Finding maximal pairs with bounded gap

Gerth Stglting Brodal*, Rune B. Lyngsg*,
Christian N. S. Pedersen*, and Jens Stoye**

Abstract. A pair in a string is the occurrence of the same substring
twice. A pair is maximal if the two occurrences of the substring cannot
be extended to the left and right without making them different. The gap
of a pair is the number of characters between the two occurrences of the
substring. In this paper we present methods for finding all maximal pairs
under various constraints on the gap. In a string of length n we can find
all maximal pairs with gap in an upper and lower bounded interval in
time O(nlogn+ z) where z is the number of reported pairs. If the upper
bound is removed the time reduces to O(n+ z). Since a tandem repeat is
a pair where the gap is zero, our methods can be seen as a generalization
of finding tandem repeats. The running time of our methods equals the
running time of well known methods for finding tandem repeats.

1 Introduction

A pair in a string is the occurrence of the same substring twice. A pair is left-
maximal (right-maximal) if the characters to the immediate left (right) of the
two occurrences of the substring are different. A pair is maximal if it is both
left- and right-maximal. The gap of a pair is the number of characters between
the two occurrences of the substring. For example, the two occurrences of the
substring ma in the string mazimal form a maximal pair of ma with gap two.

Gusfield [9, Sect. 7.12.3] describes how to report all maximal pairs in a string
using the suffix tree of the string in time O(n + 2) and space O(n), where n
is the length of the string and z is the number of reported pairs. Since there
is no restriction on the gap of the maximal pairs reported by this algorithm,
many of them probably describe occurrences of substrings that are overlapping
or far apart in the string. In many applications in computational biology this
is unfortunate, so several papers address the problem of finding occurrences of
similar substrings not too far apart [13,17,23].

In this paper we will describe how to find all maximal pairs in a string with
gap in an upper and lower bounded interval in time O(n log n+z) and space O(n).
The interval of allowed gaps can be chosen such that we report a maximal pair

* Basic Research in Computer Science (BRICS), Centre of the Danish National Re-
search Foundation, Department of Computer Science, University of Aarhus, Ny
Munkegade, 8000 Arhus C, Denmark. E-mail: {gerth,rlyngsoe,cstorm}@brics.dk.
Supported by the ESPRIT Long Term Research Programme of the EU under project
number 20244 (ALCOM-IT).

** Deutsches Krebsforschungszentrum (DKFZ), Theoretische Bioinformatik, Im Neuen-
heimer Feld 280, 69120 Heidelberg, Germany. E-mail: j.stoye@dkfz-heidelberg.de

only if the gap is between constants ¢; and co, but more generally, it can be
chosen such that we report a maximal pair of a only if the gap is between g1 (||)
and ¢>(|a]), where g; and g» are functions that can be computed in constant time.
This, for example, makes it possible to find all maximal pairs with gap between
zero and some fraction of the length of the repeated substring. If we remove the
upper bound on allowed gaps, and only require the gap of a reported pair of a
to be at least g1 (Ja|), then the running time reduces to O(n + z). The methods
we present all use the suffix tree as the fundamental data structure combined
with efficient methods for merging search trees and heap-ordered trees.

The problem of finding occurrences of repeated substrings in a string is well
studied. Most of the work has been concerned with efficient methods for finding
occurrences of contiguously repeated substrings. An occurrence of a substring
of the form aa is called an occurrence of a square or a tandem repeat. Most
well-known methods for finding the occurrences of all tandem repeats in a string
require time O(n logn+z2), where n is the length of the string and z is the number
of reported occurrences of tandem repeats [5,2, 18,15, 24]. Work has also been
done on just detecting whether or not a string contains a tandem repeat [19,
6]. Recently, extending on the idea presented in [6], two methods have been
presented that find a compact representation of all tandem repeats in a string in
time O(n) [14,10]. Other papers consider the problem of finding occurrences of
contiguous repeats of substrings that are within some Hamming- or edit-distance
of each other [16].

In biological sequence analysis searching for tandem repeats is used to re-
veal structural and functional information [9, pp. 139-142], but searching for
exact tandem repeats can be too restrictive because of sequencing and other
experimental errors. By searching for maximal pairs with small gaps (maybe
depending on the length of the substring) it could be possible to compensate
for these errors. On the other hand, finding maximal pairs with a gap within
an interval can be seen as a generalization of finding occurrences of tandem re-
peats. Stoye and Gusfield [24] say that an occurrence of the tandem repeat aa
is a branching occurrence of the tandem repeat ac« if and only if the characters
to the immediate right of the two occurrences of « are different, and they ex-
plain how to deduce the occurrence of all tandem repeats in a string from the
occurrences of branching tandem repeats in time proportional to the number
of tandem repeats. Since a branching occurrence of a tandem repeat is just a
right-maximal pair with gap zero, the methods presented in this paper can be
used to find all tandem repeats in time O(nlogn + z). This matches the time
bounds of previous published methods for this problem [5,2, 18,15, 24].

The rest of this paper is organized as follows. In Sect. 2 we define pairs and
suffix trees and describe how in general to find pairs using the suffix tree. In
Sect. 3 we present facts about efficient merging of search trees, and use them to
formulate methods for finding all maximal pairs in a string with gap in an upper
and lower bounded interval. In Sect. 4 we briefly discuss how to find all maximal
pairs in a string with gap in a lower bounded interval. Finally, in Sect. 5 we
summarize our work and discuss open problems.

