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For the general case where d > 1, d{queries can be answered in optimalspace O(nm) doing Pdi=0 �mi � exact queries each requiring time O(m) by usingthe data structure of Fredman, Komlos and Szemeredi [7]. On the other handd{queries can be answered in time O(m) when the size of the data structure canbe O(nPdi=0 �mi �). We present the corresponding data structure of size O(nm)for the 1{query case.We present a simple data structure based on tries [1, 6] which has optimalsize O(nm) and supports 1{queries in timeO(m). Unfortunately, we do not knowhow to construct the data structure in time O(nm) and we leave this as an openproblem. However we give a more involved data structure of size O(nm), basedon two tries, supporting 1{queries in time O(m) and which can be constructedin time O(nm). Both data structures support the reporting of all strings withHamming distance at most one of the query string � in time O(m). For generald both data structures support d{queries in time O(mPd�1i=0 �mi �). The seconddata structure can be made semi-dynamic in terms of allowing insertions inamortized time O(m), when starting with an initially empty dictionary. Bothdata structures work as well for larger alphabets j�j > 2, when the query timeis slowed down by a log j�j factor.The paper is organized as follows. In Sect. 2 we give a simpleO(nm) size datastructure supporting 1{queries in time O(m). In Sect. 3 we present an O(nm)size data structure constructible in time O(nm) which also supports 1{queriesin time O(m). In Sect. 4 we present a semi-dynamic version of the second datastructure allowing insertions. Finally in Sect. 5 we give concluding remarks andmention open problems.2 A trie based data structureWe assume that all strings considered are over a binary alphabet � = f0; 1g. Welet jwj denote the length of w, w[i] denote the i-th symbol of w and wR denotew reversed. The strings in the dictionaryW are called dictionary strings. We letdistH (u; v) denote the Hamming distance between the two strings u and v.The basic component of our data structure is a trie [6]. A trie, also called adigital search tree, is a tree representation of a set of strings. In a trie all edgesare labeled by symbols such that every string corresponds to a path in the trie.A trie is a pre�x tree, i.e. two strings have a common path from the root as longas they have the same pre�x. Since we consider strings over a binary alphabetthe maximum degree of a trie is at most two.Assume that all strings wi 2W are stored in a 2-dimensional arrayAW of sizen�m, i.e. of n rows and m columns, such that the i-th string is stored in the i-throw of the array AW . Notice that AW [i; j] is the j-th symbolwi. For every stringwi 2 W we de�ne a set of associated strings Ai = fv 2 f0; 1gmjdistH(v; wi) = 1g,where jAij = m, for i = 1; : : : ; n. The main data structure is a trie T containingall strings wi 2 W and all strings from Ai, for all i = 1; : : : ; n, i.e. every pathfrom the root to a leaf in the trie represents one of the strings. The leaves of T



are labeled by indices of dictionary strings such that a leaf representing a strings and labeled by index i satis�es that s = wi or s 2 Ai.Given a query string � an 1{query can be answered as follows. The 1{queryis answered positively if there is an exact match, i.e. � = wi 2 W , or � 2 Aj ,for some 1 � j � n. Thus the 1{query is answered positively if and only if thereis a leaf in the trie T representing the query string �. This can be checked intime O(m) by a top-down traverse in T . If the leaf exists then the index storedat the leaf is an index of a matched dictionary string.Notice that T has at most O(nm) leaves because it contains at most O(nm)di�erent strings. Thus T has at mostO(nm) internal vertices with degree greaterthan one. If we compress all chains in T into single edges we get a compressedtrie T 0 of size O(nm). Edges which correspond to compressed chains are labeledby proper intervals of rows in the array AW . If a compressed chain is a substringof a string in the a Aj then the information about the corresponding substringof wj is extended by the position of the changed bit. Since every entry in AWcan be accessed in constant time every 1{query can still be answered in timeO(m).A slight modi�cation of the trie T 0 allows all