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Abstract. In the resilient memory model any memory cell can get cor-
rupted at any time, and corrupted cells cannot be distinguished from
uncorrupted cells. An upper bound, δ, on the number of corruptions and
O(1) reliable memory cells are provided. In this model, a data structure
is denoted resilient if it gives the correct output on the set of uncor-
rupted elements. We propose two optimal resilient static dictionaries,
a randomized one and a deterministic one. The randomized dictionary
supports searches in O(log n + δ) expected time using O(log δ) random
bits in the worst case, under the assumption that corruptions are not
performed by an adaptive adversary. The deterministic static dictionary
supports searches in O(log n + δ) time in the worst case. We also in-
troduce a deterministic dynamic resilient dictionary supporting searches
in O(log n + δ) time in the worst case, which is optimal, and updates
in O(log n + δ) amortized time. Our dynamic dictionary supports range
queries in O(log n + δ + k) worst case time, where k is the size of the
output.

1 Introduction

A wide palette of factors, such as power failures, manufacturing defects, radia-
tion, and cosmic rays, have a harmful effect on the reliability of contemporary
memory devices, causing soft memory errors [25, 26]. In a soft memory error,
a bit flips and consequently the content of the corresponding memory cell gets
corrupted. Furthermore, latest trends in storage development point out that
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memory devices are getting smaller and more complex. Additionally, they work
at lower voltages and higher frequencies [10], and all these improvements increase
the likelihood of soft memory errors. Therefore, the rate of soft memory errors
is expected to increase for both SRAM and DRAM memories [25]. Memory cor-
ruptions are of particular concern for applications dealing with massive amounts
of data, e.g. search engines, since the large number of individual memory de-
vices used to manipulate the data triggers a significant increase in the frequency
of memory corruptions. Taking into account that the amount of cosmic rays
increases with altitude, soft memory errors are of special interest in fields like
avionics and space research.

Since most software assume a reliable memory, soft memory errors can be
employed to produce severe malfunctions, such as breaking cryptographic proto-
cols [4, 27], taking control of a Java Virtual Machine [14], or breaking smart-cards
and other security processors [1, 2, 24]. In particular, corrupted memory cells can
have serious consequences for the output of algorithms. For instance, in a typical
binary search in a sorted array, a single corruption occurring in the early stages
of the algorithm can determine the search path to end as far as Ω(n) locations
from its correct position.

Memory corruptions have been addressed in various ways, both at the hard-
ware and software level. At the hardware level, memory corruptions are tackled
using error detection mechanisms, such as redundancy or error correcting codes.
However, adopting such mechanisms involves non-negligible penalties with re-
spect to performance, size, and cost, and therefore memories implementing them
are rarely found in large scale clusters or ordinary workstations. At the software
level, soft memory errors are dealt with using several different low-level tech-
niques, such as algorithm based fault tolerance [15], assertions [23], control flow
checking [28], or procedure duplication [21]. However, most of these handle in-
struction corruptions rather than data corruptions.

Dealing with unreliable information has been addressed in the algorithmic
community in a number of settings. The liar model focuses on algorithms in
the comparison model where the outcome of a comparison is possibly a lie.
Several fundamental algorithms in this model, such as sorting and searching,
have been proposed [5, 18, 22]. In particular, searching in a sorting sequence
takes O(log n) time, even when the number of lies is proportional to the number
of comparisons [5]. A standard technique used in the design of algorithms in the
liar model is query replication. Unfortunately, this technique is not of much help
when memory cells, and not comparisons, are unreliable.

Aumann and Bender [3] proposed fault-tolerant (pointer-based) data struc-
tures. To incur minimum overhead, their approach allows a certain amount of
data, expressed as a function of the number of corruptions, to be lost upon
pointer corruptions. In their framework memory faults are detectable upon ac-
cess, i.e. trying to access a faulty pointer results in an error message. This model
is not always appropriate, since in many practical applications the loss of valid
data is not permitted. Furthermore, a pointer can get corrupted to a valid ad-
dress and therefore an error message is not issued upon accessing it.