2 Preliminaries

Throughout this paper S will denote a string of length n over a finite alphabet Y.
We will use S[i], for i = 1,2,...,n, to denote the ith character of S, and use
STi .. j] as notation for the substring S[i]S[i + 1] - -- S[j] of S. To be able to refer
to the characters to the left and right of every character in S without worrying
about the first and last character, we define S[0] and S[n + 1] to be two distinct
characters not appearing anywhere else in S.

In order to formulate methods for finding repetitive structures in S, we need
a proper definition of such structures. An obvious definition is to find all pairs of
identical substrings in S. This, however, leads to a lot of redundant output, e.g.
in the string that consists of n identical characters there are @(n?) such pairs. To
limit the redundancy without sacrificing any meaningful structures Gusfield [9]
defines maximal pairs.

Definition 1 (Pair). We say that (i, j,|«|) is a pair of o in S formed by 4 and j
ifandonlyifl1 <i<j<n—|a|+land a=S[i..i+|a|—1]=S[j..j+]|a|—1].
The pair is left-maximal (right-maximal) if the characters to the immediate left
(right) of two occurrences of « are different, i.e. left-maximal if S[i —1] # S[j —1]
and right-maximal if S[i+ |a|] # S[j +|a|]. The pair is maximal if it is right- and
left-maximal. The gap of a pair (i, 4, |@|) is the number of characters j —i — |a]
between the two occurrences of a in S.

It follows from the definition that a string of length n in the worst case con-
tains @(n?) right-maximal pairs. The string a™ contains the worst case number
of right-maximal pairs but only ©(n) maximal pairs. The string (aab)"/? how-
ever contains @(n?) maximal pairs. This shows that the worst case number of
maximal pairs and right-maximal pairs in a string are asymptotically equal.

Figure 1 illustrates the occurrence of a pair. In some applications it might
be interesting only to find pairs that obey certain restrictions on the gap, e.g. to
filter out pairs of substrings that are overlapping or far apart and thus to reduce
the number of pairs to report. Using the “smaller-half trick”, see Sect. 3.1, and
Lemma 3 it is easy to prove that a string of length n in the worst case contains
O(nlogn) right-maximal pairs with gap in an interval of constant size.

In this paper we present methods for finding all right-maximal and maximal
pairs (4, j, |a|) in S with gap in a bounded interval. These methods all use the
suffix tree of S as the fundamental data structure. We briefly review the suffix
tree and refer to [9] for a more comprehensive treatment.

Definition 2 (Suffix tree). The suffix tree T(S) of the string S is the com-
pressed trie of all suffixes of S. Each leaf in T'(S) represents a suffix S[i..n] of S
and is annotated with the index i. We refer to the set of indices stored at the
leaves in the subtree rooted at node v as the leaf-list of v and denote it LL(v).
Each edge in T'(S) is labelled with a nonempty substring of S such that the path
from the root to the leaf annotated with index ¢ spells the suffix S[i..n]. We
refer to the substring of S spelled by the path from the root to node v as the
path-label of v and denote it L(v).

Fig. 1. An occurrence of a pair (i, j, |a|) with gap j —i — |a.

The suffix tree T'(S) can be constructed in time O(n) [26, 20, 25, 7]. It follows
from the definition that all internal nodes in T'(S) have out-degree between two
and |X|. We can turn the suffix tree T(S) into the binary suffix tree T(S) by
replacing every node v in T'(S) with out-degree d > 2 by a binary tree with d —1
internal nodes and d — 2 internal edges in which the d leaves are the d children
of node v. We label each new internal edge with the empty string such that
the d — 1 nodes replacing node v all have the same path-label as node v has
in T(S). Since T(S) has n leaves, constructing the binary suffix tree Tg(S)
requires adding at most n — 2 new nodes. Since each new node can be added in
constant time, the binary suffix tree Tg(S) can be constructed in time O(n).

The binary suffix tree is an essential component of our methods. Definition 2
implies that there is a node v in T'(S) with path-label « if and only if « is the
longest common prefix of S[i..n] and S[j..n] for some 1 < i < j < n. In other
words, there is a node v with path-label « if and only if (7,j,|a|) is a right-
maximal pair in S. Since S[i + |a|] # S[j + |a|] the indices i and j cannot be
elements in the leaf-list of the same child of v. Using the binary suffix tree T5(S)
we can thus formulate the following lemma.

Lemma 3. There is a right-mazimal pair (i,j,|a|) in S if and only if there is a
node v in the binary suffix tree Tg(S) with path-label a and distinct children wy
and wo where i € LL(wy) and j € LL(w-).

Lemma 3 gives an approach to find all right-maximal pairs in S; for every
internal node v in the binary suffix tree T(S) consider the leaf-lists at its two
children wy and ws, and for every element (i,j) in LL(wq) X LL(ws) report a
right-maximal pair (4, j, |a|) if i < j and (4,4, |a|) if j < i. To find all maximal
pairs in S the problem remains to filter out all right-maximal pairs that are not
left-maximal.

3 Pairs with upper and lower bounded gap

We want to find all maximal pairs (i, 7, |a]) in S with gap between g1(|a|)
and ga(|a|), ie. g1(la]) < j —i—|a] < ga(Ja]), where g1 and g are functions
that can be computed in constant time. An obvious approach is to generate all
maximal pairs in S and only report those with gap between g;(Ja|) and g2(|al),
but as shown above there might be asymptotically fewer maximal pairs in §
with gap between g¢1(Ja|) and g¢»(|a|) than maximal pairs in S in total. We

<— la[+g91(|a]) —><—la| + g1 (|a]) —=

<ol +g2(laf) > le| + g2(|e])
% 2 a % %
L(p, |al) p R(p,|al)

Fig.2. If (p,q,|a|) (respectively (q,p,|a|)) is a pair with gap between gi(ja|)
and g¢2(|a|), then one occurrence of « is at position p and the other occurrence is
at a position ¢ in the interval R(p, |a|) (respectively L(p,|a|)) of positions.

therefore want to find all maximal pairs (i, j, |a|) in S with gap between g; (|a|)
and g2(|a|) without generating and considering all maximal pairs in S. A step
towards finding all maximal pairs with gap between g;(Ja|) and g2 (]e|) is to find
all right-maximal pairs with gap between g;(|a|) and ga2(|a|).

