
Finding maximal pairs with bounded gapGerth St�lting Brodal?, Rune B. Lyngs�?,Christian N. S. Pedersen?, and Jens Stoye??Abstrat. A pair in a string is the ourrene of the same substringtwie. A pair is maximal if the two ourrenes of the substring annotbe extended to the left and right without making them di�erent. The gapof a pair is the number of haraters between the two ourrenes of thesubstring. In this paper we present methods for �nding all maximal pairsunder various onstraints on the gap. In a string of length n we an �ndall maximal pairs with gap in an upper and lower bounded interval intime O(n log n+ z) where z is the number of reported pairs. If the upperbound is removed the time redues to O(n+z). Sine a tandem repeat isa pair where the gap is zero, our methods an be seen as a generalizationof �nding tandem repeats. The running time of our methods equals therunning time of well known methods for �nding tandem repeats.1 IntrodutionA pair in a string is the ourrene of the same substring twie. A pair is left-maximal (right-maximal) if the haraters to the immediate left (right) of thetwo ourrenes of the substring are di�erent. A pair is maximal if it is bothleft- and right-maximal. The gap of a pair is the number of haraters betweenthe two ourrenes of the substring. For example, the two ourrenes of thesubstring ma in the string maximal form a maximal pair of ma with gap two.Gus�eld [9, Set. 7.12.3℄ desribes how to report all maximal pairs in a stringusing the suÆx tree of the string in time O(n + z) and spae O(n), where nis the length of the string and z is the number of reported pairs. Sine thereis no restrition on the gap of the maximal pairs reported by this algorithm,many of them probably desribe ourrenes of substrings that are overlappingor far apart in the string. In many appliations in omputational biology thisis unfortunate, so several papers address the problem of �nding ourrenes ofsimilar substrings not too far apart [13, 17, 23℄.In this paper we will desribe how to �nd all maximal pairs in a string withgap in an upper and lower bounded interval in time O(n logn+z) and spaeO(n).The interval of allowed gaps an be hosen suh that we report a maximal pair? Basi Researh in Computer Siene (BRICS), Centre of the Danish National Re-searh Foundation, Department of Computer Siene, University of Aarhus, NyMunkegade, 8000 �Arhus C, Denmark. E-mail: fgerth,rlyngsoe,stormg�bris.dk.Supported by the ESPRIT Long Term Researh Programme of the EU under projetnumber 20244 (ALCOM-IT).?? Deutshes Krebsforshungszentrum (DKFZ), Theoretishe Bioinformatik, Im Neuen-heimer Feld 280, 69120 Heidelberg, Germany. E-mail: j.stoye�dkfz-heidelberg.de



only if the gap is between onstants 1 and 2, but more generally, it an behosen suh that we report a maximal pair of � only if the gap is between g1(j�j)and g2(j�j), where g1 and g2 are funtions that an be omputed in onstant time.This, for example, makes it possible to �nd all maximal pairs with gap betweenzero and some fration of the length of the repeated substring. If we remove theupper bound on allowed gaps, and only require the gap of a reported pair of �to be at least g1(j�j), then the running time redues to O(n+ z). The methodswe present all use the suÆx tree as the fundamental data struture ombinedwith eÆient methods for merging searh trees and heap-ordered trees.The problem of �nding ourrenes of repeated substrings in a string is wellstudied. Most of the work has been onerned with eÆient methods for �ndingourrenes of ontiguously repeated substrings. An ourrene of a substringof the form �� is alled an ourrene of a square or a tandem repeat. Mostwell-known methods for �nding the ourrenes of all tandem repeats in a stringrequire time O(n logn+z), where n is the length of the string and z is the numberof reported ourrenes of tandem repeats [5, 2, 18, 15, 24℄. Work has also beendone on just deteting whether or not a string ontains a tandem repeat [19,6℄. Reently, extending on the idea presented in [6℄, two methods have beenpresented that �nd a ompat representation of all tandem repeats in a string intime O(n) [14, 10℄. Other papers onsider the problem of �nding ourrenes ofontiguous repeats of substrings that are within some Hamming- or edit-distaneof eah other [16℄.In biologial sequene analysis searhing for tandem repeats is used to re-veal strutural and funtional information [9, pp. 139{142℄, but searhing forexat tandem repeats an be too restritive beause of sequening and otherexperimental errors. By searhing for maximal pairs with small gaps (maybedepending on the length of the substring) it ould be possible to ompensatefor these errors. On the other hand, �nding maximal pairs with a gap withinan interval an be seen as a generalization of �nding ourrenes of tandem re-peats. Stoye and Gus�eld [24℄ say that an ourrene of the tandem repeat ��is a branhing ourrene of the tandem repeat �� if and only if the haratersto the immediate right of the two ourrenes of � are di�erent, and they ex-plain how to dedue the ourrene of all tandem repeats in a string from theourrenes of branhing tandem repeats in time proportional to the numberof tandem repeats. Sine a branhing ourrene of a tandem repeat is just aright-maximal pair with gap zero, the methods presented in this paper an beused to �nd all tandem repeats in time O(n logn + z). This mathes the timebounds of previous published methods for this problem [5, 2, 18, 15, 24℄.The rest of this paper is organized as follows. In Set. 2 we de�ne pairs andsuÆx trees and desribe how in general to �nd pairs using the suÆx tree. InSet. 3 we present fats about eÆient merging of searh trees, and use them toformulate methods for �nding all maximal pairs in a string with gap in an upperand lower bounded interval. In Set. 4 we briey disuss how to �nd all maximalpairs in a string with gap in a lower bounded interval. Finally, in Set. 5 wesummarize our work and disuss open problems.