dictionary strings which matchthe query string � to be reported. At every leaf s representing a string u in T 0instead of one index we store all indices i of dictionary strings satisfying s = wior s 2 Ai. Notice that the total size of the trie is still O(nm) since every indexi, for i = 1; : : : ; n, is stored at exactly m + 1 leaves. The reporting algorithm�rst �nds the leaf representing the query string � and then reports all indicesstored at that leaf. There are at most m + 1 reported string thus the reportingalgorithm works in time O(m). Thus the following theorem holds.Theorem1. There exists a data structure of size O(nm) which supports thereporting of all matched dictionary strings to an 1{query in time O(m).The data structure above is quite simple, occupies optimally space O(nm)and allows 1{queries to be answered optimally in time O(m). But we do notknow how to construct it in time O(nm). The straight forward approach gives aconstruction time of O(nm2) (this is the total size of the strings in W and theassociated strings from all Ai sets).In the next section we give another data structure of size O(nm), supporting1{queries in time O(m) and constructible in optimal time O(nm).3 A double-trie data structureIn the following we assume that all strings in W are enumerated according totheir lexicographical order. We can satisfy this assumption by sorting the stringsinW , for example, by radix sort in timeO(nm). Let I = f1; : : : ; ng denote the setof the indices of the enumerated strings fromW . We denote a set of consecutiveindices (consecutive integers) an interval.



The new data structure is composed of two tries. The trie TW contains theset of stings W whereas the trie TW contains all strings from the set W , whereW = fwRi jwi 2Wg.Since TW is a pre�x trie every path from the root to a vertex u represents apre�x pu of a string wi 2 W . Denote by Wu the set fwi 2W jwi has pre�x pug.Since strings inW are enumerated according to their lexicographical order thoseindices form an interval Iu, i.e. wi 2 Wu if and only if i 2 Iu. Notice that aninterval of a vertex in the trie TW is the concatenation of the intervals of itschildren. For each vertex u in TW we compute the corresponding interval Iu,storing at u the �rst and last index of Iu.Similarly every path from the root to a vertex v in TW represents a reversedsu�x sRv of a string wj 2 W . Denote by W v the set fwi 2 W jwi has su�x svgand by Sv � I the set of indices of strings in W v. We organize the indices ofevery set Sv in sorted lists Lv (in increasing order). At the root r of the trieTW the list Lr is supported by a search tree maintaining the indices of all thedictionary strings. For an index in a list Lv the neighbor with the smaller valueis called left neighbor and the one with greater value is called right neighbor. Ifa vertex x is the only child of vertex v 2 TW then Sx and Sv are identical. Ifvertex v 2 TW has two children x and y (there are at most two children sinceTW is a binary trie) the sets Sx and Sy form a partition of the set Sv. Sinceindices in the set Sv are not consecutive (Sv is usually not an interval) we useadditional links to keep fast connection between the set Sv and its partition intoSx and Sy . Each element e in the list Lv has one additional link to the closestelement in the list Lx, i.e. to the smallest element er in the list Lx such thate � er or the greatest element el in the list Lx such that e � el. Moreover incase vertex v has two children, element e has also one additional link to theanalogously de�ned element el 2 Ly or er 2 Ly.Lemma2. The tries TW and TW can be stored in O(nm) space and they canbe constructed in time O(nm).Proof. The trie TW has at most O(nm) edges and vertices, i.e. the number ofsymbols in all strings in W . Every vertex u 2 TW keeps only information aboutthe two ends of its interval Iu = [l::r]. For all u 2 TW both indices l and r canbe easily computed by a postorder traversal of TW in time O(nm).The number of vertices in TW is similarly bounded by O(nm). Moreover, forany level i = 1; : : : ;m in TW , the sum P jSvj over all vertices v at this level isexactly n since the sets of indices stored at the children forms a partition of theset kept by their parent. Since TW has exactly m levels and every index in an Lvlist has at most two additional links the size of TW does not exceed O(nm) too.The Lv lists are constructed by a postorder traversal of TW . A leaf representingthe string wRi has Lv = (i) and the Lv list of an internal vertex of TW canbe constructed by merging the corresponding disjoint lists at its children. Theadditional links are created along with the merging. Thus the trie TW can beconstructed in time O(nm). ut