Figure 2 shows that if one occurrence of « in a pair with gap between g; (|a|)
and g2 (|a]) is at position p, then the other occurrence of o must be at a position ¢
in one of the two intervals L(p,|a|) = [p — |a| — g2(|a]) ..p — |a] — g1(Ja])] or
R(p,la]) = [p+ |a| + g1(Ja]) ..p + |a| + g2(|a])]. Together with Lemma 3 this
gives an approach to find all right-maximal pairs in S with gap between g1 (|a|)
and ga(|a|); from every internal node v in the binary suffix tree Tg(S) with
path-label o and children w; and wsy, we report for every p in LL(w;) the pairs
(p,q,|a|) for all ¢ in LL(wa) N R(p,|a|) and the pairs (g,p,|a|) for all ¢ in
LL(ws) N L(p, o).

To report right-maximal pairs efficiently using this procedure, we must be
able to find for every p in LL(w;), without looking at all the elements in LL(w-),
the proper elements ¢ in LL(w2) to report it against. It turns out that search
trees make this possible. In this paper we use AVL trees, but other types of
search trees, e.g. (a,b)-trees [11] or red-black trees [8], can also be used as long
as they obey Lemmas 4 and 5 stated below. Before we can formulate algorithms
we review some useful facts about AVL trees.

3.1 Data Structures

An AVL tree T is a balanced search tree that stores an ordered set of elements.
AVL trees were introduced in [1], but are explained in almost every textbook on
data structures. We say that an element e is in T, or e € T, if it is stored at a
node in T'. For short notation we use e to denote both the element and the node
at which it is stored in 7. We can keep links between the nodes in T in such a
way that we in constant time from the node e can find the nodes nezt(e) and
prev(e) storing the next and previous element in increasing order. We use |T'| to
denote the size of T', i.e. the number of elements stored in T'.

Efficient merging of two AVL trees is essential to our methods. Hwang and
Lin [12] show how to merge two sorted lists using the optimal number of com-

parisons. Brown and Tarjan [4] show how to implement merging of two height-
balanced search trees, e.g. AVL trees, in time proportional to the optimal num-
ber of comparisons. Their result is summarized in Lemma 4, which immediately
implies Lemma 5.

Lemma 4. Two AVL trees of size at most n and m can be merged in time
O(log ("F™)).

n

Lemma 5. Given a sorted list of elements e1,ea,... e, and an AVL tree T
of size at most m, m > n, we can find q; = min{x eT ‘ T > ei} for all

i=1,2,... ,n in time O(log (”';m))

Proof. Construct the AVL tree of the elements eq, e, . .. , e, in time O(n). Merge
this AVL tree with T" according to Lemma 4, except that whenever the merge-
algorithm would insert one of the elements ey, es, ... ,e, into T, we change the
merge-algorithm to report the neighbor of the element in T' instead. This modi-
fication does not increase the running time. O

The “smaller-half trick” is essential to several methods for finding tandem
repeats [5, 2, 24]. It says that the sum over all nodes v in an arbitrary binary tree
of size n of terms that are O(n1), where n; < ns are the numbers of leaves in
the subtrees rooted at the two children of v, is O(nlogn). Our methods rely on
a stronger version of the “smaller-half trick” hinted at in [21, Ex. 35] and used
in [22, Chap. 5, p. 84]; we summarize it in the following lemma.

Lemma 6. Let T be an arbitrary binary tree with n leaves. The sum over all
internal nodes v in T of terms that are O(log (”17:"2)), where ny and ny are the
numbers of leaves in the subtrees rooted at the two children of v, is O(nlogn).

Proof. As the terms are O(log (”1:1”2)) we can find constants, a and b, such that

the terms are upper bounded by a + blog (”‘:1”2). We will by induction in the
number of leaves of the binary tree prove that the sum is upper bounded by
(2n — 1)a + blogn!. As logn! = O(nlogn) the lemma follows.

If T is a leaf then the upper bound holds vacuously. Now assume inductively
that the upper bound holds for all trees with at most n — 1 leaves. Let T be
a tree with n leaves where the number of leaves in the subtrees rooted at the
two children of the root are ny < n and ny < n. According to the induction
hypothesis the sum over all nodes in these two subtrees, i.e. the sum over all nodes
of T' except the root, is bounded by (2n1 — 1)a+ b logni! + (2ns — 1)a + b log ns!
and thus the entire sum is bounded by

(2n1 — 1)a+blogni! + (2ns — 1)a + blogna! + a + blog <n1 + n2>

ni
= (2(n1 +n2) — 1)a+ blogni! + blogno! +

blog(ny + na)! — blogny! — blogns!
=(2n —1)a + blogn!

which proves the lemma. O

3.2 Algorithms

We first describe an algorithm that finds all right-maximal pairs in S with
bounded gap using AVL trees to keep track of the elements in the leaf-lists
during a traversal of the binary suffix tree Tg(S). We then extend it to find all
maximal pairs in S with bounded gap using an additional AVL tree to filter out
efficiently all right-maximal pairs that are not left-maximal. Both algorithms
run in time O(nlogn + z) and space O(n), where z is the number of reported
pairs. In the following we assume, unless stated otherwise, that v is a node in the
binary suffix tree T(S) with path-label a and children wy and ws named such
that |LL(w;)| < |LL(w2)|. We say that w; is the small child of v and that ws is
the big child of v.