Finocchi and Italiano [13] introduced the faulty-memory RAM. In this model,
memory corruptions occur at any time and at any place during the execution
of an algorithm, and corrupted memory cells cannot be distinguished from un-
corrupted cells. Motivated by the fact that registers in the processor are con-
sidered uncorruptible, O(1) safe memory locations are provided. The model is
parametrized by an upper bound, δ, on the number of corruptions occurring dur-
ing the lifetime of an algorithm. Finally, moving values is considered an atomic
operation, i.e. elements do not get corrupted while being copied. An algorithm is
resilient if it works correctly at least on the set of uncorrupted cells in the input.
In particular, a resilient searching algorithm must return a positive answer if
there exists an uncorrupted element in the input equal to the search key. If there
is no element, corrupted or uncorrupted, matching the search key, the algorithm
must return a negative answer. If there is a corrupted value equal to the search
key, the answer can be both positive and negative.

Several problems have been addressed in the faulty-memory RAM. In the
original paper [13], lower bounds and (non-optimal) algorithms for sorting and
searching were given. In particular, searching in a sorted array takes Ω(log n+δ)
time, i.e. it tolerates up to O(log n) corruptions while still preserving the classical
O(log n) searching bound. Matching upper bounds for sorting and randomized
searching, as well as a O(log n + δ1+ε) deterministic searching algorithm, were
then given in [11], and in [19] it was empirically shown that resilient sorting
algorithms are of practical interest. Concerning resilient dynamic data struc-
tures, resilient search trees that support searches, insertions, and deletions in
O(log n + δ2) amortized time were introduced in [12]. Recently, Jørgensen et

al. [17] proposed priority queues supporting both insert and delete-min opera-
tions in O(log n + δ) amortized time.

Our results. We propose two optimal resilient static dictionaries, a randomized
one and a deterministic one, as well as a dynamic dictionary.

Randomized static dictionary: We introduce a resilient randomized static dic-
tionary that support searches in O(log n + δ) time, matching the bounds
for randomized searching in [11]. We note however that our dictionary is
somewhat simpler and uses only O(log δ) worst case random bits, whereas
the algorithm in [11] uses expected O(log δ · log n) random bits. On the
downside, our dictionary assumes that the corruptions are performed by a
non-adaptive adversary, i.e. an adversary that does not perform corruptions
based on the behavior of the algorithm. Given the motivation of the model,
i.e. corruptions performed by cosmic rays or alpha particles, the assumption
is reasonable.

Deterministic static dictionary: We give the first optimal resilient static deter-
ministic dictionary. It supports searches in a sorted array in O(log n + δ)
time in the worst case, matching the lower bounds from [13]. Unlike its
randomized counterpart, the deterministic dictionary does not make any as-
sumptions regarding the way in which corruptions are performed.

Dynamic dictionary: We introduce a deterministic dynamic dictionary that
significantly improves over the resilient search trees by Finocchi et al. [12].



It supports searches in O(log n + δ) in the worst case, and insertions and
deletions in O(log n + δ) time amortized. Also, it supports range queries in
O(log n + δ + k) time, where k is the output size.

Throughout the paper we use the notion of a reliable value, which is a value
stored in unreliable memory that can be retrieved reliably in spite of possible
corruptions. This is achieved by replicating the given value 2δ+1 times. Retriev-
ing a reliable value takes O(δ) time using the majority algorithm in [6], which
scans the 2δ + 1 values keeping a single majority candidate and a counter in
reliable memory.

2 Optimal randomized static dictionary

In this section we introduce a simple randomized resilient search algorithm. It
searches for a given element in a sorted array using worst case O(log δ) random
bits and expected time O(log n+δ), assuming that corruptions are performed by
a non-adaptive adversary. The running time matches the algorithm by Finocchi
et al. [11], which, however, uses expected O(log n · log δ) random bits. The main
idea of our algorithm is to implicitly divide the sorted input array in 2δ disjoint
sorted sequences S0, . . . , S2δ−1, each of size at most ⌈n/2δ⌉. The j’th element of
Si, Si[j], is the element at position posi(j) = 2δj+i in the input array. Intuitively,
this divides the input array into ⌈n/2δ⌉ consecutive blocks of size 2δ, where Si[j]
is the i’th element of the j’th block. Note that, since 2δ disjoint sequences are
defined from the input array and at most δ corruptions are possible, at least half
of the sorted sequences S0, . . . , S2δ−1 do not contain any corrupted elements.