2 PreliminariesThroughout this paper S will denote a string of length n over a �nite alphabet �.We will use S[i℄, for i = 1; 2; : : : ; n, to denote the ith harater of S, and useS[i :: j℄ as notation for the substring S[i℄S[i+1℄ � � �S[j℄ of S. To be able to referto the haraters to the left and right of every harater in S without worryingabout the �rst and last harater, we de�ne S[0℄ and S[n+1℄ to be two distintharaters not appearing anywhere else in S.In order to formulate methods for �nding repetitive strutures in S, we needa proper de�nition of suh strutures. An obvious de�nition is to �nd all pairs ofidential substrings in S. This, however, leads to a lot of redundant output, e.g.in the string that onsists of n idential haraters there are �(n3) suh pairs. Tolimit the redundany without sari�ing any meaningful strutures Gus�eld [9℄de�nes maximal pairs.De�nition 1 (Pair). We say that (i; j; j�j) is a pair of � in S formed by i and jif and only if 1 � i < j � n�j�j+1 and � = S[i :: i+ j�j�1℄ = S[j :: j+ j�j�1℄.The pair is left-maximal (right-maximal) if the haraters to the immediate left(right) of two ourrenes of � are di�erent, i.e. left-maximal if S[i�1℄ 6= S[j�1℄and right-maximal if S[i+ j�j℄ 6= S[j+ j�j℄. The pair is maximal if it is right- andleft-maximal. The gap of a pair (i; j; j�j) is the number of haraters j � i� j�jbetween the two ourrenes of � in S.It follows from the de�nition that a string of length n in the worst ase on-tains �(n2) right-maximal pairs. The string an ontains the worst ase numberof right-maximal pairs but only �(n) maximal pairs. The string (aab)n=3 how-ever ontains �(n2) maximal pairs. This shows that the worst ase number ofmaximal pairs and right-maximal pairs in a string are asymptotially equal.Figure 1 illustrates the ourrene of a pair. In some appliations it mightbe interesting only to �nd pairs that obey ertain restritions on the gap, e.g. to�lter out pairs of substrings that are overlapping or far apart and thus to reduethe number of pairs to report. Using the \smaller-half trik", see Set. 3.1, andLemma 3 it is easy to prove that a string of length n in the worst ase ontains�(n logn) right-maximal pairs with gap in an interval of onstant size.In this paper we present methods for �nding all right-maximal and maximalpairs (i; j; j�j) in S with gap in a bounded interval. These methods all use thesuÆx tree of S as the fundamental data struture. We briey review the suÆxtree and refer to [9℄ for a more omprehensive treatment.De�nition 2 (SuÆx tree). The suÆx tree T (S) of the string S is the om-pressed trie of all suÆxes of S. Eah leaf in T (S) represents a suÆx S[i :: n℄ of Sand is annotated with the index i. We refer to the set of indies stored at theleaves in the subtree rooted at node v as the leaf-list of v and denote it LL(v).Eah edge in T (S) is labelled with a nonempty substring of S suh that the pathfrom the root to the leaf annotated with index i spells the suÆx S[i :: n℄. Werefer to the substring of S spelled by the path from the root to node v as thepath-label of v and denote it L(v).



