
Finding maximal pairs with bounded gapGerth St�lting Brodal?, Rune B. Lyngs�?,Christian N. S. Pedersen?, and Jens Stoye??Abstra
t. A pair in a string is the o

urren
e of the same substringtwi
e. A pair is maximal if the two o

urren
es of the substring 
annotbe extended to the left and right without making them di�erent. The gapof a pair is the number of 
hara
ters between the two o

urren
es of thesubstring. In this paper we present methods for �nding all maximal pairsunder various 
onstraints on the gap. In a string of length n we 
an �ndall maximal pairs with gap in an upper and lower bounded interval intime O(n log n+ z) where z is the number of reported pairs. If the upperbound is removed the time redu
es to O(n+z). Sin
e a tandem repeat isa pair where the gap is zero, our methods 
an be seen as a generalizationof �nding tandem repeats. The running time of our methods equals therunning time of well known methods for �nding tandem repeats.1 Introdu
tionA pair in a string is the o

urren
e of the same substring twi
e. A pair is left-maximal (right-maximal) if the 
hara
ters to the immediate left (right) of thetwo o

urren
es of the substring are di�erent. A pair is maximal if it is bothleft- and right-maximal. The gap of a pair is the number of 
hara
ters betweenthe two o

urren
es of the substring. For example, the two o

urren
es of thesubstring ma in the string maximal form a maximal pair of ma with gap two.Gus�eld [9, Se
t. 7.12.3℄ des
ribes how to report all maximal pairs in a stringusing the suÆx tree of the string in time O(n + z) and spa
e O(n), where nis the length of the string and z is the number of reported pairs. Sin
e thereis no restri
tion on the gap of the maximal pairs reported by this algorithm,many of them probably des
ribe o

urren
es of substrings that are overlappingor far apart in the string. In many appli
ations in 
omputational biology thisis unfortunate, so several papers address the problem of �nding o

urren
es ofsimilar substrings not too far apart [13, 17, 23℄.In this paper we will des
ribe how to �nd all maximal pairs in a string withgap in an upper and lower bounded interval in time O(n logn+z) and spa
eO(n).The interval of allowed gaps 
an be 
hosen su
h that we report a maximal pair? Basi
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only if the gap is between 
onstants 
1 and 
2, but more generally, it 
an be
hosen su
h that we report a maximal pair of � only if the gap is between g1(j�j)and g2(j�j), where g1 and g2 are fun
tions that 
an be 
omputed in 
onstant time.This, for example, makes it possible to �nd all maximal pairs with gap betweenzero and some fra
tion of the length of the repeated substring. If we remove theupper bound on allowed gaps, and only require the gap of a reported pair of �to be at least g1(j�j), then the running time redu
es to O(n+ z). The methodswe present all use the suÆx tree as the fundamental data stru
ture 
ombinedwith eÆ
ient methods for merging sear
h trees and heap-ordered trees.The problem of �nding o

urren
es of repeated substrings in a string is wellstudied. Most of the work has been 
on
erned with eÆ
ient methods for �ndingo

urren
es of 
ontiguously repeated substrings. An o

urren
e of a substringof the form �� is 
alled an o

urren
e of a square or a tandem repeat. Mostwell-known methods for �nding the o

urren
es of all tandem repeats in a stringrequire time O(n logn+z), where n is the length of the string and z is the numberof reported o

urren
es of tandem repeats [5, 2, 18, 15, 24℄. Work has also beendone on just dete
ting whether or not a string 
ontains a tandem repeat [19,6℄. Re
ently, extending on the idea presented in [6℄, two methods have beenpresented that �nd a 
ompa
t representation of all tandem repeats in a string intime O(n) [14, 10℄. Other papers 
onsider the problem of �nding o

urren
es of
ontiguous repeats of substrings that are within some Hamming- or edit-distan
eof ea
h other [16℄.In biologi
al sequen
e analysis sear
hing for tandem repeats is used to re-veal stru
tural and fun
tional information [9, pp. 139{142℄, but sear
hing forexa
t tandem repeats 
an be too restri
tive be
ause of sequen
ing and otherexperimental errors. By sear
hing for maximal pairs with small gaps (maybedepending on the length of the substring) it 
ould be possible to 
ompensatefor these errors. On the other hand, �nding maximal pairs with a gap withinan interval 
an be seen as a generalization of �nding o

urren
es of tandem re-peats. Stoye and Gus�eld [24℄ say that an o

urren
e of the tandem repeat ��is a bran
hing o

urren
e of the tandem repeat �� if and only if the 
hara
tersto the immediate right of the two o

urren
es of � are di�erent, and they ex-plain how to dedu
e the o

urren
e of all tandem repeats in a string from theo

urren
es of bran
hing tandem repeats in time proportional to the numberof tandem repeats. Sin
e a bran
hing o

urren
e of a tandem repeat is just aright-maximal pair with gap zero, the methods presented in this paper 
an beused to �nd all tandem repeats in time O(n logn + z). This mat
hes the timebounds of previous published methods for this problem [5, 2, 18, 15, 24℄.The rest of this paper is organized as follows. In Se
t. 2 we de�ne pairs andsuÆx trees and des
ribe how in general to �nd pairs using the suÆx tree. InSe
t. 3 we present fa
ts about eÆ
ient merging of sear
h trees, and use them toformulate methods for �nding all maximal pairs in a string with gap in an upperand lower bounded interval. In Se
t. 4 we brie
y dis
uss how to �nd all maximalpairs in a string with gap in a lower bounded interval. Finally, in Se
t. 5 wesummarize our work and dis
uss open problems.



