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Finding maximal pairs with bounded gapGerth St�lting Brodal� Rune B. Lyngs��Christian N. S. Pedersen� Jens StoyeyAbstra
tA pair in a string is the o

urren
e of the same substring twi
e. A pairis maximal if the two o

urren
es of the substring 
annot be extended tothe left and right without making them di�erent. The gap of a pair isthe number of 
hara
ters between the two o

urren
es of the substring.In this paper we present methods for �nding all maximal pairs undervarious 
onstraints on the gap. In a string of length n we 
an �nd allmaximal pairs with gap in an upper and lower bounded interval in timeO(n logn + z) where z is the number of reported pairs. If the upperbound is removed the time redu
es to O(n+z). Sin
e a tandem repeat isa pair where the gap is zero, our methods 
an be seen as a generalizationof �nding tandem repeats. The running time of our methods equals therunning time of well known methods for �nding tandem repeats.1 Introdu
tionA pair in a string is the o

urren
e of the same substring twi
e. A pair is left-maximal (right-maximal) if the 
hara
ters to the immediate left (right) of thetwo o

urren
es of the substring are di�erent. A pair is maximal if it is bothleft- and right-maximal. The gap of a pair is the number of 
hara
ters betweenthe two o

urren
es of the substring. For example, the two o

urren
es of thesubstring ma in the string maximal form a maximal pair of ma with gap two.Gus�eld [10, Se
tion 7.12.3℄ des
ribes how to report all maximal pairs ina string using the suÆx tree of the string in time O(n + z) and spa
e O(n),where n is the length of the string and z is the number of reported pairs.Sin
e there is no restri
tion on the gap of the maximal pairs reported by thisalgorithm, many of them probably des
ribe o

urren
es of substrings that are�Basi
 Resear
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overlapping or far apart in the string. In many appli
ations in 
omputationalbiology this is unfortunate, so several papers address the problem of �ndingo

urren
es of similar substrings not too far apart [14, 18, 24℄.In the �rst part of this paper we des
ribe how to �nd all maximal pairs in astring with gap in an upper and lower bounded interval in time O(n log n+ z)and spa
e O(n). The interval of allowed gaps 
an be 
hosen su
h that wereport a maximal pair only if the gap is between 
onstants 
1 and 
2, butmore generally, it 
an be 
hosen su
h that we report a maximal pair of � onlyif the gap is between g1(j�j) and g2(j�j), where g1 and g2 are fun
tions that
an be 
omputed in 
onstant time. This, for example, makes it possible to�nd all maximal pairs with gap between zero and some fra
tion of the lengthof the repeated substring. In the se
ond part of this paper we des
ribe howremoving the upper bound g2(j�j) on allowed gaps, and only require the gapof a reported pair of � to be at least g1(j�j), makes it possible to redu
e therunning time to O(n + z). The methods we present all use the suÆx tree asthe fundamental data stru
ture 
ombined with eÆ
ient methods for mergingsear
h trees and heap-ordered trees.The problem of �nding o

urren
es of repeated substrings in a string iswell studied. Most of the work has been 
on
erned with eÆ
ient methods for�nding o

urren
es of 
ontiguously repeated substrings. An o

urren
e of asubstring of the form �� is 
alled an o

urren
e of a square or a tandem repeat.Most well-known methods for �nding the o

urren
es of all tandem repeats ina string require time O(n log n+ z), where n is the length of the string and zis the number of reported o

urren
es of tandem repeats [4, 2, 19, 16, 25℄.Work has also been done on just dete
ting whether or not a string 
ontains atandem repeat [20, 5℄. Re
ently, extending on the idea presented in [5℄, twomethods have been presented that �nd a 
ompa
t representation of all tandemrepeats in a string in time O(n) [15, 11℄. Other papers 
onsider the problem of�nding o

urren
es of 
ontiguous repeats of substrings that are within someHamming- or edit-distan
e of ea
h other [17℄.In biologi
al sequen
e analysis sear
hing for tandem repeats is used toreveal stru
tural and fun
tional information [10, pp. 139{142℄, but sear
hingfor exa
t tandem repeats 
an be too restri
tive be
ause of sequen
ing andother experimental errors. By sear
hing for maximal pairs with small gaps(maybe depending on the length of the substring) it 
ould be possible to
ompensate for these errors. On the other hand, �nding maximal pairs with agap within an interval 
an be seen as a generalization of �nding o

urren
es oftandem repeats. Stoye and Gus�eld [25℄ say that an o

urren
e of the tandemrepeat �� is a bran
hing o

urren
e of the tandem repeat �� if and only if the
hara
ters to the immediate right of the two o

urren
es of � are di�erent, andthey explain how to dedu
e the o

urren
e of all tandem repeats in a stringfrom the o

urren
es of bran
hing tandem repeats in time proportional to the2



number of tandem repeats. Sin
e a bran
hing o

urren
e of a tandem repeatis just a right-maximal pair with gap zero, the methods presented in this paper
an be used to �nd all tandem repeats in time O(n log n+z). This mat
hes thetime bounds of previous published methods for this problem [4, 2, 19, 16, 25℄.The rest of this paper is organized in two parts whi
h 
an be read inde-pendently. In Se
tion 2 we present the preliminaries ne
essary to read eitherof the two parts; we de�ne pairs and suÆx trees and des
ribe how in generalto �nd pairs using the suÆx tree. In the �rst part, Se
tion 3, we presentthe methods to �nd all maximal pairs in a string with gap in an upper andlower bounded interval. This part also presents fa
ts about eÆ
ient mergingof sear
h trees whi
h are essential to the formulation of the methods. In these
ond part, Se
tion 4, we present the methods to �nd all maximal pairs in astring with gap in a lower bounded interval. This part also in
ludes the presen-tation of two novel data stru
tures, the heap-tree and the 
olored heap-tree,whi
h are essential to the formulation of the methods. Finally, in Se
tion 5we summarize our work and dis
uss open problems.2 PreliminariesThroughout this paper S will denote a string of length n over a �nite alpha-bet �. We will use S[i℄, for i = 1; 2; : : : ; n, to denote the ith 
hara
ter of S,and use S[i :: j℄ as notation for the substring S[i℄S[i + 1℄ � � � S[j℄ of S. To beable to refer to the 
hara
ters to the left and right of every 
hara
ter in S with-out worrying about the �rst and last 
hara
ter, we de�ne S[0℄ and S[n+1℄ tobe two distin
t 
hara
ters not appearing anywhere else in S.In order to formulate methods for �nding repetitive stru
tures in S, weneed a proper de�nition of su
h stru
tures. An obvious de�nition is to �nd allpairs of identi
al substrings in S. This, however, leads to a lot of redundantoutput, e.g. in the string that 
onsists of n identi
al 
hara
ters there are �(n3)su
h pairs. To limit the redundan
y without sa
ri�
ing any meaningful stru
-tures Gus�eld [10℄ de�nes maximal pairs.De�nition 1 (Pair) We say that (i; j; j�j) is a pair of � in S formed by iand j if and only if 1 � i < j � n � j�j + 1 and � = S[i :: i + j�j � 1℄ =S[j :: j + j�j � 1℄. The pair is left-maximal (right-maximal) if the 
hara
tersto the immediate left (right) of two o

urren
es of � are di�erent, i.e. left-maximal if S[i�1℄ 6= S[j�1℄ and right-maximal if S[i+ j�j℄ 6= S[j+ j�j℄. Thepair is maximal if it is right- and left-maximal. The gap of a pair (i; j; j�j) isthe number of 
hara
ters j � i� j�j between the two o

urren
es of � in S.It follows from the de�nition that a string of length n in the worst 
ase 
on-tains �(n2) right-maximal pairs. The string an 
ontains the worst 
ase number3



i � �gap jFigure 1: An o

urren
e of a pair (i; j; j�j) with gap j � i� j�j.of right-maximal pairs but only �(n) maximal pairs. The string (aab)n=3 how-ever 
ontains �(n2) maximal pairs. This shows that the worst 
ase number ofmaximal pairs and right-maximal pairs in a string are asymptoti
ally equal.Figure 1 illustrates the o