The algorithm generates a random number k ∈ {0, . . . , 2δ− 1} and performs
an iterative binary search on Sk. We store in safe memory k, the search key e,
and the left and right indices, l and r, used by the binary search. The binary
search terminates when l and r are adjacent in Sk, and therefore 2δ elements
apart in the input array, since posk(r) − posk(l) = 2δ when r = l + 1. If the
binary search was not mislead by corruptions, then the location of e is between
posk(l) and posk(r) in the input array. To check whether the search was mislead,
we perform the following verification procedure. Consider the neighborhoods Nl

and Nr, containing the 2δ + 1 elements in the input array situated to the left
of posk(l) and to the right of posk(r) respectively. We compute the number
sl = |{z ∈ Nl | z ≤ e}| of elements in Nl that are smaller than e in O(δ)
time by scanning Nl. Similarly, we compute the number sr of elements in Nr

that are larger than e. If sl ≥ δ + 1 and sr ≥ δ + 1, and the search key is not
encountered in Nl or Nr, we decide whether it lies in the array or not by scanning
the 2δ−1 elements between posk(l) and posk(r). If sl or sr is smaller than δ +1,
a corruption has misguided the search. In this case, a new k is randomly selected
and the binary search is restarted.

Theorem 1. The randomized dictionary supports searches in O(log n + δ) ex-

pected time and uses O(log δ) expected random bits.



Proof. We first prove the correctness of the algorithm. Assume that sl ≥ δ + 1
and e 6∈ Nl. Since only δ corruptions are possible, there exists an uncorrupted
element in Nl strictly smaller than e. Because the input array is sorted, no
uncorrupted elements to the left of posk(l) in the input array are equal to e. By
a similar argument, if sr ≥ δ + 1 and e 6∈ Nr, then no uncorrupted elements to
the right of posk(r) in the input array are equal to e. If no corrupted elements
are encountered during the binary search, all the uncorrupted elements of Nl are
smaller than e, and therefore sl ≥ δ + 1. Similarly, we have sr ≥ δ + 1, and the
algorithm terminates after scanning the elements between l and r.

We now analyze the running time. Each iteration generates a random number
k ∈ {0, . . . , 2δ − 1}, using O(log δ) random bits. The sorted sequences induced
by different k’s are disjoint, thus at most δ of them may contain corruptions.
Since there are 2δ sorted sequences, the probability of selecting a value k that
leads to a corruption-free sequence is at least 1/2, and therefore the expected
number of iterations is at most two. Each iteration uses O(log n) time for the
binary search and O(δ) time for the verification. We conclude that a search uses
expected O(log δ) random bits and O(log n + δ) expected time. ⊓⊔

We note that for each iteration an adaptive adversary can learn about the
subsequence Sk on which we perform the binary search by investigating the
elements accessed. Subsequently a single corruption suffices to force the search
path to end far enough from its correct position such that the verification fails. In
this situation, the algorithm performs O(δ) iterations and therefore O(δ(log n +
δ)) time regardless of the random choices of subsequences on which to perform
the binary search.

We obtain a worst case bound of O(log δ) random bits by using a standard
derandomization technique. In the i’th iteration we perform the binary search on
sequence Sh(i), for h(i) = (r0+ir1+i2r2+i3r3) mod k, where k is a prime number
with 2δ ≤ k < 4δ, and ri are chosen uniformly at random in {0, . . . , k − 1}. By
construction h(i) is a 4-wise independent hash function [16], which suffices to
obtain an expected constant number of iterations for our algorithm [20].

3 Optimal static dictionary

In this section we close the gap between lower and upper bounds for determinis-
tic resilient searching algorithms. We present a resilient algorithm that searches
for an element in a sorted array in O(log n + δ) time in the worst case, which
is optimal [13]. It is an improvement of the previously published best deter-
ministic dictionary, which supports searches in O(log n + δ1+ε) time [11]. We
reuse the idea presented in the design of the randomized algorithm and define
disjoint sorted sequences to be used by a binary search algorithm. Similarly to
the randomized algorithm, we design a verification procedure to check the result
of the binary search. We design the adapted binary search and the verification
procedure such that we are guaranteed to advance only one level in the binary
search for each corrupted element misleading the search. We count the number
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Fig. 1. The structure of a block. The left and right verification segments, LV and RV ,
contain 2δ elements each, and the query segment Q contains δ + 1 elements.

of detected corruptions and adjust our algorithm accordingly to ensure that no
element is used more than once, excepting a final scan performed only once on
two adjacent blocks. The total time used for verification is O(δ).

