Approximate Dictionary Queries

Gerth Stglting Brodal'* and Teszek Gasieniec?™

' BRICS™*, Computer Science Department, Aarhus University,
Ny Munkegade, DK-8000 Arhus ¢, Denmark.
2 Max-Planck Tnstitut fiir Informatik, Tm Stadtwald, Saarbriicken D-66123, Germany.

Abstract. Given a set of n binary strings of length m each. We consider
the problem of answering d queries. (Given a binary query string a of
length m, a d query is to report if there exists a string in the set within
Hamming distance d of «a.

We present, a data structure of size O(nm) supporting 1 queries in time
O(m) and the reporting of all strings within Hamming distance 1 of
in time OQ(m). The data structure can be constructed in time O(nm). A
slightly modified version of the data structure supports the insertion of
new strings in amortized time OQ(m).

1 Introduction

Tet W = {w1,...,w,} be a set of n binary strings of length m each, i.e. w; €
{0, 1}™. The set W is called the dictionary. We are interested in answering d
queries, i.e. for any query string « € {0,1}™ to decide if there is a string w; in
W with at most Hamming distance d of a.

Minsky and Papert originally raised this problem in [12]. Recently a se-
quence of papers have considered how to solve this problem efficiently [4, 5,
9, 11, 15]. Manber and Wu [11] considered the application of approximate dic-
tionary queries to password security and spelling correction of bibliographic files.
Their method is based on Bloom filters [2] and uses hashing techniques. Dolev
et al. [4, 5] and Greene, Parnas and Yao [9] considered approximate dictionary
queries for the case where d is large.

The initial effort towards a theoretical study of the small d case was given by
Yao and Yao in [15]. They present for the case d = 1 a data structure support-
ing queries in time O(mloglogn) with space requirement O(nmlogm). Their
solution was described in the cell-probe model of Yao [14] with word size equal
to 1. Tn this paper we adopt the standard unit cost RAM model [13].

* Supported by the Danish Natural Science Research Council (Grant No. 9400044).
This research was done while visiting the Max-Planck Institut fir Informatik,
Saabriicken, (Germany. Email: gerth@daimi.aau.dk.

** On leave from Institute of Informatics, Warsaw University, ul. Banacha 2, 02
097, Warszawa, Poland. WWW: http://zaa.mimuw.edu.pl/~lechu/lechu.html,
FEmail: leszek@mpi-sb.mpg.de.

*** Basic Research in Computer Science, a (Centre of the Danish National Research
Foundation



For the general case where d > 1, d queries can be answered in optimal
space O(nm) doing 27:0 (T) exact queries each requiring time O(m) by using
the data structure of Fredman, Komlos and Szemeredi [7]. On the other hand
d queries can he answered in time O(m) when the size of the data structure can

be O(n 27:0 (T)) We present, the corresponding data structure of size O(nm)
for the 1 query case.

We present a simple data structure based on tries [1, 6] which has optimal
size O(nm) and supports 1 queries in time O(m). Unfortunately, we do not know
how to construct the data structure in time O(nm) and we leave this as an open
problem. However we give a more involved data structure of size O(nm), based
on two tries, supporting 1 queries in time O(m) and which can be constructed
in time O(nm). Both data structures support the reporting of all strings with
Hamming distance at most one of the query string « in time O(m). For general
d both data structures support d queries in time O(m Z:l;(] (T)) The second
data structure can be made semi-dynamic in terms of allowing insertions in
amortized time O(m), when starting with an initially empty dictionary. Both
data structures work as well for larger alphabets |X| > 2, when the query time
is slowed down by a log | X factor.

The paper is organized as follows. Tn Sect. 2 we give a simple O(nm) size data
structure supporting 1 queries in time O(m). Tn Sect. 3 we present an O(nm)
size data structure constructible in time O(nm) which also supports 1 queries
in time O(m). Tn Sect. 4 we present a semi-dynamic version of the second data
structure allowing insertions. Finally in Sect. 5 we give concluding remarks and

mention open problems.

