
B
R

IC
S

R
S

-99-12
B

rodaletal.:
F

inding
M

axim
alP

airs
w

ith
B

ounded
G

ap

BRICS
Basic Research in Computer Science

Finding Maximal Pairs with Bounded Gap

Gerth Stølting Brodal
Rune B. Lyngsø
Christian N. S. Pedersen
Jens Stoye

BRICS Report Series RS-99-12

ISSN 0909-0878 April 1999

Copyright c 1999, Gerth Stølting Brodal & Rune B. Lyngsø &
Christian N. S. Pedersen & Jens Stoye.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectoryRS/99/12/

Finding maximal pairs with bounded gapGerth St�lting Brodal� Rune B. Lyngs��Christian N. S. Pedersen� Jens StoyeyAbstratA pair in a string is the ourrene of the same substring twie. A pairis maximal if the two ourrenes of the substring annot be extended tothe left and right without making them di�erent. The gap of a pair isthe number of haraters between the two ourrenes of the substring.In this paper we present methods for �nding all maximal pairs undervarious onstraints on the gap. In a string of length n we an �nd allmaximal pairs with gap in an upper and lower bounded interval in timeO(n logn + z) where z is the number of reported pairs. If the upperbound is removed the time redues to O(n+z). Sine a tandem repeat isa pair where the gap is zero, our methods an be seen as a generalizationof �nding tandem repeats. The running time of our methods equals therunning time of well known methods for �nding tandem repeats.1 IntrodutionA pair in a string is the ourrene of the same substring twie. A pair is left-maximal (right-maximal) if the haraters to the immediate left (right) of thetwo ourrenes of the substring are di�erent. A pair is maximal if it is bothleft- and right-maximal. The gap of a pair is the number of haraters betweenthe two ourrenes of the substring. For example, the two ourrenes of thesubstring ma in the string maximal form a maximal pair of ma with gap two.Gus�eld [10, Setion 7.12.3℄ desribes how to report all maximal pairs ina string using the suÆx tree of the string in time O(n + z) and spae O(n),where n is the length of the string and z is the number of reported pairs.Sine there is no restrition on the gap of the maximal pairs reported by thisalgorithm, many of them probably desribe ourrenes of substrings that are�Basi Researh in Computer Siene (BRICS), Centre of the Danish National ResearhFoundation, Department of Computer Siene, University of Aarhus, Ny Munkegade, 8000�Arhus C, Denmark. E-mail: fgerth,rlyngsoe,stormg�bris.dk. Supported by the ES-PRIT Long Term Researh Programme of the EU under projet number 20244 (ALCOM-IT).yDeutshes Krebsforshungszentrum (DKFZ), Theoretishe Bioinformatik, Im Neuen-heimer Feld 280, 69120 Heidelberg, Germany. E-mail: j.stoye�dkfz-heidelberg.de1

overlapping or far apart in the string. In many appliations in omputationalbiology this is unfortunate, so several papers address the problem of �ndingourrenes of similar substrings not too far apart [14, 18, 24℄.In the �rst part of this paper we desribe how to �nd all maximal pairs in astring with gap in an upper and lower bounded interval in time O(n log n+ z)and spae O(n). The interval of allowed gaps an be hosen suh that wereport a maximal pair only if the gap is between onstants 1 and 2, butmore generally, it an be hosen suh that we report a maximal pair of � onlyif the gap is between g1(j�j) and g2(j�j), where g1 and g2 are funtions thatan be omputed in onstant time. This, for example, makes it possible to�nd all maximal pairs with gap between zero and some fration of the lengthof the repeated substring. In the seond part of this paper we desribe howremoving the upper bound g2(j�j) on allowed gaps, and only require the gapof a reported pair of � to be at least g1(j�j), makes it possible to redue therunning time to O(n + z). The methods we present all use the suÆx tree asthe fundamental data struture ombined with eÆient methods for mergingsearh trees and heap-ordered trees.The problem of �nding ourrenes of repeated substrings in a string iswell studied. Most of the work has been onerned with eÆient methods for�nding ourrenes of ontiguously repeated substrings. An ourrene of asubstring of the form �� is alled an ourrene of a square or a tandem repeat.Most well-known methods for �nding the ourrenes of all tandem repeats ina string require time O(n log n+ z), where n is the length of the string and zis the number of reported ourrenes of tandem repeats [4, 2, 19, 16, 25℄.Work has also been done on just deteting whether or not a string ontains atandem repeat [20, 5℄. Reently, extending on the idea presented in [5℄, twomethods have been presented that �nd a ompat representation of all tandemrepeats in a string in time O(n) [15, 11℄. Other papers onsider the problem of�nding ourrenes of ontiguous repeats of substrings that are within someHamming- or edit-distane of eah other [17℄.In biologial sequene analysis searhing for tandem repeats is used toreveal strutural and funtional information [10, pp. 139{142℄, but searhingfor exat tandem repeats an be too restritive beause of sequening andother experimental errors. By searhing for maximal pairs with small gaps(maybe depending on the length of the substring) it ould be possible toompensate for these errors. On the other hand, �nding maximal pairs with agap within an interval an be seen as a generalization of �nding ourrenes oftandem repeats. Stoye and Gus�eld [25℄ say that an ourrene of the tandemrepeat �� is a branhing ourrene of the tandem repeat �� if and only if theharaters to the immediate right of the two ourrenes of � are di�erent, andthey explain how to dedue the ourrene of all tandem repeats in a stringfrom the ourrenes of branhing tandem repeats in time proportional to the2

number of tandem repeats. Sine a branhing ourrene of a tandem repeatis just a right-maximal pair with gap zero, the methods presented in this paperan be used to �nd all tandem repeats in time O(n log n+z). This mathes thetime bounds of previous published methods for this problem [4, 2, 19, 16, 25℄.The rest of this paper is organized in two parts whih an be read inde-pendently. In Setion 2 we present the preliminaries neessary to read eitherof the two parts; we de�ne pairs and suÆx trees and desribe how in generalto �nd pairs using the suÆx tree. In the �rst part, Setion 3, we presentthe methods to �nd all maximal pairs in a string with gap in an upper andlower bounded interval. This part also presents fats about eÆient mergingof searh trees whih are essential to the formulation of the methods. In theseond part, Setion 4, we present the methods to �nd all maximal pairs in astring with gap in a lower bounded interval. This part also inludes the presen-tation of two novel data strutures, the heap-tree and the olored heap-tree,whih are essential to the formulation of the methods. Finally, in Setion 5we summarize our work and disuss open problems.2 PreliminariesThroughout this paper S will denote a string of length n over a �nite alpha-bet �. We will use S[i℄, for i = 1; 2; : : : ; n, to denote the ith harater of S,and use S[i :: j℄ as notation for the substring S[i℄S[i + 1℄ � � � S[j℄ of S. To beable to refer to the haraters to the left and right of every harater in S with-out worrying about the �rst and last harater, we de�ne S[0℄ and S[n+1℄ tobe two distint haraters not appearing anywhere else in S.In order to formulate methods for �nding repetitive strutures in S, weneed a proper de�nition of suh strutures. An obvious de�nition is to �nd allpairs of idential substrings in S. This, however, leads to a lot of redundantoutput, e.g. in the string that onsists of n idential haraters there are �(n3)suh pairs. To limit the redundany without sari�ing any meaningful stru-tures Gus�eld [10℄ de�nes maximal pairs.De�nition 1 (Pair) We say that (i; j; j�j) is a pair of � in S formed by iand j if and only if 1 � i < j � n � j�j + 1 and � = S[i :: i + j�j � 1℄ =S[j :: j + j�j � 1℄. The pair is left-maximal (right-maximal) if the haratersto the immediate left (right) of two ourrenes of � are di�erent, i.e. left-maximal if S[i�1℄ 6= S[j�1℄ and right-maximal if S[i+ j�j℄ 6= S[j+ j�j℄. Thepair is maximal if it is right- and left-maximal. The gap of a pair (i; j; j�j) isthe number of haraters j � i� j�j between the two ourrenes of � in S.It follows from the de�nition that a string of length n in the worst ase on-tains �(n2) right-maximal pairs. The string an ontains the worst ase number3

i � �gap jFigure 1: An ourrene of a pair (i; j; j�j) with gap j � i� j�j.of right-maximal pairs but only �(n) maximal pairs. The string (aab)n=3 how-ever ontains �(n2) maximal pairs. This shows that the worst ase number ofmaximal pairs and right-maximal pairs in a string are asymptotially equal.Figure 1 illustrates the ourrene of a pair. In some appliations it mightbe interesting only to �nd pairs that obey ertain restritions on the gap, e.g.to �lter out pairs of substrings that are overlapping or far apart and thusto redue the number of pairs to report. Using the \smaller-half trik", seeSetion 3.1, and Lemma 1 it is easy to prove that a string of length n in theworst ase ontains �(n logn) right-maximal pairs with gap in an interval ofonstant size.In this paper we present methods for �nding all right-maximal and maximalpairs (i; j; j�j) in S with gap in a bounded interval. These methods all usethe suÆx tree of S as the fundamental data struture. We briey review thesuÆx tree and refer to [10℄ for a more omprehensive treatment.De�nition 2 (SuÆx tree) The suÆx tree T (S) of the string S is the om-pressed trie of all suÆxes of S. Eah leaf in T (S) represents a suÆx S[i :: n℄of S and is annotated with the index i. We refer to the set of indies storedat the leaves in the subtree rooted at node v as the leaf-list of v and denoteit LL(v). Eah edge in T (S) is labelled with a nonempty substring of S suhthat the path from the root to the leaf annotated with index i spells the suÆxS[i :: n℄. We refer to the substring of S spelled by the path from the root tonode v as the path-label of v and denote it L(v).The suÆx tree T (S) an be onstruted in time O(n) [29, 21, 27, 6℄. Itfollows from the de�nition that all internal nodes in T (S) have out-degreebetween two and j�j. We an turn the suÆx tree T (S) into the binary suÆxtree TB(S) by replaing every node v in T (S) with out-degree d > 2 by abinary tree with d� 1 internal nodes and d� 2 internal edges in whih the dleaves are the d hildren of node v. We label eah new internal edge with theempty string suh that the d � 1 nodes replaing node v all have the samepath-label as node v has in T (S). Sine T (S) has n leaves, onstruting thebinary suÆx tree TB(S) requires adding at most n� 2 new nodes. Sine eahnew node an be added in onstant time, the binary suÆx tree TB(S) an beonstruted in time O(n). 4