2 PreliminariesThroughout this paper S will denote a string of length n over a �nite alphabet �.We will use S[i℄, for i = 1; 2; : : : ; n, to denote the ith 
hara
ter of S, and useS[i :: j℄ as notation for the substring S[i℄S[i+1℄ � � �S[j℄ of S. To be able to referto the 
hara
ters to the left and right of every 
hara
ter in S without worryingabout the �rst and last 
hara
ter, we de�ne S[0℄ and S[n+1℄ to be two distin
t
hara
ters not appearing anywhere else in S.In order to formulate methods for �nding repetitive stru
tures in S, we needa proper de�nition of su
h stru
tures. An obvious de�nition is to �nd all pairs ofidenti
al substrings in S. This, however, leads to a lot of redundant output, e.g.in the string that 
onsists of n identi
al 
hara
ters there are �(n3) su
h pairs. Tolimit the redundan
y without sa
ri�
ing any meaningful stru
tures Gus�eld [9℄de�nes maximal pairs.De�nition 1 (Pair). We say that (i; j; j�j) is a pair of � in S formed by i and jif and only if 1 � i < j � n�j�j+1 and � = S[i :: i+ j�j�1℄ = S[j :: j+ j�j�1℄.The pair is left-maximal (right-maximal) if the 
hara
ters to the immediate left(right) of two o

urren
es of � are di�erent, i.e. left-maximal if S[i�1℄ 6= S[j�1℄and right-maximal if S[i+ j�j℄ 6= S[j+ j�j℄. The pair is maximal if it is right- andleft-maximal. The gap of a pair (i; j; j�j) is the number of 
hara
ters j � i� j�jbetween the two o

urren
es of � in S.It follows from the de�nition that a string of length n in the worst 
ase 
on-tains �(n2) right-maximal pairs. The string an 
ontains the worst 
ase numberof right-maximal pairs but only �(n) maximal pairs. The string (aab)n=3 how-ever 
ontains �(n2) maximal pairs. This shows that the worst 
ase number ofmaximal pairs and right-maximal pairs in a string are asymptoti
ally equal.Figure 1 illustrates the o

urren
e of a pair. In some appli
ations it mightbe interesting only to �nd pairs that obey 
ertain restri
tions on the gap, e.g. to�lter out pairs of substrings that are overlapping or far apart and thus to redu
ethe number of pairs to report. Using the \smaller-half tri
k", see Se
t. 3.1, andLemma 3 it is easy to prove that a string of length n in the worst 
ase 
ontains�(n logn) right-maximal pairs with gap in an interval of 
onstant size.In this paper we present methods for �nding all right-maximal and maximalpairs (i; j; j�j) in S with gap in a bounded interval. These methods all use thesuÆx tree of S as the fundamental data stru
ture. We brie
y review the suÆxtree and refer to [9℄ for a more 
omprehensive treatment.De�nition 2 (SuÆx tree). The suÆx tree T (S) of the string S is the 
om-pressed trie of all suÆxes of S. Ea
h leaf in T (S) represents a suÆx S[i :: n℄ of Sand is annotated with the index i. We refer to the set of indi
es stored at theleaves in the subtree rooted at node v as the leaf-list of v and denote it LL(v).Ea
h edge in T (S) is labelled with a nonempty substring of S su
h that the pathfrom the root to the leaf annotated with index i spells the suÆx S[i :: n℄. Werefer to the substring of S spelled by the path from the root to node v as thepath-label of v and denote it L(v).



i � �gap jFig. 1. An o

urren
e of a pair (i; j; j�j) with gap j � i� j�j.The suÆx tree T (S) 
an be 
onstru
ted in time O(n) [26, 20, 25, 7℄. It followsfrom the de�nition that all internal nodes in T (S) have out-degree between twoand j�j. We 
an turn the suÆx tree T (S) into the binary suÆx tree TB(S) byrepla
ing every node v in T (S) with out-degree d > 2 by a binary tree with d�1internal nodes and d� 2 internal edges in whi
h the d leaves are the d 
hildrenof node v. We label ea
h new internal edge with the empty string su
h thatthe d � 1 nodes repla
ing node v all have the same path-label as node v hasin T (S). Sin
e T (S) has n leaves, 
onstru
ting the binary suÆx tree TB(S)requires adding at most n� 2 new nodes. Sin
e ea
h new node 
an be added in
onstant time, the binary suÆx tree TB(S) 
an be 
onstru
ted in time O(n).The binary suÆx tree is an essential 
omponent of our methods. De�nition 2implies that there is a node v in T (S) with path-label � if and only if � is thelongest 
ommon pre�x of S[i :: n℄ and S[j :: n℄ for some 1 � i < j � n. In otherwords, there is a node v with path-label � if and only if (i; j; j�j) is a right-maximal pair in S. Sin
e S[i + j�j℄ 6= S[j + j�j℄ the indi
es i and j 
annot beelements in the leaf-list of the same 
hild of v. Using the binary suÆx tree TB(S)we 
an thus formulate the following lemma.Lemma 3. There is a right-maximal pair (i; j; j�j) in S if and only if there is anode v in the binary suÆx tree TB(S) with path-label � and distin
t 
hildren w1and w2 where i 2 LL(w1) and j 2 LL(w2).Lemma 3 gives an approa
h to �nd all right-maximal pairs in S; for everyinternal node v in the binary suÆx tree TB(S) 
onsider the leaf-lists at its two
hildren w1 and w2, and for every element (i; j) in LL(w1) � LL(w2) report aright-maximal pair (i; j; j�j) if i < j and (j; i; j�j) if j < i. To �nd all maximalpairs in S the problem remains to �lter out all right-maximal pairs that are notleft-maximal.3 Pairs with upper and lower bounded gapWe want to �nd all maximal pairs (i; j; j�j) in S with gap between g1(j�j)and g2(j�j), i.e. g1(j�j) � j � i � j�j � g2(j�j), where g1 and g2 are fun
tionsthat 
an be 
omputed in 
onstant time. An obvious approa
h is to generate allmaximal pairs in S and only report those with gap between g1(j�j) and g2(j�j),but as shown above there might be asymptoti
ally fewer maximal pairs in Swith gap between g1(j�j) and g2(j�j) than maximal pairs in S in total. We
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Fig. 2. If (p; q; j�j) (respe
tively (q; p; j�j)) is a pair with gap between g1(j�j)and g2(j�j), then one o