Right-maximal pairs with upper and lower bounded gap To find all
right-maximal pairs in S with gap between g1 (|e|) and g2(]a|) we consider every
node v in the binary suffix tree Tg(S) in a bottom-up fashion, e.g. during a depth-
first traversal. At every node v we use AVL trees storing the leaf-lists LL(w;)
and LL(ws) at its two children to report the proper right-maximal pairs of its
path-label a. The details are given in Algorithm 1 and explained below.

At every node v in Tg(S) we construct an AVL tree, the leaf-list tree T,
that stores the elements in LL(v). If v is a leaf then we construct T directly
in Step 1. If v is an internal node then LL(v) is the union of the disjoint leaf-
lists LL(w;) and LL(ws) which by assumption are stored in the already con-
structed T and T, so we construct T' by merging T and T, |T1| < |T3|, using
Lemma 4. Before constructing 7" in Step 2¢ we use T} and T» to report right-
maximal pairs from node v by reporting every p in LL(w;) against every ¢ in
LL(w2) N L(p, |a]) and LL(wy) N R(p,||). This is done in two steps. In Step 2a
we find for every p in LL(w;) the minimum element ¢,(p) in LL(wy) N R(p, |a|)
and the minimum element ¢ (p) in LL(w2) N L(p, |a|) by searching in T us-
ing Lemma 5. In Step 2b we report pairs (p,q, |a|) and (g, p, |a|) for every p in
LL(w) and increasing ¢’s in LL(w-) starting with ¢,(p) and ¢;(p) respectively,
until the gap violates the upper or lower bound.

To argue that Algorithm 1 finds all right-maximal pairs with gap between
g1(Ja]) and g2(|a]) it is enough to argue that we for every p in LL(w;) re-
port all right-maximal pairs (p,q,|a|) and (g, p,|a|) with gap between g1(|c|)
and ga(]a|). The rest follows because we at every node v in Tp(S) consider ev-
ery p in LL(w1). Consider the call Report(g.(p),p + |a| + g2(|al)) in Step 2b.
From the implementation of Report follows that this call reports p against ev-
ery ¢ in LL(w2) N [gr-(p) ..p + |a| + g2(J|)]. By construction of ¢,(p) and def-
inition of R(p, |a|) follows that LL(w2) N [g-(p)..p + |a| + g2(|a|)] is equal to
LL(w2)NR(p,|al|), so the call reports all pairs (p, ¢, |a|) with gap between g1 (|a|)
and g2 (Ja|). Similarly we can argue that the call Report(q;(p),p — |a| — g1(|a]))
reports all pairs (g, p, |a|) with gap between ¢ (|a|) and g2(|a]).

Now consider the running time of Algorithm 1. Building the binary suffix
tree Tp(S) and creating an AVL tree of size one at each leaf in Step 1 takes
time O(n). At every internal node in Tg(S) we do Step 2. Since |T| < |Ty|

Algorithm 1 Find all right-maximal pairs in string S with bounded gap.

1. Initializing: Build the binary suffix tree Ts(S) and create at each leaf an AVL tree
of size one that stores the index at the leaf.

2. Reporting and merging: When the AVL trees Ty and Tb, |Th| < |T:|, at the two
children w; and ws of node v with path-label a are available, we do the following:

(a) Let {p1,p2,...,ps} be the elements in T} in sorted order. For each element p
in T we find

a(p)=min{z € b |z >p+|al+ g1(jal)}

a(p) =min{z € T | 2 > p—|a| - g2(lal) }
by searching in T» with the sorted lists {p; + |o|+g1(|a]) | i =1,2,...,s} and
{pi — |la] —g2(Ja]) | i =1,2,... s} using Lemma 5.

(b) For each element p in 79 we do Report(q,(p),p + |a| + g2(|a])) and
Report(q;(p),p — || — g1(Ja|)) where Report is the following procedure.

def Report(from, to) :

q = from

while g < to :
report pair (p, g, |a|) if p < ¢, and (q, p, |@|) otherwise
q = nezt(q)

(c) Build the leaf-list tree T at node v by merging 71 and 75 using Lemma 4.

searching in Step 2a and merging in Step 2c takes time O(log (\T1‘\£\‘T2\)) by
Lemmas 5 and 4 respectively. Reporting of pairs in Step 2b takes time pro-
portional to |Ti|, because we consider every p in LL(w;), plus the number of
reported pairs. Summing this over all nodes gives by Lemma 6 that the total
running time is O(nlogn + z), where z is the number of reported pairs. Since
constructing and keeping Tg(S) requires space O(n), and since no element at

any time is in more than one leaf-list tree, Algorithm 1 requires space O(n).

Theorem 7. Algorithm 1 finds all right-mazimal pairs (i, 3, |a|) in a string S
with gap between g1(|a|) and g2(|a]) in space O(n) and time O(nlogn + z),
where z is the number of reported pairs and n is the length of S.