The binary suÆx tree is an essential omponent of our methods. De�ni-tion 2 implies that there is a node v in T (S) with path-label � if and only if �is the longest ommon pre�x of S[i :: n℄ and S[j :: n℄ for some 1 � i < j � n.In other words, there is a node v with path-label � if and only if (i; j; j�j) isa right-maximal pair in S. Sine S[i + j�j℄ 6= S[j + j�j℄ the indies i and jannot be elements in the leaf-list of the same hild of v. Using the binarysuÆx tree TB(S) we an thus formulate the following lemma.Lemma 1 There is a right-maximal pair (i; j; j�j) in S if and only if there is anode v in the binary suÆx tree TB(S) with path-label � and distint hildren w1and w2 where i 2 LL(w1) and j 2 LL(w2).Lemma 1 gives an approah to �nd all right-maximal pairs in S; for everyinternal node v in the binary suÆx tree TB(S) onsider the leaf-lists at its twohildren w1 and w2, and for every element (i; j) in LL(w1)�LL(w2) report aright-maximal pair (i; j; j�j) if i < j and (j; i; j�j) if j < i. To �nd all maximalpairs in S the problem remains to �lter out all right-maximal pairs that arenot left-maximal.3 Pairs with upper and lower bounded gapWe want to �nd all maximal pairs (i; j; j�j) in S with gap between g1(j�j)and g2(j�j), i.e. g1(j�j) � j � i� j�j � g2(j�j), where g1 and g2 are funtionsthat an be omputed in onstant time. An obvious approah is to generate allmaximal pairs in S and only report those with gap between g1(j�j) and g2(j�j),but as shown above there might be asymptotially fewer maximal pairs in Swith gap between g1(j�j) and g2(j�j) than maximal pairs in S in total. Wetherefore want to �nd all maximal pairs (i; j; j�j) in S with gap between g1(j�j)and g2(j�j) without generating and onsidering all maximal pairs in S. A steptowards �nding all maximal pairs with gap between g1(j�j) and g2(j�j) is to�nd all right-maximal pairs with gap between g1(j�j) and g2(j�j).Figure 2 shows that if one ourrene of � in a pair with gap between g1(j�j)and g2(j�j) is at position p, then the other ourrene of � must be at aposition q in one of the two intervals L(p; j�j) = [p� j�j � g2(j�j) :: p � j�j �g1(j�j) ℄ or R(p; j�j) = [p + j�j + g1(j�j) :: p + j�j + g2(j�j) ℄. Together withLemma 1 this gives an approah to �nd all right-maximal pairs in S with gapbetween g1(j�j) and g2(j�j); from every internal node v in the binary suÆxtree TB(S) with path-label � and hildren w1 and w2, we report for every pin LL(w1) the pairs (p; q; j�j) for all q in LL(w2) \ R(p; j�j) and the pairs(q; p; j�j) for all q in LL(w2) \ L(p; j�j).To report right-maximal pairs eÆiently using this proedure, we mustbe able to �nd for every p in LL(w1), without looking at all the elements in5

�����
�����
�����
�����

�����
�����
�����
����� p �L(p; j�j) R(p; j�j)j�j+ g2(j�j) j�j+ g2(j�j)j�j+ g1(j�j) j�j+ g1(j�j)

Figure 2: If (p; q; j�j) (respetively (q; p; j�j)) is a pair with gap between g1(j�j)and g2(j�j), then one ourrene of � is at position p and the other ourreneis at a position q in the interval R(p; j�j) (respetively L(p; j�j)) of positions.LL(w2), the proper elements q in LL(w2) to report it against. It turns outthat searh trees make this possible. In this paper we use AVL trees, butother types of searh trees, e.g. (a; b)-trees [12℄ or red-blak trees [9℄, an alsobe used as long as they obey Lemmas 2 and 3 stated below. Before we anformulate algorithms we review some useful fats about AVL trees.3.1 Data StruturesAn AVL tree T is a balaned searh tree that stores an ordered set of elements.AVL trees were introdued in [1℄, but are explained in almost every textbookon data strutures. We say that an element e is in T , or e 2 T , if it is storedat a node in T . For short notation we use e to denote both the element andthe node at whih it is stored in T . We an keep links between the nodes in Tin suh a way that we in onstant time from the node e an �nd the nodesnext(e) and prev(e) storing the next and previous element in inreasing order.We use jT j to denote the size of T , i.e. the number of elements stored in T .EÆient merging of two AVL trees is essential to our methods. Hwangand Lin [13℄ show how to merge two sorted lists using the optimal numberof omparisons. Brown and Tarjan [3℄ show how to implement merging oftwo height-balaned searh trees, e.g. AVL trees, in time proportional to theoptimal number of omparisons. Their result is summarized in Lemma 2,whih immediately implies Lemma 3.Lemma 2 Two AVL trees of size at most n and m an be merged in timeO(log �n+mn �).Lemma 3 Given a sorted list of elements e1; e2; : : : ; en and an AVL tree Tof size at most m, m � n, we an �nd qi = min�x 2 T �� x � ei	 for alli = 1; 2; : : : ; n in time O(log �n+mn �).Proof. Construt the AVL tree of the elements e1; e2; : : : ; en in time O(n).Merge this AVL tree with T aording to Lemma 2, exept that whenever6

the merge-algorithm would insert one of the elements e1; e2; : : : ; en into T ,we hange the merge-algorithm to report the neighbor of the element in Tinstead. This modi�ation does not inrease the running time. 2The \smaller-half trik" is essential to several methods for �nding tandemrepeats [4, 2, 25℄. It says that the sum over all nodes v in an arbitrary binarytree of size n of terms that are O(n1), where n1 � n2 are the numbers of leavesin the subtrees rooted at the two hildren of v, is O(n logn). Our methodsrely on a stronger version of the \smaller-half trik" hinted at in [22, Ex. 35℄and used in [23, Chap. 5, p. 84℄; we summarize it in the following lemma.Lemma 4 Let T be an arbitrary binary tree with n leaves. The sum over allinternal nodes v in T of terms that are O(log �n1+n2n1 �), where n1 and n2 are thenumbers of leaves in the subtrees rooted at the two hildren of v, is O(n log n).Proof. As the terms are O(log �n1+n2n1 �) we an �nd onstants, a and b, suhthat the terms are upper bounded by a+b log �n1+n2n1 �. We will by indution inthe number of leaves of the binary tree prove that the sum is upper boundedby (2n� 1)a + b log n!. As log n! = O(n logn) the lemma follows.If T is a leaf then the upper bound holds vauously. Now assume indu-tively that the upper bound holds for all trees with at most n�1 leaves. Let Tbe a tree with n leaves where the number of leaves in the subtrees rooted at thetwo hildren of the root are n1 < n and n2 < n. Aording to the indution hy-pothesis the sum over all nodes in these two subtrees, i.e. the sum over all nodesof T exept the root, is bounded by (2n1�1)a+b log n1!+(2n2�1)a+b logn2!and thus the entire sum is bounded by(2n1 � 1)a+b log n1! + (2n2 � 1)a+ b log n2! + a+ b log�n1 + n2n1 �= (2(n1 + n2)� 1)a+ b log n1! + b log n2! +b log(n1 + n2)!� b logn1!� b logn2!= (2n� 1)a+ b log n!whih proves the lemma. 23.2 AlgorithmsWe �rst desribe an algorithm that �nds all right-maximal pairs in S withbounded gap using AVL trees to keep trak of the elements in the leaf-listsduring a traversal of the binary suÆx tree TB(S). We then extend it to �ndall maximal pairs in S with bounded gap using an additional AVL tree to�lter out eÆiently all right-maximal pairs that are not left-maximal. Bothalgorithms run in time O(n log n+ z) and spae O(n), where z is the number7