urren
e of a pair. In some appli
ations it mightbe interesting only to �nd pairs that obey 
ertain restri
tions on the gap, e.g.to �lter out pairs of substrings that are overlapping or far apart and thusto redu
e the number of pairs to report. Using the \smaller-half tri
k", seeSe
tion 3.1, and Lemma 1 it is easy to prove that a string of length n in theworst 
ase 
ontains �(n logn) right-maximal pairs with gap in an interval of
onstant size.In this paper we present methods for �nding all right-maximal and maximalpairs (i; j; j�j) in S with gap in a bounded interval. These methods all usethe suÆx tree of S as the fundamental data stru
ture. We brie
y review thesuÆx tree and refer to [10℄ for a more 
omprehensive treatment.De�nition 2 (SuÆx tree) The suÆx tree T (S) of the string S is the 
om-pressed trie of all suÆxes of S. Ea
h leaf in T (S) represents a suÆx S[i :: n℄of S and is annotated with the index i. We refer to the set of indi
es storedat the leaves in the subtree rooted at node v as the leaf-list of v and denoteit LL(v). Ea
h edge in T (S) is labelled with a nonempty substring of S su
hthat the path from the root to the leaf annotated with index i spells the suÆxS[i :: n℄. We refer to the substring of S spelled by the path from the root tonode v as the path-label of v and denote it L(v).The suÆx tree T (S) 
an be 
onstru
ted in time O(n) [29, 21, 27, 6℄. Itfollows from the de�nition that all internal nodes in T (S) have out-degreebetween two and j�j. We 
an turn the suÆx tree T (S) into the binary suÆxtree TB(S) by repla
ing every node v in T (S) with out-degree d > 2 by abinary tree with d� 1 internal nodes and d� 2 internal edges in whi
h the dleaves are the d 
hildren of node v. We label ea
h new internal edge with theempty string su
h that the d � 1 nodes repla
ing node v all have the samepath-label as node v has in T (S). Sin
e T (S) has n leaves, 
onstru
ting thebinary suÆx tree TB(S) requires adding at most n� 2 new nodes. Sin
e ea
hnew node 
an be added in 
onstant time, the binary suÆx tree TB(S) 
an be
onstru
ted in time O(n). 4



The binary suÆx tree is an essential 
omponent of our methods. De�ni-tion 2 implies that there is a node v in T (S) with path-label � if and only if �is the longest 
ommon pre�x of S[i :: n℄ and S[j :: n℄ for some 1 � i < j � n.In other words, there is a node v with path-label � if and only if (i; j; j�j) isa right-maximal pair in S. Sin
e S[i + j�j℄ 6= S[j + j�j℄ the indi
es i and j
annot be elements in the leaf-list of the same 
hild of v. Using the binarysuÆx tree TB(S) we 
an thus formulate the following lemma.Lemma 1 There is a right-maximal pair (i; j; j�j) in S if and only if there is anode v in the binary suÆx tree TB(S) with path-label � and distin
t 
hildren w1and w2 where i 2 LL(w1) and j 2 LL(w2).Lemma 1 gives an approa
h to �nd all right-maximal pairs in S; for everyinternal node v in the binary suÆx tree TB(S) 
onsider the leaf-lists at its two
hildren w1 and w2, and for every element (i; j) in LL(w1)�LL(w2) report aright-maximal pair (i; j; j�j) if i < j and (j; i; j�j) if j < i. To �nd all maximalpairs in S the problem remains to �lter out all right-maximal pairs that arenot left-maximal.3 Pairs with upper and lower bounded gapWe want to �nd all maximal pairs (i; j; j�j) in S with gap between g1(j�j)and g2(j�j), i.e. g1(j�j) � j � i� j�j � g2(j�j), where g1 and g2 are fun
tionsthat 
an be 
omputed in 
onstant time. An obvious approa
h is to generate allmaximal pairs in S and only report those with gap between g1(j�j) and g2(j�j),but as shown above there might be asymptoti
ally fewer maximal pairs in Swith gap between g1(j�j) and g2(j�j) than maximal pairs in S in total. Wetherefore want to �nd all maximal pairs (i; j; j�j) in S with gap between g1(j�j)and g2(j�j) without generating and 
onsidering all maximal pairs in S. A steptowards �nding all maximal pairs with gap between g1(j�j) and g2(j�j) is to�nd all right-maximal pairs with gap between g1(j�j) and g2(j�j).Figure 2 shows that if one o

urren
e of � in a pair with gap between g1(j�j)and g2(j�j) is at position p, then the other o

urren
e of � must be at aposition q in one of the two intervals L(p; j�j) = [ p� j�j � g2(j�j) :: p � j�j �g1(j�j) ℄ or R(p; j�j) = [ p + j�j + g1(j�j) :: p + j�j + g2(j�j) ℄. Together withLemma 1 this gives an approa
h to �nd all right-maximal pairs in S with gapbetween g1(j�j) and g2(j�j); from every internal node v in the binary suÆxtree TB(S) with path-label � and 
hildren w1 and w2, we report for every pin LL(w1) the pairs (p; q; j�j) for all q in LL(w2) \ R(p; j�j) and the pairs(q; p; j�j) for all q in LL(w2) \ L(p; j�j).To report right-maximal pairs eÆ
iently using this pro
edure, we mustbe able to �nd for every p in LL(w1), without looking at all the elements in5
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Figure 2: If (p; q; j�j) (respe
tively (q; p; j�j)) is a pair with gap between g1(j�j)and g2(j�j), then one o

urren
e of � is at position p and the other o

urren
eis at a position q in the interval R(p; j�j) (respe
tively L(p; j�j)) of positions.LL(w2), the proper elements q in LL(w2) to report it against. It turns outthat sear
h trees make this possible. In this paper we use AVL trees, butother types of sear
h trees, e.g. (a; b)-trees [12℄ or red-bla
k trees [9℄, 
an alsobe used as long as they obey Lemmas 2 and 3 stated below. Before we 
anformulate algorithms we review some useful fa
ts about AVL trees.3.1 Data Stru
turesAn AVL tree T is a balan
ed sear
h tree that stores an ordered set of elements.AVL trees were introdu
ed in [1℄, but are explained in almost every textbookon data stru
tures. We say that an element e is in T , or e 2 T , if it is storedat a node in T . For short notation we use e to denote both the element andthe node at whi
h it is stored in T . We 
an keep links between the nodes in Tin su
h a way that we in 
onstant time from the node e 
an �nd the nodesnext(e) and prev(e) storing the next and previous element in in
reasing order.We use jT j to denote the size of T , i.e. the number of elements stored in T .EÆ
ient merging of two AVL trees is essential to our methods. Hwangand Lin [13℄ show how to merge two sorted lists using the optimal numberof 
omparisons. Brown and Tarjan [3℄ show how to implement merging oftwo height-balan
ed sear
h trees, e.g. AVL trees, in time proportional to theoptimal number of 
omparisons. Their result is summarized in Lemma 2,whi
h immediately implies Lemma 3.Lemma 2 Two AVL trees of size at most n and m 
an be merged in timeO(log �n+mn �).Lemma 3 Given a sorted list of elements e1; e2; : : : ; en and an AVL tree Tof size at most m, m � n, we 
an �nd qi = min�x 2 T �� x � ei	 for alli = 1; 2; : : : ; n in time O(log �n+mn �).Proof. Constru
t the AVL tree of the elements e1; e2; : : : ; en in time O(n).Merge this AVL tree with T a

ording to Lemma 2, ex
ept that whenever6



the merge-algorithm would insert one of the elements e1; e2; : : : ; en into T ,we 
hange the merge-algorithm to report the neighbor of the element in Tinstead. This modi�
ation does not in
rease the running time. 2The \smaller-half tri
k" is essential to several methods for �nding tandemrepeats [4, 2, 25℄. It says that the sum over all nodes v in an arbitrary binarytree of size n of terms that are O(n1), where n1 � n2 are the numbers of leavesin the subtrees rooted at the two 
hildren of v, is O(n logn). Our methodsrely on a stronger version of the \smaller-half tri
k" hinted at in [22, Ex. 35℄and used in [23, Chap. 5, p. 84℄; we summarize it in the following lemma.Lemma 4 Let T be an arbitrary binary tree with n leaves. The sum over allinternal nodes v in T of terms that are O(log �n1+n2n1 �), where n1 and n2 are thenumbers of leaves in the subtrees rooted at the two 
hildren of v, is O(n log n).Proof. As the terms are O(log �n1+n2n1 �) we 
an �nd 
onstants, a and b, su
hthat the terms are upper bounded by a+b log �n1+n2n1 �. We will by indu
tion inthe number of leaves of the binary tree prove that the sum is upper boundedby (2n� 1)a + b log n!. As log n! = O(n logn) the lemma follows.If T is a leaf then the upper bound holds va
uously. Now assume indu
-tively that the upper bound holds for all trees with at most n�1 leaves. Let Tbe a tree with n leaves where the number of leaves in the subtrees rooted at thetwo 
hildren of the root are n1 < n and n2 < n. A

ording to the indu
tion hy-pothesis the sum over all nodes in these two subtrees, i.e. the sum over all nodesof T ex
ept the root, is bounded by (2n1�1)a+b log n1!+(2n2�1)a+b logn2!and thus the entire sum is bounded by(2n1 � 1)a+b log n1! + (2n2 � 1)a+ b log n2! + a+ b log�n1 + n2n1 �= (2(n1 + n2)� 1)a+ b log n1! + b log n2! +b log(n1 + n2)!� b logn1!� b logn2!= (2n� 1)a+ b log n!whi
h proves the lemma. 23.2 AlgorithmsWe �rst des
ribe an algorithm that �nds all right-maximal pairs in S withbounded gap using AVL trees to keep tra
k of the elements in the leaf-listsduring a traversal of the binary suÆx tree TB(S). We then extend it to �ndall maximal pairs in S with bounded gap using an additional AVL tree to�lter out eÆ
iently all right-maximal pairs that are not left-maximal. Bothalgorithms run in time O(n log n+ z) and spa
e O(n), where z is the number7