2 A trie based data structure

We assume that all strings considered are over a binary alphabet X = {0, 1}. We
let |w| denote the length of w, w[i] denote the i-th symbol of w and w® denote
w reversed. The strings in the dictionary W are called dictionary strings. We let
dist g (u,v) denote the Hamming distance between the two strings u and ».

The basic component of our data structure is a trie [6]. A trie, also called a
digital search tree, is a tree representation of a set of strings. In a trie all edges
are labeled by symbols such that every string corresponds to a path in the trie.
A trie is a prefix tree, i.e. two strings have a common path from the root as long
as they have the same prefix. Since we consider strings over a bhinary alphabet
the maximum degree of a trie is at most two.

Assume that all strings w; € W are stored in a 2-dimensional array Ay of size
n x m, i.e. of n rows and m columns, such that the i-th string is stored in the i-th
row of the array Aw . Notice that Aw[7, j] is the j-th symbol w;. For every string
w; € W we define a set of associated strings A; = {v € {0, 1} |dist g (v, w;) = 1},
where |A;| = m, for i = 1,...,n. The main data structure is a trie T containing
all strings w; € W and all strings from A;, for all # = 1,...,n, i.e. every path
from the root to a leaf in the trie represents one of the strings. The leaves of T



are labeled by indices of dictionary strings such that a leaf representing a string
s and labeled by index i satisfies that s = w; or s € A;.

(ziven a query string a an 1 query can be answered as follows. The 1 query
is answered positively if there is an exact match, i.e. a = w; € W, or a € A;,
for some 1 < j < n. Thus the 1 query is answered positively if and only if there
is a leaf in the trie T representing the query string «. This can be checked in
time O(m) by a top-down traverse in T. Tf the leaf exists then the index stored
at the leaf is an index of a matched dictionary string.

Notice that T has at most. O(nm) leaves hecause it contains at most O(nm)
different strings. Thus T has at most O(nm) internal vertices with degree greater
than one. If we compress all chains in T into single edges we get a compressed
trie T' of size O(nm). Edges which correspond to compressed chains are labeled
by proper intervals of rows in the array Aw . If a compressed chain is a substring
of a string in the a A; then the information about the corresponding substring
of w; is extended by the position of the changed bit. Since every entry in Ap
can be accessed in constant time every 1 query can still be answered in time
O(m).

A slight modification of the trie T’ allows all dictionary strings which match
the query string o to be reported. At every leaf s representing a string u in 7"
instead of one index we store all indices i of dictionary strings satisfying s = w;
or s € A;. Notice that the total size of the trie is still O(nm) since every index
1, for 1 = 1,...,n, is stored at exactly m + 1 leaves. The reporting algorithm
first finds the leaf representing the query string « and then reports all indices
stored at that leaf. There are at most m + 1 reported string thus the reporting
algorithm works in time O(m). Thus the following theorem holds.

Theorem 1. There exists a data structure of size O(nm) which supports the
reporting of all matched dictionary strings to an 1 query in time O(m).

The data structure above is quite simple, occupies optimally space O(nm)
and allows 1 queries to be answered optimally in time O(m). But we do not
know how to construct it in time O(nm). The straight forward approach gives a
construction time of O(nm?) (this is the total size of the strings in W and the
associated strings from all A; sets).

Tn the next section we give another data structure of size O(nm), supporting
1 queries in time O(m) and constructible in optimal time O(nm).

3 A double-trie data structure

In the following we assume that all strings in W are enumerated according to
their lexicographical order. We can satisfy this assumption by sorting the strings
in W, for example, by radix sort. in time O(nm). Let T = {1,...,n} denote the set
of the indices of the enumerated strings from W. We denote a set of consecutive
indices (consecutive integers) an interval.



The new data structure is composed of two tries. The trie Ty contains the
set, of stings W whereas the trie T3> contains all strings from the set W, where
W = {wf|w; € W}.