urren
e of � is at position p and the other o

urren
e isat a position q in the interval R(p; j�j) (respe
tively L(p; j�j)) of positions.therefore want to �nd all maximal pairs (i; j; j�j) in S with gap between g1(j�j)and g2(j�j) without generating and 
onsidering all maximal pairs in S. A steptowards �nding all maximal pairs with gap between g1(j�j) and g2(j�j) is to �ndall right-maximal pairs with gap between g1(j�j) and g2(j�j).Figure 2 shows that if one o

urren
e of � in a pair with gap between g1(j�j)and g2(j�j) is at position p, then the other o

urren
e of � must be at a position qin one of the two intervals L(p; j�j) = [ p � j�j � g2(j�j) :: p � j�j � g1(j�j) ℄ orR(p; j�j) = [ p + j�j + g1(j�j) :: p + j�j + g2(j�j) ℄. Together with Lemma 3 thisgives an approa
h to �nd all right-maximal pairs in S with gap between g1(j�j)and g2(j�j); from every internal node v in the binary suÆx tree TB(S) withpath-label � and 
hildren w1 and w2, we report for every p in LL(w1) the pairs(p; q; j�j) for all q in LL(w2) \ R(p; j�j) and the pairs (q; p; j�j) for all q inLL(w2) \ L(p; j�j).To report right-maximal pairs eÆ
iently using this pro
edure, we must beable to �nd for every p in LL(w1), without looking at all the elements in LL(w2),the proper elements q in LL(w2) to report it against. It turns out that sear
htrees make this possible. In this paper we use AVL trees, but other types ofsear
h trees, e.g. (a; b)-trees [11℄ or red-bla
k trees [8℄, 
an also be used as longas they obey Lemmas 4 and 5 stated below. Before we 
an formulate algorithmswe review some useful fa
ts about AVL trees.3.1 Data Stru
turesAn AVL tree T is a balan
ed sear
h tree that stores an ordered set of elements.AVL trees were introdu
ed in [1℄, but are explained in almost every textbook ondata stru
tures. We say that an element e is in T , or e 2 T , if it is stored at anode in T . For short notation we use e to denote both the element and the nodeat whi
h it is stored in T . We 
an keep links between the nodes in T in su
h away that we in 
onstant time from the node e 
an �nd the nodes next(e) andprev (e) storing the next and previous element in in
reasing order. We use jT j todenote the size of T , i.e. the number of elements stored in T .EÆ
ient merging of two AVL trees is essential to our methods. Hwang andLin [12℄ show how to merge two sorted lists using the optimal number of 
om-



parisons. Brown and Tarjan [4℄ show how to implement merging of two height-balan
ed sear
h trees, e.g. AVL trees, in time proportional to the optimal num-ber of 
omparisons. Their result is summarized in Lemma 4, whi
h immediatelyimplies Lemma 5.Lemma 4. Two AVL trees of size at most n and m 
an be merged in timeO(log �n+mn �).Lemma 5. Given a sorted list of elements e1; e2; : : : ; en and an AVL tree Tof size at most m, m � n, we 
an �nd qi = min�x 2 T �� x � ei	 for alli = 1; 2; : : : ; n in time O(log �n+mn �).Proof. Constru
t the AVL tree of the elements e1; e2; : : : ; en in time O(n). Mergethis AVL tree with T a

ording to Lemma 4, ex
ept that whenever the merge-algorithm would insert one of the elements e1; e2; : : : ; en into T , we 
hange themerge-algorithm to report the neighbor of the element in T instead. This modi-�
ation does not in
rease the running time. utThe \smaller-half tri
k" is essential to several methods for �nding tandemrepeats [5, 2, 24℄. It says that the sum over all nodes v in an arbitrary binary treeof size n of terms that are O(n1), where n1 � n2 are the numbers of leaves inthe subtrees rooted at the two 
hildren of v, is O(n logn). Our methods rely ona stronger version of the \smaller-half tri
k" hinted at in [21, Ex. 35℄ and usedin [22, Chap. 5, p. 84℄; we summarize it in the following lemma.Lemma 6. Let T be an arbitrary binary tree with n leaves. The sum over allinternal nodes v in T of terms that are O(log �n1+n2n1 �), where n1 and n2 are thenumbers of leaves in the subtrees rooted at the two 
hildren of v, is O(n logn).Proof. As the terms are O(log �n1+n2n1 �) we 
an �nd 
onstants, a and b, su
h thatthe terms are upper bounded by a + b log �n1+n2n1 �. We will by indu
tion in thenumber of leaves of the binary tree prove that the sum is upper bounded by(2n� 1)a+ b logn!. As logn! = O(n logn) the lemma follows.If T is a leaf then the upper bound holds va
uously. Now assume indu
tivelythat the upper bound holds for all trees with at most n � 1 leaves. Let T bea tree with n leaves where the number of leaves in the subtrees rooted at thetwo 
hildren of the root are n1 < n and n2 < n. A