of reported pairs. In the following we assume, unless stated otherwise, that vis a node in the binary suÆx tree TB(S) with path-label � and 
hildren w1and w2 named su
h that jLL(w1)j � jLL(w2)j. We say that w1 is the small
hild of v and that w2 is the big 
hild of v.3.2.1 Right-maximal pairs with upper and lower bounded gapTo �nd all right-maximal pairs in S with gap between g1(j�j) and g2(j�j) we
onsider every node v in the binary suÆx tree TB(S) in a bottom-up fashion,e.g. during a depth-�rst traversal. At every node v we use AVL trees storingthe leaf-lists LL(w1) and LL(w2) at its two 
hildren to report the proper right-maximal pairs of its path-label �. The details are given in Algorithm 1 andexplained below.At every node v in TB(S) we 
onstru
t an AVL tree, the leaf-list tree T ,that stores the elements in LL(v). If v is a leaf then we 
onstru
t T dire
tlyin Step 1. If v is an internal node then LL(v) is the union of the disjointleaf-lists LL(w1) and LL(w2) whi
h by assumption are stored in the already
onstru
ted T1 and T2, so we 
onstru
t T by merging T1 and T2, jT1j �jT2j, using Lemma 2. Before 
onstru
ting T in Step 2
 we use T1 and T2to report right-maximal pairs from node v by reporting every p in LL(w1)against every q in LL(w2) \ L(p; j�j) and LL(w2) \R(p; j�j). This is done intwo steps. In Step 2a we �nd for every p in LL(w1) the minimum element qr(p)in LL(w2) \ R(p; j�j) and the minimum element ql(p) in LL(w2) \ L(p; j�j)by sear
hing in T2 using Lemma 3. In Step 2b we report pairs (p; q; j�j) and(q; p; j�j) for every p in LL(w1) and in
reasing q's in LL(w2) starting withqr(p) and ql(p) respe
tively, until the gap violates the upper or lower bound.To argue that Algorithm 1 �nds all right-maximal pairs with gap betweeng1(j�j) and g2(j�j) it is enough to argue that we for every p in LL(w1) reportall right-maximal pairs (p; q; j�j) and (q; p; j�j) with gap between g1(j�j) andg2(j�j). The rest follows be
ause we at every node v in TB(S) 
onsider ev-ery p in LL(w1). Consider the 
all Report(qr(p); p+ j�j+ g2(j�j)) in Step 2b.From the implementation of Report follows that this 
all reports p againstevery q in LL(w2) \ [qr(p) :: p + j�j + g2(j�j)℄. By 
onstru
tion of qr(p) andde�nition of R(p; j�j) follows that LL(w2) \ [qr(p) :: p + j�j+ g2(j�j)℄ is equalto LL(w2) \ R(p; j�j), so the 
all reports all pairs (p; q; j�j) with gap be-tween g1(j�j) and g2(j�j). Similarly we 
an argue that the 
all Report(ql(p); p�j�j � g1(j�j)) reports all pairs (q; p; j�j) with gap between g1(j�j) and g2(j�j).Now 
onsider the running time of Algorithm 1. Building the binary suÆxtree TB(S) and 
reating an AVL tree of size one at ea
h leaf in Step 1 takestime O(n). At every internal node in TB(S) we do Step 2. Sin
e jT1j �jT2j sear
hing in Step 2a and merging in Step 2
 takes time O(log �jT1j+jT2jjT1j �)by Lemmas 3 and 2 respe
tively. Reporting of pairs in Step 2b takes time8



Algorithm 1 Find all right-maximal pairs in string S with bounded gap.1. Initializing: Build the binary suÆx tree TB(S) and 
reate at ea
h leafan AVL tree of size one that stores the index at the leaf.2. Reporting and merging: When the AVL trees T1 and T2, jT1j � jT2j, atthe two 
hildren w1 and w2 of node v with path-label � are available,we do the following:(a) Let fp1; p2; : : : ; psg be the elements in T1 in sorted order. For ea
helement p in T1 we �ndqr(p) = min�x 2 T2 �� x � p+ j�j + g1(j�j)	ql(p) = min�x 2 T2 �� x � p� j�j � g2(j�j)	by sear
hing in T2 with the sorted lists fpi + j�j + g1(j�j) j i =1; 2; : : : ; sg and fpi�j�j� g2(j�j) j i = 1; 2; : : : ; sg using Lemma 3.(b) For ea
h element p in T1 we do Report(qr(p); p+ j�j+ g2(j�j)) andReport(ql(p); p� j�j � g1(j�j)) where Report is the following pro
e-dure.def Report(from ; to) :q = fromwhile q � to :report pair (p; q; j�j) if p < q, and (q; p; j�j) otherwiseq = next(q)(
) Build the leaf-list tree T at node v by merging T1 and T2 usingLemma 2.proportional to jT1j, be
ause we 
onsider every p in LL(w1), plus the numberof reported pairs. Summing this over all nodes gives by Lemma 4 that the totalrunning time is O(n log n+ z), where z is the number of reported pairs. Sin
e
onstru
ting and keeping TB(S) requires spa
e O(n), and sin
e no element atany time is in more than one leaf-list tree, Algorithm 1 requires spa
e O(n).Theorem 1 Algorithm 1 �nds all right-maximal pairs (i; j; j�j) in a string Swith gap between g1(j�j) and g2(j�j) in spa
e O(n) and time O(n logn + z),where z is the number of reported pairs and n is the length of S.
9



3.2.2 Maximal pairs with upper and lower bounded gapWe now turn towards �nding all maximal pairs in S with gap between g1(j�j)and g2(j�j). Our approa
h to �nd all maximal pairs in S with gap be-tween g1(j�j) and g2(j�j) is to extend Algorithm 1 to �lter out all right-maximal pairs that are not left-maximal. A simple solution is to extend thepro
edure Report to 
he
k if S[p � 1℄ 6= S[q � 1℄ before reporting the pair(p; q; j�j) or (q; p; j�j) in Step 2b. This solution takes time proportional to thenumber of inspe
ted right-maximal pairs, and not time proportional to thenumber of reported maximal pairs. Even though the maximum number ofright-maximal pairs and maximal pairs in strings of a given length are asymp-toti
ally equal, many strings 
ontain signi�
antly fewer maximal pairs thanright-maximal pairs. We therefore want to �lter out all right-maximal pairsthat are not left-maximal without inspe
ting all right-maximal pairs. In theremainder of this se
tion we des
ribe one way to do this.Consider the reporting step in Algorithm 1 and assume that we are aboutto report from a node v with 
hildren w1 and w2. The leaf-list trees T1 and T2,jT1j � jT2j, are available and they make it possible to a

ess the elementsin LL(w1) = fp1; p2; : : : ; psg and LL(w2) = fq1; q2; : : : ; qtg in sorted order.We divide the sorted leaf-list LL(w2) into blo
ks of 
ontiguous elements su
hthat the elements qi�1 and qi are in the same blo
k if and only if S[qi�1�1℄ =S[qi�1℄. We say that we divide the sorted leaf-list into blo
ks of elements withequal left-
hara
ters. To �lter out all right-maximal pairs that are not left-maximal we must avoid to report p in LL(w1) against any element q in LL(w2)in a blo
k of elements with left-
hara
ter S[p� 1℄. This gives the overall ideaof the extended algorithm; we extend the reporting step in Algorithm 1 su
hthat whenever we are about to report p in LL(w1) against q in LL(w2) whereS[p� 1℄ = S[q � 1℄ we skip all elements in the 
urrent blo
k 
ontaining q and
ontinue reporting p against the �rst element q0 in the following blo
k, whi
hby the de�nition of blo
ks satis�es that S[p� 1℄ 6= S[q0 � 1℄.To implement this extended reporting step eÆ
iently we must be able toskip all elements in a blo
k without inspe
ting ea
h of them. We a
hieve thisby 
onstru
ting an additional AVL tree, the blo
k-start tree, that keeps tra
kof the blo
ks in the leaf-list. At ea
h node v during the traversal of TB(S)we thus 
onstru
t two AVL trees; the leaf-list tree T that stores the elementsin LL(v), and the blo
k-start tree B that keeps tra
k of the blo
ks in the sortedleaf-list by storing all the elements in LL(v) that start a blo
k. We keep linksfrom the blo
k-start tree to the leaf-list tree su
h that we in 
onstant time 
ango from an element in the blo
k-start tree to the 
orresponding element in theleaf-list tree. Figure 3 illustrates the leaf-list tree, the blo
k-start tree and thelinks between them. Before we present the extended algorithm and explainhow to use the blo
k-start tree to eÆ
iently skip all elements in a blo
k, we�rst des
ribe how to 
onstru
t the leaf-list tree T and blo
k-start tree B at10



