFront operations, within the next log2 n+ InsertFront
operations, |Tk| cannot be larger than (c + 1) · log2 n. Therefore, there cannot be two
concurrent Concatenate operations from Tk to T f

m.

DeleteFront. To perform a DeleteFront operation, i.e., delete the front vertex p of π,
we keep a stack of changes to our data structure PH(π) due to the InsertFront operations.
When deleting p, p must be the most recently inserted point at the front end, and thus, the
changes to the data structure due to the insertion of p must be at the top of the stack. We
roll back these changes by popping the stack.

InsertRear and DeleteRear. Handling updates at the rear end is the same, but using T r
m

and ST (πr) instead. We omit the details.

3.5 Reporting the convex hull H(π)

We show that the convex hull H(π) can be reported in O(h + log n) time.
As in the algorithm for StandardQuery, we first obtain in O(log n) time the four trees

Tf , Tr, T f
m, and T r

m representing H(πf), H(πr), H(πf
m), and H(πr

m), respectively. Then, we
can merge these four convex hulls using Lemma 9 in O(log2 n) time and compute a BST T (π)
representing H(π). Finally, we can output H(π) by traversing T (π) in additional O(h) time.
As a result, H(π) can be reported in O(h + log2 n) time. In what follows, we reduce the
time to O(h + log n). To this end, we first enhance our data structure PH(π) by having it
maintain the common tangents of the convex hulls of the two middle subpaths πf

m and πr
m

during updates.

3.5.1 Enhancing the data structure P H(π)

We now enhance our data structure PH(π) described in Section 3.2. We have our en-
hanced PH(π) maintain the common tangents between the convex hulls of the two middle
subpaths of π, i.e., H(πf

m) and H(πr
m). Before describing how to maintain these common

tangents, we first explain why they are useful. Let πm denote the concatenation of πf
m

and πr
m.

Suppose the common tangents of H(πf
m) and H(πr

m) are available to us. Then, we can
compute in O(log n) time a tree Tm representing H(πm) by merging H(πf

m) and H(πr
m) using

their trees T f
m and T r

m. Consequently, we can do the following. (1) With the three trees
Tf , Tm, and Tr, representing H(πf), H(πm), and H(πr), respectively, we can report H(π)
in O(h + log n) time with an algorithm to be given later in Section 3.5.2. (2) By further
merging H(πf), H(πm), and H(πr) using their trees, we can obtain a single tree of height

22 Dynamic Convex Hulls for Simple Paths

O(log n) representing H(π), which takes O(log n log log n) time by Lemma 9 since the heights
of both Tf and Tr are O(log log n) and the height of Tm is O(log n).

We proceed to describe how to maintain the common tangents of H(πf
m) and H(πr

m). To do
so, we modify our algorithms for the update operations so that whenever πf

m or πr
m is changed

(either due to the Concatenate operation or the rollback of the operation, referred to as an
inverse Concatenate), we recompute the common tangents. By Lemma 9, their common
tangents can be computed in O(log2 n) time. The main idea is to incorporate the tangent-
computing algorithm into the Concatenate operation. Once an incremental Concatenate
operation is finished, say, on πf

m, we immediately start computing the new common tangents.
We consider this tangent-computing procedure part of the Concatenate operation. As each
Concatenate operation takes O(log2 n) time, incorporating the O(log2 n)-time tangent-
computing algorithm as above does not change the time complexity of Concatenate
asymptotically. However, we do have an issue with this idea. Recall that during Delete-
Front operations, we roll back the changes incurred by InsertFront operations, and
thus, each inverse Concatenate is done by the rollback. After an inverse Concatenate is
completed, πf

m loses a subpath of length Θ(log2 n+), and we need to recompute the common
tangents. However, in this case, rollback cannot recompute the common tangents; thus, we
explicitly run the tangent-computing algorithm during rollback. This means we must find
an effective way to incorporate this additional step into the rollback process so that each
DeleteFront operation still takes O(1) worst-case time. For reference purpose, we call
this the rollback issue.

We now elaborate on how to modify our update algorithms. We only discuss InsertFront
and DeleteFront since the other two updates are similar.

InsertFront. We follow notation in Section 3.4, e.g., T f
m, ST (πf), n+, Tk, T ′

k, Tk−1, c,
c1, etc. During the algorithm, as before, whenever |Tk| > (c + 1) · log2 n+ and there is no
incremental process of joining Tk−1 with Tk, we let T ′

k = Tk, Tk = ∅, and start an incremental
Concatenate to concatenate T ′

k with T f
m. Recall that the incremental Concatenate in

Section 3.4 will be completed within the next log2 n+ InsertFront operations. Here, to
complete Concatenate, we do the following three steps in the next log2 n+ InsertFront
operations (note that these are “net” InsertFront operations, i.e., the number of Insert-
Front operations minus the number of DeleteFront operations happened in the future):
(1) For each of the next 1

3 · log2 n+ InsertFront operations, we push a “token” into our
rollback stack, where a token could be a special symbol. Intuitively, a token represents a time
credit we can use during the rollback to perform an incremental tangent-computing procedure.
This is our mechanism to address the aforementioned rollback issue. (2) In each of the
subsequent 1