i � �gap jFig. 1. An ourrene of a pair (i; j; j�j) with gap j � i� j�j.The suÆx tree T (S) an be onstruted in time O(n) [26, 20, 25, 7℄. It followsfrom the de�nition that all internal nodes in T (S) have out-degree between twoand j�j. We an turn the suÆx tree T (S) into the binary suÆx tree TB(S) byreplaing every node v in T (S) with out-degree d > 2 by a binary tree with d�1internal nodes and d� 2 internal edges in whih the d leaves are the d hildrenof node v. We label eah new internal edge with the empty string suh thatthe d � 1 nodes replaing node v all have the same path-label as node v hasin T (S). Sine T (S) has n leaves, onstruting the binary suÆx tree TB(S)requires adding at most n� 2 new nodes. Sine eah new node an be added inonstant time, the binary suÆx tree TB(S) an be onstruted in time O(n).The binary suÆx tree is an essential omponent of our methods. De�nition 2implies that there is a node v in T (S) with path-label � if and only if � is thelongest ommon pre�x of S[i :: n℄ and S[j :: n℄ for some 1 � i < j � n. In otherwords, there is a node v with path-label � if and only if (i; j; j�j) is a right-maximal pair in S. Sine S[i + j�j℄ 6= S[j + j�j℄ the indies i and j annot beelements in the leaf-list of the same hild of v. Using the binary suÆx tree TB(S)we an thus formulate the following lemma.Lemma 3. There is a right-maximal pair (i; j; j�j) in S if and only if there is anode v in the binary suÆx tree TB(S) with path-label � and distint hildren w1and w2 where i 2 LL(w1) and j 2 LL(w2).Lemma 3 gives an approah to �nd all right-maximal pairs in S; for everyinternal node v in the binary suÆx tree TB(S) onsider the leaf-lists at its twohildren w1 and w2, and for every element (i; j) in LL(w1) � LL(w2) report aright-maximal pair (i; j; j�j) if i < j and (j; i; j�j) if j < i. To �nd all maximalpairs in S the problem remains to �lter out all right-maximal pairs that are notleft-maximal.3 Pairs with upper and lower bounded gapWe want to �nd all maximal pairs (i; j; j�j) in S with gap between g1(j�j)and g2(j�j), i.e. g1(j�j) � j � i � j�j � g2(j�j), where g1 and g2 are funtionsthat an be omputed in onstant time. An obvious approah is to generate allmaximal pairs in S and only report those with gap between g1(j�j) and g2(j�j),but as shown above there might be asymptotially fewer maximal pairs in Swith gap between g1(j�j) and g2(j�j) than maximal pairs in S in total. We
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Fig. 2. If (p; q; j�j) (respetively (q; p; j�j)) is a pair with gap between g1(j�j)and g2(j�j), then one ourrene of � is at position p and the other ourrene isat a position q in the interval R(p; j�j) (respetively L(p; j�j)) of positions.therefore want to �nd all maximal pairs (i; j; j�j) in S with gap between g1(j�j)and g2(j�j) without generating and onsidering all maximal pairs in S. A steptowards �nding all maximal pairs with gap between g1(j�j) and g2(j�j) is to �ndall right-maximal pairs with gap between g1(j�j) and g2(j�j).Figure 2 shows that if one ourrene of � in a pair with gap between g1(j�j)and g2(j�j) is at position p, then the other ourrene of � must be at a position qin one of the two intervals L(p; j�j) = [ p � j�j � g2(j�j) :: p � j�j � g1(j�j) ℄ orR(p; j�j) = [ p + j�j + g1(j�j) :: p + j�j + g2(j�j) ℄. Together with Lemma 3 thisgives an approah to �nd all right-maximal pairs in S with gap between g1(j�j)and g2(j�j); from every internal node v in the binary suÆx tree TB(S) withpath-label � and hildren w1 and w2, we report for every p in LL(w1) the pairs(p; q; j�j) for all q in LL(w2) \ R(p; j�j) and the pairs (q; p; j�j) for all q inLL(w2) \ L(p; j�j).To report right-maximal pairs eÆiently using this proedure, we must beable to �nd for every p in LL(w1), without looking at all the elements in LL(w2),the proper elements q in LL(w2) to report it against. It turns out that searhtrees make this possible. In this paper we use AVL trees, but other types ofsearh trees, e.g. (a; b)-trees [11℄ or red-blak trees [8℄, an also be used as longas they obey Lemmas 4 and 5 stated below. Before we an formulate algorithmswe review some useful fats about AVL trees.3.1 Data StruturesAn AVL tree T is a balaned searh tree that stores an ordered set of elements.AVL trees were introdued in [1℄, but are explained in almost every textbook ondata strutures. We say that an element e is in T , or e 2 T , if it is stored at anode in T . For short notation we use e to denote both the element and the nodeat whih it is stored in T . We an keep links between the nodes in T in suh away that we in onstant time from the node e an �nd the nodes next(e) andprev (e) storing the next and previous element in inreasing order. We use jT j todenote the size of T , i.e. the number of elements stored in T .EÆient merging of two AVL trees is essential to our methods. Hwang andLin [12℄ show how to merge two sorted lists using the optimal number of om-