of reported pairs. In the following we assume, unless stated otherwise, that vis a node in the binary suÆx tree TB(S) with path-label � and hildren w1and w2 named suh that jLL(w1)j � jLL(w2)j. We say that w1 is the smallhild of v and that w2 is the big hild of v.3.2.1 Right-maximal pairs with upper and lower bounded gapTo �nd all right-maximal pairs in S with gap between g1(j�j) and g2(j�j) weonsider every node v in the binary suÆx tree TB(S) in a bottom-up fashion,e.g. during a depth-�rst traversal. At every node v we use AVL trees storingthe leaf-lists LL(w1) and LL(w2) at its two hildren to report the proper right-maximal pairs of its path-label �. The details are given in Algorithm 1 andexplained below.At every node v in TB(S) we onstrut an AVL tree, the leaf-list tree T ,that stores the elements in LL(v). If v is a leaf then we onstrut T diretlyin Step 1. If v is an internal node then LL(v) is the union of the disjointleaf-lists LL(w1) and LL(w2) whih by assumption are stored in the alreadyonstruted T1 and T2, so we onstrut T by merging T1 and T2, jT1j �jT2j, using Lemma 2. Before onstruting T in Step 2 we use T1 and T2to report right-maximal pairs from node v by reporting every p in LL(w1)against every q in LL(w2) \ L(p; j�j) and LL(w2) \R(p; j�j). This is done intwo steps. In Step 2a we �nd for every p in LL(w1) the minimum element qr(p)in LL(w2) \ R(p; j�j) and the minimum element ql(p) in LL(w2) \ L(p; j�j)by searhing in T2 using Lemma 3. In Step 2b we report pairs (p; q; j�j) and(q; p; j�j) for every p in LL(w1) and inreasing q's in LL(w2) starting withqr(p) and ql(p) respetively, until the gap violates the upper or lower bound.To argue that Algorithm 1 �nds all right-maximal pairs with gap betweeng1(j�j) and g2(j�j) it is enough to argue that we for every p in LL(w1) reportall right-maximal pairs (p; q; j�j) and (q; p; j�j) with gap between g1(j�j) andg2(j�j). The rest follows beause we at every node v in TB(S) onsider ev-ery p in LL(w1). Consider the all Report(qr(p); p+ j�j+ g2(j�j)) in Step 2b.From the implementation of Report follows that this all reports p againstevery q in LL(w2) \ [qr(p) :: p + j�j + g2(j�j)℄. By onstrution of qr(p) andde�nition of R(p; j�j) follows that LL(w2) \ [qr(p) :: p + j�j+ g2(j�j)℄ is equalto LL(w2) \ R(p; j�j), so the all reports all pairs (p; q; j�j) with gap be-tween g1(j�j) and g2(j�j). Similarly we an argue that the all Report(ql(p); p�j�j � g1(j�j)) reports all pairs (q; p; j�j) with gap between g1(j�j) and g2(j�j).Now onsider the running time of Algorithm 1. Building the binary suÆxtree TB(S) and reating an AVL tree of size one at eah leaf in Step 1 takestime O(n). At every internal node in TB(S) we do Step 2. Sine jT1j �jT2j searhing in Step 2a and merging in Step 2 takes time O(log �jT1j+jT2jjT1j �)by Lemmas 3 and 2 respetively. Reporting of pairs in Step 2b takes time8

Algorithm 1 Find all right-maximal pairs in string S with bounded gap.1. Initializing: Build the binary suÆx tree TB(S) and reate at eah leafan AVL tree of size one that stores the index at the leaf.2. Reporting and merging: When the AVL trees T1 and T2, jT1j � jT2j, atthe two hildren w1 and w2 of node v with path-label � are available,we do the following:(a) Let fp1; p2; : : : ; psg be the elements in T1 in sorted order. For eahelement p in T1 we �ndqr(p) = min�x 2 T2 �� x � p+ j�j + g1(j�j)	ql(p) = min�x 2 T2 �� x � p� j�j � g2(j�j)	by searhing in T2 with the sorted lists fpi + j�j + g1(j�j) j i =1; 2; : : : ; sg and fpi�j�j� g2(j�j) j i = 1; 2; : : : ; sg using Lemma 3.(b) For eah element p in T1 we do Report(qr(p); p+ j�j+ g2(j�j)) andReport(ql(p); p� j�j � g1(j�j)) where Report is the following proe-dure.def Report(from ; to) :q = fromwhile q � to :report pair (p; q; j�j) if p < q, and (q; p; j�j) otherwiseq = next(q)() Build the leaf-list tree T at node v by merging T1 and T2 usingLemma 2.proportional to jT1j, beause we onsider every p in LL(w1), plus the numberof reported pairs. Summing this over all nodes gives by Lemma 4 that the totalrunning time is O(n log n+ z), where z is the number of reported pairs. Sineonstruting and keeping TB(S) requires spae O(n), and sine no element atany time is in more than one leaf-list tree, Algorithm 1 requires spae O(n).Theorem 1 Algorithm 1 �nds all right-maximal pairs (i; j; j�j) in a string Swith gap between g1(j�j) and g2(j�j) in spae O(n) and time O(n logn + z),where z is the number of reported pairs and n is the length of S.
9

3.2.2 Maximal pairs with upper and lower bounded gapWe now turn towards �nding all maximal pairs in S with gap between g1(j�j)and g2(j�j). Our approah to �nd all maximal pairs in S with gap be-tween g1(j�j) and g2(j�j) is to extend Algorithm 1 to �lter out all right-maximal pairs that are not left-maximal. A simple solution is to extend theproedure Report to hek if S[p � 1℄ 6= S[q � 1℄ before reporting the pair(p; q; j�j) or (q; p; j�j) in Step 2b. This solution takes time proportional to thenumber of inspeted right-maximal pairs, and not time proportional to thenumber of reported maximal pairs. Even though the maximum number ofright-maximal pairs and maximal pairs in strings of a given length are asymp-totially equal, many strings ontain signi�antly fewer maximal pairs thanright-maximal pairs. We therefore want to �lter out all right-maximal pairsthat are not left-maximal without inspeting all right-maximal pairs. In theremainder of this setion we desribe one way to do this.Consider the reporting step in Algorithm 1 and assume that we are aboutto report from a node v with hildren w1 and w2. The leaf-list trees T1 and T2,jT1j � jT2j, are available and they make it possible to aess the elementsin LL(w1) = fp1; p2; : : : ; psg and LL(w2) = fq1; q2; : : : ; qtg in sorted order.We divide the sorted leaf-list LL(w2) into bloks of ontiguous elements suhthat the elements qi�1 and qi are in the same blok if and only if S[qi�1�1℄ =S[qi�1℄. We say that we divide the sorted leaf-list into bloks of elements withequal left-haraters. To �lter out all right-maximal pairs that are not left-maximal we must avoid to report p in LL(w1) against any element q in LL(w2)in a blok of elements with left-harater S[p� 1℄. This gives the overall ideaof the extended algorithm; we extend the reporting step in Algorithm 1 suhthat whenever we are about to report p in LL(w1) against q in LL(w2) whereS[p� 1℄ = S[q � 1℄ we skip all elements in the urrent blok ontaining q andontinue reporting p against the �rst element q0 in the following blok, whihby the de�nition of bloks satis�es that S[p� 1℄ 6= S[q0 � 1℄.To implement this extended reporting step eÆiently we must be able toskip all elements in a blok without inspeting eah of them. We ahieve thisby onstruting an additional AVL tree, the blok-start tree, that keeps trakof the bloks in the leaf-list. At eah node v during the traversal of TB(S)we thus onstrut two AVL trees; the leaf-list tree T that stores the elementsin LL(v), and the blok-start tree B that keeps trak of the bloks in the sortedleaf-list by storing all the elements in LL(v) that start a blok. We keep linksfrom the blok-start tree to the leaf-list tree suh that we in onstant time ango from an element in the blok-start tree to the orresponding element in theleaf-list tree. Figure 3 illustrates the leaf-list tree, the blok-start tree and thelinks between them. Before we present the extended algorithm and explainhow to use the blok-start tree to eÆiently skip all elements in a blok, we�rst desribe how to onstrut the leaf-list tree T and blok-start tree B at10

Be7 e8e4 e5 e6T e1 e4 e7e1 e2 e3Figure 3: The data struture onstruted at eah node v in TB(S). The leaf-list tree T stores all elements in LL(v). The blok-start tree B stores allelements in LL(v) that start a blok in the sorted leaf-list. We keep linksfrom the elements in the blok-start tree to the orresponding elements in theleaf-list tree.node v from the leaf-list trees, T1 and T2, and blok-start trees, B1 and B2,at its two hildren w1 and w2.Sine LL(v) is the union of the disjoint leaf-lists LL(w1) and LL(w2)stored in T1 and T2 respetively, we an onstrut the leaf-list tree T bymerging T1 and T2 using Lemma 2. It is more involved to onstrut theblok-start tree B. The reason is that an element pi that starts a blok inLL(w1) or an element qj that starts a blok in LL(w2) does not neessarilystart a blok in LL(v) and vie versa, so we annot onstrut B by merg-ing B1 and B2. Let fe1; e2; : : : ; es+tg be the elements in LL(v) in sortedorder. By de�nition the blok-start tree B ontains all elements ek in LL(v)where S[ek�1�1℄ 6= S[ek�1℄. We onstrut B by modifying B2. We hoose tomodify B2, and not B1, beause jLL(w1)j � jLL(w2)j, whih by the \smaller-half trik" allows us to onsider all elements in LL(w1) without spending toomuh time in total. To modify B2 to beome B we must identify all theelements that are in B but not in B2 and vie versa.Lemma 5 If ek is in B but not in B2 then ek 2 LL(w1) or ek�1 2 LL(w1).Proof. Assume that ek is in B and that ek and ek�1 both are in LL(w2).In LL(w2) the elements ek and ek�1 are neighboring elements qj and qj�1.Sine ek starts a blok in LL(v) then S[qj � 1℄ = S[ek � 1℄ 6= S[ek�1 � 1℄ =S[qj�1 � 1℄. This shows that qj = ek is in B2 and the lemma follows. 2Let NEW be the set of elements ek in B where ek or ek�1 are in LL(w1).It follows from Lemma 5 that this set ontains at least all elements in B thatare not in B2. It is easy to see that we an onstrut NEW in sorted orderwhile merging T1 and T2; whenever an element ek from T1, i.e. LL(w1), is11