3 · log2 n+ InsertFront operations, we perform the next 3c1 steps of the actual
Concatenate operation by Lemma 11 (including the extra step of making a copy T ′′

k from T ′
k

first as discussed in Section 3.4). (3) Start an incremental tangent-computing algorithm to
find the common tangents between this new H(πf

m) (using the new T f
m after the current

Concatenate is completed in the above step (2)) and H(πr
m) (using the clean version of its

tree T r
m), and in each of the subsequent 1

3 · log2 n+ InsertFront operations, perform the
next c2 steps of the tangent-computing algorithm, for a sufficiently large constant c2 so that
the algorithm will be finished within c2

3 · log2 n+ steps (such a constant c2 exists because the
tangent-computing algorithm runs in O(log2 n) time and n+ = Θ(n)). Once all three steps
are completed, we consider the current incremental Concatenate completed and set T ′′

k to
null (meaning that the subpath stored in T ′

k now officially becomes part of πf
m). However, we

mark the current version of T f
m clean after step (2) is completed. Since it still takes log2 n+

B. Brewer, G. S. Brodal, and H. Wang 23

InsertFront operations to complete the new incremental Concatenate operation, the
prior argument in Section 3.4 that the current Concatenate will be completed before the
next Concatenate starts still applies here.

DeleteFront. We perform the rollback process for each DeleteFront operation as before
but with the following changes. Whenever an “inverse” Concatenate is completed (i.e.,
the above step (2)), then according to our new incremental Concatenate, the rollback
stack contains 1

3 · log2 n+ tokens which will be popped by the next 1
3 · log2 n+ to-be-deleted

points (and the history of changes of the next inverse Concatenate is stored below all
these tokens). When we encounter the first of these tokens, we mark the current T f

m clean
and start a tangent-computing algorithm to find the common tangents between this new
H(πf

m) and the current clean version of T r
m for H(πr

m). Then, for each of the subsequent
1
3 · log2 n+ tokens popped out of the rollback stack, we perform the next c2 steps of the
tangent-computing algorithm (c2 was already defined above in such a way that the algorithm
will be finished within c2

3 · log2 n+ steps). We consider the inverse Concatenate operation
completed once the tangent-computing algorithm is finished.

Obtaining the common tangents. We argue that the common tangents of H(πf
m) and

H(πr
m) can be accessed at any time. Consider the time t after an update operation. Each

of T f
m and T r

m has a clean version at t. Suppose the current clean version T f
m (resp., T r

m)
became clean at time t1 (resp., t2). Without loss of generality, we assume t1 ≥ t2, i.e., T f

m

became clean later than T r
m did. Hence, once T f

m became clean at t1, a tangent-computing
algorithm started to compute common tangents between the clean versions of T f

m and T r
m.

At the time t, each of T f
m and T r

m may or may not have an incomplete incremental
Concatenate operation or an incomplete inverse Concatenate operation. If T f

m has an
incomplete operation, we let T̂ f

m denote its version before the operation started. Define T̂ r
m

similarly. We use T f
m and T r

m to refer to their current clean versions at t. Depending on
whether T f

m and/or T r
m has an incomplete operation, there are four cases.

1. If neither T f
m nor T r

m has an incomplete operation at t, then the tangent-computing
algorithm for T f

m and T r
m has been finished (otherwise the operation would be incomplete

at t). Thus, their common tangents are available at t.
2. If T f

m has an incomplete operation while T r
m does not, then the common tangents between

T r
m and T̂ f

m must be available. Indeed, as above, the one of T r
m and T̂ f

m that became
clean later must start a tangent-computing algorithm to compute their common tangents
and the algorithm must have finished before t since otherwise at least one of them must
have an incomplete operation at t, which is not true.
Since T f

m still has an incomplete operation, T̂ f
m actually represents the current subpath πf

m.
More specifically, if the incomplete operation is Concatenate, then it is concatenating
a new subpath τ to πf

m. As the operation is incomplete, we still consider τ part of πf

(instead of part of πf
m), and τ is stored at T ′′

k . If the incomplete operation is an inverse
Concatenate, then it is removing a subpath τ from πf

m. As the operation is incomplete,
we still consider τ as part of πf , which is stored in T̂ f

m. Therefore, the common tangents
of T r

m and T̂ f
m are what we need.

3. If T r
m has an incomplete operation while T f

m does not, this case is symmetric to the above
second case and can be treated likewise.

4. If both T f
m and T r

m have incomplete operations, then by a similar argument to the above,
the common tangents between T̂ r

m and T̂ f
m must be available, and their common tangents

are what we need.

24 Dynamic Convex Hulls for Simple Paths

3.5.2 Algorithm for HullReport
Suppose we have the three trees Tf , Tm, and Tr, representing H(πf), H(πm), and H(πr), as
discussed above. We now describe our algorithm for reporting H(π) using the three trees.
Depending on whether one of the three convex hulls H(πf), H(πr), and H(πm) contains
another or both of the other two, there are a number of cases.

1. If H(πm) contains both H(πf) and H(πr), then H(πm) is H(π) and thus we can simply
report H(πm), which can be done in O(h) time using the tree Tm. We can apply Lemma 8
to determine this case. More specifically, since πm and πf are consecutive subpaths of π,
applying Lemma 8 with Tm and Tf can determine whether H(πm) contains H(πf) in
O(log n) time. Similarly, whether H(πm) contains H(πr) can be determined in O(log n)
time. Therefore, we can report H(π) in O(h + log n) time in this case.

2. If H(πm) contains H(πr) but not H(πf), and H(πf) does not contain H(πm), then we
will present an algorithm later to report H(π) in O(h + log n) time. As in the first case,
we can determine whether this case happens in O(log n) time using Lemma 8.