Since Tw is a prefix trie every path from the root to a vertex u represents a
prefix p, of a string w; € W. Denote by W,, the set {w; € W|w; has prefix p, }.
Since strings in W are enumerated according to their lexicographical order those
indices form an interval I, i.e. w; € W, if and only if i € I,,. Notice that an
interval of a vertex in the trie Ty is the concatenation of the intervals of its
children. For each vertex u in Ty we compute the corresponding interval T,
storing at u the first and last index of T,,.

Similarly every path from the root to a vertex v in Ty represents a reversed
suffix s of a string w; € W. Denote by W" the set {w; € W|w; has suffix s, }
and by S, C T the set of indices of strings in W". We organize the indices of
every set S, in sorted lists L, (in increasing order). At the root r of the trie
Ty the list L, is supported by a search tree maintaining the indices of all the
dictionary strings. For an index in a list I.,, the neighbor with the smaller value
is called left neighbor and the one with greater value is called right neighbor. Tf
a vertex x is the only child of vertex v € Ty then S, and S, are identical. If
vertex v € T has two children z and y (there are at most two children since
Ty is a binary trie) the sets S, and S, form a partition of the set S,. Since
indices in the set S, are not consecutive (9, is usually not an interval) we use
additional links to keep fast connection between the set S, and its partition into
Sy and S,. Fach element e in the list L, has one additional link to the closest
element in the list 7., i.e. to the smallest element e, in the list I, such that
e < e, or the greatest element ¢; in the list I, such that e > e;. Moreover in
case vertex v has two children, element e has also one additional link to the
analogously defined element ¢; € L, or e, € L,,.

Lemma 2. The tries Ty and Ty can be stored in O(nm) space and they can
be constructed in time O(nm).

Proof. The trie Ty has at most O(nm) edges and vertices, i.e. the number of
symbols in all strings in W. Every vertex u € Ty keeps only information about
the two ends of its interval I,, = [l..r]. For all u € Ty both indices [ and r can
be easily computed by a postorder traversal of Ty in time O(nm).

The number of vertices in 737 is similarly bounded by O(nm). Moreover, for

any level 4 = 1,...,m in Tz, the sum 3" |S,| over all vertices v at this level is
exactly n since the sets of indices stored at the children forms a partition of the
set kept by their parent. Since T3+ has exactly m levels and every index in an I,
list has at most two additional links the size of Ti= does not exceed O(nm) too.
The L, lists are constructed by a postorder traversal of Ty A leaf representing
the string wﬁ’ has L, = (i) and the L, list of an internal vertex of Ty can
be constructed by merging the corresponding disjoint lists at its children. The
additional links are created along with the merging. Thus the trie Ty can be

constructed in time O(nm). O



Answering queries In this section we show how to answer 1 queries in time
O(m) assuming that both tries Ty and T are already constructed. We present,
a sequence of three 1 query algorithms a,ﬂ based on the double-trie structure.
The first algorithm Queryl outlines how to use the presented data structure to
answer 1 queries. The second algorithm Query2 reports the index of a matched
dictionary string. The third algorithm Query3 reports all matched dictionary
strings.

Let pref., be the longest prefix of the string « that is also a prefix of a string
in W. The prefix pref, is represented by a path from the root to a vertex u in
the trie Ty, i.e. p, = pz but for the only child x of vertex u the string p, is
not a prefix of a. We call the vertex u the kernel vertesr for the string a and the
path from the root of Ty to the kernel vertex w the leading path in Ty . The
interval I, = I associated with the kernel vertex w is called the kernel interval
for the string a and the smallest element u, € I, is called the key for the query
string a. Notice that the key u, € I, for every vertex w on the leading path
n TW

Similarly in the trie T3 we define the kernel set S; which is associated with
the vertex @, where # corresponds to the longest prefix of the string o in s
The vertex # is called a kernel vertex for the string o, and the path from the
root of T35 to # is called the leading path in Ty-

The general idea of the algorithm is as follows. If the query string o has an
exact match in the set W, then there is a leaf in Ty which represents the query
string a.. The proper leaf can be found in time O(m) by a top-down traverse of
Tw , starting from its root.