plaed in T , i.e. LL(v), we inlude it, and/or the next element ek+1 plaedin T , in NEW if they start a blok in LL(v).If we insert the elements in NEW we are halfway done modifying B2 tobeome B. We still need to identify and remove the elements that should beremoved from B2, that is, the elements that are in B2 but not in B.Lemma 6 An element qj in B2 is not in B if and only if the largest element ekin NEW smaller than qj in B2 has the same left-harater as qj.Proof. If qj is in B2 but does not start a blok in LL(v), then it must be ina blok started by some element ek with the same left-harater as qj. Thisblok annot ontain qj�1 beause qj being in B2 implies that S[qj � 1℄ 6=S[qj�1 � 1℄. We thus have the ordering qj�1 < ek < qj. This implies that ekis the largest element in NEW smaller than qj. If ek is the largest elementin NEW smaller than qj, then no blok starts in LL(v) between ek and qj, i.e.all elements e in LL(v) where ek < e < qj satisfy that S[e� 1℄ = S[ek � 1℄, soif S[ek � 1℄ = S[qj � 1℄ then qj does not start a blok in LL(v). 2By searhing in B2 with the sorted list NEW using Lemma 3 it is straight-forward to �nd all pairs of elements (ek; qj), where ek is the largest elementin NEW smaller than qj in B2. If the left-haraters of ek and qj in suh apair are equal, i.e. S[ek � 1℄ = S[qj � 1℄, then by Lemma 6 the element qj isnot in B and must therefore be removed from B2. It follows from the proofof Lemma 6 that if this is the ase then qj�1 < ek < qj , so we an, withoutdestroying the order among the nodes in B2, remove qj from B2 and insert ekinstead, simply by replaing the element qj with the element ek at the nodestoring qj in B2.We an now summarize the three steps it takes to modify B2 to beome B.In Step 1 we onstrut the sorted set NEW that ontains all elements in Bthat are not in B2. This is done while merging T1 and T2 using Lemma 2.In Step 2 we remove the elements from B2 that are not in B. The elementsinB2 being removed and the elements from NEW replaing them are identi�edusing Lemmas 3 and 6. In Step 3 we merge the remaining elements in NEWinto the modi�ed B2 using Lemma 2. Adding links from the new elementsin B to the orresponding elements in T an be done while replaing andmerging in Steps 2 and 3. Sine jNEW j � 2 jT1j and jB2j � jT2j, the timeit takes to onstrut B is dominated by the the time it takes merge a sortedlist of size 2 jT1j into an AVL tree of size jT2j. By Lemma 2 this is within aonstant fator of the time it takes to merge T1 and T2, so the time is takes toonstrut B is dominated by the time it takes to onstrut the leaf-list tree T .Now that we know how to onstrut the leaf-list tree T and blok-starttree B at node v from the leaf-list trees, T1 and T2, and blok-start trees, B1and B2, at its two hildren w1 and w2, we an proeed with the implementation12

Algorithm 2 Find all maximal pairs in string S with bounded gap.1. Initializing: Build the binary suÆx tree TB(S) and reate at eah leaftwo AVL trees of size one, the leaf-list and the blok-start tree, bothstoring the index at the leaf.2. Reporting and merging: When the leaf-list trees T1 and T2, jT1j � jT2j,and the blok-start trees B1 and B2 at the two hildren w1 and w2 ofnode v with path-label � are available, we do the following:(a) Let fp1; p2; : : : ; psg be the elements in T1 in sorted order. For eahelement p in T1 we �ndqr(p) = min�x 2 T2 �� x � p+ j�j + g1(j�j)	ql(p) = min�x 2 T2 �� x � p� j�j � g2(j�j)	br(p) = min�x 2 B2 �� x � p+ j�j+ g1(j�j)	bl(p) = min�x 2 B2 �� x � p� j�j � g2(j�j)	by searhing in T2 andB2 with the sorted lists fpi+j�j+g1(j�j) j i =1; 2; : : : ; sg and fpi�j�j� g2(j�j) j i = 1; 2; : : : ; sg using Lemma 3.(b) For eah element p in T1 we do ReportMax(qr(p); br(p); p +j�j + g2(j�j)) and ReportMax(ql(p); bl(p); p � j�j � g1(j�j)) whereReportMax is the following proedure.def ReportMax(from T ; from B ; to):q = from Tb = from Bwhile q � to:if S[q � 1℄ 6= S[p� 1℄:report pair (p; q; j�j) if p < q, and (q; p; j�j) otherwiseq = next(q)else:while b � q:b = next(b)q = b() Build the leaf-list tree T at node v by merging T1 and T2 usingLemma 2. Build the blok-start tree B at node v by modifying B2as desribed in the text.
13

of the extended reporting step. The details are shown in Algorithm 2. Thisalgorithm is similar to Algorithm 1 exept that we at every node v in TB(S)onstrut two AVL trees; the leaf-list tree T that stores the elements in LL(v),and the blok-start tree B that keeps trak of the bloks in LL(v) by storingthe subset of elements that start a blok. If v is a leaf, we onstrut T and Bdiretly. If v is an internal node, we onstrut T by merging the leaf-listtrees T1 and T2 at its two hildren w1 and w2, and we onstrut B by modifyingthe blok-start tree B2 as explained above.Before onstruting T and B we report all maximal pairs from node vwith gap between g1(j�j) and g2(j�j) by reporting every p in LL(w1) againstevery q in LL(w2)\L(p; j�j) and LL(w2)\R(p; j�j) where S[p�1℄ 6= S[q�1℄.This is done in two steps. In Step 2a we �nd for every p in LL(w1) theminimum elements ql(p) and qr(p), as well as the minimum elements bl(p)and br(p) that start a blok, in LL(w2) \ L(p; j�j) and LL(w2) \ R(p; j�j)respetively. This is done by searhing in T2 and B2 using Lemma 3. InStep 2b we report pairs (p; q; j�j) and (q; p; j�j) for every p in LL(w1) andinreasing q's in LL(w2) starting with qr(p) and ql(p) respetively, until thegap violates the upper or lower bound. Whenever we are about to report pagainst q where S[p � 1℄ = S[q � 1℄, we instead use the blok-start tree B2to skip all elements in the blok ontaining q and ontinue with reporting pagainst the �rst element in the following blok.To argue that Algorithm 2 �nds all maximal pairs with gap between g1(j�j)and g2(j�j) it is enough to argue that we for every p in LL(w1) report all max-imal pairs (p; q; j�j) and (q; p; j�j) with gap between g1(j�j) and g2(j�j). Therest follows beause we at every node in TB(S) onsider every p in LL(w1).Consider the all ReportMax(qr(p); br(p); p+j�j+g2(j�j)) in Step 2b. From theimplementation of ReportMax follows that unless we skip elements by inreas-ing b then we onsider every q in LL(w2)\R(p; j�j). The test S[q�1℄ 6= S[p�1℄before reporting a pair ensures that we only report maximal pairs and when-ever S[q � 1℄ = S[p� 1℄ we inrease b until b = minfx 2 B2 j x > qg. This is,by onstrution of B2 and br(p), the element that starts the blok followingthe blok ontaining q, so all elements q0, q < q0 < b, we skip by setting qto b satisfy that S[p � 1℄ = S[q � 1℄ = S[q0 � 1℄. We thus onlude thatReportMax(qr(p); br(p); p + j�j + g2(j�j)) reports p against exatly those q inLL(w2) \R(p; j�j) where S[p� 1℄ 6= S[q � 1℄, i.e. it reports all maximal pairs(p; q; j�j) at node v with gap between g1(j�j) and g2(j�j). Similarly, the allReportMax(ql(p); bl(p); p � j�j � g1(j�j)) reports all maximal pairs (q; p; j�j)with gap between g1(j�j) and g2(j�j).Now onsider the running time of Algorithm 2. We �rst argue that the allReportMax(qr(p); br(p); p+ j�j+g2(j�j)) takes onstant time plus time propor-tional to the number of reported pairs (p; q; j�j). To do this all we have to showis that the time used to skip bloks, i.e. the number of times we inrease b, is14

proportional to the number of reported pairs. By onstrution br(p) � qr(p),so the number of times we inrease b is bounded by the number of bloks inLL(w2) \ R(p; j�j). Sine neighboring bloks ontain elements with di�erentleft-haraters, we report p against an element from at least every seond blokin LL(w2)\R(p; j�j). The number of times we inrease b is thus proportional tothe number of reported pairs. The all ReportMax(ql(p); bl(p); p�j�j�g1(j�j))also takes onstant time plus time proportional to the number of reported pairs(q; p; j�j). We thus have that Step 2b takes time proportional to jT1j plus thenumber of reported pairs. Everything else we do at node v, i.e. searhing in T2and B2 and onstruting the leaf-list tree T and blok-start tree B, takes timeO(log �jT1j+jT2jjT1j �). Summing this over all nodes gives by Lemma 4 that thetotal running time of the algorithm is O(n logn + z) where z is the numberof reported pairs. Sine onstruting and keeping TB(S) requires spae O(n),and sine no element at any time is in more than one leaf-list tree, and maybeone blok-start tree, Algorithm 2 requires spae O(n).Theorem 2 Algorithm 2 �nds all maximal pairs (i; j; j�j) in a string S withgap between g1(j�j) and g2(j�j) in spae O(n) and time O(n logn+z), where zis the number of reported pairs and n is the length of S.We observe that Algorithm 2 never uses the blok-start tree B1 at thesmall hild w1. This observation an be used to ensure that only one blok-start tree exists during the exeution of the algorithm. If we implement thetraversal of TB(S) as a depth-�rst traversal in whih we at eah node v �rstreursively traverse the subtree rooted at the small hild w1, then we do notneed to store the blok-start tree returned by this reursive traversal whilereursively traversing the subtree rooted at the big hild w2. This impliesthat only one blok-start tree exists at all times during the reursive traversalof TB(S). The drawbak is that we at eah node v need to know in advanewhih hild is the small hild, but this knowledge an be obtained in lineartime by annotating eah node with the size of the subtree it roots.4 Pairs with lower bounded gapIf we relax the onstraint on the gap and only want to �nd all maximal pairsin S with gap at least g(j�j), where g is a funtion that an be omputedin onstant time, then a straightforward solution is to use Algorithm 2 withg1(j�j) = g(j�j) and g2(j�j) = n. This obviously �nds all maximal pairs withgap at least g1(j�j) = g(j�j) in time O(n logn + z). However, the missingupper bound on the gap, i.e. the trivial upper bound g2(j�j) = n, makes itpossible to redue the running time to O(n+z) sine reporting from eah nodeduring the traversal of the binary suÆx tree is simpli�ed.15