Answering queries In this section we show how to answer 1{queries in timeO(m) assuming that both tries TW and TW are already constructed. We presenta sequence of three 1{query algorithms all based on the double-trie structure.The �rst algorithm Query1 outlines how to use the presented data structure toanswer 1{queries. The second algorithm Query2 reports the index of a matcheddictionary string. The third algorithm Query3 reports all matched dictionarystrings.Let pref� be the longest pre�x of the string � that is also a pre�x of a stringin W . The pre�x pref� is represented by a path from the root to a vertex u inthe trie TW , i.e. p� = pu but for the only child x of vertex u the string px isnot a pre�x of �. We call the vertex u the kernel vertex for the string � and thepath from the root of TW to the kernel vertex u the leading path in TW . Theinterval I� = Iu associated with the kernel vertex u is called the kernel intervalfor the string � and the smallest element �� 2 I� is called the key for the querystring �. Notice that the key �� 2 Iw, for every vertex w on the leading pathin TW .Similarly in the trie TW we de�ne the kernel set Sv̂ which is associated withthe vertex v̂, where v̂ corresponds to the longest pre�x of the string �R in TW .The vertex v̂ is called a kernel vertex for the string �R, and the path from theroot of TW to v̂ is called the leading path in TW .The general idea of the algorithm is as follows. If the query string � has anexact match in the set W , then there is a leaf in TW which represents the querystring �. The proper leaf can be found in time O(m) by a top-down traverse ofTW , starting from its root.If the query string � has no exact match in W but it has a match withindistance one, we know that there is a string wi 2 W which has a factorization��b��, satisfying:(1) �� is a pre�x of � of length l�,(2) �� is a su�x of � of length r�,(3) b 6= �[l� + 1] and(4) l� + r� + 1 = m.Notice that pre�x �� must be represented by a vertex u in the leading pathin TW and su�x �� must be represented by a vertex v in the leading path of TW .We call such a pair (u; v) a feasible pair. To �nd the string wi within distance1 of the query string � we have to search all feasible pairs (u; v). Every feasiblepair (u; v) for which Iu \Sv 6= ;, represents at least one string within distance 1of the query string �. The algorithm Query1 generates consecutive feasible pairs(u; v) starting with u = u, the kernel vertex in TW . The algorithm Query1 stopswith a positive answer just after the �rst pair (u; v) with Iu \ Sv 6= ; is found.It stops with a negative answer if all feasible pairs (u; v) have Iu \ Sv = ;.Notice that the steps before the while loop in the algorithm Query1 can beperformed in time O(m). The algorithm looks for the kernel vertex in TW goingfrom the root along the leading path (representing the pre�x pref�) as long aspossible. The last reached vertex u is the kernel vertex u. Then the corresponding



ALGORITHM Query1beginu := u | the kernel vertex in TW .Find on the leading path in TW vertex v such that (u; v) is a feasible pair.while vertex v exists doif Iu \ Sv 6= ; then return \There is a match"u :=Parent(u)v :=Child-on-Leading-Path(v)odreturn \No match"end.vertex v on the leading path in TW is found, if such a vertex exists. Recall thata pair (u; v) must be a feasible pair. At this point the following problem arises.How to perform the test Iu \ Sv 6= ; e�ciently?Recall that the smallest index �� in the kernel interval I� is called the keyfor the query string � and recall also that the key �� 2 Iw , for every vertex win the leading path in the trie TW . During the �rst test Iu \Sv 6= ; the positionof the key �� in Sv is found in time log jSvj � logn � m (since W only containsbinary strings we have logn � m). Let Iu = [l::r], a be the left (a � ��) and bthe right (b > ��) neighbors of �� in the set Sv. Now the test Iu \ Sv 6= ; canbe stated as: Iu \ Sv 6= ; � l � a _ b � r:If the above test is positive the algorithm Query2 reports the proper indexamong a and b and stops. Otherwise, in the next round of the while loop thenew neighbors a and b of the key �� in the new list Lv are computed in constanttime by using the additional links between the elements of the old and new listLv.Theorem3. 