ording to the indu
tionhypothesis the sum over all nodes in these two subtrees, i.e. the sum over all nodesof T ex
ept the root, is bounded by (2n1�1)a+ b logn1!+ (2n2�1)a+ b logn2!and thus the entire sum is bounded by(2n1 � 1)a+b logn1! + (2n2 � 1)a+ b logn2! + a+ b log�n1 + n2n1 �= (2(n1 + n2)� 1)a+ b logn1! + b logn2! +b log(n1 + n2)!� b logn1!� b logn2!= (2n� 1)a+ b logn!whi
h proves the lemma. ut



3.2 AlgorithmsWe �rst des
ribe an algorithm that �nds all right-maximal pairs in S withbounded gap using AVL trees to keep tra
k of the elements in the leaf-listsduring a traversal of the binary suÆx tree TB(S). We then extend it to �nd allmaximal pairs in S with bounded gap using an additional AVL tree to �lter outeÆ
iently all right-maximal pairs that are not left-maximal. Both algorithmsrun in time O(n logn + z) and spa
e O(n), where z is the number of reportedpairs. In the following we assume, unless stated otherwise, that v is a node in thebinary suÆx tree TB(S) with path-label � and 
hildren w1 and w2 named su
hthat jLL(w1)j � jLL(w2)j. We say that w1 is the small 
hild of v and that w2 isthe big 
hild of v.Right-maximal pairs with upper and lower bounded gap To �nd allright-maximal pairs in S with gap between g1(j�j) and g2(j�j) we 
onsider everynode v in the binary suÆx tree TB(S) in a bottom-up fashion, e.g. during a depth-�rst traversal. At every node v we use AVL trees storing the leaf-lists LL(w1)and LL(w2) at its two 
hildren to report the proper right-maximal pairs of itspath-label �. The details are given in Algorithm 1 and explained below.At every node v in TB(S) we 
onstru
t an AVL tree, the leaf-list tree T ,that stores the elements in LL(v). If v is a leaf then we 
onstru
t T dire
tlyin Step 1. If v is an internal node then LL(v) is the union of the disjoint leaf-lists LL(w1) and LL(w2) whi
h by assumption are stored in the already 
on-stru
ted T1 and T2, so we 
onstru
t T by merging T1 and T2, jT1j � jT2j, usingLemma 4. Before 
onstru
ting T in Step 2
 we use T1 and T2 to report right-maximal pairs from node v by reporting every p in LL(w1) against every q inLL(w2)\L(p; j�j) and LL(w2)\R(p; j�j). This is done in two steps. In Step 2awe �nd for every p in LL(w1) the minimum element qr(p) in LL(w2)\R(p; j�j)and the minimum element ql(p) in LL(w2) \ L(p; j�j) by sear
hing in T2 us-ing Lemma 5. In Step 2b we report pairs (p; q; j�j) and (q; p; j�j) for every p inLL(w1) and in
reasing q's in LL(w2) starting with qr(p) and ql(p) respe
tively,until the gap violates the upper or lower bound.To argue that Algorithm 1 �nds all right-maximal pairs with gap betweeng1(j�j) and g2(j�j) it is enough to argue that we for every p in LL(w1) re-port all right-maximal pairs (p; q; j�j) and (q; p; j�j) with gap between g1(j�j)and g2(j�j). The rest follows be
ause we at every node v in TB(S) 
onsider ev-ery p in LL(w1). Consider the 
all Report(qr(p); p + j�j + g2(j�j)) in Step 2b.From the implementation of Report follows that this 
all reports p against ev-ery q in LL(w2) \ [qr(p) :: p + j�j + g2(j�j)℄. By 
onstru
tion of qr(p) and def-inition of R(p; j�j) follows that LL(w2) \ [qr(p) :: p + j�j + g2(j�j)℄ is equal toLL(w2)\R(p; j�j), so the 
all reports all pairs (p; q; j�j) with gap between g1(j�j)and g2(j�j). Similarly we 
an argue that the 
all Report(ql(p); p� j�j � g1(j�j))reports all pairs (q; p; j�j) with gap between g1(j�j) and g2(j�j).Now 
onsider the running time of Algorithm 1. Building the binary suÆxtree TB(S) and 
reating an AVL tree of size one at ea
h leaf in Step 1 takestime O(n). At every internal node in TB(S) we do Step 2. Sin
e jT1j � jT2j