The reporting of pairs from node v with hildren w1 and w2 is simpli�ed,beause the lak of an upper bound on the gap implies that we do not haveto searh LL(w2) for the �rst element to report against the urrent elementin LL(w1). Instead we an start by reporting the urrent element in LL(w1)against the biggest (and smallest) element in LL(w2) and then ontinue re-porting it against dereasing (and inreasing) elements from LL(w2) untilthe gap beomes smaller than g(j�j). Unfortunately this simpli�ation alonedoes not redue the asymptoti running time beause inspeting every elementin LL(w1) and keeping trak of the leaf-lists in AVL trees alone requires time�(n logn). To redue the running time we must thus avoid to inspet everyelement in LL(w1) and �nd another way to store the leaf-lists. We ahievethis by using the data strutures presented below to store the leaf-lists duringthe traversal of the binary suÆx tree.4.1 Data struturesA heap-ordered tree is a tree in whih eah node stores an element and has akey. Every node other than the root satis�es that its key is greater than orequal to the key at its parent. Heap-ordered trees have been widely studiedand are the basi struture of many priority queues [30, 7, 28, 8℄. In this setionwe utilize heap-ordered trees to onstrut two data strutures, the heap-treeand the olored heap-tree, that are useful in our appliation of �nding pairswith lower bounded gap but might also have appliations elsewhere.A heap-tree stores a olletion of elements with omparable keys and sup-ports the following operations.Init(e; k): Return a heap-tree of size one that stores element e with key k.Find(H;x): Return all elements e stored in the heap-tree H with key k � x.Min(H): Return the element e stored in H with minimum key.Meld(H;H 0): Return a heap-tree that stores all elements in H and H 0 withunhanged keys.A olored heap-tree stores a olletion of olored elements with omparablekeys. We use olor (e) to denote the olor of element e. A olored heap-treesupports the same operations as a heap-tree exept that it allows us to �ndall elements not having a partiular olor. The operations are as follows.ColorInit(e; k): Return a olored heap-tree of size one that stores ele-ment e with key k.ColorFind(H;x;): Return all elements e stored in the olored heap-tree Hwith key k � x and olor (e) 6= .16

ColorMin(H): Return the element e stored in H with minimum key.ColorSe(H): Return the element e stored in H with minimum key suhthat olor (e) 6= olor(ColorMin(H)).ColorMeld(H;H 0): Return a olored heap-tree that stores all elements in Hand H 0 with unhanged keys.In the following we will desribe how to implement heap-trees and oloredheap-trees using heap-ordered trees suh that Init, Min, ColorInit, ColorMinand ColorSe take onstant time, Find and ColorFind take time proportionalto the number of returned elements, and Meld and ColorMeld take amortizedonstant time. This means that we an meld n (olored) heap-trees of size oneinto a single (olored) heap-tree of size n by an arbitrary sequene of n � 1meld operations in time O(n) in the worst ase.4.1.1 Heap-treesWe implement heap-trees as binary heap-ordered trees as illustrated in Fig-ure 4. At every node in the heap-ordered tree we store an element from theolletion of elements we want to store. The key of a node is the key of theelement it stores. We use v:elm to refer to the element stored at node v, v:keyto refer to the key of node v, and v:right and v:left to refer to the two hildrenof node v. Besides the heap-order we maintain the invariant that the root ofthe heap-ordered tree has no left-hild.We de�ne the bakbone of a heap-tree as the path in the heap-orderedtree that starts at the root and ontinues via nodes reahable from the rootvia a sequene of right-hildren. We de�ne the length of the bakbone as thenumber of edges on the path it desribes. Consider the heap-trees H and H 0in Figure 4; the bakbone of H is the path r; v1; : : : ; vs of length s and thebakbone of H 0 is the path r0; v01; : : : ; v0t of length t. We say that the nodeon the bakbone farthest from the root is at the bottom of the bakbone.We keep trak of the nodes on the bakbone of a heap-tree using a stak, thebakbone-stak, in whih the root is at the bottom and the node farthest fromthe root is at the top. The bakbone-stak makes it easy to aess the nodeson the bakbone from the bottom and up towards the root.We now turn to the implementation of Init, Min, Find and Meld. Init(e; k)is straightforward. We onstrut a single node v where v:elm = e, v:key = kand v:right = v:left = null and a bakbone-stak of size one that ontainsnode v. Min(H) is also straightforward. The heap-order implies that root rof H stores the element with minimum key, i.e. Min(H) = r:elm .We implement Find(H;x) as a reursive traversal of H starting at the root.At eah node v we ompare v:key to x. If v:key � x, we report v:elm andontinue reursively with the two hildren of v. If v:key > x, then by the17

H v1 v2 vs�1vsvi vi+1r H 0 v02 v03 v0t�1v0tv01r0
Figure 4: The implementation of heap-trees as binary heap-ordered trees. The�gure shows two heap-trees H and H 0. The nodes on the bakbone of the twoheap-trees are shaded.heap-order all keys at nodes in the subtree rooted at v are greater than x, sowe return from v without reporting. Clearly this traversal reports all elementsstored at nodes v with v:key � x, i.e. all elements stored with key k � x. Sineeah node has at most two hildren, we make, for eah reported element, atmost two additional omparisons against x orresponding to the at most tworeursive alls from whih we return without reporting. The running time ofthe traversal is thus proportional to the number of reported elements.We implement Meld(H;H 0) in two steps. Figure 5 illustrates the meldingof the heap-trees H and H 0 from Figure 4. We assume that r:key � r0:key . InStep 1 we merge the bakbones of H and H 0 together suh that the heap-orderis satis�ed in the resulting tree. The merged bakbone is onstruted from thebottom and up towards the root by popping nodes from the bakbone-staksof H and H 0. Step 1 results in a heap-tree with a bakbone of length s +t + 1. Sine r:key � r0:key , a pre�x of the merged bakbone onsists ofnodes r; v1; v2; : : : ; vi solely from the bakbone of H. In Step 2 we shorten themerged bakbone. Sine the root r0 of H 0 has no left-hild, the node r0 on themerged bakbone has no left-hild either, so by moving the right-hild of r0to this empty spot, making it the left-hild of r0, we shorten the length of themerged bakbone to i+ 1.The two steps of Meld(H;H 0) learly onstrut a heap-ordered tree thatstores all elements in H and H 0 with unhanged keys. Sine r:key � r0:key ,the root of the onstruted heap-ordered tree is the root of H and thereforehas no left-hild. The onstruted heap-ordered tree is thus a heap-tree aswanted. The bakbone of the new heap-tree is the path r; v1; : : : ; vi; r0. Weobserve that the bakbone-stak of H after Step 1 ontains exatly the nodesr; v1; : : : vi. We an thus onstrut the bakbone-stak of the new heap-treeby pushing r0 onto what remains of the bakbone-stak of H after Step 1.18

v2 vi r0v01 vi+1v0t�1 v0t vsvs�1vs�2
v1rv1 v2 vi v01 vi+1v0t�1r0 v0t vsvs�1vs�2

r

Figure 5: The two steps of melding the heap-trees H andH 0 shown in Figure 4.The heap-tree to the left is the result of merging the bakbones. The heap-treeto the right is the result of shortening the bakbone by moving the right-hildof r0 in the merged bakbone to the left-hild. The nodes on the bakbone ofthe two heap-trees are marked.Now onsider the running time of Meld(H;H 0). Step 1 takes time propor-tional to the total number of nodes popped from the two bakbone-staks.Sine i + 1 nodes remains on the bakbone-stak of H, Step 1 takes time(s+ 1) + (t+ 1)� (i+ 1) = s+ t� i+ 1. Step 2 and onstrution of the newbakbone-stak takes onstant time, so, exept for a onstant fator, meldingtwo heap-trees with bakbones of length s and t takes time T (s; t) = s+t�i+1.In our appliation of �nding pairs we are more interested in bounding the totaltime required to do a sequene of melds rather than bounding the time of eahindividual meld. We therefore turn to amortized analysis [26℄.On a forest F of heap-trees we de�ne the potential funtion �(F) to be thesum of the lengths of the bakbones of the heap-trees in the forest. Melding twoheap-trees with bakbones of length s and t, as illustrated in Figure 5, hangesthe potential of the forest with �� = i+1�(s+t). The amortized running timeof melding the two heap-trees is thus T (s; t)+�� = (s+t�i+1)+(i�s�t+1) =2, so starting with n heap-trees of size one, i.e. a forest F0 with potential�(F0) = 0, and doing a sequene of n�1 meld operations until the forest Fn�1onsists of a single heap-tree, takes time O(n) in the worst ase.4.1.2 Colored heap-treesWe implement olored heap-trees as olored heap-ordered trees in muh thesame way as we implemented heap-trees as unolored heap-ordered trees. The19

implementation only di�ers in two ways. First, a node in the olored heap-ordered tree stores a set of elements instead of just a single element. Seondly,a node, inluding the root, an have several left-hildren. The elements storedat a node, and the referenes to the left-hildren of a node, are kept in unol-ored heap-trees. More preisely, a node v in the olored heap-ordered tree hasthe following attributes.v:elms : A heap-tree that stores the elements at node v. Find(v:elms ; x) re-turns all elements stored at node v with key less than or equal to x.All elements stored at node v have idential olors. We say that thisolor is the olor of node v and denote it by olor (v).v:key : The key of node v. We set the key of a node to be the minimum keyof an element stored at the node, i.e. the key of node v is the key ofthe element stored at the root of v:elms .v:right : A referene to the right-hild of node v.v:lefts : A heap-tree that stores the referenes to the left-hildren of node v.A referene is stored with a key equal to the key of the referenedleft-hild, so Find(v:lefts ; x) returns the referenes to all left-hildrenof node v with key less than or equal to x.As for a heap-tree we de�ne the bakbone of a olored heap-tree as thepath that starts at the root and ontinues via nodes reahable from the rootvia a sequene of right-hildren. We use a stak, the bakbone-stak, to keeptrak of the nodes on the bakbone. In addition to the heap-order, sayingthat the key of every node other than the root is greater than or equal to thekey of its parent, we maintain the following three invariants about the olorof the nodes and the relation between the elements stored at a node and itsleft-hildren.I1: Every node v other than the root r has a olor di�erent from its parent.I2: Every node v satis�es that jFind(v:elms ; x)j � jFind(v:lefts ; x)j for any x.I3: The root r satis�es that jFind(r:elms ; x)j � jFind(r:lefts ; x)j + 1 for anyx � Min(r:elms).We an now turn to the implementation of the operations on olored heap-trees. ColorInit(e; k) is straightforward. We simply onstrut a single node vwhere v:key = k, v:elms = Init(e; k) and v:right = v:lefts = null and abakbone-stak that ontains node v. ColorMin(H) is also straightforward.The heap-order implies that the element with minimum key is stored in the20