Be7 e8e4 e5 e6T e1 e4 e7e1 e2 e3Figure 3: The data stru
ture 
onstru
ted at ea
h node v in TB(S). The leaf-list tree T stores all elements in LL(v). The blo
k-start tree B stores allelements in LL(v) that start a blo
k in the sorted leaf-list. We keep linksfrom the elements in the blo
k-start tree to the 
orresponding elements in theleaf-list tree.node v from the leaf-list trees, T1 and T2, and blo
k-start trees, B1 and B2,at its two 
hildren w1 and w2.Sin
e LL(v) is the union of the disjoint leaf-lists LL(w1) and LL(w2)stored in T1 and T2 respe
tively, we 
an 
onstru
t the leaf-list tree T bymerging T1 and T2 using Lemma 2. It is more involved to 
onstru
t theblo
k-start tree B. The reason is that an element pi that starts a blo
k inLL(w1) or an element qj that starts a blo
k in LL(w2) does not ne
essarilystart a blo
k in LL(v) and vi
e versa, so we 
annot 
onstru
t B by merg-ing B1 and B2. Let fe1; e2; : : : ; es+tg be the elements in LL(v) in sortedorder. By de�nition the blo
k-start tree B 
ontains all elements ek in LL(v)where S[ek�1�1℄ 6= S[ek�1℄. We 
onstru
t B by modifying B2. We 
hoose tomodify B2, and not B1, be
ause jLL(w1)j � jLL(w2)j, whi
h by the \smaller-half tri
k" allows us to 
onsider all elements in LL(w1) without spending toomu
h time in total. To modify B2 to be
ome B we must identify all theelements that are in B but not in B2 and vi
e versa.Lemma 5 If ek is in B but not in B2 then ek 2 LL(w1) or ek�1 2 LL(w1).Proof. Assume that ek is in B and that ek and ek�1 both are in LL(w2).In LL(w2) the elements ek and ek�1 are neighboring elements qj and qj�1.Sin
e ek starts a blo
k in LL(v) then S[qj � 1℄ = S[ek � 1℄ 6= S[ek�1 � 1℄ =S[qj�1 � 1℄. This shows that qj = ek is in B2 and the lemma follows. 2Let NEW be the set of elements ek in B where ek or ek�1 are in LL(w1).It follows from Lemma 5 that this set 
ontains at least all elements in B thatare not in B2. It is easy to see that we 
an 
onstru
t NEW in sorted orderwhile merging T1 and T2; whenever an element ek from T1, i.e. LL(w1), is11



pla
ed in T , i.e. LL(v), we in
lude it, and/or the next element ek+1 pla
edin T , in NEW if they start a blo
k in LL(v).If we insert the elements in NEW we are halfway done modifying B2 tobe
ome B. We still need to identify and remove the elements that should beremoved from B2, that is, the elements that are in B2 but not in B.Lemma 6 An element qj in B2 is not in B if and only if the largest element ekin NEW smaller than qj in B2 has the same left-
hara
ter as qj.Proof. If qj is in B2 but does not start a blo
k in LL(v), then it must be ina blo
k started by some element ek with the same left-
hara
ter as qj. Thisblo
k 
annot 
ontain qj�1 be
ause qj being in B2 implies that S[qj � 1℄ 6=S[qj�1 � 1℄. We thus have the ordering qj�1 < ek < qj. This implies that ekis the largest element in NEW smaller than qj. If ek is the largest elementin NEW smaller than qj, then no blo
k starts in LL(v) between ek and qj, i.e.all elements e in LL(v) where ek < e < qj satisfy that S[e� 1℄ = S[ek � 1℄, soif S[ek � 1℄ = S[qj � 1℄ then qj does not start a blo
k in LL(v). 2By sear
hing in B2 with the sorted list NEW using Lemma 3 it is straight-forward to �nd all pairs of elements (ek; qj), where ek is the largest elementin NEW smaller than qj in B2. If the left-
hara
ters of ek and qj in su
h apair are equal, i.e. S[ek � 1℄ = S[qj � 1℄, then by Lemma 6 the element qj isnot in B and must therefore be removed from B2. It follows from the proofof Lemma 6 that if this is the 
ase then qj�1 < ek < qj , so we 
an, withoutdestroying the order among the nodes in B2, remove qj from B2 and insert ekinstead, simply by repla
ing the element qj with the element ek at the nodestoring qj in B2.We 
an now summarize the three steps it takes to modify B2 to be
ome B.In Step 1 we 
onstru
t the sorted set NEW that 
ontains all elements in Bthat are not in B2. This is done while merging T1 and T2 using Lemma 2.In Step 2 we remove the elements from B2 that are not in B. The elementsinB2 being removed and the elements from NEW repla
ing them are identi�edusing Lemmas 3 and 6. In Step 3 we merge the remaining elements in NEWinto the modi�ed B2 using Lemma 2. Adding links from the new elementsin B to the 
orresponding elements in T 
an be done while repla
ing andmerging in Steps 2 and 3. Sin
e jNEW j � 2 jT1j and jB2j � jT2j, the timeit takes to 
onstru
t B is dominated by the the time it takes merge a sortedlist of size 2 jT1j into an AVL tree of size jT2j. By Lemma 2 this is within a
onstant fa
tor of the time it takes to merge T1 and T2, so the time is takes to
onstru
t B is dominated by the time it takes to 
onstru
t the leaf-list tree T .Now that we know how to 
onstru
t the leaf-list tree T and blo
k-starttree B at node v from the leaf-list trees, T1 and T2, and blo
k-start trees, B1and B2, at its two 
hildren w1 and w2, we 
an pro
eed with the implementation12



Algorithm 2 Find all maximal pairs in string S with bounded gap.1. Initializing: Build the binary suÆx tree TB(S) and 
reate at ea
h leaftwo AVL trees of size one, the leaf-list and the blo
k-start tree, bothstoring the index at the leaf.2. Reporting and merging: When the leaf-list trees T1 and T2, jT1j � jT2j,and the blo
k-start trees B1 and B2 at the two 
hildren w1 and w2 ofnode v with path-label � are available, we do the following:(a) Let fp1; p2; : : : ; psg be the elements in T1 in sorted order. For ea
helement p in T1 we �ndqr(p) = min�x 2 T2 �� x � p+ j�j + g1(j�j)	ql(p) = min�x 2 T2 �� x � p� j�j � g2(j�j)	br(p) = min�x 2 B2 �� x � p+ j�j+ g1(j�j)	bl(p) = min�x 2 B2 �� x � p� j�j � g2(j�j)	by sear
hing in T2 andB2 with the sorted lists fpi+j�j+g1(j�j) j i =1; 2; : : : ; sg and fpi�j�j� g2(j�j) j i = 1; 2; : : : ; sg using Lemma 3.(b) For ea
h element p in T1 we do ReportMax(qr(p); br(p); p +j�j + g2(j�j)) and ReportMax(ql(p); bl(p); p � j�j � g1(j�j)) whereReportMax is the following pro
edure.def ReportMax(from T ; from B ; to):q = from Tb = from Bwhile q � to:if S[q � 1℄ 6= S[p� 1℄:report pair (p; q; j�j) if p < q, and (q; p; j�j) otherwiseq = next(q)else:while b � q:b = next(b)q = b(
) Build the leaf-list tree T at node v by merging T1 and T2 usingLemma 2. Build the blo
k-start tree B at node v by modifying B2as des
ribed in the text.
13