Algorithm 1 Find all right-maximal pairs in string S with bounded gap.1. Initializing: Build the binary suÆx tree TB(S) and 
reate at ea
h leaf an AVL treeof size one that stores the index at the leaf.2. Reporting and merging: When the AVL trees T1 and T2, jT1j � jT2j, at the two
hildren w1 and w2 of node v with path-label � are available, we do the following:(a) Let fp1; p2; : : : ; psg be the elements in T1 in sorted order. For ea
h element pin T1 we �nd qr(p) = min�x 2 T2 �� x � p+ j�j+ g1(j�j)	ql(p) = min�x 2 T2 �� x � p� j�j � g2(j�j)	by sear
hing in T2 with the sorted lists fpi+ j�j+g1(j�j) j i = 1; 2; : : : ; sg andfpi � j�j � g2(j�j) j i = 1; 2; : : : ; sg using Lemma 5.(b) For ea
h element p in T1 we do Report(qr(p); p + j�j + g2(j�j)) andReport(ql(p); p� j�j � g1(j�j)) where Report is the following pro
edure.def Report(from; to) :q = fromwhile q � to :report pair (p; q; j�j) if p < q, and (q; p; j�j) otherwiseq = next(q)(
) Build the leaf-list tree T at node v by merging T1 and T2 using Lemma 4.sear
hing in Step 2a and merging in Step 2
 takes time O(log �jT1j+jT2jjT1j �) byLemmas 5 and 4 respe
tively. Reporting of pairs in Step 2b takes time pro-portional to jT1j, be
ause we 
onsider every p in LL(w1), plus the number ofreported pairs. Summing this over all nodes gives by Lemma 6 that the totalrunning time is O(n logn + z), where z is the number of reported pairs. Sin
e
onstru
ting and keeping TB(S) requires spa
e O(n), and sin
e no element atany time is in more than one leaf-list tree, Algorithm 1 requires spa
e O(n).Theorem 7. Algorithm 1 �nds all right-maximal pairs (i; j; j�j) in a string Swith gap between g1(j�j) and g2(j�j) in spa
e O(n) and time O(n logn + z),where z is the number of reported pairs and n is the length of S.Maximal pairs with upper and lower bounded gap We now turn towards�nding all maximal pairs in S with gap between g1(j�j) and g2(j�j). Our ap-proa
h to �nd all maximal pairs in S with gap between g1(j�j) and g2(j�j) is toextend Algorithm 1 to �lter out all right-maximal pairs that are not left-maximal.A simple solution is to extend the pro
edure Report to 
he
k if S[p�1℄ 6= S[q�1℄before reporting the pair (p; q; j�j) or (q; p; j�j) in Step 2b. This solution takestime proportional to the number of inspe
ted right-maximal pairs, and not timeproportional to the number of reported maximal pairs. Even though the max-imum number of right-maximal pairs and maximal pairs in strings of a given



length are asymptoti
ally equal, many strings 
ontain signi�
antly fewer max-imal pairs than right-maximal pairs. We therefore want to �lter out all right-maximal pairs that are not left-maximal without inspe
ting all right-maximalpairs. In the remainder of this se
tion we des
ribe one way to do this.Consider the reporting step in Algorithm 1 and assume that we are about toreport from a node v with 
hildren w1 and w2. The leaf-list trees T1 and T2,jT1j � jT2j, are available and they make it possible to a