heap-tree r:elms at the root r of H, so ColorMin(H) = Min(r:elms). The heap-order and I1 imply that ColorSe(H) is the element stored with minimum keyat a hild of r. The element stored with minimum key at the right-hild isMin(r:right) and the element stored with minimum key at a left-hild mustby the heap-order of r:lefts be the element stored with minimum key at theleft-hild referened by the root of r:lefts , i.e. Min(Root(r:lefts):elm). BothColorMin(H) and ColorSe(H) an thus be found in onstant time.We implement ColorFind(H;x;) as a reursive traversal of H starting atthe root. More preisely, we implement ColorFind(H;x;) as ReportFrom(r)where r is the root of H and ReportFrom is the following reursive proedure.def ReportFrom(v):if key(v) � x:if olor (v) 6= :E = Find(v:elms ; x)for e in E:report eReportFrom(v:right)W = Find(v:lefts ; x)for w in W :ReportFrom(w)The orretness of this implementation is easy to establish. The heap-orderensures that all nodes v with v:key � x are visited during the traversal. Thede�nition of v:key implies that any element e with key k � x is stored at anode v with v:key � x, i.e. among the elements returned by Find(v:elms ; x) forsome node v visited during the traversal. Together with the test olor (v) 6= this implies that all elements e with key k � x and olor di�erent from arereported by ColorFind(H;x;).Now onsider the running time of ColorFind(H;x;). Sine Find(v:elms ; x)and Find(v:lefts ; x) both take time proportional to the number of returnedelements, it follows that the running time is dominated by the number of re-ursive alls plus the number of reported elements. To argue that the runningtime of ColorFind(H;x;) is proportional to the number of reported elementswe therefore argue that the number of reported elements dominates the num-ber of reursive alls. We only make reursive alls from a node v if v:key � x.Let v be suh a node and onsider two ases. If olor (v) 6= , then we reportat least one element, namely the element with key v:key , and by I2 and I3 wereport at least as many elements as the number of left-hildren we all from v,so exept for a onstant term that we an harge for visiting node v, the num-ber of reported elements at v aounts for the all to v and all alls from v.If olor (v) = , then we do not report any elements at v, but I1 ensures that21

we reported elements at its parent (unless v is the root) and that we will bereporting elements at all left-hildren we all from v. The all to v is thusalready aounted for by the elements reported at its parent, and exept fora onstant term that we an harge for visiting node v, all alls from v willbe aounted for by elements reported at the hildren of v. We onlude thatthe number of reported elements dominates the number of reursive alls, soColorFind(H;x;) takes time proportional to the number of reported elements.We implement ColorMeld(H;H 0) similar to Meld(H;H 0) exept that wemust ensure that the onstruted olored heap-tree obeys the three invariants.Let H and H 0 be olored heap-trees with roots r and r0, r:key � r0:key ,respetively. We implement ColorMeld(H;H 0) as the following three steps.1. Merge. We merge the bakbones of H and H 0 together suh that the re-sulting heap-ordered tree stores all elements inH andH 0 with unhangedkeys. The merging is done by popping nodes from the bakbone-staksof H and H 0 until the bakbone-stak of H 0 is empty2. Solve onits. A node w on the merged bakbone with the same oloras its parent v is a violation of invariant I1. We solve onits betweenneighboring nodes v and w of equal olor by melding the elements andleft-hildren of the two nodes and removing node w. We say that parent vswallows the hild w.v:elms = Meld(v:elms ; w:elms)v:lefts = Meld(v:lefts ; w:lefts)v:right = w:right3. Shorten bakbone. Let v be the node on the merged bakbone orre-sponding to r0 or the node that swallowed r0 in Step 2. We shorten thebakbone by moving the right-hild of v to the set of left-hildren of v.v:lefts = Meld(v:lefts ; Init(v:right ; v:right :key))v:right = nullThe main di�erene from the implementation of Meld(H;H 0) is Step 2 wherethe invariant I1 is restored along the merged bakbone. To establish theorretness of the implementation of ColorMeld(H;H 0) we onsider eah of thethree steps in more details.In Step 1 we merge the bakbones of H and H 0 together suh that theresulting tree is a heap-ordered tree that stores all elements in H and H 0 withunhanged keys. Sine the merging does not hange the left-hildren or theelements of any node and sine H and H 0 both obey I2 and I3, the onstrutedheap-ordered tree also obeys I2 and I3. The merged bakbone an howeverontain neighboring nodes of equal olor. These onits are a violation of I1.22

In Step 2 we restore I1. We solve all onits on the merged bakbone be-tween neighboring nodes v and w of equal olor by letting the parent v swallowthe hild w as illustrated in Figure 6. We observe that sine H and H 0 bothobey I1 a onit must involve a node from both of them. This implies thata onit an only our in the part of the merged bakbone made of nodespopped o� the bakbone-staks in Step 1. We also observe that solving a on-it does not indue a new onit. Combined with the previous observationthis implies that the number of onits is bounded by the number of nodespopped o� the bakbone-staks in Step 1. Finally, we observe that solving aonit does not indue violations of I2 and I3, so after solving all onitson the merged bakbone we have a olored heap-tree that stores all elementsin H and H 0 with unhanged keys.In Step 3 we shorten the merged bakbone. This is done by moving theright-hild of r0 to its left-hildren, or in ase r0 has been swallowed by a node vin Step 2, by moving the right-hild of v to its left-hildren. To argue that thisdoes not indue violations of I2 and I3 we start by making two observations.First, we observe that moving the right-hild of a node that obeys I3 to its setof left-hildren results in a node that obeys I2. Seondly, we observe that if anode that obeys I2 (or I3) swallows a node that obeys I2 it results in a nodethat still obeys I2 (or I3).Sine r0 is the root of H 0, it obeys I3 before Step 2. We onsider twoases. First, if r0 is not swallowed in Step 2, the �rst observation immediatelyimplies that it obeys I2 after Step 3. Seondly, if r0 is swallowed by a node vin Step 2, we might as well think of Step 2 and Step 3 as ourring in theopposite order as this does not a�et the resulting tree. Hene, �rst we movethe right-hild of r0 to its set of left-hildren, whih by the �rst observationresults in a node that obeys I2, then we let node v swallow this node, whihby the seond observation does not a�et the invariants obeyed by v.We onlude that our implementation of ColorMeld(H;H 0) onstruts aolored heap-tree that obeys all three invariants and stores all elements in Hand H 0 with unhanged keys. It is easy to see that the bakbone-stak ofthe olored heap-tree onstruted by ColorMeld(H;H 0) is what remains on thebakbone-stak of H after popping of nodes in Step 1 with the node r0 pushedonto it, unless the node r0 is swallowed in Step 2.Now onsider the time it takes to meld n olored heap-trees of size onetogether by a sequene of n� 1 melds. If we ignore the time it takes to meldthe heap-trees storing elements and referenes to left-hildren when solvingonits in Step 2 and shortening the bakbone in Step 3, then we an boundthe time it takes to do the sequene of melds by O(n) exatly as we did inthe previous setion. It is easy to see that melding n olored heap-trees ofsize one involves melding at most n heap-trees of size one storing elements,and at most n heap-trees of size one storing referenes to left-hildren. Sine23

v w vu u0 u u0
Figure 6: This �gure illustrates how a onit on the merged bakbone issolved. If olor (v) = olor (w) then I1 is violated. The invariant is restoredby letting node v swallow node w, i.e. melding the elements and left-hildrenat the two nodes and removing node w. Sine olor (u) 6= olor (w) = olor (v)and olor (u0) 6= olor (v), solving a onit does not indue another onit.melding n heap-trees of size one takes time O(n), we have that melding theheap-trees storing elements and referenes to left-hildren also takes timeO(n),so melding n olored heap-trees of size one takes time O(n) in the worst ase.4.2 AlgorithmsIn the following we present two algorithms to �nd pairs with lower boundedgap. First we desribe a simple algorithm to �nd all right-maximal pairs withlower bounded gap using heap-trees, then we extend it to �nd all maximalpairs with lower bounded gap using olored heap-trees. Both algorithms runin time O(n+ z) where z is the number of reported pairs.4.2.1 Right-maximal pairs with lower bounded gapWe �nd all right-maximal pairs in S with gap at least g(j�j) by for eah node vin the binary suÆx tree TB(S) to onsider the leaf-lists at its two hildren w1and w2. The pair (p; q; j�j), p 2 LL(w1) and q 2 LL(w2), is right-maximaland has gap at least g(j�j) if and only if q � p + j�j + g(j�j). If we let pmindenote the minimum element in LL(w1) this implies that every q inQ = fq 2 LL(w2) j q � pmin + j�j+ g(j�j)gforms a right-maximal pair (p; q; j�) with gap at least g(j�j) with every p inPq = fp 2 LL(w1) j p � q � g(j�j) � j�jg:By onstrution Pq ontains pmin and we have that (p; q; j�j) is a right-maximalpair with gap at least g(j�j) if and only if q 2 Q and p 2 Pq. We anonstrut Q and Pq using heap-trees. Let Hi and �Hi be heap-trees that24