of the extended reporting step. The details are shown in Algorithm 2. Thisalgorithm is similar to Algorithm 1 ex
ept that we at every node v in TB(S)
onstru
t two AVL trees; the leaf-list tree T that stores the elements in LL(v),and the blo
k-start tree B that keeps tra
k of the blo
ks in LL(v) by storingthe subset of elements that start a blo
k. If v is a leaf, we 
onstru
t T and Bdire
tly. If v is an internal node, we 
onstru
t T by merging the leaf-listtrees T1 and T2 at its two 
hildren w1 and w2, and we 
onstru
t B by modifyingthe blo
k-start tree B2 as explained above.Before 
onstru
ting T and B we report all maximal pairs from node vwith gap between g1(j�j) and g2(j�j) by reporting every p in LL(w1) againstevery q in LL(w2)\L(p; j�j) and LL(w2)\R(p; j�j) where S[p�1℄ 6= S[q�1℄.This is done in two steps. In Step 2a we �nd for every p in LL(w1) theminimum elements ql(p) and qr(p), as well as the minimum elements bl(p)and br(p) that start a blo
k, in LL(w2) \ L(p; j�j) and LL(w2) \ R(p; j�j)respe
tively. This is done by sear
hing in T2 and B2 using Lemma 3. InStep 2b we report pairs (p; q; j�j) and (q; p; j�j) for every p in LL(w1) andin
reasing q's in LL(w2) starting with qr(p) and ql(p) respe
tively, until thegap violates the upper or lower bound. Whenever we are about to report pagainst q where S[p � 1℄ = S[q � 1℄, we instead use the blo
k-start tree B2to skip all elements in the blo
k 
ontaining q and 
ontinue with reporting pagainst the �rst element in the following blo
k.To argue that Algorithm 2 �nds all maximal pairs with gap between g1(j�j)and g2(j�j) it is enough to argue that we for every p in LL(w1) report all max-imal pairs (p; q; j�j) and (q; p; j�j) with gap between g1(j�j) and g2(j�j). Therest follows be
ause we at every node in TB(S) 
onsider every p in LL(w1).Consider the 
all ReportMax(qr(p); br(p); p+j�j+g2(j�j)) in Step 2b. From theimplementation of ReportMax follows that unless we skip elements by in
reas-ing b then we 
onsider every q in LL(w2)\R(p; j�j). The test S[q�1℄ 6= S[p�1℄before reporting a pair ensures that we only report maximal pairs and when-ever S[q � 1℄ = S[p� 1℄ we in
rease b until b = minfx 2 B2 j x > qg. This is,by 
onstru
tion of B2 and br(p), the element that starts the blo
k followingthe blo
k 
ontaining q, so all elements q0, q < q0 < b, we skip by setting qto b satisfy that S[p � 1℄ = S[q � 1℄ = S[q0 � 1℄. We thus 
on
lude thatReportMax(qr(p); br(p); p + j�j + g2(j�j)) reports p against exa
tly those q inLL(w2) \R(p; j�j) where S[p� 1℄ 6= S[q � 1℄, i.e. it reports all maximal pairs(p; q; j�j) at node v with gap between g1(j�j) and g2(j�j). Similarly, the 
allReportMax(ql(p); bl(p); p � j�j � g1(j�j)) reports all maximal pairs (q; p; j�j)with gap between g1(j�j) and g2(j�j).Now 
onsider the running time of Algorithm 2. We �rst argue that the 
allReportMax(qr(p); br(p); p+ j�j+g2(j�j)) takes 
onstant time plus time propor-tional to the number of reported pairs (p; q; j�j). To do this all we have to showis that the time used to skip blo
ks, i.e. the number of times we in
rease b, is14



proportional to the number of reported pairs. By 
onstru
tion br(p) � qr(p),so the number of times we in
rease b is bounded by the number of blo
ks inLL(w2) \ R(p; j�j). Sin
e neighboring blo
ks 
ontain elements with di�erentleft-
hara
ters, we report p against an element from at least every se
ond blo
kin LL(w2)\R(p; j�j). The number of times we in
rease b is thus proportional tothe number of reported pairs. The 
all ReportMax(ql(p); bl(p); p�j�j�g1(j�j))also takes 
onstant time plus time proportional to the number of reported pairs(q; p; j�j). We thus have that Step 2b takes time proportional to jT1j plus thenumber of reported pairs. Everything else we do at node v, i.e. sear
hing in T2and B2 and 
onstru
ting the leaf-list tree T and blo
k-start tree B, takes timeO(log �jT1j+jT2jjT1j �). Summing this over all nodes gives by Lemma 4 that thetotal running time of the algorithm is O(n logn + z) where z is the numberof reported pairs. Sin
e 
onstru
ting and keeping TB(S) requires spa
e O(n),and sin
e no element at any time is in more than one leaf-list tree, and maybeone blo
k-start tree, Algorithm 2 requires spa
e O(n).Theorem 2 Algorithm 2 �nds all maximal pairs (i; j; j�j) in a string S withgap between g1(j�j) and g2(j�j) in spa
e O(n) and time O(n logn+z), where zis the number of reported pairs and n is the length of S.We observe that Algorithm 2 never uses the blo
k-start tree B1 at thesmall 
hild w1. This observation 
an be used to ensure that only one blo
k-start tree exists during the exe
ution of the algorithm. If we implement thetraversal of TB(S) as a depth-�rst traversal in whi
h we at ea
h node v �rstre
ursively traverse the subtree rooted at the small 
hild w1, then we do notneed to store the blo
k-start tree returned by this re
ursive traversal whilere
ursively traversing the subtree rooted at the big 
hild w2. This impliesthat only one blo
k-start tree exists at all times during the re
ursive traversalof TB(S). The drawba
k is that we at ea
h node v need to know in advan
ewhi
h 
hild is the small 
hild, but this knowledge 
an be obtained in lineartime by annotating ea
h node with the size of the subtree it roots.4 Pairs with lower bounded gapIf we relax the 
onstraint on the gap and only want to �nd all maximal pairsin S with gap at least g(j�j), where g is a fun
tion that 
an be 
omputedin 
onstant time, then a straightforward solution is to use Algorithm 2 withg1(j�j) = g(j�j) and g2(j�j) = n. This obviously �nds all maximal pairs withgap at least g1(j�j) = g(j�j) in time O(n logn + z). However, the missingupper bound on the gap, i.e. the trivial upper bound g2(j�j) = n, makes itpossible to redu
e the running time to O(n+z) sin
e reporting from ea
h nodeduring the traversal of the binary suÆx tree is simpli�ed.15



The reporting of pairs from node v with 
hildren w1 and w2 is simpli�ed,be
ause the la
k of an upper bound on the gap implies that we do not haveto sear
h LL(w2) for the �rst element to report against the 
urrent elementin LL(w1). Instead we 
an start by reporting the 
urrent element in LL(w1)against the biggest (and smallest) element in LL(w2) and then 
ontinue re-porting it against de
reasing (and in
reasing) elements from LL(w2) untilthe gap be
omes smaller than g(j�j). Unfortunately this simpli�
ation alonedoes not redu
e the asymptoti
 running time be
ause inspe
ting every elementin LL(w1) and keeping tra
k of the leaf-lists in AVL trees alone requires time�(n logn). To redu
e the running time we must thus avoid to inspe
t everyelement in LL(w1) and �nd another way to store the leaf-lists. We a
hievethis by using the data stru
tures presented below to store the leaf-lists duringthe traversal of the binary suÆx tree.4.1 Data stru
turesA heap-ordered tree is a tree in whi
h ea
h node stores an element and has akey. Every node other than the root satis�es that its key is greater than orequal to the key at its parent. Heap-ordered trees have been widely studiedand are the basi
 stru
ture of many priority queues [30, 7, 28, 8℄. In this se
tionwe utilize heap-ordered trees to 
onstru
t two data stru
tures, the heap-treeand the 
olored heap-tree, that are useful in our appli
ation of �nding pairswith lower bounded gap but might also have appli
ations elsewhere.A heap-tree stores a 
olle
tion of elements with 
omparable keys and sup-ports the following operations.Init(e; k): Return a heap-tree of size one that stores element e with key k.Find(H;x): Return all elements e stored in the heap-tree H with key k � x.Min(H): Return the element e stored in H with minimum key.Meld(H;H 0): Return a heap-tree that stores all elements in H and H 0 withun
hanged keys.A 
olored heap-tree stores a 
olle
tion of 
olored elements with 
omparablekeys. We use 
olor (e) to denote the 
olor of element e. A 
olored heap-treesupports the same operations as a heap-tree ex
ept that it allows us to �ndall elements not having a parti
ular 
olor. The operations are as follows.ColorInit(e; k): Return a 
olored heap-tree of size one that stores ele-ment e with key k.ColorFind(H;x; 
): Return all elements e stored in the 
olored heap-tree Hwith key k � x and 
olor (e) 6= 
.16



ColorMin(H): Return the element e stored in H with minimum key.ColorSe
(H): Return the element e stored in H with minimum key su
hthat 
olor (e) 6= 
olor(ColorMin(H)).ColorMeld(H;H 0): Return a 
olored heap-tree that stores all elements in Hand H 0 with un
hanged keys.In the following we will des
ribe how to implement heap-trees and 
oloredheap-trees using heap-ordered trees su
h that Init, Min, ColorInit, ColorMinand ColorSe
 take 
onstant time, Find and ColorFind take time proportionalto the number of returned elements, and Meld and ColorMeld take amortized
onstant time. This means that we 
an meld n (
olored) heap-trees of size oneinto a single (
olored) heap-tree of size n by an arbitrary sequen
e of n � 1meld operations in time O(n) in the worst 
ase.4.1.1 Heap-treesWe implement heap-trees as binary heap-ordered trees as illustrated in Fig-ure 4. At every node in the heap-ordered tree we store an element from the
olle
tion of elements we want to store. The key of a node is the key of theelement it stores. We use v:elm to refer to the element stored at node v, v:keyto refer to the key of node v, and v:right and v:left to refer to the two 
hildrenof node v. Besides the heap-order we maintain the invariant that the root ofthe heap-ordered tree has no left-
hild.We de�ne the ba
kbone of a heap-tree as the path in the heap-orderedtree that starts at the root and 
ontinues via nodes rea
hable from the rootvia a sequen
e of right-
hildren. We de�ne the length of the ba
kbone as thenumber of edges on the path it des
ribes. Consider the heap-trees H and H 0in Figure 4; the ba
kbone of H is the path r; v1; : : : ; vs of length s and theba
kbone of H 0 is the path r0; v01; : : : ; v0t of length t. We say that the nodeon the ba
kbone farthest from the root is at the bottom of the ba
kbone.We keep tra
k of the nodes on the ba
kbone of a heap-tree using a sta
k, theba
kbone-sta
k, in whi
h the root is at the bottom and the node farthest fromthe root is at the top. The ba
kbone-sta
k makes it easy to a