1{queries to a dictionary W of n strings of length m can be an-swered in time O(m) and space O(nm).Proof. The initial steps of the algorithm (preceding the while loop) are performedin time O(m + logn) = O(m). The feasible pair (u; v) (if such exists) is simplyfound in time O(m). Then the algorithm �nds in time O(logn) the neighborsof �� in the list Lr which is held at the root of TW . This is possible since thelist Lr is supported by a search tree. Now the algorithm traverses the leadingpath in TW recovering at each level neighbors of �� in constant time using theadditional links. There are at most m iterations of the while loop since there isexactly m levels in both tries TW and TW . Every iteration of the while loop isdone in constant time since both neighbors a and b of the key �� in the newmore sparse set Sv are found in constant time. Thus the total running time ofthe algorithm is O(m). ut



ALGORITHM Query2beginu := u | the kernel vertex in TW .Find on the leading path in TW vertex v such that (u; v) is a feasible pair.Find the neighbors a and b of the key �� in Sv.while vertex v exists doif l � a then return \String a is matched"if b � r then return \String b is matched"u :=Parent(u); Set l and r according to the new interval Iu.v :=Child-on-Leading-Path(v)Find new neighbors of ��, a and b, in the new list Lv.odreturn \No match"end.We explain now how to modify the algorithm Query2 to an algorithm re-porting all matches to a query string. The main idea of the new algorithm is asfollows. At any iteration of the while loop instead of looking only for the leftand the right neighbor of the key index �� the algorithmQuery3 searches one byone all indices to the left and right of �� which belong to the list Lv and to theinterval Iu. To avoid multiple reporting of the same index the algorithm searchesonly that part of the new interval Iu which is an extension of the previous one.The variables a and b store the leftmost and the rightmost searched indices inthe list Lv.Theorem4. There exists a data structure of size O(nm) and constructible intime O(nm) which supports the reporting of all matched dictionary strings to a1{query in time O(m).Proof. The algorithm Query3 works in time O(m+#matched), where #matchedis the number of all reported strings. Since there is at mostm+1 reported strings(one exact matching and at most m matches with one error) the total time ofthe reporting algorithm is O(m). ut4 A semi-dynamic data structureIn this section we describe how the data structure presented in Sect. 3 can bemade semi-dynamic such that new binary strings can be inserted into W inamortized time O(m). In the followingw0 denotes a string to be inserted into W .The data structure described in Sect. 3 requires that the strings wi are lex-icographically sorted and that each string has assigned its rank with respect tothe lexicographical ordering of the strings. If we want to add w0 to W we canuse TW to locate the position of w0 in the sorted list of wis in time O(m). Ifwe continue to maintain the ranks explicitly assigned to the strings we have to



ALGORITHM Query3beginu := u | the kernel vertex in TW .Find on the leading path in TW vertex v such that (u; v) is a feasible pair.Find the neighbors a and b of the key �� in Sv.while vertex v exists dowhile l � a doreport \String a is matched"a := left neighbor of a in Lv.odwhile b � r doreport \String b is matched"b := right neighbor of b in Lv.odu :=Parent(u); Set l and r according to new Iu.v :=Child-on-Leading-Path(v)Find a or the left neighbor of a in the new list Lv.Find b or the right neighbor of b in the new list Lv.odend.reassign new ranks to all strings larger than w0. This would require time 