Maximal pairs with upper and lower bounded gap We now turn towards
finding all maximal pairs in S with gap between g;(Ja|) and g2(|a|). Our ap-
proach to find all maximal pairs in S with gap between ¢; (Jo|) and g2(|e|) is to
extend Algorithm 1 to filter out all right-maximal pairs that are not left-maximal.
A simple solution is to extend the procedure Report to check if S[p—1] # S[g—1]
before reporting the pair (p,q, |a|) or (q,p,|a]) in Step 2b. This solution takes
time proportional to the number of inspected right-maximal pairs, and not time
proportional to the number of reported maximal pairs. Even though the max-
imum number of right-maximal pairs and maximal pairs in strings of a given

length are asymptotically equal, many strings contain significantly fewer max-
imal pairs than right-maximal pairs. We therefore want to filter out all right-
maximal pairs that are not left-maximal without inspecting all right-maximal
pairs. In the remainder of this section we describe one way to do this.

Consider the reporting step in Algorithm 1 and assume that we are about to
report from a node v with children w; and ws. The leaf-list trees 77 and 75,
|T1| < |T>|, are available and they make it possible to access the elements
in LL(w1) = {p1,p2,... ,ps} and LL(w2) = {q1,¢2,... ,q:} in sorted order. We
divide the sorted leaf-list LL(w,) into blocks of contiguous elements such that
the elements ¢;_; and g; are in the same block if and only if S[g;—1 —1] = S[g; —1].
We say that we divide the sorted leaf-list into blocks of elements with equal left-
characters. To filter out all right-maximal pairs that are not left-maximal we
must avoid to report p in LL(w1) against any element ¢ in LL(w2) in a block of
elements with left-character S[p — 1]. This gives the overall idea of the extended
algorithm; we extend the reporting step in Algorithm 1 such that whenever we
are about to report p in LL(w1) against ¢ in LL(w,) where S[p — 1] = S[qg — 1]
we skip all elements in the current block containing ¢ and continue reporting p
against the first element ¢’ in the following block, which by the definition of
blocks satisfies that S[p — 1] # S[¢’ — 1].

To implement this extended reporting step efficiently we must be able to
skip all elements in a block without inspecting each of them. We achieve this
by constructing an additional AVL tree, the block-start tree, that keeps track of
the blocks in the leaf-list. At each node v during the traversal of T5(S) we thus
construct two AVL trees; the leaf-list tree T that stores the elements in LL(v),
and the block-start tree B that keeps track of the blocks in the sorted leaf-list
by storing all the elements in LL(v) that start a block. We keep links from the
block-start tree to the leaf-list tree such that we in constant time can go from an
element in the block-start tree to the corresponding element in the leaf-list tree.
Figure 3 illustrates the leaf-list tree, the block-start tree and the links between
them. Before we present the extended algorithm and explain how to use the
block-start tree to efficiently skip all elements in a block, we first describe how
to construct the leaf-list tree T' and block-start tree B at node v from the leaf-list
trees, Ty and Ty, and block-start trees, B; and Bs, at its two children w; and ws.

Since LL(v) is the union of the disjoint leaf-lists LL(w;) and LL(w-) stored
in Ty and T, respectively, we can construct the leaf-list tree T' by merging T}
and T, using Lemma 4. It is more involved to construct the block-start tree B.
The reason is that an element p; that starts a block in LL(w1) or an element g;
that starts a block in LL(w2) does not necessarily start a block in LL(v) and vice
versa, so we cannot construct B by merging By and Bs. Let {e1,ea,... ,€54¢}
be the elements in LL(v) in sorted order. By definition the block-start tree B
contains all elements ey, in LL(v) where S[ex_1 — 1] # S[ex — 1]. We construct B
by modifying Bs. We choose to modify Bs, and not Bj, because |LL(w;)| <
|LL(ws)|, which by the “smaller-half trick” allows us to consider all elements
in LL(w;) without spending too much time in total. To modify B to become B
we must identify all the elements that are in B but not in By and vice versa.

T
B

|61 e e3||e4 es 66”67 esl €1 €4 €er
T T

t al

Fig. 3. The data structure constructed at each node v in Ts(S). The leaf-list tree T
stores all elements in LL(v). The block-start tree B stores all elements in LL(v) that
start a block in the sorted leaf-list. We keep links from the elements in the block-start
tree to the corresponding elements in the leaf-list tree.

Lemma 8. If e; is in B but not in By then ey € LL(w;) or e;—1 € LL(wy).

Proof. Assume that ey is in B and that e; and ex_; both are in LL(w,).
In LL(ws) the elements e, and ex_; are neighboring elements ¢; and g;_1.
Since ey starts a block in LL(v) then S[g; — 1] = Slex — 1] # Slex—1 — 1] =
S[gj—1 — 1]. This shows that ¢; = ey, is in B, and the lemma follows. O

Let NEW be the set of elements e, in B where ey or ex_1 are in LL(w1). It
follows from Lemma 8 that this set contains at least all elements in B that are
not in Bs. It is easy to see that we can construct NEW in sorted order while
merging T and Ty; whenever an element ey from Ty, i.e. LL(wy), is placed in T,
i.e. LL(v), we include it, and/or the next element ey41 placed in T, in NEW if
they start a block in LL(v).

If we insert the elements in NEW we are halfway done modifying By to
become B. We still need to identify and remove the elements that should be
removed from Bs, that is, the elements that are in By but not in B.

Lemma 9. An element q; in By is not in B if and only if the largest element e,
in NEW smaller than q; in By has the same left-character as q;.