ess the nodeson the ba
kbone from the bottom and up towards the root.We now turn to the implementation of Init, Min, Find and Meld. Init(e; k)is straightforward. We 
onstru
t a single node v where v:elm = e, v:key = kand v:right = v:left = null and a ba
kbone-sta
k of size one that 
ontainsnode v. Min(H) is also straightforward. The heap-order implies that root rof H stores the element with minimum key, i.e. Min(H) = r:elm .We implement Find(H;x) as a re
ursive traversal of H starting at the root.At ea
h node v we 
ompare v:key to x. If v:key � x, we report v:elm and
ontinue re
ursively with the two 
hildren of v. If v:key > x, then by the17
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Figure 4: The implementation of heap-trees as binary heap-ordered trees. The�gure shows two heap-trees H and H 0. The nodes on the ba
kbone of the twoheap-trees are shaded.heap-order all keys at nodes in the subtree rooted at v are greater than x, sowe return from v without reporting. Clearly this traversal reports all elementsstored at nodes v with v:key � x, i.e. all elements stored with key k � x. Sin
eea
h node has at most two 
hildren, we make, for ea
h reported element, atmost two additional 
omparisons against x 
orresponding to the at most twore
ursive 
alls from whi
h we return without reporting. The running time ofthe traversal is thus proportional to the number of reported elements.We implement Meld(H;H 0) in two steps. Figure 5 illustrates the meldingof the heap-trees H and H 0 from Figure 4. We assume that r:key � r0:key . InStep 1 we merge the ba
kbones of H and H 0 together su
h that the heap-orderis satis�ed in the resulting tree. The merged ba
kbone is 
onstru
ted from thebottom and up towards the root by popping nodes from the ba
kbone-sta
ksof H and H 0. Step 1 results in a heap-tree with a ba
kbone of length s +t + 1. Sin
e r:key � r0:key , a pre�x of the merged ba
kbone 
onsists ofnodes r; v1; v2; : : : ; vi solely from the ba
kbone of H. In Step 2 we shorten themerged ba
kbone. Sin
e the root r0 of H 0 has no left-
hild, the node r0 on themerged ba
kbone has no left-
hild either, so by moving the right-
hild of r0to this empty spot, making it the left-
hild of r0, we shorten the length of themerged ba
kbone to i+ 1.The two steps of Meld(H;H 0) 
learly 
onstru
t a heap-ordered tree thatstores all elements in H and H 0 with un
hanged keys. Sin
e r:key � r0:key ,the root of the 
onstru
ted heap-ordered tree is the root of H and thereforehas no left-
hild. The 
onstru
ted heap-ordered tree is thus a heap-tree aswanted. The ba
kbone of the new heap-tree is the path r; v1; : : : ; vi; r0. Weobserve that the ba
kbone-sta
k of H after Step 1 
ontains exa
tly the nodesr; v1; : : : vi. We 
an thus 
onstru
t the ba
kbone-sta
k of the new heap-treeby pushing r0 onto what remains of the ba
kbone-sta
k of H after Step 1.18
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Figure 5: The two steps of melding the heap-trees H andH 0 shown in Figure 4.The heap-tree to the left is the result of merging the ba
kbones. The heap-treeto the right is the result of shortening the ba
kbone by moving the right-
hildof r0 in the merged ba
kbone to the left-
hild. The nodes on the ba
kbone ofthe two heap-trees are marked.Now 
onsider the running time of Meld(H;H 0). Step 1 takes time propor-tional to the total number of nodes popped from the two ba
kbone-sta
ks.Sin
e i + 1 nodes remains on the ba
kbone-sta
k of H, Step 1 takes time(s+ 1) + (t+ 1)� (i+ 1) = s+ t� i+ 1. Step 2 and 
onstru
tion of the newba
kbone-sta
k takes 
onstant time, so, ex
ept for a 
onstant fa
tor, meldingtwo heap-trees with ba
kbones of length s and t takes time T (s; t) = s+t�i+1.In our appli
ation of �nding pairs we are more interested in bounding the totaltime required to do a sequen
e of melds rather than bounding the time of ea
hindividual meld. We therefore turn to amortized analysis [26℄.On a forest F of heap-trees we de�ne the potential fun
tion �(F ) to be thesum of the lengths of the ba
kbones of the heap-trees in the forest. Melding twoheap-trees with ba
kbones of length s and t, as illustrated in Figure 5, 
hangesthe potential of the forest with �� = i+1�(s+t). The amortized running timeof melding the two heap-trees is thus T (s; t)+�� = (s+t�i+1)+(i�s�t+1) =2, so starting with n heap-trees of size one, i.e. a forest F0 with potential�(F0) = 0, and doing a sequen
e of n�1 meld operations until the forest Fn�1
onsists of a single heap-tree, takes time O(n) in the worst 
ase.4.1.2 Colored heap-treesWe implement 
olored heap-trees as 
olored heap-ordered trees in mu
h thesame way as we implemented heap-trees as un
olored heap-ordered trees. The19



implementation only di�ers in two ways. First, a node in the 
olored heap-ordered tree stores a set of elements instead of just a single element. Se
ondly,a node, in
luding the root, 
an have several left-
hildren. The elements storedat a node, and the referen
es to the left-
hildren of a node, are kept in un
ol-ored heap-trees. More pre
isely, a node v in the 
olored heap-ordered tree hasthe following attributes.v:elms : A heap-tree that stores the elements at node v. Find(v:elms ; x) re-turns all elements stored at node v with key less than or equal to x.All elements stored at node v have identi
al 
olors. We say that this
olor is the 
olor of node v and denote it by 
olor (v).v:key : The key of node v. We set the key of a node to be the minimum keyof an element stored at the node, i.e. the key of node v is the key ofthe element stored at the root of v:elms .v:right : A referen
e to the right-
hild of node v.v:lefts : A heap-tree that stores the referen
es to the left-
hildren of node v.A referen
e is stored with a key equal to the key of the referen
edleft-
hild, so Find(v:lefts ; x) returns the referen
es to all left-
hildrenof node v with key less than or equal to x.As for a heap-tree we de�ne the ba
kbone of a 
olored heap-tree as thepath that starts at the root and 
ontinues via nodes rea
hable from the rootvia a sequen
e of right-
hildren. We use a sta
k, the ba
kbone-sta
k, to keeptra
k of the nodes on the ba
kbone. In addition to the heap-order, sayingthat the key of every node other than the root is greater than or equal to thekey of its parent, we maintain the following three invariants about the 
olorof the nodes and the relation between the elements stored at a node and itsleft-
hildren.I1: Every node v other than the root r has a 
olor di�erent from its parent.I2: Every node v satis�es that jFind(v:elms ; x)j � jFind(v:lefts ; x)j for any x.I3: The root r satis�es that jFind(r:elms ; x)j � jFind(r:lefts ; x)j + 1 for anyx � Min(r:elms).We 
an now turn to the implementation of the operations on 
olored heap-trees. ColorInit(e; k) is straightforward. We simply 
onstru
t a single node vwhere v:key = k, v:elms = Init(e; k) and v:right = v:lefts = null and aba
kbone-sta
k that 
ontains node v. ColorMin(H) is also straightforward.The heap-order implies that the element with minimum key is stored in the20