3. If H(πm) contains H(πf) but not H(πr), and H(πr) does not contain H(πm), then this
is a case symmetric to the above second case and thus can be treated likewise.

4. If H(πr) contains both H(πm) and H(πf), then H(πr) is H(π) and thus we can simply
report H(πr), which can be done in O(h) time using the tree Tr. We can determine
whether this case happens in O(log n) time using Lemma 8. Indeed, we first apply
Lemma 8 on H(πr) and H(πm) to determine whether H(πr) contains H(πm) in O(log n).
If yes, we must determine whether H(πr) contains H(πf). Note that this time we cannot
apply Lemma 8 directly as πr and πf are not consecutive. To overcome this issue, since
we already know that H(πr) contains H(πm), it suffices to know whether H(πr) contains
H(πm ∪ πf). For this, we can slightly modify the algorithm in Lemma 8 since πr and
πm ∪ πf are two consecutive subpaths of π. Specifically, the algorithm needs to solve a
subproblem that is to compute the most extreme point p of H(πm ∪πf) along a direction ρ

that is the normal of an edge of H(πr). We cannot solve this subproblem by applying the
algorithm in the proof of Lemma 8 since we do not have a tree to represent H(πm ∪ πf).
Instead, we can compute p by first computing the most extreme point of H(πm) along ρ

in O(log n) time using the tree Tm and computing the most extreme point of H(πr) along
ρ in O(log log n) time using the tree Tr, and then return the more extreme point along ρ

among the two points. Therefore, we can determine whether H(πr) contains H(πm ∪ πf)
in O(log n) time.

5. If H(πf) contains both H(πm) and H(πr), this is a case symmetric to the above fourth
case and thus can be treated likewise.

6. The remaining case: H(πm) contains neither H(πf) nor H(πr), and neither H(πf) nor
H(πr) contains H(πm). We will present an O(h + log n) time algorithm. This is the most
general case, and the algorithm is also the most complicated. Note that it is possible
that one of H(πf) and H(πr) contains the other; however, we cannot apply Lemma 8 to
determine that since πf and πr are not consecutive subpaths of π.

It remains to present algorithms for the above Case 2 and Case 6.

Algorithm for Case 2. In Case 2, H(πm) contains H(πr) but not H(πf), and H(πf) does
not contain H(πm). One may consider the algorithm for this case a “warm-up” for the more
complicated algorithm of Case 6 given later. In this case, H(π) is the convex hull of H(πf)
and H(πm), and thus it suffices to merge H(πf) and H(πm) by computing their common
tangents. Note that computing the common tangents can easily be done in O(log n log log n)

B. Brewer, G. S. Brodal, and H. Wang 25

H(πm)

pm

pf

H(πf)

p

Am Af

Figure 6 Illustrating the walking procedure for Case 2. The dashed arcs illustrate Am and Af

on ∂H(πm) and ∂H(πf), respectively

time by a nested binary search [19] since the height of Tm is O(log n) and the height of Tf is
O(log log n). After the common tangents are computed, H(π) can be output in additional
O(h) time. The total time of this algorithm is O(h + log n log log n). In what follows, we
present an improved algorithm achieving O(h + log n) time.

First, we apply Lemma 8 to compute a helper point pm ∈ ∂H(πm) such that pm ∈ ∂H(π)
and pm ̸∈ H(πf), and also compute a helper point pf ∈ ∂H(πf) such that pf ∈ ∂H(π) and
pf ̸∈ H(πm). This takes O(log n) time using the trees Tm and Tf by Lemma 8.

Next, starting from pm, we perform the following walking procedure. We walk clockwise
on ∂H(πm) with a “step size” log n (see Figure 6). The idea is to identify a portion of
∂H(πm) of size at most log n that contains a common tangent point. To this end, using the
tree Tm, we find in O(log n) time a point p on ∂H(πm) such that the portion ∂H(πm)[pm, p]
from pm clockwise to p along ∂H(πm) contains log n vertices. Then, we determine whether
p ∈ ∂H(π). Since H(π) is the convex hull of H(πm) and H(πf), we can apply Lemma 10 to
determine whether p ∈ ∂H(π) in O(log n) time.

If p ̸∈ ∂H(π), then ∂H(πm)[pm, p] must contain a tangent point. In this case, starting
from pm, we repeat the same walking procedure counterclockwise until we find another
boundary portion of H(π) that contains a tangent point. Let Am denote the set of
vertices that have been traversed during the above clockwise and counterclockwise walks
(see Figure 6; note that all vertices in each step, e.g., all vertices in ∂H(πm)[pm, p], are
included in Am). Observe that Am has the following key property: Vertices of H(π) on
∂H(πm) are all in Am and Am contains at most 2 log n vertices that are not on ∂H(π).
This means that |Am| = O(h + log n).
If p ∈ ∂H(π), then we keep walking clockwise as above until we make a step where
p ̸∈ ∂H(π) or we pass over the starting point pm again. In the first case, we find a portion
of log n vertices on ∂H(π) that contain a tangent point. Then, we repeat the same walk
procedure counterclockwise around H(π). We can still obtain a set Am of vertices of
∂H(π) with the above key property. In the second case, we realize that one of the walking
steps contains two common tangent points. In this case, the observation is that all but
at most log n vertices of H(πm) are also vertices of H(π); we define Am as the set of all
vertices of H(πm), and thus the key property still holds on Am.