(n).To avoid this problem, observe that the indices are used to store the endpointsof the intervals Iu and to store the sets Sv, and that the only operation per-formed on the indices is the comparison of two indices to decide if one string islexicographically less than another string in constant time.Essentially what we need to know is if given the handles of two strings fromW , which one of the two strings is the lexicographically smallest. A solution tothis problem was given by Dietz and Sleator [3]. They presented a data structurethat allows a new element to be inserted into a linked list in constant time if thenew element's position is known, and that can answer order queries in constanttime.By applying the data structure of Dietz and Sleator to maintain the orderingbetween the strings, an insertion can now be implemented as follows. First insertw0 into TW . This requires time O(m). The position of w0 in TW also determinesits location in the lexicographically order implying that the data structure ofDietz and Sleator can be updated too. By traversing the path from the new leafrepresenting w0 in TW to the root of TW , the endpoints of the intervals Iu canbe updated in time O(m).The insertion of w0R into TW without updating the associated �elds can bedone in time O(m). Analogously to the query algorithm in Sect. 3, the positionsin the Sv sets along the insertion path of w0 in TW where to insert the handleof w0 can be found in time O(m).The problem remaining is to update the additional links between the elements



in the Lv lists. For this purpose we change our representation to the following.Let v be a node with sons x and y. In the following we only consider how tohandle the links between Lv and Lx. The links between Lv and Ly are handledanalogously. For each element e 2 Lv \ Lx we maintain a pointer from theposition of e in Lv to the position of e in Lx. For each element e 2 Lv n Lxthe pointer is null. Let e 2 Lv. We can now �nd the closest element to e inLx by �nding the closest element in Lv that has a non null pointer. We denotesuch an element to be marked. For this purpose we use the �nd-split-add datastructure of Imai and Asano [10], an extension of a data structure by Gabowand Tarjan [8]. The data structure supports the following operations: Given apointer to an element in a list, to �nd the closest marked element (�nd); to markan unmarked list element (split); and to insert a new unmarked element into thelist adjacent to an element in the list (add). The operations split and add can beperformed in amortized constant time and �nd in worst case constant time ona RAM. Going from e in Lv to e's closest neighbor in Lx can still be performedin worst case constant time, because this only requires one �nd operation to beperformed. When a new element e is added to Lv we just perform add once, andin case e is added to Lx too we also perform split on e. This requires amortizedconstant time. Totally we can therefore update all the links between the Lv listsin amortized time O(m) when inserting a new string into the dictionary.Theorem5. There exists a data structure which supports the reporting of allmatched dictionary strings to a 1{query in worst case time O(m) and that allowsnew dictionary strings to be inserted in amortized time O(m).5 ConclusionWe have presented a data structure for the approximate dictionary query prob-lem that can be constructed in time O(nm), stored in O(nm) space and thatcan answer 1{queries in time O(m). We have also shown that the data structurecan be made semi-dynamic by allowing insertions in amortized time O(m), whenwe start with an initially empty dictionary. For the general d case the presenteddata structure allows d{queries to be answered in time O(mPd�1i=0 �mi �) by ask-ing 1{queries for all strings within Hamming distance d�1 of the query string �.This improves the query time of a na��ve algorithm by a factor of m. We leave asan open problem if the above query time for the general d case can be improvedwhen the size of the data structure is O(nm). For example, is there any o(m2)2{query algorithm?Another interesting problem which is related to the approximate query prob-lem and the approximate string matching problem can be stated as follows.Givena binary string t of length n, is it possible to create a data structure for t of sizeO(n) which allows 1{queries, i.e. queries for occurrences of a query string withat most one mismatch, in time O(m), where m is the size of the query string?By creating a compressed su�x tree of size O(n) for the string, 1{queries canbe answered in time O(m2) by an exhaustive search.
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