heap-tree r:elms at the root r of H, so ColorMin(H) = Min(r:elms). The heap-order and I1 imply that ColorSe
(H) is the element stored with minimum keyat a 
hild of r. The element stored with minimum key at the right-
hild isMin(r:right) and the element stored with minimum key at a left-
hild mustby the heap-order of r:lefts be the element stored with minimum key at theleft-
hild referen
ed by the root of r:lefts , i.e. Min(Root(r:lefts):elm). BothColorMin(H) and ColorSe
(H) 
an thus be found in 
onstant time.We implement ColorFind(H;x; 
) as a re
ursive traversal of H starting atthe root. More pre
isely, we implement ColorFind(H;x; 
) as ReportFrom(r)where r is the root of H and ReportFrom is the following re
ursive pro
edure.def ReportFrom(v):if key(v) � x:if 
olor (v) 6= 
:E = Find(v:elms ; x)for e in E:report eReportFrom(v:right)W = Find(v:lefts ; x)for w in W :ReportFrom(w)The 
orre
tness of this implementation is easy to establish. The heap-orderensures that all nodes v with v:key � x are visited during the traversal. Thede�nition of v:key implies that any element e with key k � x is stored at anode v with v:key � x, i.e. among the elements returned by Find(v:elms ; x) forsome node v visited during the traversal. Together with the test 
olor (v) 6= 
this implies that all elements e with key k � x and 
olor di�erent from 
 arereported by ColorFind(H;x; 
).Now 
onsider the running time of ColorFind(H;x; 
). Sin
e Find(v:elms ; x)and Find(v:lefts ; x) both take time proportional to the number of returnedelements, it follows that the running time is dominated by the number of re-
ursive 
alls plus the number of reported elements. To argue that the runningtime of ColorFind(H;x; 
) is proportional to the number of reported elementswe therefore argue that the number of reported elements dominates the num-ber of re
ursive 
alls. We only make re
ursive 
alls from a node v if v:key � x.Let v be su
h a node and 
onsider two 
ases. If 
olor (v) 6= 
, then we reportat least one element, namely the element with key v:key , and by I2 and I3 wereport at least as many elements as the number of left-
hildren we 
all from v,so ex
ept for a 
onstant term that we 
an 
harge for visiting node v, the num-ber of reported elements at v a

ounts for the 
all to v and all 
alls from v.If 
olor (v) = 
, then we do not report any elements at v, but I1 ensures that21



we reported elements at its parent (unless v is the root) and that we will bereporting elements at all left-
hildren we 
all from v. The 
all to v is thusalready a

ounted for by the elements reported at its parent, and ex
ept fora 
onstant term that we 
an 
harge for visiting node v, all 
alls from v willbe a

ounted for by elements reported at the 
hildren of v. We 
on
lude thatthe number of reported elements dominates the number of re
ursive 
alls, soColorFind(H;x; 
) takes time proportional to the number of reported elements.We implement ColorMeld(H;H 0) similar to Meld(H;H 0) ex
ept that wemust ensure that the 
onstru
ted 
olored heap-tree obeys the three invariants.Let H and H 0 be 
olored heap-trees with roots r and r0, r:key � r0:key ,respe
tively. We implement ColorMeld(H;H 0) as the following three steps.1. Merge. We merge the ba
kbones of H and H 0 together su
h that the re-sulting heap-ordered tree stores all elements inH andH 0 with un
hangedkeys. The merging is done by popping nodes from the ba
kbone-sta
ksof H and H 0 until the ba
kbone-sta
k of H 0 is empty2. Solve 
on
i
ts. A node w on the merged ba
kbone with the same 
oloras its parent v is a violation of invariant I1. We solve 
on
i
ts betweenneighboring nodes v and w of equal 
olor by melding the elements andleft-
hildren of the two nodes and removing node w. We say that parent vswallows the 
hild w.v:elms = Meld(v:elms ; w:elms)v:lefts = Meld(v:lefts ; w:lefts)v:right = w:right3. Shorten ba
kbone. Let v be the node on the merged ba
kbone 
orre-sponding to r0 or the node that swallowed r0 in Step 2. We shorten theba
kbone by moving the right-
hild of v to the set of left-
hildren of v.v:lefts = Meld(v:lefts ; Init(v:right ; v:right :key))v:right = nullThe main di�eren
e from the implementation of Meld(H;H 0) is Step 2 wherethe invariant I1 is restored along the merged ba
kbone. To establish the
orre
tness of the implementation of ColorMeld(H;H 0) we 
onsider ea
h of thethree steps in more details.In Step 1 we merge the ba
kbones of H and H 0 together su
h that theresulting tree is a heap-ordered tree that stores all elements in H and H 0 withun
hanged keys. Sin
e the merging does not 
hange the left-
hildren or theelements of any node and sin
e H and H 0 both obey I2 and I3, the 
onstru
tedheap-ordered tree also obeys I2 and I3. The merged ba
kbone 
an however
ontain neighboring nodes of equal 
olor. These 
on
i
ts are a violation of I1.22



In Step 2 we restore I1. We solve all 
on
i
ts on the merged ba
kbone be-tween neighboring nodes v and w of equal 
olor by letting the parent v swallowthe 
hild w as illustrated in Figure 6. We observe that sin
e H and H 0 bothobey I1 a 
on
i
t must involve a node from both of them. This implies thata 
on
i
t 
an only o

ur in the part of the merged ba
kbone made of nodespopped o� the ba
kbone-sta
ks in Step 1. We also observe that solving a 
on-
i
t does not indu
e a new 
on
i
t. Combined with the previous observationthis implies that the number of 
on
i
ts is bounded by the number of nodespopped o� the ba
kbone-sta
ks in Step 1. Finally, we observe that solving a
on
i
t does not indu
e violations of I2 and I3, so after solving all 
on
i
tson the merged ba
kbone we have a 
olored heap-tree that stores all elementsin H and H 0 with un
hanged keys.In Step 3 we shorten the merged ba
kbone. This is done by moving theright-
hild of r0 to its left-
hildren, or in 
ase r0 has been swallowed by a node vin Step 2, by moving the right-
hild of v to its left-
hildren. To argue that thisdoes not indu
e violations of I2 and I3 we start by making two observations.First, we observe that moving the right-
hild of a node that obeys I3 to its setof left-
hildren results in a node that obeys I2. Se
ondly, we observe that if anode that obeys I2 (or I3) swallows a node that obeys I2 it results in a nodethat still obeys I2 (or I3).Sin
e r0 is the root of H 0, it obeys I3 before Step 2. We 
onsider two
ases. First, if r0 is not swallowed in Step 2, the �rst observation immediatelyimplies that it obeys I2 after Step 3. Se
ondly, if r0 is swallowed by a node vin Step 2, we might as well think of Step 2 and Step 3 as o

urring in theopposite order as this does not a�e
t the resulting tree. Hen
e, �rst we movethe right-
hild of r0 to its set of left-
hildren, whi
h by the �rst observationresults in a node that obeys I2, then we let node v swallow this node, whi
hby the se
ond observation does not a�e
t the invariants obeyed by v.We 
on
lude that our implementation of ColorMeld(H;H 0) 
onstru
ts a
olored heap-tree that obeys all three invariants and stores all elements in Hand H 0 with un
hanged keys. It is easy to see that the ba
kbone-sta
k ofthe 
olored heap-tree 
onstru
ted by ColorMeld(H;H 0) is what remains on theba
kbone-sta
k of H after popping of nodes in Step 1 with the node r0 pushedonto it, unless the node r0 is swallowed in Step 2.Now 
onsider the time it takes to meld n 
olored heap-trees of size onetogether by a sequen
e of n� 1 melds. If we ignore the time it takes to meldthe heap-trees storing elements and referen
es to left-
hildren when solving
on
i
ts in Step 2 and shortening the ba
kbone in Step 3, then we 
an boundthe time it takes to do the sequen
e of melds by O(n) exa
tly as we did inthe previous se
tion. It is easy to see that melding n 
olored heap-trees ofsize one involves melding at most n heap-trees of size one storing elements,and at most n heap-trees of size one storing referen
es to left-
hildren. Sin
e23



v w vu u0 u u0
Figure 6: This �gure illustrates how a 
on
i
t on the merged ba
kbone issolved. If 
olor (v) = 
olor (w) then I1 is violated. The invariant is restoredby letting node v swallow node w, i.e. melding the elements and left-
hildrenat the two nodes and removing node w. Sin
e 
olor (u) 6= 
olor (w) = 
olor (v)and 
olor (u0) 6= 
olor (v), solving a 
on
i
t does not indu
e another 
on
i
t.melding n heap-trees of size one takes time O(n), we have that melding theheap-trees storing elements and referen
es to left-
hildren also takes timeO(n),so melding n 
olored heap-trees of size one takes time O(n) in the worst 
ase.4.2 AlgorithmsIn the following we present two algorithms to �nd pairs with lower boundedgap. First we des
ribe a simple algorithm to �nd all right-maximal pairs withlower bounded gap using heap-trees, then we extend it to �nd all maximalpairs with lower bounded gap using 
olored heap-trees. Both algorithms runin time O(n+ z) where z is the number of reported pairs.4.2.1 Right-maximal pairs with lower bounded gapWe �nd all right-maximal pairs in S with gap at least g(j�j) by for ea
h node vin the binary suÆx tree TB(S) to 
onsider the leaf-lists at its two 
hildren w1and w2. The pair (p; q; j�j), p 2 LL(w1) and q 2 LL(w2), is right-maximaland has gap at least g(j�j) if and only if q � p + j�j + g(j�j). If we let pmindenote the minimum element in LL(w1) this implies that every q inQ = fq 2 LL(w2) j q � pmin + j�j+ g(j�j)gforms a right-maximal pair (p; q; j�) with gap at least g(j�j) with every p inPq = fp 2 LL(w1) j p � q � g(j�j) � j�jg:By 
onstru
tion Pq 
ontains pmin and we have that (p; q; j�j) is a right-maximalpair with gap at least g(j�j) if and only if q 2 Q and p 2 Pq. We 
an
onstru
t Q and Pq using heap-trees. Let Hi and �Hi be heap-trees that24