In either case, we have found a subset Am of vertices of H(πm) with the above key
property. Since |Am| = O(h + log n), the walking procedure computes Am in O(h + log n)

26 Dynamic Convex Hulls for Simple Paths

H(πm)pr pf

p1m

p2m

H(πr) H(πf)

Figure 7 Illustrating the convex hull H(π) in Case 6.

time because each step takes O(log n) time and each step either completes the traversal of
Am or traverses log n points of Am (therefore the number of steps is O(1 + h/ log n)). Also,
since all vertices of Am are on ∂H(πm), we can sort them from left to right in linear time.
Using the same strategy, starting from pf on H(πf), we can also find a subset Af of sorted
vertices of H(πf) with a similar key property: Vertices of H(π) on ∂H(πf) are all in Af

and Af contains at most 2 log n vertices that are not on ∂H(π) (see Figure 6). Notice that
the convex hull of Am ∪ Af is exactly H(π). As each of Am and Af is already sorted, their
convex hull can be computed in O(|Am| + |Af |) time, which is O(h + log n) since both |Am|
and |Af | are bounded by O(h + log n).

In summary, we can report H(π) in O(h + log n) time in Case 2.

Algorithm for Case 6. We now describe the algorithm for Case 6, in which H(πm) contains
neither H(πf) nor H(πr), and neither H(πf) nor H(πr) contains H(πm). The algorithm,
which extends our walking algorithm for Case 2, becomes more involved.

First, observe that H(πr) can have at most one maximal boundary portion appearing
on the boundary of H(π). To see this, notice that H(π) is the convex hull of H(πr) and
H(πm ∪ πf). As πr and πm ∪ πf are two consecutive subpaths of π, there are at most two
common tangents between H(πr) and H(πm ∪ πf), implying that H(πr) has at most one
maximal boundary portion appearing on ∂H(π). Similarly, H(πf) has at most one maximal
boundary portion appearing on ∂H(π).

However, H(πm) can have at most two maximal boundary portions appearing on ∂H(π).
To see this, first of all, as argued above, H(πm) has at most one maximal boundary portion
appearing on ∂H(πm ∪ πr). Note that H(π) is the convex hull of H(πm ∪ πr) and H(πf).
Since H(πf) has at most one maximal boundary portion appearing on ∂H(π), we obtain
that H(πm) has at most two maximal boundary portions appearing on ∂H(π).

Consequently, the boundary of H(π) has at most four maximal portions, each of which
belongs to one of the three convex hulls H(πf), H(πm), or H(πf), and these maximal portions
are connected by at most four edges of H(π) each of which is a common tangent of two hulls
of S (see Figure 7). Suppose we know four vertices (pr, p1

m, p2
m, pf), one from each of these

four boundary portions of H(π). Then, we can construct H(π) in O(h + log n) time by an
algorithm using a walking procedure similar to that in Case 2, as follows.

Let pr ∈ ∂H(πr) ∩ ∂H(π). Starting from pr, we perform a walking procedure by making
reference to H(π). More specifically, we walk clockwise on ∂H(πr) with a step size log n.
Let p′

r be the point on ∂H(πr) such that there are log n vertices on ∂H(πr) clockwise from

B. Brewer, G. S. Brodal, and H. Wang 27

pr to p′
r. We determine whether p′

r is on ∂H(π), which can be done in O(log n) time using
the three trees Tm, Tf , and Tr by Lemma 10. If yes, then we continue the walk until after
a step in which we either pass over pr or find that p′

r is not on ∂H(π). In the former case,
we let Ar be the set of all vertices of H(πr). In the latter case, we make a counterclockwise
walk on ∂H(πr) starting from pr again and let Ar be the subset of vertices that have been
traversed before we stop the walking procedure.

We compute A1
m, A2

m, and Af similarly. Also, each of Ar, A1
m, A2

m, and Af can be sorted
since all vertices of each lie on the boundary of a single convex hull. As in the algorithm for
Case 2, we have the following key property: All vertices of H(π) are in A = Ar ∪A1

m ∪A2
m ∪Ar,

and A contains at most O(log n) points that are not on ∂H(π). Therefore, |A| = O(h + log n)
holds. Hence, H(π) is the convex hull of A and can be computed in O(h + log n) time since
A can be sorted in O(|A|) time and |A| = O(h + log n).

In light of the above algorithm, to report H(π), it suffices to find the (at most) four
points pr, p1

m, p2
m, and pf . In particular, we will find a point pr on the maximal portion of

∂H(πr) (if it exists) appearing in ∂H(π), a point pf on the maximal portion of ∂H(πf) (if it
exists) appearing in ∂H(π), and points p1

m and p2
m on the two maximal portions of ∂H(πm)

(if they exist) appearing in ∂H(π); in particular, if ∂H(πm) only has one maximal portion in
∂H(π), then we will only compute p1

m and we say that p2
m does not exist.

We start with finding a helper point p̃r ∈ ∂H(πr) with p̃r ∈ ∂H(πr ∪ πm) using Lemma 8.
We also find a helper point p̃f ∈ ∂H(πf) with p̃f ∈ ∂H(πm ∪ πf). Depending on whether
p̃r ∈ ∂H(π) and p̃f ∈ ∂H(π) (determined using Lemma 10), there are four cases.

6a If p̃r ∈ ∂H(π) and p̃f ∈ ∂H(π). In this case, we have found pr = p̃r and pf = p̃f , and it
remains to compute p1

m and p2
m.