Proof. If ¢; is in By but does not start a block in LL(v), then it must be in a
block started by some element e; with the same left-character as ¢;. This block
cannot contain g;_; because g; being in B, implies that S[g; — 1] # S[g;—1 — 1].
We thus have the ordering g;—1 < e < g;. This implies that e; is the largest
element in NEW smaller than g;. If e; is the largest element in NEW smaller
than g;, then no block starts in LL(v) between ey and gj, i.e. all elements e in
LL(v) where e}, < e < g; satisfy that S[e—1] = S[ex—1], soif S[ex—1] = S[g; —1]
then g; does not start a block in LL(v). O

By searching in By with the sorted list NEW using Lemma 5 it is straight-
forward to find all pairs of elements (e, q;), where ey, is the largest element in

NEW smaller than g; in Bs. If the left-characters of e; and g; in such a pair
are equal, i.e. S[eg —1] = S[g; — 1], then by Lemma 9 the element ¢; is not in B
and must therefore be removed from Bs. It follows from the proof of Lemma 9
that if this is the case then ¢j_1 < e; < g;, so we can, without destroying the
order among the nodes in Bs, remove ¢; from Bs and insert e; instead, simply
by replacing the element ¢; with the element e, at the node storing ¢; in Bs.

We can now summarize the three steps it takes to modify By to become B.
In Step 1 we construct the sorted set NEW that contains all elements in B
that are not in By. This is done while merging 77 and 75 using Lemma 4. In
Step 2 we remove the elements from Bs that are not in B. The elements in Bs
being removed and the elements from NEW replacing them are identified using
Lemmas 5 and 9. In Step 3 we merge the remaining elements in NEW into the
modified By using Lemma 4. Adding links from the new elements in B to the
corresponding elements in 7' can be done while replacing and merging in Steps 2
and 3. Since [NEW| < 2|Ty| and |Bz| < |T3|, the time it takes to construct B
is dominated by the the time it takes merge a sorted list of size 2 |T}| into an
AVL tree of size |T2|. By Lemma 4 this is within a constant factor of the time it
takes to merge 77 and 75, so the time is takes to construct B is dominated by
the time it takes to construct the leaf-list tree T.

Now that we know how to construct the leaf-list tree T and block-start tree B
at node v from the leaf-list trees, T} and T5, and block-start trees, B; and B,
at its two children w; and ws, we can proceed with the implementation of the
extended reporting step. The details are shown in Algorithm 2. This algorithm
is similar to Algorithm 1 except that we at every node v in Tg(S) construct
two AVL trees; the leaf-list tree T' that stores the elements in LL(v), and the
block-start tree B that keeps track of the blocks in LL(v) by storing the subset
of elements that start a block. If v is a leaf, we construct T and B directly. If v
is an internal node, we construct 7' by merging the leaf-list trees T} and T> at
its two children w; and ws, and we construct B by modifying the block-start
tree By as explained above.

Before constructing 7" and B we report all maximal pairs from node v with
gap between g (Ja|) and g2 (]a|) by reporting every p in LL(w1) against every ¢ in
LL(w2)NL(p, |a]) and LL(w2)NR(p, |a|) where S[p—1] # S[g—1]. This is done in
two steps. In Step 2a we find for every p in LL(w;) the minimum elements g;(p)
and ¢,(p), as well as the minimum elements b;(p) and b, (p) that start a block, in
LL(w2)NL(p, |a|) and LL(ws) N R(p, |a|) respectively. This is done by searching
in Ty and B using Lemma 5. In Step 2b we report pairs (p, ¢, |a|) and (g, p, |a|)
for every p in LL(w;) and increasing ¢’s in LL(w2) starting with ¢,(p) and ¢;(p)
respectively, until the gap violates the upper or lower bound. Whenever we are
about to report p against ¢ where S[p — 1] = S[q — 1], we instead use the block-
start tree By to skip all elements in the block containing ¢ and continue with
reporting p against the first element in the following block.

To argue that Algorithm 2 finds all maximal pairs with gap between g; (|a|)
and go () it is enough to argue that we for every p in LL(w,) report all maxi-
mal pairs (p, q,|a|) and (g, p, |a|) with gap between g1 (Ja|) and g2(|a|). The rest

Algorithm 2 Find all maximal pairs in string S with bounded gap.

1. Initializing: Build the binary suffix tree T5(S) and create at each leaf two AVL
trees of size one, the leaf-list and the block-start tree, both storing the index at
the leaf.

2. Reporting and merging: When the leaf-list trees T and T», |Ti| < |T»|, and the
block-start trees By and B at the two children w; and w» of node v with path-label
a are available, we do the following:

(a) Let {p1,p2,...,ps} be the elements in T in sorted order. For each element p

in T we find
¢(p) =min{z € T |z > p+ ol + g1(lal)}
q(p) =min{z € > |z >p—|a| —g2(lal)}
by(p) = min{z € B | 2> p+|al + g1(la])}
bi(p) =min{z € By |z > p—|al — g2(laf) }

by searching in T> and B, with the sorted lists {p; + |a| + g1(Ja|) | i =
1,2,...,s} and {pi — |a| — g2(Ja|) | i=1,2,..., s} using Lemma 5.

(b) For each element p in T} we do ReportMax(g-(p),b-(p),p + |a| + g2(]a|)) and
ReportMax(q;(p), bi(p),» — |a| — g1(Ja|)) where ReportMax is the following pro-
cedure.

def ReportMax(from_-T', from_B, to):
q = from_T
b = from_B
while ¢ < to:
if S[g—1]# Slp—1]:
report pair (p, q, |a|) if p < q, and (g, p, |@|) otherwise

q = next(q)
else:
while b < ¢:
b = next(b)
q=">

(c) Build the leaf-list tree T at node v by merging T) and 75 using Lemma 4.
Build the block-start tree B at node v by modifying B> as described in the
text.