ess the elementsin LL(w1) = fp1; p2; : : : ; psg and LL(w2) = fq1; q2; : : : ; qtg in sorted order. Wedivide the sorted leaf-list LL(w2) into blo
ks of 
ontiguous elements su
h thatthe elements qi�1 and qi are in the same blo
k if and only if S[qi�1�1℄ = S[qi�1℄.We say that we divide the sorted leaf-list into blo
ks of elements with equal left-
hara
ters. To �lter out all right-maximal pairs that are not left-maximal wemust avoid to report p in LL(w1) against any element q in LL(w2) in a blo
k ofelements with left-
hara
ter S[p� 1℄. This gives the overall idea of the extendedalgorithm; we extend the reporting step in Algorithm 1 su
h that whenever weare about to report p in LL(w1) against q in LL(w2) where S[p� 1℄ = S[q � 1℄we skip all elements in the 
urrent blo
k 
ontaining q and 
ontinue reporting pagainst the �rst element q0 in the following blo
k, whi
h by the de�nition ofblo
ks satis�es that S[p� 1℄ 6= S[q0 � 1℄.To implement this extended reporting step eÆ
iently we must be able toskip all elements in a blo
k without inspe
ting ea
h of them. We a
hieve thisby 
onstru
ting an additional AVL tree, the blo
k-start tree, that keeps tra
k ofthe blo
ks in the leaf-list. At ea
h node v during the traversal of TB(S) we thus
onstru
t two AVL trees; the leaf-list tree T that stores the elements in LL(v),and the blo
k-start tree B that keeps tra
k of the blo
ks in the sorted leaf-listby storing all the elements in LL(v) that start a blo
k. We keep links from theblo
k-start tree to the leaf-list tree su
h that we in 
onstant time 
an go from anelement in the blo
k-start tree to the 
orresponding element in the leaf-list tree.Figure 3 illustrates the leaf-list tree, the blo
k-start tree and the links betweenthem. Before we present the extended algorithm and explain how to use theblo
k-start tree to eÆ
iently skip all elements in a blo
k, we �rst des
ribe howto 
onstru
t the leaf-list tree T and blo
k-start tree B at node v from the leaf-listtrees, T1 and T2, and blo
k-start trees, B1 and B2, at its two 
hildren w1 and w2.Sin
e LL(v) is the union of the disjoint leaf-lists LL(w1) and LL(w2) storedin T1 and T2 respe
tively, we 
an 
onstru
t the leaf-list tree T by merging T1and T2 using Lemma 4. It is more involved to 
onstru
t the blo
k-start tree B.The reason is that an element pi that starts a blo
k in LL(w1) or an element qjthat starts a blo
k in LL(w2) does not ne
essarily start a blo
k in LL(v) and vi
eversa, so we 
annot 
onstru
t B by merging B1 and B2. Let fe1; e2; : : : ; es+tgbe the elements in LL(v) in sorted order. By de�nition the blo
k-start tree B
ontains all elements ek in LL(v) where S[ek�1�1℄ 6= S[ek�1℄. We 
onstru
t Bby modifying B2. We 
hoose to modify B2, and not B1, be
ause jLL(w1)j �jLL(w2)j, whi
h by the \smaller-half tri
k" allows us to 
onsider all elementsin LL(w1) without spending too mu
h time in total. To modify B2 to be
ome Bwe must identify all the elements that are in B but not in B2 and vi
e versa.
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ture 
onstru
ted at ea
h node v in TB(S). The leaf-list tree Tstores all elements in LL(v). The blo
k-start tree B stores all elements in LL(v) thatstart a blo
k in the sorted leaf-list. We keep links from the elements in the blo
k-starttree to the 
orresponding elements in the leaf-list tree.Lemma 8. If ek is in B but not in B2 then ek 2 LL(w1) or ek�1 2 LL(w1).Proof. Assume that ek is in B and that ek and ek�1 both are in LL(w2).In LL(w2) the elements ek and ek�1 are neighboring elements qj and qj�1.Sin
e ek starts a blo
k in LL(v) then S[qj � 1℄ = S[ek � 1℄ 6= S[ek�1 � 1℄ =S[qj�1 � 1℄. This shows that qj = ek is in B2 and the lemma follows. utLet NEW be the set of elements ek in B where ek or ek�1 are in LL(w1). Itfollows from Lemma 8 that this set 
ontains at least all elements in B that arenot in B2. It is easy to see that we 
an 
onstru
t NEW in sorted order whilemerging T1 and T2; whenever an element ek from T1, i.e. LL(w1), is pla
ed in T ,i.e. LL(v), we in
lude it, and/or the next element ek+1 pla
ed in T , in NEW ifthey start a blo
k in LL(v).If we insert the elements in NEW we are halfway done modifying B2 tobe
ome B. We still need to identify and remove the elements that should beremoved from B2, that is, the elements that are in B2 but not in B.Lemma 9. An element qj in B2 is not in B if and only if the largest element ekin NEW smaller than qj in B2 has the same left-
hara
ter as qj .Proof. If qj is in B2 but does not start a blo
k in LL(v), then it must be in ablo
k started by some element ek with the same left-
hara
ter as qj . This blo
k
annot 
ontain qj�1 be
ause qj being in B2 implies that S[qj � 1℄ 6= S[qj�1� 1℄.We thus have the ordering qj�1 < ek < qj . This implies that ek is the largestelement in NEW smaller than qj . If ek is the largest element in NEW smallerthan qj , then no blo
k starts in LL(v) between ek and qj , i.e. all elements e inLL(v) where ek < e < qj satisfy that S[e�1℄ = S[ek�1℄, so if S[ek�1℄ = S[qj�1℄then qj does not start a blo
k in LL(v). utBy sear
hing in B2 with the sorted list NEW using Lemma 5 it is straight-forward to �nd all pairs of elements (ek; qj), where ek is the largest element in



NEW smaller than qj in B2. If the left-
hara
ters of ek and qj in su
h a pairare equal, i.e. S[ek� 1℄ = S[qj � 1℄, then by Lemma 9 the element qj is not in Band must therefore be removed from B2. It follows from the proof of Lemma 9that if this is the 
ase then qj�1 < ek < qj , so we 
an, without destroying theorder among the nodes in B2, remove qj from B2 and insert ek instead, simplyby repla
ing the element qj with the element ek at the node storing qj in B2.We 
an now summarize the three steps it takes to modify B2 to be
ome B.In Step 1 we 
onstru
t the sorted set NEW that 
ontains all elements in Bthat are not in B2. This is done while merging T1 and T2 using Lemma 4. InStep 2 we remove the elements from B2 that are not in B. The elements in B2being removed and the elements from NEW repla
ing them are identi�ed usingLemmas 5 and 9. In Step 3 we merge the remaining elements in NEW into themodi�ed B2 using Lemma 4. Adding links from the new elements in B to the
orresponding elements in T 
an be done while repla
ing and merging in Steps 2and 3. Sin
e jNEW j � 2 jT1j and jB2j � jT2j, the time it takes to 
onstru
t Bis dominated by the the time it takes merge a sorted list of size 2 jT1j into anAVL tree of size jT2j. By Lemma 4 this is within a 
onstant fa
tor of the time ittakes to merge T1 and T2, so the time is takes to 
onstru
t B is dominated bythe time it takes to 
onstru
t the leaf-list tree T .Now that we know how to 
onstru
t the leaf-list tree T and blo
k-start tree Bat node v from the leaf-list trees, T1 and T2, and blo
k-start trees, B1 and B2,at its two 
hildren w1 and w2, we 
an pro
eed with the implementation of theextended reporting step. The details are shown in Algorithm 2. This algorithmis similar to Algorithm 1 ex
ept that we at every node v in TB(S) 
onstru
ttwo AVL trees; the leaf-list tree T that stores the elements in LL(v), and theblo
k-start tree B that keeps tra
k of the blo
ks in LL(v) by storing the subsetof elements that start a blo
k. If v is a leaf, we 
onstru
t T and B dire
tly. If vis an internal node, we 
onstru
t T by merging the leaf-list trees T1 and T2 atits two 
hildren w1 and w2, and we 
onstru
t B by modifying the blo
k-starttree B2 as explained above.Before 
onstru
ting T and B we report all maximal pairs from node v withgap between g1(j�j) and g2(j�j) by reporting every p in LL(w1) against every q inLL(w2)\L(p; j�j) and LL(w2)\R(p; j�j) where S[p�1℄ 6= S[q�1℄. This is done intwo steps. In Step 2a we �nd for every p in LL(w1) the minimum elements ql(p)and qr(p), as well as the minimum elements bl(p) and br(p) that start a blo
k, inLL(w2)\L(p; j�j) and LL(w2)\R(p; j�j) respe
tively. This is done by sear
hingin T2 and B2 using Lemma 5. In Step 2b we report pairs (p; q; j�j) and (q; p; j�j)for every p in LL(w1) and in
reasing q's in LL(w2) starting with qr(p) and ql(p)respe
tively, until the gap violates the upper or lower bound. Whenever we areabout to report p against q where S[p� 1℄ = S[q� 1℄, we instead use the blo
k-start tree B2 to skip all elements in the blo
k 
ontaining q and 
ontinue withreporting p against the �rst element in the following blo
k.To argue that Algorithm 2 �nds all maximal pairs with gap between g1(j�j)and g2(j�j) it is enough to argue that we for every p in LL(w1) report all maxi-mal pairs (p; q; j�j) and (q; p; j�j) with gap between g1(j�j) and g2(j�j). The rest