parisons. Brown and Tarjan [4℄ show how to implement merging of two height-balaned searh trees, e.g. AVL trees, in time proportional to the optimal num-ber of omparisons. Their result is summarized in Lemma 4, whih immediatelyimplies Lemma 5.Lemma 4. Two AVL trees of size at most n and m an be merged in timeO(log �n+mn �).Lemma 5. Given a sorted list of elements e1; e2; : : : ; en and an AVL tree Tof size at most m, m � n, we an �nd qi = min�x 2 T �� x � ei	 for alli = 1; 2; : : : ; n in time O(log �n+mn �).Proof. Construt the AVL tree of the elements e1; e2; : : : ; en in time O(n). Mergethis AVL tree with T aording to Lemma 4, exept that whenever the merge-algorithm would insert one of the elements e1; e2; : : : ; en into T , we hange themerge-algorithm to report the neighbor of the element in T instead. This modi-�ation does not inrease the running time. utThe \smaller-half trik" is essential to several methods for �nding tandemrepeats [5, 2, 24℄. It says that the sum over all nodes v in an arbitrary binary treeof size n of terms that are O(n1), where n1 � n2 are the numbers of leaves inthe subtrees rooted at the two hildren of v, is O(n logn). Our methods rely ona stronger version of the \smaller-half trik" hinted at in [21, Ex. 35℄ and usedin [22, Chap. 5, p. 84℄; we summarize it in the following lemma.Lemma 6. Let T be an arbitrary binary tree with n leaves. The sum over allinternal nodes v in T of terms that are O(log �n1+n2n1 �), where n1 and n2 are thenumbers of leaves in the subtrees rooted at the two hildren of v, is O(n logn).Proof. As the terms are O(log �n1+n2n1 �) we an �nd onstants, a and b, suh thatthe terms are upper bounded by a + b log �n1+n2n1 �. We will by indution in thenumber of leaves of the binary tree prove that the sum is upper bounded by(2n� 1)a+ b logn!. As logn! = O(n logn) the lemma follows.If T is a leaf then the upper bound holds vauously. Now assume indutivelythat the upper bound holds for all trees with at most n � 1 leaves. Let T bea tree with n leaves where the number of leaves in the subtrees rooted at thetwo hildren of the root are n1 < n and n2 < n. Aording to the indutionhypothesis the sum over all nodes in these two subtrees, i.e. the sum over all nodesof T exept the root, is bounded by (2n1�1)a+ b logn1!+ (2n2�1)a+ b logn2!and thus the entire sum is bounded by(2n1 � 1)a+b logn1! + (2n2 � 1)a+ b logn2! + a+ b log�n1 + n2n1 �= (2(n1 + n2)� 1)a+ b logn1! + b logn2! +b log(n1 + n2)!� b logn1!� b logn2!= (2n� 1)a+ b logn!whih proves the lemma. ut



3.2 AlgorithmsWe �rst desribe an algorithm that �nds all right-maximal pairs in S withbounded gap using AVL trees to keep trak of the elements in the leaf-listsduring a traversal of the binary suÆx tree TB(S). We then extend it to �nd allmaximal pairs in S with bounded gap using an additional AVL tree to �lter outeÆiently all right-maximal pairs that are not left-maximal. Both algorithmsrun in time O(n logn + z) and spae O(n), where z is the number of reportedpairs. In the following we assume, unless stated otherwise, that v is a node in thebinary suÆx tree TB(S) with path-label � and hildren w1 and w2 named suhthat jLL(w1)j � jLL(w2)j. We say that w1 is the small hild of v and that w2 isthe big hild of v.Right-maximal pairs with upper and lower bounded gap To �nd allright-maximal pairs in S with gap between g1(j�j) and g2(j�j) we onsider everynode v in the binary suÆx tree TB(S) in a bottom-up fashion, e.g. during a depth-�rst traversal. At every node v we use AVL trees storing the leaf-lists LL(w1)and LL(w2) at its two hildren to report the proper right-maximal pairs of itspath-label �. The details are given in Algorithm 1 and explained below.At every node v in TB(S) we onstrut an AVL tree, the leaf-list tree T ,that stores the elements in LL(v). If v is a leaf then we onstrut T diretlyin Step 1. If v is an internal node then LL(v) is the union of the disjoint leaf-lists LL(w1) and LL(w2) whih by assumption are stored in the already on-struted T1 and T2, so we onstrut T by merging T1 and T2, jT1j � jT2j, usingLemma 4. Before onstruting T in Step 2 we use T1 and T2 to report right-maximal pairs from node v by reporting every p in LL(w1) against every q inLL(w2)\L(p; j�j) and LL(w2)\R(p; j�j). This is done in two steps. In Step 2awe �nd for every p in LL(w1) the minimum element qr(p) in LL(w2)\R(p; j�j)and the minimum element ql(p) in LL(w2) \ L(p; j�j) by searhing in T2 us-ing Lemma 5. In Step 2b we report pairs (p; q; j�j) and (q; p; j�j) for every p inLL(w1) and inreasing q's in LL(w2) starting with qr(p) and ql(p) respetively,until the gap violates the upper or lower bound.To argue that Algorithm 1 �nds all right-maximal pairs with gap betweeng1(j�j) and g2(j�j) it is enough to argue that we for every p in LL(w1) re-port all right-maximal pairs (p; q; j�j) and (q; p; j�j) with gap between g1(j�j)and g2(j�j). The rest follows beause we at every node v in TB(S) onsider ev-ery p in LL(w1). Consider the all Report(qr(p); p + j�j + g2(j�j)) in Step 2b.From the implementation of Report follows that this all reports p against ev-ery q in LL(w2) \ [qr(p) :: p + j�j + g2(j�j)℄. By onstrution of qr(p) and def-inition of R(p; j�j) follows that LL(w2) \ [qr(p) :: p + j�j + g2(j�j)℄ is equal toLL(w2)\R(p; j�j), so the all reports all pairs (p; q; j�j) with gap between g1(j�j)and g2(j�j). Similarly we an argue that the all Report(ql(p); p� j�j � g1(j�j))reports all pairs (q; p; j�j) with gap between g1(j�j) and g2(j�j).Now onsider the running time of Algorithm 1. Building the binary suÆxtree TB(S) and reating an AVL tree of size one at eah leaf in Step 1 takestime O(n). At every internal node in TB(S) we do Step 2. Sine jT1j � jT2j