We divide the input array into implicit blocks. Each block consists of 5δ + 1
consecutive elements of the input and is structured in three segments: the left

verification segment, LV , consists of the first 2δ elements, the next δ+1 elements
form the query segment, Q, and the right verification segment, RV , consists of
the last 2δ elements of the block, see Figure 1. The left and right verification
segments, LV and RV , are used only by the verification procedure. The ele-
ments in the query segment are used to define the sorted sequences S0, . . . , Sδ,
similarly to the randomized dictionary previously introduced. The j’th element
of sequence Si, Si[j], is the i’th element of the query segment of the j’th block,
and is located at position posi(j) = (5δ + 1)j + 2δ + i in the input array.

We store a value k ∈ {0, . . . , δ} in safe memory identifying the sequence Sk

on which we currently perform the binary search. Also, k identifies the number of
corruptions detected. Whenever we detect a corruption, we change the sequence
on which we perform the search by incrementing k. Since there are δ +1 disjoint
sequences, there exists at least one sequence without any corruptions.

Binary search. The binary search is performed on the elements of Sk. Similarly
to the randomized algorithm, we store in safe memory the search key, e, and
the left and right sequence indices, l and r, used by the binary search. Initially,
l = −1 is the position of an implicit −∞ element. Similarly, r is the position of
an implicit ∞ to the right of the last element. Since each element in Sk belongs
to a distinct block, l and r also identify two blocks, Bl and Br.

Each step in the binary search compares the search key e against the element
at position i = ⌊(l + r)/2⌋ in Sk. Assume without loss of generality that this
element is smaller than e. We set l to i and decrement r by one. We then
compare e with Sk[r]. If this element is larger than e, the search continues.
Otherwise, if no corruptions have occurred, the position of the search element
is in block Br or Br+1 in the input array. When two adjacent elements are
identified as in the case just described, or when l and r become adjacent, we
invoke a verification procedure on the corresponding blocks. The pseudo-code
description of the binary search is given in Algorithm 1, and a working example
is shown in Figure 2.

The verification procedure determines whether the two adjacent blocks, de-
noted Bi and Bi+1, are correctly identified. If the verification succeeds, the bi-



Algorithm 1: Pseudo-code for the binary search procedure.

l← −1
r ←last-block+1
while r − l > 1 do

i← ⌈ l+r

2
⌉

if rep
k
(block(i)) < e then

l ← i

r ← r − 1
if rep

k
(block(r)) < e then

if verify(r,r+1) is successful then
return success

else
Backtrack

else if rep
k
(block(i)) > e then

Similar to previous case.

else
return success

if verify(l,r) is successful then
return success

else
Backtrack

47312523 29 32 35 4110 12 13843 18 21 14−∞

876543210−1 9 10 11 12 13 14 15 16 17

+∞

Fig. 2. Example of binary search on a sequence Sk, for the search key 21. The arrows
show the direction of the search. The emphasized element is corrupted.

nary search is completed, and all the elements in the two corresponding adjacent
blocks, Bi and Bi+1 are scanned. The search returns true if e is found during
the scan, and false otherwise. If the verification fails, the search may have been
mislead by corruptions and we backtrack it two steps. To facilitate backtracking,
we store two word-sized bit-vectors, d and f in safe memory. The i’th bit of d
indicates the direction of the search and the i’th bit of f indicates whether there
was a rounding in computing the middle element in the i’th step of the binary
search respectively. We can easily compute the values of l and r in the previous
step of the binary search by retrieving the relevant bits of d and f . If the veri-
fication fails, it detects at least one corruption and therefore k is incremented,
thus the search continues on a different sequence Sk.

Verification phase. Verification is performed on two adjacent blocks, Bi and Bi+1.
It either determines that e lies in Bi or Bi+1 or detects corruptions. The verifica-
tion is an iterative algorithm maintaining a value which expresses the confidence
that the search key resides in Bi or Bi+1. We compute the left confidence, cl,



which is a value that quantifies the confidence that e is in Bi or to the right
of it. Intuitively, an element in LVi smaller than e is consistent with the thesis
that e is in Bi or to the right of it. However an element in LVi larger than e
is inconsistent. Similarly, we compute the right confidence, cr, to express the
confidence that e is in Bi+1 or to the left of it.