follows because we at every node in Tg(S) consider every p in LL(w;). Consider
the call ReportMax(g,(p), b-(p),p + |@| + g2(|a|)) in Step 2b. From the imple-
mentation of ReportMax follows that unless we skip elements by increasing b
then we consider every ¢ in LL(w2) N R(p, |a|). The test S[g — 1] # S[p — 1]
before reporting a pair ensures that we only report maximal pairs and when-
ever S[g — 1] = S[p — 1] we increase b until b = min{z € By | z > ¢}. This
is, by construction of By and b,(p), the element that starts the block follow-
ing the block containing ¢, so all elements ¢', ¢ < ¢’ < b, we skip by set-
ting ¢ to b satisfy that S[p — 1] = S[¢ — 1] = S[¢' — 1]. We thus conclude that

ReportMax(g, (p), b, (p),p + |a| + g2(|a|)) reports p against exactly those ¢ in
LL(w2) N R(p,|a|) where S[p — 1] # S[q — 1], i.e. it reports all maximal pairs
(p,q,|a|) at node v with gap between ¢1(|a|) and ga(]e|). Similarly, the call
ReportMax(q;(p), bi(p), p — |a| — g1(|a|)) reports all maximal pairs (g, p, |a|) with
gap between gi (|af) and g2(jal).

Now consider the running time of Algorithm 2. We first argue that the call
ReportMax(g, (p), b, (p),p + || + g2(|a|)) takes constant time plus time propor-
tional to the number of reported pairs (p, ¢, |a|). To do this all we have to show
is that the time used to skip blocks, i.e. the number of times we increase b, is
proportional to the number of reported pairs. By construction b,.(p) > ¢.(p),
so the number of times we increase b is bounded by the number of blocks in
LL(w2)NR(p, |a]). Since neighboring blocks contain elements with different left-
characters, we report p against an element from at least every second block in
LL(w2) N R(p,|c|). The number of times we increase b is thus proportional to
the number of reported pairs. The call ReportMax(q;(p), bi(p), p — |a| — g1(|a]))
also takes constant time plus time proportional to the number of reported pairs
(q,p,|a|). We thus have that Step 2b takes time proportional to |T}| plus the
number of reported pairs. Everything else we do at node v, i.e. searching in T5
and By and constructing the leaf-list tree 7' and block-start tree B, takes time
O(log (‘TII‘E“TQ‘)). Summing this over all nodes gives by Lemma 6 that the total
running time of the algorithm is O(n log n+ z) where z is the number of reported
pairs. Since constructing and keeping Tg(S) requires space O(n), and since no
element at any time is in more than one leaf-list tree, and maybe one block-start
tree, Algorithm 2 requires space O(n).

Theorem 10. Algorithm 2 finds all mazimal pairs (i, j, |a]) in a string S with
gap between g1(|a|) and g2(|a|) in space O(n) and time O(nlogn + z), where z
is the number of reported pairs and n is the length of S.

We observe that Algorithm 2 never uses the block-start tree B; at the small
child w; . This observation can be used to ensure that only one block-start tree ex-
ists during the execution of the algorithm. If we implement the traversal of Tp(S)
as a depth-first traversal in which we at each node v first recursively traverse the
subtree rooted at the small child w, then we do not need to store the block-start
tree returned by this recursive traversal while recursively traversing the subtree
rooted at the big child wy. This implies that only one block-start tree exists at
all times during the recursive traversal of T (S). The drawback is that we at
each node v need to know in advance which child is the small child, but this
knowledge can be obtained in linear time by annotating each node with the size
of the subtree it roots.

4 Pairs with lower bounded gap

If we relax the constraint on the gap and only want to find all maximal pairs
in S with gap at least g(|a|), where g is a function that can be computed
in constant time, then a straightforward solution is to use Algorithm 2 with

91(la]) = g(|a|) and g2(|a]) = n. This obviously finds all maximal pairs with
gap at least g;(|a|) = g(|al) in time O(nlogn + z). However, the missing upper
bound on the gap, i.e. the trivial upper bound g¢>(|a|) = n, makes it possible to
reduce the running time to O(n + z) since reporting from each node during the
traversal of the binary suffix tree is simplified.

The reporting of pairs from node v with children w; and w, is simplified,
because the lack of an upper bound on the gap implies that we do not have
to search LL(ws) for the first element to report against the current element
in LL(w1). Instead we can start by reporting the current element in LL(w)
against the biggest (and smallest) element in LL(w,) and then continue report-
ing it against decreasing (and increasing) elements from LL(w-) until the gap
becomes smaller than g(]a|). Unfortunately this simplification alone does not re-
duce the asymptotic running time because inspecting every element in LL(w1)
and keeping track of the leaf-lists in AVL trees alone requires time @(nlogn). To
reduce the running time we must thus avoid to inspect every element in LL(w)
and find another way to store the leaf-lists.

We achieve this by using a data structure based on heap-ordered trees to
store the leaf-lists during the traversal of the binary suffix tree. The key feature
of the data structure is that it allows us to merge two trees in amortized constant
time. The details of the data structure and the methods using it to find pairs
with gap at least g(|a|) is given in [3, Sect. 4]. Here we just summarize the result.

Theorem 11. All mazimal pairs (i, j, |a|) in a string S with gap at least g(|a|)
can be found in space O(n) and time O(n+ z), where z is the number of reported
pairs and n is the length of S.

5 Conclusion

We have presented efficient and flexible methods to find all maximal pairs
(i,7,]al) in a string under various constraints on the gap j — i — |«a|. If the gap
is required to be between g;(Ja|) and g2(|a|), the running time is O(nlogn + z)
where n is the length of the string and z is the number of reported pairs. If the
gap is only required to be at least g (|a|), the running time reduces to O(n + z).
In both cases we use space O(n).