6b If p̃r ∈ ∂H(π) and p̃f /∈ ∂H(π). In this case, we claim that ∂H(πm) has at most one
maximal portion appearing on ∂H(π). Indeed, assume to the contrary that ∂H(πm) has
two maximal portions appearing on ∂H(π); see Figure 7. Then, the two portions of
∂H(π) from ∂H(πm) are separated by the portion from ∂H(πf) and the portion from
∂H(πr). This means that every point of ∂H(πf) on ∂H(πm ∪ πf) must be on ∂H(π). As
p̃f ∈ ∂H(πf) and p̃f ∈ ∂H(πm ∪ πf) by definition, we obtain p̃f ∈ ∂H(π), a contradiction.
Since ∂H(πm) has at most one maximal portion appearing on ∂H(π), p2

m does not exist.
As p̃r ∈ ∂H(π), we have found pr = p̃r. Therefore, it remains to compute p1

m and pf .
6c If p̃r /∈ ∂H(π) and p̃f ∈ ∂H(π). This case is symmetric to Case 6b and can be treated

likewise.
6d If p̃r /∈ ∂H(π) and p̃f /∈ ∂H(π). We can reduce this case to Case 6a as follows. When

computing p̃r by Lemma 8, p̃r was found to be the most extreme point of H(πr ∪ πm)
along some direction ρ. Let p′

f be the most extreme point of H(πf) in the direction ρ. As
p̃r /∈ ∂H(π) and p̃r is the most extreme point along ρ in H(πr ∪ πm), p′

f must be more
extreme along ρ than p̃r, and we can conclude that p′

f ∈ ∂H(π). Using the same strategy
with respect to p̃f , we can find a point p′

r ∈ ∂H(πr) with p′
r ∈ ∂H(π). With p′

r and p′
f

playing the roles of p̃r and p̃f , respectively, we are in Case 6a.

We now discuss our algorithm for Case 6a, where we know pr and pf , and it remains
to find p1

m and p2
m. Using the walking procedure, we can compute Ar and Af . Next, we

compute H = H(Ar ∪ Af) in O(h + log n) time since Ar and Af can be sorted in O(h + log n)
time, as described previously. Note that H contains two special edges: Each of them connects
a vertex of Ar and a vertex of Af , i.e., these are common tangents between the convex
hulls H(Ar) and H(Af); let e1 and e2 denote these two edges, respectively. Let ρ1 be the
direction normal to e1 toward the outside of H. Let ρ2 be defined similarly for e2. Notice

28 Dynamic Convex Hulls for Simple Paths

H(πm)pr H(πr)

H(πf)

p1m

e1

e2

Figure 8 Illustrating an example in which πf does not contribute to ∂H(π), i.e., πf ⊂ H(πr ∪πm).

that we can find p1
m and p2

m, if they exist, by finding the most extreme points of H(πm) in
the directions ρ1 and ρ2, respectively. That is, we compute p̃1

m as the most extreme point in
H(πm) in the direction ρ1. Then, if p̃1

m ∈ H(π), then we let p1
m = p̃1

m. Otherwise, no such
p1

m exists. Likewise for p2
m and ρ2. The correctness of this strategy for computing p1

m and
p2

m follows from the observation that because ∂H(πr) and ∂H(πf) each have one maximal
portion on ∂H(π), any maximal portion of ∂H(πm) on ∂H(π) will connect on one side to a
point from ∂H(πr) and on the other to a point from ∂H(πf). As described earlier, we can
finally compute H(π) in O(h + log n) time using the points pr, p1

m, p2
m, and pf

We now describe our algorithm for Case 6b where we know pr and it remains to compute
p1

m and pf . Using the modification of Lemma 8 described in Case 4, we can find a point
pmf ∈ ∂H(πm ∪πf) with pmf ∈ ∂H(π) and pmf /∈ ∂H(πr). If pmf ∈ ∂H(πf), then by setting
pf = pmf , we can reduce this case to Case 6a (i.e., pf plays the role of p̃f). Otherwise,
pmf ∈ ∂H(πm), and we let p1

m = pmf . It remains to compute pf . Using the walking
procedure, we can compute Ar and A1

m. Then, we compute H = H(Ar ∪ A1
m). As in the

above case, we can find e1 and e2, the two special edges of H. Let ρ1 and ρ2 be the outward
normal directions from e1 and e2, respectively. We compute p̃1

f and p̃2
f , the most extreme

points of H(πf) in the directions ρ1 and ρ2, respectively. If p̃1
f or p̃2

f is on ∂H(π), then we
let pf be this point. If neither is, then there is no pf (i.e., πf does not contribute to ∂H(π);
see Figure 8). The correctness of this strategy for computing pf follows from the observation
that because H(πr) and H(πm) each have one maximal portion on ∂H(π), the maximal
portion of H(πf) on H(π) (if it exists) will connect on one side to a point from ∂H(πr) and
on the other to a point from ∂H(πm). As described earlier, we can finally compute H(π) in
O(h + log n) time using the points pr, p1

m, and pf .
This completes the algorithm for reporting the convex hull H(π). The runtime of the

algorithm is O(h + log n).

4 Lower bounds

In this section, we prove lower bounds, which justify the optimality of our solutions to both
the monotone path problem and the simple path problem.

The following theorem gives a lower bound for the two-sided monotone path problem by
a reduction from the set inclusion problem [3]. Note that the lower bound is even applicable
to the amortized cost. It implies that our result in Theorem 5 is the best possible.

B. Brewer, G. S. Brodal, and H. Wang 29

x

0

y

0.25

1

f(x) = x(1− x)
p1

p2
p3 p4

pn

q2

q3

q0

q1

Figure 9 Illustrating the lower bound reduction.