Algorithm 1 Find all right-maximal pairs in string S with bounded gap.1. Initializing: Build the binary suÆx tree TB(S) and reate at eah leaf an AVL treeof size one that stores the index at the leaf.2. Reporting and merging: When the AVL trees T1 and T2, jT1j � jT2j, at the twohildren w1 and w2 of node v with path-label � are available, we do the following:(a) Let fp1; p2; : : : ; psg be the elements in T1 in sorted order. For eah element pin T1 we �nd qr(p) = min�x 2 T2 �� x � p+ j�j+ g1(j�j)	ql(p) = min�x 2 T2 �� x � p� j�j � g2(j�j)	by searhing in T2 with the sorted lists fpi+ j�j+g1(j�j) j i = 1; 2; : : : ; sg andfpi � j�j � g2(j�j) j i = 1; 2; : : : ; sg using Lemma 5.(b) For eah element p in T1 we do Report(qr(p); p + j�j + g2(j�j)) andReport(ql(p); p� j�j � g1(j�j)) where Report is the following proedure.def Report(from; to) :q = fromwhile q � to :report pair (p; q; j�j) if p < q, and (q; p; j�j) otherwiseq = next(q)() Build the leaf-list tree T at node v by merging T1 and T2 using Lemma 4.searhing in Step 2a and merging in Step 2 takes time O(log �jT1j+jT2jjT1j �) byLemmas 5 and 4 respetively. Reporting of pairs in Step 2b takes time pro-portional to jT1j, beause we onsider every p in LL(w1), plus the number ofreported pairs. Summing this over all nodes gives by Lemma 6 that the totalrunning time is O(n logn + z), where z is the number of reported pairs. Sineonstruting and keeping TB(S) requires spae O(n), and sine no element atany time is in more than one leaf-list tree, Algorithm 1 requires spae O(n).Theorem 7. Algorithm 1 �nds all right-maximal pairs (i; j; j�j) in a string Swith gap between g1(j�j) and g2(j�j) in spae O(n) and time O(n logn + z),where z is the number of reported pairs and n is the length of S.Maximal pairs with upper and lower bounded gap We now turn towards�nding all maximal pairs in S with gap between g1(j�j) and g2(j�j). Our ap-proah to �nd all maximal pairs in S with gap between g1(j�j) and g2(j�j) is toextend Algorithm 1 to �lter out all right-maximal pairs that are not left-maximal.A simple solution is to extend the proedure Report to hek if S[p�1℄ 6= S[q�1℄before reporting the pair (p; q; j�j) or (q; p; j�j) in Step 2b. This solution takestime proportional to the number of inspeted right-maximal pairs, and not timeproportional to the number of reported maximal pairs. Even though the max-imum number of right-maximal pairs and maximal pairs in strings of a given



length are asymptotially equal, many strings ontain signi�antly fewer max-imal pairs than right-maximal pairs. We therefore want to �lter out all right-maximal pairs that are not left-maximal without inspeting all right-maximalpairs. In the remainder of this setion we desribe one way to do this.Consider the reporting step in Algorithm 1 and assume that we are about toreport from a node v with hildren w1 and w2. The leaf-list trees T1 and T2,jT1j � jT2j, are available and they make it possible to aess the elementsin LL(w1) = fp1; p2; : : : ; psg and LL(w2) = fq1; q2; : : : ; qtg in sorted order. Wedivide the sorted leaf-list LL(w2) into bloks of ontiguous elements suh thatthe elements qi�1 and qi are in the same blok if and only if S[qi�1�1℄ = S[qi�1℄.We say that we divide the sorted leaf-list into bloks of elements with equal left-haraters. To �lter out all right-maximal pairs that are not left-maximal wemust avoid to report p in LL(w1) against any element q in LL(w2) in a blok ofelements with left-harater S[p� 1℄. This gives the overall idea of the extendedalgorithm; we extend the reporting step in Algorithm 1 suh that whenever weare about to report p in LL(w1) against q in LL(w2) where S[p� 1℄ = S[q � 1℄we skip all elements in the urrent blok ontaining q and ontinue reporting pagainst the �rst element q0 in the following blok, whih by the de�nition ofbloks satis�es that S[p� 1℄ 6= S[q0 � 1℄.To implement this extended reporting step eÆiently we must be able toskip all elements in a blok without inspeting eah of them. We ahieve thisby onstruting an additional AVL tree, the blok-start tree, that keeps trak ofthe bloks in the leaf-list. At eah node v during the traversal of TB(S) we thusonstrut two AVL trees; the leaf-list tree T that stores the elements in LL(v),and the blok-start tree B that keeps trak of the bloks in the sorted leaf-listby storing all the elements in LL(v) that start a blok. We keep links from theblok-start tree to the leaf-list tree suh that we in onstant time an go from anelement in the blok-start tree to the orresponding element in the leaf-list tree.Figure 3 illustrates the leaf-list tree, the blok-start tree and the links betweenthem. Before we present the extended algorithm and explain how to use theblok-start tree to eÆiently skip all elements in a blok, we �rst desribe howto onstrut the leaf-list tree T and blok-start tree B at node v from the leaf-listtrees, T1 and T2, and blok-start trees, B1 and B2, at its two hildren w1 and w2.Sine LL(v) is the union of the disjoint leaf-lists LL(w1) and LL(w2) storedin T1 and T2 respetively, we an onstrut the leaf-list tree T by merging T1and T2 using Lemma 4. It is more involved to onstrut the blok-start tree B.The reason is that an element pi that starts a blok in LL(w1) or an element qjthat starts a blok in LL(w2) does not neessarily start a blok in LL(v) and vieversa, so we annot onstrut B by merging B1 and B2. Let fe1; e2; : : : ; es+tgbe the elements in LL(v) in sorted order. By de�nition the blok-start tree Bontains all elements ek in LL(v) where S[ek�1�1℄ 6= S[ek�1℄. We onstrut Bby modifying B2. We hoose to modify B2, and not B1, beause jLL(w1)j �jLL(w2)j, whih by the \smaller-half trik" allows us to onsider all elementsin LL(w1) without spending too muh time in total. To modify B2 to beome Bwe must identify all the elements that are in B but not in B2 and vie versa.