In some cases it might be interesting only to find maximal pairs (4, 7, |a|)
fulfilling additional requirements on |/, e.g. to filter out pairs of short substrings.
This is straightforward to do using our methods by only reporting from the nodes
in the binary suffix tree whose path-label « fulfills the requirements on |a|. In
other cases it might be of interest just to find the vocabulary of substrings that
occur in maximal pairs. This is also straightforward to do using our methods by
just reporting the path-label a of a node if we can report one or more maximal
pairs from the node.

Instead of just looking for maximal pairs, it could be interesting to look
for an array of occurrences of the same substring in which the gap between
consecutive occurrences is bounded by some constants. This problem requires a

suitable definition of a maximal array. One definition and approach is presented
in [23]. Another definition inspired by the definition of a maximal pair could
be to require that every pair of occurrences in the array is a maximal pair.
This definition seems very restrictive. A more relaxed definition could be to only
require that we cannot extend all the occurrences in the array to the left or to
the right without destroying at least one pair of occurrences in the array.

Acknowledgments This work was initiated while Christian N. S. Pedersen and Jens
Stoye were visiting Dan Gusfield at UC Davis. We would like to thank Dan Gusfield,
as well as Rob Irwing, for listening to some preliminary results.

References

1.

10.

11.

12.

13.

14.

15.

G. M. Adel’'son-Vel’skii and Y. M. Landis. An algorithm for the organization of
information. Doklady Akademii Nauk SSSR, 146:263-266, 1962. English translation
in Soviet Math. Dokl., 3:1259-1262.

. A. Apostolico and F. P. Preparata. Optimal off-line detection of repetitions in a

string. Theoretical Computer Science, 22:297-315, 1983.

G. S. Brodal, R. B. Lyngsg, C. N. S. Pedersen, and J. Stoye. Finding maximal
pairs with bounded gap. Technical Report RS-99-12, BRICS, April 1999.

M. R. Brown and R. E. Tarjan. A fast merging algorithm. Journal of the ACM,
26(2):211-226, 1979.

M. Crochemore. An optimal algorithm for computing the repetitions in a word.
Information Processing Letters, 12(5):244-250, 1981.

M. Crochemore. Tranducers and repetitions. Theoretical Computer Science, 45:63—
86, 1986.

M. Farach. Optimal suffix tree construction with large alphabets. In Proceedings of
the 38th Annual Symposium on Foundations of Computer Science (FOCS), pages
137-143, 1997.

L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In
Proceedings of the 19th Annual Symposium on Foundations of Computer Science
(FOCS), pages 8-21, 1978.

D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

D. Gusfield and J. Stoye. Linear time algorithms for finding and representing
all the tandem repeats in a string. Technical Report CSE-98-4, Department of
Computer Science, UC Davis, 1998.

S. Huddleston and K. Mehlhorn. A new data structure for representing sorted lists.
Acta Informatica, 17:157-184, 1982.

F. K. Hwang and S. Lin. A simple algorithm for merging two disjoint linearly
ordered sets. SIAM Journal on Computing, 1(1):31-39, 1972.

S. Karlin, M. Morris, G. Ghandour, and M.-Y. Leung. Efficient algorithms for
molecular sequence analysis. Proceedings of the National Academy of Science,
USA, 85:841-845, 1988.

R. Kolpakov and G. Kucherov. Maximal repetitions in words or how to find all
squares in linear time. Technical Report 98-R-227, LORIA, 1998.

S. R. Kosaraju. Computation of squares in a string. In Proceedings of the 5th
Annual Symposium on Combinatorial Pattern Matching (CPM), volume 807 of
Lecture Notes in Computer Science, pages 146-150, 1994.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

G. M. Landau and J. P. Schmidt. An algorithm for approximate tandem repeats.
In Proceedings of the 4th Annual Symposium on Combinatorial Pattern Matching
(CPM), volume 684 of Lecture Notes in Computer Science, pages 120-133, 1993.
M.-Y. Leung, B. E. Blaisdell, C. Burge, and S. Karlin. An efficient algorithm for
identifying matches with errors in multiple long molecular sequences. Journal of
Molecular Biology, 221:1367-1378, 1991.

M. G. Main and R. J. Lorentz. An O(nlogn) algorithm for finding all repetitions
in a string. Journal of Algorithms, 5:422-432, 1984.

M. G. Main and R. J. Lorentz. Linear time recognition of squarefree strings. In
A. Apostolico and Z. Galil, editors, Combinatorial Algorithms on Words, volume
F12 of NATO ASI Series, pages 271-278. Springer, Berlin, 1985.

E. M. McCreight. A space-economical suffix tree construction algorithm. Journal
of the ACM, 23(2):262-272, 1976.

K. Mehlhorn. Sorting and Searching, volume 1 of Data Structures and Algorithms.
Springer-Verlag, 1994.

K. Mehlhorn and S. Naher. The LEDA Platform of Combinatorial and Geometric
Computing. Cambridge University Press, 1999. To appear. See http://www.mpi-
sb.mpg.de/~mehlhorn/LEDAbook.html.

M.-F. Sagot and E. W. Myers. Identifying satellites in nucleic acid sequences. In
Proceedings of the 2nd Annual International Conference on Computational Molec-
ular Biology (RECOMB), pages 234-242, 1998.

J. Stoye and D. Gusfield. Simple and flexible detection of contiguous repeats
using a suffix tree. In Proceedings of the 9th Annual Symposium on Combinatorial
Pattern Matching (CPM), volume 1448 of Lecture Notes in Computer Science,
pages 140-152, 1998.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249-260, 1995.
P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th Sym-
posium on Switching and Automata Theory, pages 1-11, 1973.