▶ Theorem 12. The following lower bounds hold for the two-sided monotone path dynamic
convex hull problem.
1. At least one of the operations InsertLeft, DeleteLeft, InsertRight, DeleteRight,

and HullReport is required to take Ω(log n) amortized time under the algebraic decision
tree model, regardless of the value h, where n is the size of the point set P and h = |H(P)|.

2. Similarly, at least one of the operations InsertLeft, DeleteLeft, InsertRight,
DeleteRight, and StandardQuery is required to take Ω(log n) amortized time, where
StandardQuery could be (but is not limited to) any of the following queries: extreme
point queries, tangent queries, bridge queries.

Proof. We begin with proving the first theorem statement. The second one can be proven
similarly.

We use a reduction from the set inclusion problem. Let A = {a1, a2, . . . , an} and
B = {b1, b2, . . . , bn} be two sets of n real numbers each, such that the numbers of B are
distinct and sorted, i.e., b1 < b2 < · · · < bn. Without loss of generality, we assume that all
numbers of A and B are larger than 0 and smaller than 1. The set inclusion problem is to
determine whether A ⊆ B. The problem requires Ω(n log n) time to solve under the algebraic
decision tree model [3].

We create an instance of the two-sided monotone path dynamic convex hull problem
as follows. Define a function f(x) = x(1 − x). For each number bi ∈ B, we create a point
pi = (bi, f(bi)) in R2. Since b1 < b2 < · · · < bn, the points pi in their index order are sorted
from left to right. We show below that whether A ⊆ B can be determined using O(n) of the
five operations in the first theorem statement, which will prove the first theorem statement.

First, starting from P = ∅, we perform n InsertRight operations for p1, p2, . . . , pn in
this order. Then, for each ai ∈ A, we show that whether ai ∈ B can be determined using
O(1) operations. The function f at the point (x, f(x)) has a tangent ℓx with slope 1 − 2x

that intersects the vertical lines for x = 0 and x = 1 in the points q3(x) = (0, x2) and
q0(x) = (1, (1 − x)2). By definition, if x is the x-coordinate of the point pi of P (i.e., x = bi),
then ℓx is tangent to H(P) at pi (see Figure 9, where the tangent goes through the point p2).

Define q0 = q0(ai), q1 = (1, 0), q2 = (0, 0), and q3 = q3(ai). Note that all points
of P are below or on the segment q0q3. We perform the following operations in order:
InsertRight(q0), InsertRight(q1), InsertLeft(q2), InsertLeft(q3), and HullReport.
According to the above discussion, if ai ∈ B, then ℓai

must be tangent to H(P) at the
point p ∈ P whose x-coordinate is equal to ai. This implies that the HullReport operation
will report the following five points: qi, 0 ≤ i ≤ 3, and p (we could resolve the collinear
situation by a standard symbolic perturbation [15,37]). On the other hand, if ai ̸∈ B, then all
points of P will be strictly below the line ℓai

and thus only the four points qi, 0 ≤ i ≤ 3, will

30 Dynamic Convex Hulls for Simple Paths

be reported by HullReport. Therefore, by checking the output of HullReport, we are
able to tell whether ai ∈ B. If ai ̸∈ B, then we know A ̸⊆ B. Otherwise, we continue to check
the next number of A, but before doing so, we perform the following operations to delete the
four points qi: DeleteLeft(q3), DeleteLeft(q2), DeleteRight(q1), DeleteRight(q0).

The above shows that whether A ⊆ B can be determined using O(n) of the four update
operations and the HullReport operation. This proves the first theorem statement.

To prove the second theorem statement, we can follow the same reduction but replace
the operation HullReport with a corresponding query operation.

Consider the extreme point queries. After we insert qi, 0 ≤ i ≤ 3, as above, we perform
an extreme point query with a direction ρ being the normal of q0q3. Then, ai ∈ B if and
only if an extreme point of H(P) returned by the query has x-coordinate equal to ai. This
means that whether A ⊆ B can be determined using O(n) of the four update operations as
well as the extreme point queries.

The tangent queries and the bridge queries can be argued similarly (e.g., by asking a
tangent query at q0 or a bridge query for the vertical line x = ai). ◀

For the simple path problem, we have the following lower bound, which is even applicable
to the one-sided case in which insertions and deletions only happen at one end of the path
(say, InsertFront and DeleteFront). It implies that our result in Theorem 7 is the best
possible.

▶ Theorem 13. The following lower bounds hold for the one-sided simple path dynamic
convex hull problem.
1. At least one of the operations InsertFront, DeleteFront, and ReportHull is

required to take Ω(log n) amortized time under the algebraic decision tree model, regardless
of the value h, where n is the number of the vertices of the simple path π and h = |H(π)|.

2. Similarly, at least one of the operations InsertFront, DeleteFront, and Standard-
Query is required to take Ω(log n) amortized time, where StandardQuery could be
(but is not limited to) any of the following queries: extreme point queries, tangent queries,
bridge queries.

Proof. We follow a similar proof to Theorem 12 by a reduction from the set inclusion problem.
Define A, B, and pi, 1 ≤ i ≤ n, in the same way as in the proof of Theorem 12.