Algorithm 3 Find all right-maximal pairs in S with lower bounded gap.1. Initializing: Build the binary suÆx tree TB(S). Create at eah leaf twoheap-trees of size one, H ordered by \�" and �H ordered by \�", thatboth store the index at the leaf.2. Reporting and melding: When the heap-trees H1 and �H1 at the left-hildof node v, and the heap-trees H2 and �H2 at the right-hild of node vare available we report pairs of �, the path-label of v, and onstrut theheap-trees H and �H as follows1 Q = Find(�H2;Min(H1) + j�j+ g(j�j))2 for q in Q:3 Pq = Find(H1; q � g(j�j) � j�j)4 for p in Pq:5 report pair (p; q; j�j)6 P = Find(�H1;Min(H2) + j�j+ g(j�j))7 for p in P :8 Qp = Find(H2; p� g(j�j) � j�j)9 for q in Qp:10 report pair (q; p; j�j)11 H = Meld(H1;H2)12 �H = Meld(�H1; �H2)store the elements in LL(wi) ordered by \�" and \�" respetively. Byde�nition of the operations Min and Find we have that pmin = Min(H1),Q = Find(�H2; pmin + j�j+ g(j�j) and Pq = Find(H1; q � g(j�j) � j�j).This leads to the formulation of Algorithm 3 in whih we at every node vin TB(S) onstrut two heap-trees, H and �H, that store the elements in LL(v)ordered by \�" and \�" respetively. If v is a leaf, we onstrut H and �Hdiretly by reating two heap-trees of size one eah storing the index at the leaf.If v is an internal node, we onstrut H and �H by melding the orrespondingheap-trees at the two hildren (lines 11{12). Before onstruting H and �H atnode v, we report right-maximal pairs of its path-label (lines 1{10).To argue that Algorithm 3 �nds all right-maximal pairs in S with gap atleast g(j�j) it is enough to argue that we at eah node v in TB(S) report allpairs (p; q; j�j) and (q; p; j�j), p 2 LL(w1) and q 2 LL(w2), with gap at leastg(j�j). The rest follows beause we onsider every node in TB(S). Let v be anode in TB(S) at whih the heap-trees H1, �H1 and H2, �H2 at its two hildrenare available. As explained above (p; q; j�j) is a right-maximal pair with gap25

at least g(j�j) if and only if q 2 Q and p 2 Pq, whih exatly are the pairsreported in lines 1{5. Symmetrially we an argue that (q; p; j�j) is a right-maximal pair with gap at least g(j�j) if and only if p 2 P and q 2 Qp, whihexatly are the pairs reported in lines 6{10.Now onsider the running time of the algorithm. We �rst note that on-struting two heap-trees of size one at eah of the n leaves in TB(S) andmelding them together aording to the struture of TB(S) takes time O(n)beause eah of the n� 1 meld operation takes amortized onstant time. Wethen note that the reporting of pairs at eah node, lines 1{10, takes time pro-portional to the number of reported pairs beause the �nd operation takestime proportional to the number of returned elements and the set Pq (and Qp)is non-empty for every element q in Q (and p in P). Finally we remember thatonstruting the binary suÆx tree TB(S) takes time O(n). Now onsider thespae needed by the algorithm. The binary suÆx tree requires spae O(n).The heap-trees also requires spae O(n) beause no element at any time isstored in more than one heap-tree. Finally, sine no leaf-list ontains morethan n elements, storing the elements returned by the �nd operations duringthe reporting requires no more than spae O(n). In summary we formulatethe following theorem.Theorem 3 Algorithm 3 �nds all right-maximal pairs (i; j; j�j) in a string Swith gap at least g(j�j) in spae O(n) and time O(n+z), where z is the numberof reported pairs and n is the length of S.4.2.2 Maximal pairs with lower bounded gapEssential to the above algorithm is that we in time proportional to its sizean onstrut the set Q that ontains all elements q in LL(w2) that form aright-maximal pair (pmin; q; j�j) with gap at least g(j�j). Unfortunately theleft-haraters S[q�1℄ and S[pmin�1℄ an be equal, so Q an ontain elementsthat do not form a maximal pair with any element in LL(w1). Sine we aimfor the reporting of pairs to take time proportional to the number of reportedpairs, this implies that we annot a�ord to onsider every element in Q if weonly want to report maximal pairs.Fortunately we an eÆiently onstrut the subset of LL(w2) that on-tains all the elements that form at least one maximal pair. An element qin LL(w2) forms a maximal pair if and only if there is an element p in LL(w1)suh that q � p + j�j + g(j�j) and S[q � 1℄ 6= S[p � 1℄. We an onstrutthis subset of LL(w2) using olored heap-trees. We de�ne the olor of an el-ement to be its left-harater, i.e. the olor of p in LL(w1) and q in LL(w2)is S[p�1℄ and S[q � 1℄ respetively. Let Hi and �Hi be olored heap-trees thatstore the elements in LL(wi) ordered by \�" and \�" respetively. Using26

pmin = ColorMin(H1) and pse = ColorSe(H1) we an haraterize the ele-ments in LL(w2) that form at least one maximal pair with gap at least g(j�j)by onsidering two ases.First, if q � pse + j�j + g(j�j) then (pmin; q; j�j) and (pse; q; j�j) bothhave gap at least g(j�j) and sine S[pmin � 1℄ 6= S[pse � 1℄ at least one ofthem is maximal, so every q � pse + j�j + g(j�j) forms a maximal pair withgap at least g(j�j). If # is a harater not appearing anywhere in S, i.e. noelement in LL(w2) has olor #, this is the same as saying that every q inQ0 = ColorFind(�H2; pse + j�j + g(j�j);#) forms a maximal pair with gap atleast g(j�j). Seondly, if q < pse+ j�j+ g(j�j) forms a maximal pair (p; q; j�j)with gap at least g(j�j) then pmin � p < pse. This implies that S[p � 1℄ =S[pmin � 1℄, so (pmin; q; j�j) is also maximal and has gap at least g(j�j). Wethus have that q < pse + j�j + g(j�j) forms a maximal pairs with gap atleast g(j�j) if and only if (pmin; q; j�j) is maximal and has gap at least g(j�j),i.e. if and only if S[q�1℄ 6= S[pmin�1℄ and q � pmin+j�j+g(j�j). This impliesthat the set Q00 = ColorFind(�H2; pmin+ j�j+g(j�j); S[pmin�1℄) ontains everyq < pse + j�j+ g(j�j) that forms a maximal pair with gap at least g(j�j).By onstrution of Q0 and Q00 the set Q0 [Q00 ontains all elements inLL(w2) that form a maximal pair with gap at least g(j�j). More preisely,every q in Q0 [Q00 forms a maximal pair (p; q; j�j) with gap at least g(j�j)with every p � q�g(j�j)�j�j in LL(w1) where S[p�1℄ 6= S[q�1℄, i.e. every pin Pq = ColorFind(H1; q � g(j�j) � j�j; S[q � 1℄) whih by onstrution is non-empty. We an onstrut Q0[Q00 eÆiently. Every element in Q00 greater thanpse+ j�j+ g(j�j) is also in Q0, so we an onstrut Q0 [Q00 by onatenatingQ0 and what remains of Q00 after removing all elements greater than pse +j�j + g(j�j) from it. This together with the omplexity of ColorFind impliesthat we an onstrut Q0[Q00 in time proportional to jQ0j+ jQ00j � 2jQ0[Q00j.This leads to the formulation of Algorithm 4. The algorithm is similar toAlgorithm 3 exept that we maintain olored heap-trees during the traversalof the binary suÆx tree. At every node we report maximal pairs of its path-label. In lines 1{7 we report all maximal pairs (p; q; j�j) by onstruting andonsidering the elements in Pq for every q in Q0 [Q00. In lines 8{15 we anal-ogously report all maximal pairs (q; p; j�j). The orretness of the algorithmfollows immediately from the above disussion. Sine the operations on ol-ored heap-trees have the same omplexities as the orresponding operationson heap-tress, the running time and spae requirement of the algorithm is ex-atly as analyzed for Algorithm 3. In summary we an formulate the followingtheorem.Theorem 4 Algorithm 4 �nds all maximal pairs (i; j; j�j) in a string S withgap at least g(j�j) in spae O(n) and time O(n+ z), where z is the number ofreported pairs and n is the length of S.27