Algorithm 2 Find all maximal pairs in string S with bounded gap.1. Initializing: Build the binary suÆx tree TB(S) and 
reate at ea
h leaf two AVLtrees of size one, the leaf-list and the blo
k-start tree, both storing the index atthe leaf.2. Reporting and merging: When the leaf-list trees T1 and T2, jT1j � jT2j, and theblo
k-start trees B1 and B2 at the two 
hildren w1 and w2 of node v with path-label� are available, we do the following:(a) Let fp1; p2; : : : ; psg be the elements in T1 in sorted order. For ea
h element pin T1 we �nd qr(p) = min�x 2 T2 �� x � p+ j�j+ g1(j�j)	ql(p) = min�x 2 T2 �� x � p� j�j � g2(j�j)	br(p) = min�x 2 B2 �� x � p+ j�j+ g1(j�j)	bl(p) = min�x 2 B2 �� x � p� j�j � g2(j�j)	by sear
hing in T2 and B2 with the sorted lists fpi + j�j + g1(j�j) j i =1; 2; : : : ; sg and fpi � j�j � g2(j�j) j i = 1; 2; : : : ; sg using Lemma 5.(b) For ea
h element p in T1 we do ReportMax(qr(p); br(p); p+ j�j + g2(j�j)) andReportMax(ql(p); bl(p); p�j�j� g1(j�j)) where ReportMax is the following pro-
edure.def ReportMax(from T ; from B ; to):q = from Tb = from Bwhile q � to:if S[q � 1℄ 6= S[p� 1℄:report pair (p; q; j�j) if p < q, and (q; p; j�j) otherwiseq = next(q)else: while b � q:b = next(b)q = b(
) Build the leaf-list tree T at node v by merging T1 and T2 using Lemma 4.Build the blo
k-start tree B at node v by modifying B2 as des
ribed in thetext.follows be
ause we at every node in TB(S) 
onsider every p in LL(w1). Considerthe 
all ReportMax(qr(p); br(p); p + j�j + g2(j�j)) in Step 2b. From the imple-mentation of ReportMax follows that unless we skip elements by in
reasing bthen we 
onsider every q in LL(w2) \ R(p; j�j). The test S[q � 1℄ 6= S[p � 1℄before reporting a pair ensures that we only report maximal pairs and when-ever S[q � 1℄ = S[p � 1℄ we in
rease b until b = minfx 2 B2 j x > qg. Thisis, by 
onstru
tion of B2 and br(p), the element that starts the blo
k follow-ing the blo
k 
ontaining q, so all elements q0, q < q0 < b, we skip by set-ting q to b satisfy that S[p � 1℄ = S[q � 1℄ = S[q0 � 1℄. We thus 
on
lude that