We compute cl by scanning a sub-interval of the left verification segment, LVi,
of Bi. Similarly, the right confidence is computed by scanning the right verifi-
cation segment, RVi+1, of Bi+1. Initially, we set cl = 1 and cr = 1. We scan
LVi from right to left starting at the element at index vl = 2δ − 2k in LVi.
Intuitively, by the choice of vl we ensure that no element in LVi is accessed
more than once. Similarly, we scan RVi+1 from left to right beginning with the
element at position vr = 2k. In an iteration we compare LVi[vl] and RVi+1[vr]
against e. If LVi[vl] ≤ e, cl is increased by one, otherwise it is decreased by one
and k is increased by one. Similarly, if RVi+1[vr] ≥ e, cr is increased; otherwise,
we decrease cr and increase k. The verification procedure stops when min(cr, cl)
equals δ − k + 1 or 0. The verification succeeds in the former case, and fails
in the latter. The pseudo-code for the verification procedure is introduced in
Algorithm 2, and a working example is shown in Figure 3.

Algorithm 2: Pseudo-code for the verification procedure.

input : k: Number of errors identified so far
δ: maximum number of errors
l:index of the left block
r:index of the right block

LV ← index of first element in LVl

RV ← index of first element in RVr

il ← LV + 2δ − 2k

ir ← RV + 2k

cr, cl ← 1
while 0 < min(cl, cr) < δ − k + 1 do

if A[il] < e then
cl ← cl + 1

else
cl ← cl − 1
k ← k + 1

if A[ir] > e then
cr ← cr + 1

else
cr ← cr − 1
k ← k + 1

il ← il − 1
ir ← ir + 1

if min(cl, cr) = 0 then
return failure

else
Scan left and right block and return result
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Fig. 3. A verification step for δ = 3, with k = 1 initially. The search key is 45. The
verification algorithms stops with cr = 0, reporting failure. The emphasized elements
are corrupted.

Theorem 2. The resilient algorithm searches for an element in a sorted array

in O(log n + δ) time.

Proof. We first prove that when cl or cr decrease during verification, a corruption
has been detected. We increase cl when an element smaller than e is encountered
in LVi, and decrease it otherwise. Intuitively, cl can been seen as the size of a
stack S. When we encounter an element smaller than e, we treat it as if it was
pushed, and as if a pop occurred otherwise. Initially, the element g from the
query segment of Bi used by the binary search is pushed in S. Since g was used
to define the left boundary in the binary search, g < e at that time. Each time
an element LVi[v] < e is popped from the stack, it is matched with the current
element LVi[vl]. Since LVi[v] < e < LVi[vl] and vl < v, at least one of LVi[vl]
and LVi[v] is corrupted, and therefore each match corresponds to detecting at
least one corruption. It follows that if 2t− 1 elements are scanned on either side
during a failed verification, then at least t corruptions are detected.

We now argue that no single corrupted cell is counted twice. A corruption
is detected if and only if two elements are matched during verification. Thus it
suffices to argue that no element participates in more than one matching. We
first analyze corruptions occurring in the left and right verification segments.
Since the verification starts at index 2(δ − k) in the left verification segment
and k is increased when a corruption is detected, no element is accessed twice,
and therefore not matched twice either. A similar argument holds for the right
verification segment. Each failed verification increments k, thus no element from
a query segment is read more than once. In each step of the binary search both
the left and the right indices are updated. Whenever we backtrack the binary
search, the last two updates of l and r are reverted. Therefore, if the same block
is used in a subsequent verification, a new element from the query segment is
read, and this new element is the one initially on the stack. We conclude that
elements in the query segments, which are initially placed on the stack, are never
matched twice either.