Algorithm 4 Find all maximal pairs in S with lower bounded gap.1. Initializing: Build the binary suÆx tree TB(S). Create at eah leaf twoolored heap-trees of size one, H ordered by \�" and �H ordered by\�", that both store the index at the leaf with olor orresponding toits left-harater.2. Reporting and melding: When the olored heap-trees H1 and �H1 at theleft-hild of node v, and the olored heap-trees H2 and �H2 at the right-hild of node v are available we report pairs of �, the path-label of v, andonstrut the olored heap-trees H and �H as follows (remember that #is a harater not appearing anywhere in S)1 pmin; pse = ColorMin(H1);ColorSe(H1)2 Q0 = ColorFind(�H2; pse + j�j+ g(j�j);#)3 Q00 = ColorFind(�H2; pmin + j�j+ g(j�j); S[pmin � 1℄)4 for q in Q0 [Q00:5 Pq = ColorFind(H1; q � g(j�j) � j�j; S[q � 1℄)6 for p in Pq:7 report pair (p; q; j�j)8 qmin; qse = ColorMin(H2);ColorSe(H2)9 P 0 = ColorFind(�H1; qse + j�j+ g(j�j);#)10 P 00 = ColorFind(�H1; qmin + j�j+ g(j�j); S[qmin � 1℄)11 for p in P 0 [P 00:12 Qp = ColorFind(H2; p� g(j�j) � j�j; S[p� 1℄)13 for q in Qp:14 report pair (q; p; j�j)15 H = ColorMeld(H1;H2)16 �H = ColorMeld(�H1; �H2)5 ConlusionWe have presented eÆient and exible methods to �nd all maximal pairs(i; j; j�j) in a string under various onstraints on the gap j� i�j�j. If the gapis required to be between g1(j�j) and g2(j�j), the running time is O(n log n+z)where n is the length of the string and z is the number of reported pairs. Ifthe gap is only required to be at least g1(j�j), the running time redues toO(n+ z). In both ases we use spae O(n).In some ases it might be interesting only to �nd maximal pairs (i; j; j�j)ful�lling additional requirements on j�j, e.g. to �lter out pairs of short sub-28

strings. This is straightforward to do using our methods by only reportingfrom the nodes in the binary suÆx tree whose path-label � ful�lls the require-ments on j�j. In other ases it might be of interest just to �nd the voabularyof substrings that our in maximal pairs. This is also straightforward to dousing our methods by just reporting the path-label � of a node if we an reportone or more maximal pairs from the node.Instead of just looking for maximal pairs, it ould be interesting to lookfor an array of ourrenes of the same substring in whih the gap betweenonseutive ourrenes is bounded by some onstants. This problem requiresa suitable de�nition of a maximal array. One de�nition and approah is pre-sented in [24℄. Another de�nition inspired by the de�nition of a maximal pairould be to require that every pair of ourrenes in the array is a maximalpair. This de�nition seems very restritive. A more relaxed de�nition ouldbe to only require that we annot extend all the ourrenes in the array tothe left or to the right without destroying at least one pair of ourrenes inthe array.AknowledgmentsThis work was initiated while Christian N. S. Pedersen and Jens Stoye were visitingDan Gus�eld at UC Davis. We would like to thank Dan Gus�eld, as well as RobIrwing, for listening to some preliminary results.Referenes[1℄ G. M. Adel'son-Vel'skii and Y. M. Landis. An algorithm for the organi-zation of information. Doklady Akademii Nauk SSSR, 146:263{266, 1962.English translation in Soviet Math. Dokl., 3:1259{1262.[2℄ A. Apostolio and F. P. Preparata. Optimal o�-line detetion of repeti-tions in a string. Theoretial Computer Siene, 22:297{315, 1983.[3℄ M. R. Brown and R. E. Tarjan. A fast merging algorithm. Journal of theACM, 26(2):211{226, 1979.[4℄ M. Crohemore. An optimal algorithm for omputing the repetitions ina word. Information Proessing Letters, 12(5):244{250, 1981.[5℄ M. Crohemore. Transduers and repetitions. Theoretial Computer Si-ene, 45:63{86, 1986.[6℄ M. Farah. Optimal suÆx tree onstrution with large alphabets. InProeedings of the 38th Annual Symposium on Foundations of ComputerSiene (FOCS), pages 137{143, 1997.29

[7℄ R. W. Floyd. Algorithm 245: Treesort3. Communiations of the ACM,7(12):701, 1964.[8℄ M. L. Fredman and R. E. Tarjan. Fibonai heaps and their uses inimproved network optimization algorithms. In Proeedings of the 25thAnnual Symposium on Foundations of Computer Siene (FOCS), pages338{346, 1984.[9℄ L. J. Guibas and R. Sedgewik. A dihromati framework for balanedtrees. In Proeedings of the 19th Annual Symposium on Foundations ofComputer Siene (FOCS), pages 8{21, 1978.[10℄ D. Gus�eld. Algorithms on Strings, Trees and Sequenes: Computer Si-ene and Computational Biology. Cambridge University Press, 1997.[11℄ D. Gus�eld and J. Stoye. Linear time algorithms for �nding and repre-senting all the tandem repeats in a string. Tehnial Report CSE-98-4,Department of Computer Siene, UC Davis, 1998.[12℄ S. Huddleston and K. Mehlhorn. A new data struture for representingsorted lists. Ata Informatia, 17:157{184, 1982.[13℄ F. K. Hwang and S. Lin. A simple algorithm for merging two disjointlinearly ordered sets. SIAM Journal on Computing, 1(1):31{39, 1972.[14℄ S. Karlin, M. Morris, G. Ghandour, and M.-Y. Leung. EÆient algorithmsfor moleular sequene analysis. Proeedings of the National Aademy ofSiene, USA, 85:841{845, 1988.[15℄ R. Kolpakov and G. Kuherov. Maximal repetitions in words or how to�nd all squares in linear time. Tehnial Report 98-R-227, LORIA, 1998.[16℄ S. R. Kosaraju. Computation of squares in a string. In Proeedings ofthe 5th Annual Symposium on Combinatorial Pattern Mathing (CPM),volume 807 of Leture Notes in Computer Siene, pages 146{150, 1994.[17℄ G. M. Landau and J. P. Shmidt. An algorithm for approximate tandemrepeats. In Proeedings of the 4th Annual Symposium on Combinato-rial Pattern Mathing (CPM), volume 684 of Leture Notes in ComputerSiene, pages 120{133, 1993.[18℄ M.-Y. Leung, B. E. Blaisdell, C. Burge, and S. Karlin. An eÆient al-gorithm for identifying mathes with errors in multiple long moleularsequenes. Journal of Moleular Biology, 221:1367{1378, 1991.[19℄ M. G. Main and R. J. Lorentz. An O(n logn) algorithm for �nding allrepetitions in a string. Journal of Algorithms, 5:422{432, 1984.30

[20℄ M. G. Main and R. J. Lorentz. Linear time reognition of squarefreestrings. In A. Apostolio and Z. Galil, editors, Combinatorial Algorithmson Words, volume F12 of NATO ASI Series, pages 271{278. Springer,Berlin, 1985.[21℄ E. M. MCreight. A spae-eonomial suÆx tree onstrution algorithm.Journal of the ACM, 23(2):262{272, 1976.[22℄ K. Mehlhorn. Sorting and Searhing, volume 1 of Data Strutures andAlgorithms. Springer-Verlag, 1994.[23℄ K. Mehlhorn and S. N�aher. The LEDA Platform of Combinatorial andGeometri Computing. Cambridge University Press, 1999. To appear.See http://www.mpi-sb.mpg.de/�mehlhorn/LEDAbook.html.[24℄ M.-F. Sagot and E. W. Myers. Identifying satellites in nulei aid se-quenes. In Proeedings of the 2nd Annual International Conferene onComputational Moleular Biology (RECOMB), pages 234{242, 1998.[25℄ J. Stoye and D. Gus�eld. Simple and exible detetion of ontiguousrepeats using a suÆx tree. In Proeedings of the 9th Annual Symposiumon Combinatorial Pattern Mathing (CPM), volume 1448 of Leture Notesin Computer Siene, pages 140{152, 1998.[26℄ R. E. Tarjan. Amortized omputational omplexity. SIAM Journal onAlgebrai and Disrete Methods, 6:306{318, 1985.[27℄ E. Ukkonen. On-line onstrution of suÆx trees. Algorithmia, 14:249{260, 1995.[28℄ J. Vuillemin. A data struture for manipulating priority queues. Com-muniations of the ACM, 21(4):309{315, 1978.[29℄ P. Weiner. Linear pattern mathing algorithms. In Proeedings of the14th Symposium on Swithing and Automata Theory, pages 1{11, 1973.[30℄ J. W. J. Williams. Algorithm 232: Heapsort. Communiations of theACM, 7(6):347{348, 1964.
31

Recent BRICS Report Series Publications

RS-99-12 Gerth Stølting Brodal, Rune B. Lyngsø, Christian N. S. Peder-
sen, and Jens Stoye.Finding Maximal Pairs with Bounded Gap.
April 1999. 31 pp. To appear inCombinatorial Pattern Match-
ing: 10th Annual Symposium, CPM ’99 Proceedings, LNCS,
1999.

RS-99-11 Ulrich Kohlenbach. On the Uniform Weak K̈onig’s Lemma.
March 1999. 13 pp.

RS-99-10 Jon G. Riecke and Anders B. Sandholm.A Relational Account
of Call-by-Value Sequentiality. March 1999. 51 pp. To appear
in Information and Computation, LICS ’97 Special Issue. Ex-
tended version of an article appearing inTwelfth Annual IEEE
Symposium on Logic in Computer Science, LICS ’97 Proceed-
ings, 1997, pages 258–267. This report supersedes the earlier
report BRICS RS-97-41.

RS-99-9 Claus Brabrand, Anders Møller, Anders B. Sandholm,and
Michael I. Schwartzbach. A Runtime System for Interactive
Web Services. March 1999. 21 pp. Appears in Mendelzon, edi-
tor, Eighth International World Wide Web Conference, WWW8
Proceedings, 1999, pages 313–323 andComputer Networks,
31:1391–1401, 1999.

RS-99-8 Klaus Havelund, Kim G. Larsen, and Arne Skou. Formal
Verification of a Power Controller Using the Real-Time Model
CheckerUPPAAL . March 1999. 23 pp. To appear in Katoen,
editor, 5th International AMAST Workshop on Real-Time and
Probabilistic Systems, ARTS ’99 Proceedings, LNCS, 1999.

RS-99-7 Glynn Winskel. Event Structures as Presheaves—Two Repre-
sentation Theorems. March 1999. 16 pp.

RS-99-6 Rune B. Lyngsø, Christian N. S. Pedersen, and HenrikNielsen.
Measures on Hidden Markov Models. February 1999. 27 pp.
To appear in Seventh International Conference on Intelligent
Systems for Molecular Biology, ISMB ’99 Proceedings, 1999.

RS-99-5 Julian C. Bradfield and Perdita Stevens.Observational Mu-
Calculus. February 1999. 18 pp.

RS-99-4 Sibylle B. Fr̈oschle and Thomas Troels Hildebrandt. On
Plain and Hereditary History-Preserving Bisimulation. Febru-
ary 1999. 21 pp.