Starting from π = ∅, we perform n InsertFront operations for p1, p2, . . . , pn in this
order. Clearly, π is a simple path. Then, for each ai ∈ A, we can determine whether ai ∈ B

using O(1) operations as follows. Define qi, 0 ≤ i ≤ 3, in the same way as before. We perform
the following operations in order: InsertFront(q0), InsertFront(q1), InsertFront(q2),
InsertFront(q3), and HullReport. Since all numbers in A and B are larger than 0
and smaller than 1, π is still a simple path after the above insertions. Following the same
analysis as before, whether ai ∈ B can be determined based on the output of HullReport.
Afterward, we perform the DeleteFront operations in the inverse order of the above
insertions. This means that whether A ⊆ B can be determined using O(n) operations. This
proves the first theorem statement.

The second theorem statement can be proved similarly, following the same argument as
in Theorem 12. ◀

Data Availability Statement Data sharing is not applicable to this article as no datasets
were generated or analysed during the current study.

B. Brewer, G. S. Brodal, and H. Wang 31

References
1 Georgii Maksimovich Adel’son-Velskii and Evgenii Mikhailovich Landis. An algorithm for

organization of information. Doklady Akademii Nauk, 146(2):263–266, 1962.
2 A.M. Andrew. Another efficient algorithm for convex hulls in two dimensions. Information

Processing Letters, 9:216–219, 1979. doi:10.1016/0020-0190(79)90072-3.
3 Michael Ben-Or. Lower bounds for algebraic computation trees (preliminary report). In

Proceedings of the 15th Annual ACM Symposium on Theory of Computing (STOC), pages
80–86, 1983. doi:10.1145/800061.808735.

4 Bruce Brewer, Gerth Stølting Brodal, and Haitao Wang. Dynamic Convex Hulls for Simple
Paths. In 40th International Symposium on Computational Geometry (SoCG 2024), pages
24:1–24:15, 2024. doi:10.4230/LIPIcs.SoCG.2024.24.

5 Gerth Stølting Brodal. Finger search trees. In Dinesh P. Mehta and Sartaj Sahni, editors,
Handbook of Data Structures and Applications. Chapman and Hall/CRC, 2004. URL: https:
//www.cs.au.dk/~gerth/papers/finger05.pdf.

6 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull with optimal query time
and O(log n · log log n) update time. In Proceedings of the 7th Scandinavian Workshop on
Algorithm Theory (SWAT), pages 57–70, 2000. doi:10.1007/3-540-44985-X_7.

7 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull. In Proceedings of the
43rd IEEE Symposium on Foundations of Computer Science (FOCS), pages 617–626, 2002.
doi:10.1109/SFCS.2002.1181985.

8 Norbert Bus and Lilian Buzer. Dynamic convex hull for simple polygonal chains in constant
amortized time per update. In Proceedings of the 31st European Workshop on Computational
Geometry (EuroCG), 2015.

9 Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions.
Discrete and Computational Geometry, 16:361–368, 1996. doi:10.1007/BF02712873.

10 Timothy M. Chan. Dynamic planar convex hull operations in near-logarithmaic amortized
time. Journal of the ACM, 48:1–12, 2001. doi:10.1145/363647.363652.

11 Timothy M. Chan. Three problems about dynamic convex hulls. Int. J. Comput. Geom. Appl.,
22(4):341–364, 2012. doi:10.1142/S0218195912600096.

12 Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: II. Applications. Algorithmica,
1:163–191, 1986. doi:10.1007/BF01840441.

13 David Dobkin, Leonidas Guibas, John Hershberger, and Jack Snoeyink. An efficient algorithm
for finding the CSG representation of a simple polygon. Algorithmica, 10:1–23, 1993. doi:
10.1007/BF01908629.

14 James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making data
structures persistent. Journal of Computer and System Sciences, 38:86–124, 1989. doi:
10.1016/0022-0000(89)90034-2.

15 Herbert Edelsbrunner and Ernst P. Mücke. Simulation of simplicity: A technique to cope with
degenerate cases in geometric algorithms. ACM Transactions on Graphics, 9:66–104, 1990.
doi:10.1145/77635.77639.

16 Joseph Friedman, John Hershberger, and Jack Snoeyink. Efficiently planning compliant motion
in the plane. SIAM Journal on Computing, 25:562–599, 1996. doi:10.1145/73833.73854.

17 Ronald L. Graham. An efficient algorithm for determining the convex hull of a finite planar
set. Information Processing Letters, 1:132–133, 1972. doi:10.1016/0020-0190(72)90045-2.

18 Ronald L. Graham and F. Frances Yao. Finding the convex hull of a simple polygon. Journal
of Algorithms, 4:324–331, 1983. doi:10.1016/0196-6774(83)90013-5.

19 Leonidas Guibas, John Hershberger, and Jack Snoeyink. Compact interval trees: A data
structure for convex hulls. International Journal of Computational Geometry and Applications,
1:1–22, 1991. doi:10.1142/S0218195991000025.