Be7 e8e4 e5 e6T e1 e4 e7e1 e2 e3Fig. 3. The data struture onstruted at eah node v in TB(S). The leaf-list tree Tstores all elements in LL(v). The blok-start tree B stores all elements in LL(v) thatstart a blok in the sorted leaf-list. We keep links from the elements in the blok-starttree to the orresponding elements in the leaf-list tree.Lemma 8. If ek is in B but not in B2 then ek 2 LL(w1) or ek�1 2 LL(w1).Proof. Assume that ek is in B and that ek and ek�1 both are in LL(w2).In LL(w2) the elements ek and ek�1 are neighboring elements qj and qj�1.Sine ek starts a blok in LL(v) then S[qj � 1℄ = S[ek � 1℄ 6= S[ek�1 � 1℄ =S[qj�1 � 1℄. This shows that qj = ek is in B2 and the lemma follows. utLet NEW be the set of elements ek in B where ek or ek�1 are in LL(w1). Itfollows from Lemma 8 that this set ontains at least all elements in B that arenot in B2. It is easy to see that we an onstrut NEW in sorted order whilemerging T1 and T2; whenever an element ek from T1, i.e. LL(w1), is plaed in T ,i.e. LL(v), we inlude it, and/or the next element ek+1 plaed in T , in NEW ifthey start a blok in LL(v).If we insert the elements in NEW we are halfway done modifying B2 tobeome B. We still need to identify and remove the elements that should beremoved from B2, that is, the elements that are in B2 but not in B.Lemma 9. An element qj in B2 is not in B if and only if the largest element ekin NEW smaller than qj in B2 has the same left-harater as qj .Proof. If qj is in B2 but does not start a blok in LL(v), then it must be in ablok started by some element ek with the same left-harater as qj . This blokannot ontain qj�1 beause qj being in B2 implies that S[qj � 1℄ 6= S[qj�1� 1℄.We thus have the ordering qj�1 < ek < qj . This implies that ek is the largestelement in NEW smaller than qj . If ek is the largest element in NEW smallerthan qj , then no blok starts in LL(v) between ek and qj , i.e. all elements e inLL(v) where ek < e < qj satisfy that S[e�1℄ = S[ek�1℄, so if S[ek�1℄ = S[qj�1℄then qj does not start a blok in LL(v). utBy searhing in B2 with the sorted list NEW using Lemma 5 it is straight-forward to �nd all pairs of elements (ek; qj), where ek is the largest element in



NEW smaller than qj in B2. If the left-haraters of ek and qj in suh a pairare equal, i.e. S[ek� 1℄ = S[qj � 1℄, then by Lemma 9 the element qj is not in Band must therefore be removed from B2. It follows from the proof of Lemma 9that if this is the ase then qj�1 < ek < qj , so we an, without destroying theorder among the nodes in B2, remove qj from B2 and insert ek instead, simplyby replaing the element qj with the element ek at the node storing qj in B2.We an now summarize the three steps it takes to modify B2 to beome B.In Step 1 we onstrut the sorted set NEW that ontains all elements in Bthat are not in B2. This is done while merging T1 and T2 using Lemma 4. InStep 2 we remove the elements from B2 that are not in B. The elements in B2being removed and the elements from NEW replaing them are identi�ed usingLemmas 5 and 9. In Step 3 we merge the remaining elements in NEW into themodi�ed B2 using Lemma 4. Adding links from the new elements in B to theorresponding elements in T an be done while replaing and merging in Steps 2and 3. Sine jNEW j � 2 jT1j and jB2j � jT2j, the time it takes to onstrut Bis dominated by the the time it takes merge a sorted list of size 2 jT1j into anAVL tree of size jT2j. By Lemma 4 this is within a onstant fator of the time ittakes to merge T1 and T2, so the time is takes to onstrut B is dominated bythe time it takes to onstrut the leaf-list tree T .Now that we know how to onstrut the leaf-list tree T and blok-start tree Bat node v from the leaf-list trees, T1 and T2, and blok-start trees, B1 and B2,at its two hildren w1 and w2, we an proeed with the implementation of theextended reporting step. The details are shown in Algorithm 2. This algorithmis similar to Algorithm 1 exept that we at every node v in TB(S) onstruttwo AVL trees; the leaf-list tree T that stores the elements in LL(v), and theblok-start tree B that keeps trak of the bloks in LL(v) by storing the subsetof elements that start a blok. If v is a leaf, we onstrut T and B diretly. If vis an internal node, we onstrut T by merging the leaf-list trees T1 and T2 atits two hildren w1 and w2, and we onstrut B by modifying the blok-starttree B2 as explained above.Before onstruting T and B we report all maximal pairs from node v withgap between g1(j�j) and g2(j�j) by reporting every p in LL(w1) against every q