To argue correctness we prove that if a verification is successful, and e is not
found in the scan of the two blocks, then no uncorrupted element equal to e
exists in the input. If a verification succeeds and e is not found in either block,
then cl ≥ δ − k + 1. Since only δ − k more corruptions are possible, there is at
least one uncorrupted element in LVi smaller than e and thus there can be no
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Fig. 4. The structure of the dynamic dictionary.

uncorrupted elements equal to e to the left of Bi in the input array. By a similar
argument, if cr ≥ δ − k + 1, then all uncorrupted elements to the right of Bi+1

in the input array are larger than e.
We now analyze the running time. We charge each backtracking of the binary

search to the verification procedure that triggered it. Therefore, the total time of
the algorithm is O(log n) plus the time required by verifications. To bound the
time used for all verification steps we use the fact that if O(f) time is used for a
verification step, then Ω(f) corruptions are detected or the algorithm ends. At
most O(δ) time is used in the last verification for scanning the two blocks. ⊓⊔

4 Dynamic dictionary

In this section we describe a linear space resilient deterministic dynamic dic-
tionary supporting searches in optimal O(log n + δ) worst case time and range
queries in optimal O(log n + δ + k) worst case time, where k is the size of the
output. The amortized update cost is O(log n + δ).

Structure. The sorted sequence of elements is partitioned into a sequence of leaf

structures, each storing Θ(δ log n) elements. For each leaf structure we select a
guiding element, and we place these O(n/(δ log n)) guiding elements in the leaves
of a reliably stored binary search tree. Each guiding element is chosen such that
it is larger than all uncorrupted elements in the corresponding leaf structure.

For this reliable top tree T , we use the (non-resilient) binary search tree
in [8], which consists of h = log |T |+ O(1) levels when containing |T | elements.
In the full version [9] it is shown that the tree can be maintained such that
the first h − 2 levels are complete. We lay the tree in memory in left-to-right
breadth first order, as specified in [8]. It uses linear space, and an update costs
amortized O(log2 |T |) time. A global rebuilding is performed when |T | changes
by a constant factor.

All the elements and pointers in the top tree are stored reliably, using replica-
tion. Since a reliable value takes O(δ) space, O(δ|T |) space is used for the entire



structure. The time used for storing and retrieving a reliable value is O(δ), and
therefore the additional work required to handle the reliably stored values in-
creases the amortized update cost to O(δ log2 |T |) time.

The leaf structure consists of a top bucket B and b buckets, B0, . . . , Bb−1,
where log n ≤ b ≤ 4 logn. Each bucket Bi contains between δ and 6δ input
elements, stored consecutively in an array of size 6δ, and uncorrupted elements
in Bi are smaller than uncorrupted elements in Bi+1. For each bucket Bi, the
top bucket B associates a guiding element larger than all elements in Bi, a
pointer to Bi, and the size of Bi, all stored reliably. Since storing a value reliably
uses O(δ) space, the total space used by the top bucket is O(δ log n). The guiding
elements of B are stored as a sorted array to enable fast searches using the
deterministic resilient search algorithm from Section 3.

Lemma 1. The dynamic dictionary uses O(n) space to store n elements.

Proof. Since a leaf structure stores Θ(δ log n) input elements, the top tree con-
tains O(n/(δ log n)) nodes, using O(δ|T |) = O(δn/(δ log n)) = o(n) space. Each
of the O(n/(δ log n)) leaf structures uses O(δ log n) space and therefore the total
space used for leaf structures is O(n). ⊓⊔

Searching. The search operation consists of two steps. It first locates a leaf
in the top tree T , and then searches the corresponding leaf structure. Let h
denote the height of T . If h ≤ 3, we perform a standard tree search from the
root of T using the reliably stored guiding elements and pointers. Otherwise, we
locate two internal nodes, v1 and v2, with guiding elements g1 and g2, such that
g1 < e ≤ g2, where e is the search key. Since h− 2 is the last complete level of
T , level ℓ = h − 3 is complete and contains only internal nodes. The breadth
first layout of T ensures that elements of level ℓ are stored consecutively in
memory. The search operation locates v1 and v2 using the deterministic resilient
search algorithm from Section 3 on the array defined by level ℓ. The search
only considers the 2δ + 1 cells in each node containing guiding elements and
ignores memory used for auxiliary information, e.g. sizes and pointers. Although
they are stored using replication, the guiding elements are considered as 2δ + 1
regular elements in the search. Since the space used by the auxiliary information
is the same for all nodes, these gaps in the memory layout of level ℓ are easily
excluded from the search. We modify the resilient searching algorithm previously
introduced such that it reports two consecutive blocks with the property that if
the search key is in the structure, it is contained in one of them. The reported two
blocks, each of size 5δ + 1, span O(1) nodes of level ℓ and the guiding elements
of these are queried reliably to locate v1 and v2. The appropriate leaf can be in
either of the subtrees rooted at v1 and v2, and we perform a standard tree search
in both using the reliably stored guiding elements and pointers. Searching for an
element in a leaf structure is performed by using the resilient search algorithm
from Section 3 on the top bucket, B, similar to the way v1 and v2 were found
in T . The corresponding reliably stored pointer is then followed to a bucket Bi,
which is scanned.