If the query string « has no exact match in W but it has a match within
distance one, we know that there is a string w; € W which has a factorization
TobT,, satisfying:

(1)
(2) T,y is a suffix of « of length r,,
(3) b # o[l + 1] and
(4)

4l—|—r,y 1=m.

To 18 a prefix of a of length [,,,

Notice that prefix m, must be represented by a vertex u in the leading path
in Ty and suffix 7, must be represented by a vertex v in the leading path of Ty-
We call such a pair (u,v) a feasible pair. To find the string w; within distance
1 of the query string « we have to search all feasible pairs (u, »). Every feasible
pair (u,v) for which I, N S, # (, represents at least one string within distance 1
of the query string a.. The algorithm Queryl generates consecutive feasible pairs
(u, v) starting with v = %, the kernel vertex in Ty . The algorithm Queryl stops
with a positive answer just after the first pair (u,v) with I, N S, # 0 is found.
Tt stops with a negative answer if all feasible pairs (u, v) have I, NS, = 0.

Notice that the steps before the while loop in the algorithm Queryl can be
performed in time O(m). The algorithm looks for the kernel vertex in Ty going
from the root along the leading path (representing the prefix pref,) as long as
possible. The last reached vertex u is the kernel vertex u. Then the corresponding



ALGORITHM Queryl
begin
u:i=u the kernel vertex in Tw.
Find on the leading path in T3 vertex v such that (u,v) is a feasible pair.
while vertex v exists do
if 7, NS, # 0 then return “There is a match”
u :=Parent(u)
v :=Child-on-Leading-Path(v)
od
return “No match”
end.

vertex v on the leading path in T3+ is found, if such a vertex exists. Recall that
a pair (u, v) must be a feasible pair. At this point the following problem arises.
How to perform the test I, NS, # B efficiently?

Recall that the smallest index p, in the kernel interval I, is called the key
for the query string « and recall also that the key p, € I, for every vertex w
in the leading path in the trie Ty . During the first test I, NS, # @ the position
of the key p, in S, is found in time log

Sy| < logn < m (since W only contains
binary strings we have logn < m). Let I, = [l..r], a be the left (a < u,) and b
the right (b > p,) neighbors of p, in the set S,. Now the test I, NS, # @ can
be stated as:

NS, Abh=l<a Vv b<r.

If the above test is positive the algorithm Query2 reports the proper index
among a and b and stops. Otherwise, in the next round of the while loop the
new neighbors a and b of the key p, in the new list I, are computed in constant
time by using the additional links between the elements of the old and new list
Ly.

Theorem 3. 1 queries to a dictionary W of n strings of length m can be an-
swered in time O(m) and space O(nm).

Proof. The initial steps of the algorithm (preceding the while loop) are performed
in time O(m + logn) = O(m). The feasible pair (u, ») (if such exists) is simply
found in time O(m). Then the algorithm finds in time O(logn) the neighbors
of t, in the list L, which is held at the root of T3. This is possible since the
list I, is supported by a search tree. Now the algorithm traverses the leading
path in T3 recovering at each level neighbors of p, in constant time using the
additional links. There are at most m iterations of the while loop since there is
exactly m levels in both tries Ty and T3 Every iteration of the while loop is
done in constant time since both neighbors a and b of the key p, in the new
more sparse set 9, are found in constant time. Thus the total running time of
the algorithm is O(m). O



ALGORITHM Query?2
begin
u:i=u the kernel vertex in Tw.
Find on the leading path in 75 vertex v such that (u,v) is a feasible pair.
Find the neighbors a and b of the key p in S,.
while vertex v exists do
if I < a then return “String a is matched”
if b < r then return “String b is matched”
7 ::Parent(u); Set I and r according to the new interval /.
v :=Child-on-Leading-Path(v)
Find new neighbors of ps, @ and b, in the new list 1,
od
return “No match”
end.