ReportMax(qr(p); br(p); p + j�j + g2(j�j)) reports p against exa
tly those q inLL(w2) \ R(p; j�j) where S[p � 1℄ 6= S[q � 1℄, i.e. it reports all maximal pairs(p; q; j�j) at node v with gap between g1(j�j) and g2(j�j). Similarly, the 
allReportMax(ql(p); bl(p); p�j�j� g1(j�j)) reports all maximal pairs (q; p; j�j) withgap between g1(j�j) and g2(j�j).Now 
onsider the running time of Algorithm 2. We �rst argue that the 
allReportMax(qr(p); br(p); p + j�j + g2(j�j)) takes 
onstant time plus time propor-tional to the number of reported pairs (p; q; j�j). To do this all we have to showis that the time used to skip blo
ks, i.e. the number of times we in
rease b, isproportional to the number of reported pairs. By 
onstru
tion br(p) � qr(p),so the number of times we in
rease b is bounded by the number of blo
ks inLL(w2)\R(p; j�j). Sin
e neighboring blo
ks 
ontain elements with di�erent left-
hara
ters, we report p against an element from at least every se
ond blo
k inLL(w2) \ R(p; j�j). The number of times we in
rease b is thus proportional tothe number of reported pairs. The 
all ReportMax(ql(p); bl(p); p � j�j � g1(j�j))also takes 
onstant time plus time proportional to the number of reported pairs(q; p; j�j). We thus have that Step 2b takes time proportional to jT1j plus thenumber of reported pairs. Everything else we do at node v, i.e. sear
hing in T2and B2 and 
onstru
ting the leaf-list tree T and blo
k-start tree B, takes timeO(log �jT1j+jT2jjT1j �). Summing this over all nodes gives by Lemma 6 that the totalrunning time of the algorithm is O(n logn+z) where z is the number of reportedpairs. Sin
e 
onstru
ting and keeping TB(S) requires spa
e O(n), and sin
e noelement at any time is in more than one leaf-list tree, and maybe one blo
k-starttree, Algorithm 2 requires spa
e O(n).Theorem 10. Algorithm 2 �nds all maximal pairs (i; j; j�j) in a string S withgap between g1(j�j) and g2(j�j) in spa
e O(n) and time O(n logn+ z), where zis the number of reported pairs and n is the length of S.We observe that Algorithm 2 never uses the blo
k-start tree B1 at the small
hild w1. This observation 
an be used to ensure that only one blo
k-start tree ex-ists during the exe
ution of the algorithm. If we implement the traversal of TB(S)as a depth-�rst traversal in whi
h we at ea
h node v �rst re
ursively traverse thesubtree rooted at the small 
hild w1, then we do not need to store the blo
k-starttree returned by this re
ursive traversal while re
ursively traversing the subtreerooted at the big 
hild w2. This implies that only one blo
k-start tree exists atall times during the re
ursive traversal of TB(S). The drawba
k is that we atea
h node v need to know in advan
e whi
h 
hild is the small 
hild, but thisknowledge 
an be obtained in linear time by annotating ea
h node with the sizeof the subtree it roots.4 Pairs with lower bounded gapIf we relax the 
onstraint on the gap and only want to �nd all maximal pairsin S with gap at least g(j�j), where g is a fun
tion that 
an be 
omputedin 
onstant time, then a straightforward solution is to use Algorithm 2 with



g1(j�j) = g(j�j) and g2(j�j) = n. This obviously �nds all maximal pairs withgap at least g1(j�j) = g(j�j) in time O(n logn+ z). However, the missing upperbound on the gap, i.e. the trivial upper bound g2(j�j) = n, makes it possible toredu
e the running time to O(n+ z) sin
e reporting from ea
h node during thetraversal of the binary suÆx tree is simpli�ed.The reporting of pairs from node v with 
hildren w1 and w2 is simpli�ed,be
ause the la
k of an upper bound on the gap implies that we do not haveto sear
h LL(w2) for the �rst element to report against the 
urrent elementin LL(w1). Instead we 
an start by reporting the 
urrent element in LL(w1)against the biggest (and smallest) element in LL(w2) and then 
ontinue report-ing it against de
reasing (and in
reasing) elements from LL(w2) until the gapbe
omes smaller than g(j�j). Unfortunately this simpli�
ation alone does not re-du
e the asymptoti
 running time be
ause inspe
ting every element in LL(w1)and keeping tra
k of the leaf-lists in AVL trees alone requires time �(n logn). Toredu
e the running time we must thus avoid to inspe
t every element in LL(w1)and �nd another way to store the leaf-lists.We a
hieve this by using a data stru
ture based on heap-ordered trees tostore the leaf-lists during the traversal of the binary suÆx tree. The key featureof the data stru
ture is that it allows us to merge two trees in amortized 
onstanttime. The details of the data stru
ture and the methods using it to �nd pairswith gap at least g(j�j) is given in [3, Se
t. 4℄. Here we just summarize the result.Theorem 11. All maximal pairs (i; j; j�j) in a string S with gap at least g(j�j)
an be found in spa
e O(n) and time O(n+z), where z is the number of reportedpairs and n is the length of S.5 Con
lusionWe have presented eÆ
ient and 
exible methods to �nd all maximal pairs(i; j; j�j) in a string under various 
onstraints on the gap j � i� j�j. If the gapis required to be between g1(j�j) and g2(j�j), the running time is O(n logn+ z)where n is the length of the string and z is the number of reported pairs. If thegap is only required to be at least g1(j�j), the running time redu
es to O(n+ z).In both 
ases we use spa
e O(n).In some 
ases it might be interesting only to �nd maximal pairs (i; j; j�j)ful�lling additional requirements on j�j, e.g. to �lter out pairs of short substrings.This is straightforward to do using our methods by only reporting from the nodesin the binary suÆx tree whose path-label � ful�lls the requirements on j�j. Inother 
ases it might be of interest just to �nd the vo
abulary of substrings thato

ur in maximal pairs. This is also straightforward to do using our methods byjust reporting the path-label � of a node if we 
an report one or more maximalpairs from the node.Instead of just looking for maximal pairs, it 
ould be interesting to lookfor an array of o

urren
es of the same substring in whi
h the gap between
onse
utive o

urren
es is bounded by some 
onstants. This problem requires a



suitable de�nition of a maximal array. One de�nition and approa
h is presentedin [23℄. Another de�nition inspired by the de�nition of a maximal pair 
ouldbe to require that every pair of o

urren
es in the array is a maximal pair.This de�nition seems very restri
tive. A more relaxed de�nition 
ould be to onlyrequire that we 
annot extend all the o

urren
es in the array to the left or tothe right without destroying at least one pair of o

urren
es in the array.A
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