inLL(w2)\L(p; j�j) and LL(w2)\R(p; j�j) where S[p�1℄ 6= S[q�1℄. This is done intwo steps. In Step 2a we �nd for every p in LL(w1) the minimum elements ql(p)and qr(p), as well as the minimum elements bl(p) and br(p) that start a blok, inLL(w2)\L(p; j�j) and LL(w2)\R(p; j�j) respetively. This is done by searhingin T2 and B2 using Lemma 5. In Step 2b we report pairs (p; q; j�j) and (q; p; j�j)for every p in LL(w1) and inreasing q's in LL(w2) starting with qr(p) and ql(p)respetively, until the gap violates the upper or lower bound. Whenever we areabout to report p against q where S[p� 1℄ = S[q� 1℄, we instead use the blok-start tree B2 to skip all elements in the blok ontaining q and ontinue withreporting p against the �rst element in the following blok.To argue that Algorithm 2 �nds all maximal pairs with gap between g1(j�j)and g2(j�j) it is enough to argue that we for every p in LL(w1) report all maxi-mal pairs (p; q; j�j) and (q; p; j�j) with gap between g1(j�j) and g2(j�j). The rest



Algorithm 2 Find all maximal pairs in string S with bounded gap.1. Initializing: Build the binary suÆx tree TB(S) and reate at eah leaf two AVLtrees of size one, the leaf-list and the blok-start tree, both storing the index atthe leaf.2. Reporting and merging: When the leaf-list trees T1 and T2, jT1j � jT2j, and theblok-start trees B1 and B2 at the two hildren w1 and w2 of node v with path-label� are available, we do the following:(a) Let fp1; p2; : : : ; psg be the elements in T1 in sorted order. For eah element pin T1 we �nd qr(p) = min�x 2 T2 �� x � p+ j�j+ g1(j�j)	ql(p) = min�x 2 T2 �� x � p� j�j � g2(j�j)	br(p) = min�x 2 B2 �� x � p+ j�j+ g1(j�j)	bl(p) = min�x 2 B2 �� x � p� j�j � g2(j�j)	by searhing in T2 and B2 with the sorted lists fpi + j�j + g1(j�j) j i =1; 2; : : : ; sg and fpi � j�j � g2(j�j) j i = 1; 2; : : : ; sg using Lemma 5.(b) For eah element p in T1 we do ReportMax(qr(p); br(p); p+ j�j + g2(j�j)) andReportMax(ql(p); bl(p); p�j�j� g1(j�j)) where ReportMax is the following pro-edure.def ReportMax(from T ; from B ; to):q = from Tb = from Bwhile q � to:if S[q � 1℄ 6= S[p� 1℄:report pair (p; q; j�j) if p < q, and (q; p; j�j) otherwiseq = next(q)else: while b � q:b = next(b)q = b() Build the leaf-list tree T at node v by merging T1 and T2 using Lemma 4.Build the blok-start tree B at node v by modifying B2 as desribed in thetext.follows beause we at every node in TB(S) onsider every p in LL(w1). Considerthe all ReportMax(qr(p); br(p); p + j�j + g2(j�j)) in Step 2b. From the imple-mentation of ReportMax follows that unless we skip elements by inreasing bthen we onsider every q in LL(w2) \ R(p; j�j). The test S[q � 1℄ 6= S[p � 1℄before reporting a pair ensures that we only report maximal pairs and when-ever S[q � 1℄ = S[p � 1℄ we inrease b until b = minfx 2 B2 j x > qg. Thisis, by onstrution of B2 and br(p), the element that starts the blok follow-ing the blok ontaining q, so all elements q0, q < q0 < b, we skip by set-ting q to b satisfy that S[p � 1℄ = S[q � 1℄ = S[q0 � 1℄. We thus onlude that



ReportMax(qr(p); br(p); p + j�j + g2(j�j)) reports p against exatly those q inLL(w2) \ R(p; j�j) where S[p � 1℄ 6= S[q � 1℄, i.e. it reports all maximal pairs(p; q; j�j) at node v with gap between g1(j�j) and g2(j�j). Similarly, the allReportMax(ql(p); bl(p); p�j�j� g1(j�j)) reports all maximal pairs (q; p; j�j) withgap between g1(j�j) and g2(j�j).Now onsider the running time of Algorithm 2. We �rst argue that the allReportMax(qr(p); br(p); p + j�j + g2(j�j)) takes onstant time plus time propor-tional to the number of reported pairs (p; q; j�j). To do this all we have to showis that the time used to skip bloks, i.e. the number of times we inrease b, isproportional to the number of reported pairs. By onstrution br(p) � qr(p),so the number of times we inrease b is bounded by the number of bloks inLL(w2)\R(p; j�j). Sine neighboring bloks ontain elements with di�erent left-haraters, we report p against an element from at least every seond blok inLL(w2) \ R(p; j�j). The number of times we inrease b is thus proportional tothe number of reported pairs. The all ReportMax(ql(p); bl(p); p � j�j � g1(j�j))also takes onstant time plus time proportional to the number of reported pairs(q; p; j�j). We thus have that Step 2b takes time proportional to jT1j plus thenumber of reported pairs. Everything else we do at node v, i.e. searhing in T2and B2 and onstruting the leaf-list tree T and blok-start tree B, takes timeO(log �jT1j+jT2jjT1j �). Summing this over all nodes gives by Lemma 6 