We explain now how to modify the algorithm Query2 to an algorithm re-
porting all matches to a query string. The main idea of the new algorithm is as
follows. At any iteration of the while loop instead of looking only for the left
and the right neighbor of the key index p, the algorithm Query3 searches one by
one all indices to the left and right of u, which belong to the list I.,, and to the
interval T,,. To avoid multiple reporting of the same index the algorithm searches
only that part of the new interval I,, which is an extension of the previous one.
The variables @ and b store the leftmost and the rightmost searched indices in
the list IL,.

Theorem 4. There exists a data structure of size O(nm) and constructible in
time O(nm) which supports the reporting of all maiched dictionary strings to a
1 query in time O(m).

Proof. The algorithm Query3 works in time O(m + #matched), where #matched
is the number of all reported strings. Since there is at most m+1 reported strings
(one exact matching and at most m matches with one error) the total time of
the reporting algorithm is O(m). O

4 A semi-dynamic data structure

In this section we describe how the data structure presented in Sect. 3 can be
made semi-dynamic such that new binary strings can be inserted into W in
amortized time O(m). Tn the following w’ denotes a string to be inserted into W.

The data structure described in Sect. 3 requires that the strings w; are lex-
icographically sorted and that each string has assigned its rank with respect to
the lexicographical ordering of the strings. If we want to add v’ to W we can
use Ty to locate the position of w' in the sorted list of w;s in time O(m). Tf
we continue to maintain the ranks explicitly assigned to the strings we have to



ALGORITHM Query3
begin
u:i=u the kernel vertex in Tw.
Find on the leading path in T3 vertex v such that (u,v) is a feasible pair.
Find the neighbors a and b of the key pin in S,.
while vertex v exists do
while | < a do
report “String a is matched”
a := left neighbor of a in I,.
od
while b < r do
report “String b is matched”
b := right neighbor of b in I,.
od
u :=Parent(u); Set I and r according to new I,,.
v :=Child-on-Leading-Path(v)
Find a or the left neighbor of a in the new list I,.
Find b or the right neighbor of b in the new hist I,
od
end.

reassign new ranks to all strings larger than w’. This would require time 2(n).
To avoid this problem, observe that the indices are used to store the endpoints
of the intervals I, and to store the sets S,, and that the only operation per-
formed on the indices is the comparison of two indices to decide if one string is
lexicographically less than another string in constant time.

FEssentially what we need to know is if given the handles of two strings from
W, which one of the two strings is the lexicographically smallest. A solution to
this problem was given by Dietz and Sleator [3]. They presented a data structure
that allows a new element to be inserted into a linked list in constant time if the
new element’s position is known, and that can answer order queries in constant,
time.

By applying the data structure of Dietz and Sleator to maintain the ordering
between the strings, an insertion can now be implemented as follows. First insert
w’ into Ty . This requires time O(m). The position of w’ in Ty also determines
its location in the lexicographically order implying that the data structure of
Dietz and Sleator can be updated too. By traversing the path from the new leaf
representing w’ in Ty to the root of Ty, the endpoints of the intervals I, can
be updated in time O(m).

The insertion of w'? into Ty without updating the associated fields can be
done in time O(m). Analogously to the query algorithm in Sect. 3, the positions
in the S, sets along the insertion path of w’ in Ty where to insert the handle
of w’ can be found in time O(m).

The problem remaining is to update the additional links between the elements



in the I, lists. For this purpose we change our representation to the following.
Let v be a node with sons = and y. In the following we only consider how to
handle the links between I, and L,. The links between I, and L, are handled
analogously. For each element e € L, N I, we maintain a pointer from the
position of € in I, to the position of e in .. For each element e € I, \ I,
the pointer is null. T.et e € I,. We can now find the closest element to e in
L. by finding the closest element in I, that has a non null pointer. We denote
such an element to be marked. For this purpose we use the find-split-add data
structure of Tmai and Asano [10], an extension of a data structure hy Gabow
and Tarjan [8]. The data structure supports the following operations: Given a
pointer to an element in a list, to find the closest marked element (find); to mark
an unmarked list element (split); and to insert. a new unmarked element into the
list adjacent to an element in the list (add). The operations split and add can he
performed in amortized constant time and find in worst case constant time on
a RAM. Going from e in L, to e’s closest neighbor in I, can still be performed
in worst case constant, time, because this only requires one find operation to be
performed. When a new element e is added to I, we just perform add once, and
in case e is added to I, too we also perform split on e. This requires amortized
constant time. Totally we can therefore update all the links between the I, lists
in amortized time O(m) when inserting a new string into the dictionary.