20 Leonidas J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R. Roberts. A new
representation for linear lists. In Proceedings of the 9th Annual ACM Symposium on Theory
of Computing (STOC), pages 49–60, 1977. doi:10.1145/800105.803395.

https://doi.org/10.1016/0020-0190(79)90072-3
https://doi.org/10.1145/800061.808735
https://doi.org/10.4230/LIPIcs.SoCG.2024.24
https://www.cs.au.dk/~gerth/papers/finger05.pdf
https://www.cs.au.dk/~gerth/papers/finger05.pdf
https://doi.org/10.1007/3-540-44985-X_7
https://doi.org/10.1109/SFCS.2002.1181985
https://doi.org/10.1007/BF02712873
https://doi.org/10.1145/363647.363652
https://doi.org/10.1142/S0218195912600096
https://doi.org/10.1007/BF01840441
https://doi.org/10.1007/BF01908629
https://doi.org/10.1007/BF01908629
https://doi.org/10.1016/0022-0000(89)90034-2
https://doi.org/10.1016/0022-0000(89)90034-2
https://doi.org/10.1145/77635.77639
https://doi.org/10.1145/73833.73854
https://doi.org/10.1016/0020-0190(72)90045-2
https://doi.org/10.1016/0196-6774(83)90013-5
https://doi.org/10.1142/S0218195991000025
https://doi.org/10.1145/800105.803395

32 Dynamic Convex Hulls for Simple Paths

21 John Hershberger and Jack Snoeyink. Cartographic line simplification and polygon CSG
formula in O(n log∗ n) time. Computational Geometry: Theory and Applications, 11:175–185,
1998. doi:10.1016/S0925-7721(98)00027-3.

22 John Hershberger and Subhash Suri. Applications of a semi-dynamic convex hull algorithm.
BIT, 32:249–267, 1992. doi:10.1007/BF01994880.

23 John Hershberger and Subhash Suri. Off-line maintenance of planar configurations. Journal
of Algorithms, 21(3):453–475, 1996. doi:10.1006/jagm.1996.0054.

24 Haim Kaplan and Robert E. Tarjan. Persistent lists with catenation via recursive slow-down.
In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing
(STOC), pages 93–102, 1995. doi:10.1145/225058.225090.

25 Haim Kaplan, Robert E. Tarjan, and Kostas Tsioutsiouliklis. Faster kinetic heaps and their
use in broadcast scheduling. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on
Discrete Algorithms, page 836–844, 2001. doi:10.5555/365411.365793.

26 David G. Kirkpatrick and Raimund Seidel. The ultimate planar convex hull algorithm? SIAM
Journal on Computing, 15:287–299, 1986. doi:10.1137/0215021.

27 Donald E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms,
2nd Edition. Addison-Wesley, 1973.

28 Avraham A. Melkman. On-line construction of the convex hull of a simple polyline. Information
Processing Letters, 25(1):11–12, 1987. doi:10.1016/0020-0190(87)90086-X.

29 Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes in
Computer Science. Springer, 1983. doi:10.1007/BFB0014927.

30 Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane. Journal
of Computer and System Sciences, 23:166–204, 1981. doi:10.1016/0022-0000(81)90012-X.

31 Franco P. Preparata. An optimal real-time algorithm for planar convex hulls. Communications
of the ACM, 22:402–405, 1979. doi:10.1145/359131.359132.

32 Neil Sarnak and Robert E. Tarjan. Planar point location using persistent search trees.
Communications of the ACM, 29:669–679, 1986. doi:10.1145/6138.6151.

33 Rajamani Sundar. Worst-case data structures for the priority queue with attrition. Information
Processing Letters, 31:69–75, 1989. doi:10.1016/0020-0190(89)90071-9.

34 Athanasios K. Tsakalidis. AVL-trees for localized search. Information and Control, 67:173–194,
1985. doi:10.1016/S0019-9958(85)80034-6.

35 Haitao Wang. Dynamic convex hulls under window-sliding updates. In Proceedings of
the 18th Algorithms and Data Structures Symposium (WADS), pages 689–703, 2023. doi:
10.1007/978-3-031-38906-1_46.

36 Haitao Wang. Algorithms for subpath convex hull queries and ray-shooting among segments.
SIAM Journal on Computing, 53:1132–1161, 2024. doi:10.1137/21M145118X.

37 Chee-Keng Yap. A geometric consistency theorem for a symbolic perturbation scheme. Journal
of Computer and System Sciences, 40:2–18, 1990. doi:10.1016/0022-0000(90)90016-E.

https://doi.org/10.1016/S0925-7721(98)00027-3
https://doi.org/10.1007/BF01994880
https://doi.org/10.1006/jagm.1996.0054
https://doi.org/10.1145/225058.225090
https://doi.org/10.5555/365411.365793
https://doi.org/10.1137/0215021
https://doi.org/10.1016/0020-0190(87)90086-X
https://doi.org/10.1007/BFB0014927
https://doi.org/10.1016/0022-0000(81)90012-X
https://doi.org/10.1145/359131.359132
https://doi.org/10.1145/6138.6151
https://doi.org/10.1016/0020-0190(89)90071-9
https://doi.org/10.1016/S0019-9958(85)80034-6
https://doi.org/10.1007/978-3-031-38906-1_46
https://doi.org/10.1007/978-3-031-38906-1_46
https://doi.org/10.1137/21M145118X
https://doi.org/10.1016/0022-0000(90)90016-E

	1 Introduction
	1.1 Our results
	1.2 Other related work

	2 The monotone path problem
	2.1 Stack tree
	2.2 Deque tree
	2.3 Two-sided monotone path dynamic convex hull
	2.4 One-sided monotone path dynamic convex hull
	2.4.1 Structure of the stack convex hull
	2.4.2 InsertRight and DeleteRight
	2.4.3 HullTreeRetrieval
	2.4.4 HullReport

	3 The simple path problem
	3.1 Basic lemmas
	3.2 Structure of the deque path convex hull PH(pi)
	3.3 Standard queries
	3.4 Insertions and deletions
	3.5 Reporting the convex hull H(pi)
	3.5.1 Enhancing the data structure PH(pi)
	3.5.2 Algorithm for HullReport

	4 Lower bounds