that the totalrunning time of the algorithm is O(n logn+z) where z is the number of reportedpairs. Sine onstruting and keeping TB(S) requires spae O(n), and sine noelement at any time is in more than one leaf-list tree, and maybe one blok-starttree, Algorithm 2 requires spae O(n).Theorem 10. Algorithm 2 �nds all maximal pairs (i; j; j�j) in a string S withgap between g1(j�j) and g2(j�j) in spae O(n) and time O(n logn+ z), where zis the number of reported pairs and n is the length of S.We observe that Algorithm 2 never uses the blok-start tree B1 at the smallhild w1. This observation an be used to ensure that only one blok-start tree ex-ists during the exeution of the algorithm. If we implement the traversal of TB(S)as a depth-�rst traversal in whih we at eah node v �rst reursively traverse thesubtree rooted at the small hild w1, then we do not need to store the blok-starttree returned by this reursive traversal while reursively traversing the subtreerooted at the big hild w2. This implies that only one blok-start tree exists atall times during the reursive traversal of TB(S). The drawbak is that we ateah node v need to know in advane whih hild is the small hild, but thisknowledge an be obtained in linear time by annotating eah node with the sizeof the subtree it roots.4 Pairs with lower bounded gapIf we relax the onstraint on the gap and only want to �nd all maximal pairsin S with gap at least g(j�j), where g is a funtion that an be omputedin onstant time, then a straightforward solution is to use Algorithm 2 with



g1(j�j) = g(j�j) and g2(j�j) = n. This obviously �nds all maximal pairs withgap at least g1(j�j) = g(j�j) in time O(n logn+ z). However, the missing upperbound on the gap, i.e. the trivial upper bound g2(j�j) = n, makes it possible toredue the running time to O(n+ z) sine reporting from eah node during thetraversal of the binary suÆx tree is simpli�ed.The reporting of pairs from node v with hildren w1 and w2 is simpli�ed,beause the lak of an upper bound on the gap implies that we do not haveto searh LL(w2) for the �rst element to report against the urrent elementin LL(w1). Instead we an start by reporting the urrent element in LL(w1)against the biggest (and smallest) element in LL(w2) and then ontinue report-ing it against dereasing (and inreasing) elements from LL(w2) until the gapbeomes smaller than g(j�j). Unfortunately this simpli�ation alone does not re-due the asymptoti running time beause inspeting every element in LL(w1)and keeping trak of the leaf-lists in AVL trees alone requires time �(n logn). Toredue the running time we must thus avoid to inspet every element in LL(w1)and �nd another way to store the leaf-lists.We ahieve this by using a data struture based on heap-ordered trees tostore the leaf-lists during the traversal of the binary suÆx tree. The key featureof the data struture is that it allows us to merge two trees in amortized onstanttime. The details of the data struture and the methods using it to �nd pairswith gap at least g(j�j) is given in [3, Set. 4℄. Here we just summarize the result.Theorem 11. All maximal pairs (i; j; j�j) in a string S with gap at least g(j�j)an be found in spae O(n) and time O(n+z), where z is the number of reportedpairs and n is the length of S.5 ConlusionWe have presented eÆient and exible methods to �nd all maximal pairs(i; j; j�j) in a string under various onstraints on the gap j � i� j�j. If the gapis required to be between g1(j�j) and g2(j�j), the running time is O(n logn+ z)where n is the length of the string and z is the number of reported pairs. If thegap is only required to be at least g1(j�j), the running time redues to O(n+ z).In both ases we use spae O(n).In some ases it might be interesting only to �nd maximal pairs (i; j; j�j)ful�lling additional requirements on j�j, e.g. to �lter out pairs of short substrings.This is straightforward to do using our methods by only reporting from the nodesin the binary suÆx tree whose path-label � ful�lls the requirements on j�j. Inother ases it might be of interest just to �nd the voabulary of substrings thatour in maximal pairs. This is also straightforward to do using our methods byjust reporting the path-label � of a node if we an report one or more maximalpairs from the node.Instead of just looking for maximal pairs, it ould be interesting to lookfor an array of ourrenes of the same substring in whih the gap betweenonseutive ourrenes is bounded by some onstants. This problem requires a
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