Theorem 5. There erists a data structure which supports the reporting of all
matched dictionary strings to a 1 query in worst case time O(m) and that allows
new dictionary strings to be inserted in amortized time O(m).

5 Conclusion

We have presented a data structure for the approximate dictionary query prob-
lem that can be constructed in time O(nm), stored in O(nm) space and that
can answer 1 queries in time O(m). We have also shown that the data structure
can be made semi-dynamic by allowing insertions in amortized time O(m), when
we start with an initially empty dictionary. For the general d case the presented
data structure allows d queries to be answered in time O(m Z:l;(] (T)) by ask-
ing 1 queries for all strings within Hamming distance d— 1 of the query string .
This improves the query time of a naive algorithm by a factor of m. We leave as
an open problem if the above query time for the general d case can be improved
when the size of the data structure is O(nm). For example, is there any o(m?)
2 query algorithm?

Another interesting problem which is related to the approximate query prob-
lem and the approximate string matching problem can be stated as follows. (Given
a binary string # of length n, is it possible to create a data structure for ¢ of size
O(n) which allows 1 queries, i.e. queries for occurrences of a query string with
at most one mismatch, in time O(m), where m is the size of the query string?
By creating a compressed suffix tree of size O(n) for the string, 1 queries can
be answered in time O(m?) by an exhaustive search.



Acknowledgment

The authors thank Dany Breslauer for pointing out the relation to the find-split-

add problem.

References

10.

11.

12.
13.

14.

. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and

Algorithms. Addison-Wesley, Reading, MA, 1983.

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13:422 426, 1970.

Paul F. Dietz and Daniel D. Sleator. Two algorithms for maintaining order in a
list. Tn Proc. 19th Ann. ACM Symp. on Theory of Computing (STOC), pages
365 372, 1987.

Danny Dolev, Yuval Harari, Nathan Linial, Noam Nisan, and Michael Parnas.
Neighborhood preserving hashing and approximate queries. In Proc. 5th ACM-
STAM Symposium on Discrete Algorithms (SODA ), pages 251 259, 1994.

Danny Dolev, Yuval Harari, and Michael Parnas. Finding the neighborhood of a
query in a dictionary. In Proc. 2nd Israel Symposium on Theory of Computing and
Systems, pages 33 42, 1993.

E. Fredkin. Trie memory. Communications of the ACM, 3:490 499, 1962.
Michael T.. Fredman, Jands Komlds, and Endre Szemerédi. Storing a sparse table
with O(1) worst case access time. Journal of the ACM, 31(3):538 544, 1984.
Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special
case of disjoint set union. Journal of Computer and System Sciences, 30:209 221,
1985.

Dan Greene, Michal Parnas, and Frances Yao. Multi-index hashing for information
retrieval. Tn Proc. 35th Ann. Symp. on Foundations of Computer Science (FOCS),
pages 722 731, 1994.

Hiroshi Imai and Taka Asano. Dynamic orthogonal segment intersection search.
Journal of Algorithms, 81 18, 1987.

Udi Manber and Sun Wu. An algorithm for approximate membership checking
with application to password security. Information Processing Letters, 50:191 197,
1994.

M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, Mass., 1969.

P. van Emde Boas. Machine models and simulations. In J. van Teeunwen, editor,
Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
MIT Press/FElsevier, 1990.

Andrew C. Yao. Should tables be sorted? Journal of the ACM, 28(3):615 628,
1981.

Andrew C. Yao and Frances F. Yao. Dictionary look-up with small errors. In Proc.
6th Combinatorial Pattern Matching, volume 937 of Lecture Notes in Computer
Science, pages 388 394. Springer Verlag, Berlin, 1995.

This article was processed using the WTEX macro package with LIL.NCS style