Range queries can be performed by scanning the level ℓ, starting at v, and
reporting relevant elements in the leaves below it.

Lemma 2. The search operation of the dynamic dictionary uses O(log n + δ)
worst case time. A range query reporting k elements is performed in worst case

O(log n + δ + k) time.

Proof. The initial search in the top tree takes O(log n + δ) worst case time by
Theorem 2. Traversing the O(1) levels to a leaf takes time O(δ). Searching in
the top bucket of the leaf structures uses O(log log n + δ) time, again using
Theorem 2. The final scan of a bucket takes time O(δ).

In a range query, the elements reported in any leaf completely contained in the
query range pay for the O(δ log n) time used for going through the bottom part
of the top tree and scanning the top bucket. The search pays for the rightmost
traversed leaf. ⊓⊔

Updates. Efficiently updating the structure is performed using standard bucket-
ing techniques. To insert an element into the dictionary, we first perform a search
to locate the appropriate bucket Bi in a leaf structure, and then the element is
appended to Bi and the size of Bi in the top bucket is updated. When the size
of Bi increases to 6δ, we split it into two buckets, Bs and Bg, of almost equal
sizes. We compute a guiding element that splits Bi in O(δ2) time by repeatedly
scanning Bi and extracting the minimum element. The element m returned by
the last iteration is kept in safe memory. In each iteration, we select a new m
which is the minimum element in Bi larger than the current m. Since at most
δ corruptions can occur, Bi contains at least 2δ uncorrupted elements smaller
than m and 2δ uncorrupted elements larger, after |Bi|/2 = 3δ iterations. The
elements from Bi smaller than m are stored in Bs, and the remaining ones are
stored in Bg. The guiding element for Bs is m, while Bg preserves the guiding
element of Bi. The new split element is reliably inserted in the top bucket using
an insertion sort step, by scanning and shifting the elements in B from right to
left, and placing the new element at its appropriate position. Similarly, when the
size of the top bucket becomes 4 logn, it is split in two new leaf structures. The
first leaf structure consists of the first 2 logn bottom buckets, and the second
leaf structure contains the rest. The second leaf structure is associated with the
original guiding element, and the guiding element of the new leaf structure is
the last guiding element in its top bucket. This new guiding element is inserted
into the top tree.

Deletions are handled similarly by first searching for the element and then
removing it from the appropriate bucket. When an element is deleted from a
bucket, we ensure that the elements in the affected bucket are stored consec-
utively by swapping the deleted element with the last element. If the affected
bucket holds fewer than δ elements after the deletion, it is merged with a neigh-
boring bucket. If the resulting bucket contains more than 6δ elements, it is split
as described above. If the top bucket contains less than log n guiding elements,
it is merged with a neighboring leaf structure which is found using a search.
Following this, the original leaf is deleted from the top tree.



Lemma 3. The insert and delete operations of the dynamic dictionary take

O(log n + δ) amortized time each.

Proof. An update in the top tree takes O(δ log2 n) time and requires Ω(δ log n)
updates in the leaf structures. Thus each update costs amortized O(log n) time
for operations in the top tree. Splitting and merging a bucket of a leaf structure
takes time O(δ log n) for updates to the top bucket and O(δ2) time for computing
a split element for a bucket. A bucket is split or merged every Ω(δ) operations
resulting in an amortized update cost of O(log n + δ). Appending or removing
a single element to a bucket takes worst case time O(δ) for updating the size.
Adding the O(log n + δ) cost of the initial search concludes the proof. ⊓⊔

Theorem 3. The resilient dynamic dictionary structure uses O(n) space while

supporting searches in O(log n+δ) time worst case with an amortized update cost

of O(log n + δ). Range queries with an output size of k is performed in worst

case O(log n + δ + k) time.
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