Algorithm 3 Find all right-maximal pairs in S with lower bounded gap.1. Initializing: Build the binary suÆx tree TB(S). Create at ea
h leaf twoheap-trees of size one, H ordered by \�" and �H ordered by \�", thatboth store the index at the leaf.2. Reporting and melding: When the heap-trees H1 and �H1 at the left-
hildof node v, and the heap-trees H2 and �H2 at the right-
hild of node vare available we report pairs of �, the path-label of v, and 
onstru
t theheap-trees H and �H as follows1 Q = Find( �H2;Min(H1) + j�j+ g(j�j))2 for q in Q:3 Pq = Find(H1; q � g(j�j) � j�j)4 for p in Pq:5 report pair (p; q; j�j)6 P = Find( �H1;Min(H2) + j�j+ g(j�j))7 for p in P :8 Qp = Find(H2; p� g(j�j) � j�j)9 for q in Qp:10 report pair (q; p; j�j)11 H = Meld(H1;H2)12 �H = Meld( �H1; �H2)store the elements in LL(wi) ordered by \�" and \�" respe
tively. Byde�nition of the operations Min and Find we have that pmin = Min(H1),Q = Find( �H2; pmin + j�j+ g(j�j) and Pq = Find(H1; q � g(j�j) � j�j).This leads to the formulation of Algorithm 3 in whi
h we at every node vin TB(S) 
onstru
t two heap-trees, H and �H, that store the elements in LL(v)ordered by \�" and \�" respe
tively. If v is a leaf, we 
onstru
t H and �Hdire
tly by 
reating two heap-trees of size one ea
h storing the index at the leaf.If v is an internal node, we 
onstru
t H and �H by melding the 
orrespondingheap-trees at the two 
hildren (lines 11{12). Before 
onstru
ting H and �H atnode v, we report right-maximal pairs of its path-label (lines 1{10).To argue that Algorithm 3 �nds all right-maximal pairs in S with gap atleast g(j�j) it is enough to argue that we at ea
h node v in TB(S) report allpairs (p; q; j�j) and (q; p; j�j), p 2 LL(w1) and q 2 LL(w2), with gap at leastg(j�j). The rest follows be
ause we 
onsider every node in TB(S). Let v be anode in TB(S) at whi
h the heap-trees H1, �H1 and H2, �H2 at its two 
hildrenare available. As explained above (p; q; j�j) is a right-maximal pair with gap25



at least g(j�j) if and only if q 2 Q and p 2 Pq, whi
h exa
tly are the pairsreported in lines 1{5. Symmetri
ally we 
an argue that (q; p; j�j) is a right-maximal pair with gap at least g(j�j) if and only if p 2 P and q 2 Qp, whi
hexa
tly are the pairs reported in lines 6{10.Now 
onsider the running time of the algorithm. We �rst note that 
on-stru
ting two heap-trees of size one at ea
h of the n leaves in TB(S) andmelding them together a

ording to the stru
ture of TB(S) takes time O(n)be
ause ea
h of the n� 1 meld operation takes amortized 
onstant time. Wethen note that the reporting of pairs at ea
h node, lines 1{10, takes time pro-portional to the number of reported pairs be
ause the �nd operation takestime proportional to the number of returned elements and the set Pq (and Qp)is non-empty for every element q in Q (and p in P ). Finally we remember that
onstru
ting the binary suÆx tree TB(S) takes time O(n). Now 
onsider thespa
e needed by the algorithm. The binary suÆx tree requires spa
e O(n).The heap-trees also requires spa
e O(n) be
ause no element at any time isstored in more than one heap-tree. Finally, sin
e no leaf-list 
ontains morethan n elements, storing the elements returned by the �nd operations duringthe reporting requires no more than spa
e O(n). In summary we formulatethe following theorem.Theorem 3 Algorithm 3 �nds all right-maximal pairs (i; j; j�j) in a string Swith gap at least g(j�j) in spa
e O(n) and time O(n+z), where z is the numberof reported pairs and n is the length of S.4.2.2 Maximal pairs with lower bounded gapEssential to the above algorithm is that we in time proportional to its size
an 
onstru
t the set Q that 
ontains all elements q in LL(w2) that form aright-maximal pair (pmin; q; j�j) with gap at least g(j�j). Unfortunately theleft-
hara
ters S[q�1℄ and S[pmin�1℄ 
an be equal, so Q 
an 
ontain elementsthat do not form a maximal pair with any element in LL(w1). Sin
e we aimfor the reporting of pairs to take time proportional to the number of reportedpairs, this implies that we 
annot a�ord to 
onsider every element in Q if weonly want to report maximal pairs.Fortunately we 
an eÆ
iently 
onstru
t the subset of LL(w2) that 
on-tains all the elements that form at least one maximal pair. An element qin LL(w2) forms a maximal pair if and only if there is an element p in LL(w1)su
h that q � p + j�j + g(j�j) and S[q � 1℄ 6= S[p � 1℄. We 
an 
onstru
tthis subset of LL(w2) using 
olored heap-trees. We de�ne the 
olor of an el-ement to be its left-
hara
ter, i.e. the 
olor of p in LL(w1) and q in LL(w2)is S[p�1℄ and S[q � 1℄ respe
tively. Let Hi and �Hi be 
olored heap-trees thatstore the elements in LL(wi) ordered by \�" and \�" respe
tively. Using26



pmin = ColorMin(H1) and pse
 = ColorSe
(H1) we 
an 
hara
terize the ele-ments in LL(w2) that form at least one maximal pair with gap at least g(j�j)by 
onsidering two 
ases.First, if q � pse
 + j�j + g(j�j) then (pmin; q; j�j) and (pse
; q; j�j) bothhave gap at least g(j�j) and sin
e S[pmin � 1℄ 6= S[pse
 � 1℄ at least one ofthem is maximal, so every q � pse
 + j�j + g(j�j) forms a maximal pair withgap at least g(j�j). If # is a 
hara
ter not appearing anywhere in S, i.e. noelement in LL(w2) has 
olor #, this is the same as saying that every q inQ0 = ColorFind( �H2; pse
 + j�j + g(j�j);#) forms a maximal pair with gap atleast g(j�j). Se
ondly, if q < pse
+ j�j+ g(j�j) forms a maximal pair (p; q; j�j)with gap at least g(j�j) then pmin � p < pse
. This implies that S[p � 1℄ =S[pmin � 1℄, so (pmin; q; j�j) is also maximal and has gap at least g(j�j). Wethus have that q < pse
 + j�j + g(j�j) forms a maximal pairs with gap atleast g(j�j) if and only if (pmin; q; j�j) is maximal and has gap at least g(j�j),i.e. if and only if S[q�1℄ 6= S[pmin�1℄ and q � pmin+j�j+g(j�j). This impliesthat the set Q00 = ColorFind( �H2; pmin+ j�j+g(j�j); S[pmin�1℄) 
ontains everyq < pse
 + j�j+ g(j�j) that forms a maximal pair with gap at least g(j�j).By 
onstru
tion of Q0 and Q00 the set Q0 [ Q00 
ontains all elements inLL(w2) that form a maximal pair with gap at least g(j�j). More pre
isely,every q in Q0 [ Q00 forms a maximal pair (p; q; j�j) with gap at least g(j�j)with every p � q�g(j�j)�j�j in LL(w1) where S[p�1℄ 6= S[q�1℄, i.e. every pin Pq = ColorFind(H1; q � g(j�j) � j�j; S[q � 1℄) whi
h by 
onstru
tion is non-empty. We 
an 
onstru
t Q0[Q00 eÆ
iently. Every element in Q00 greater thanpse
+ j�j+ g(j�j) is also in Q0, so we 
an 
onstru
t Q0 [Q00 by 
on
atenatingQ0 and what remains of Q00 after removing all elements greater than pse
 +j�j + g(j�j) from it. This together with the 
omplexity of ColorFind impliesthat we 
an 
onstru
t Q0[Q00 in time proportional to jQ0j+ jQ00j � 2jQ0[Q00j.This leads to the formulation of Algorithm 4. The algorithm is similar toAlgorithm 3 ex
ept that we maintain 
olored heap-trees during the traversalof the binary suÆx tree. At every node we report maximal pairs of its path-label. In lines 1{7 we report all maximal pairs (p; q; j�j) by 
onstru
ting and
onsidering the elements in Pq for every q in Q0 [ Q00. In lines 8{15 we anal-ogously report all maximal pairs (q; p; j�j). The 
orre
tness of the algorithmfollows immediately from the above dis
ussion. Sin
e the operations on 
ol-ored heap-trees have the same 
omplexities as the 
orresponding operationson heap-tress, the running time and spa
e requirement of the algorithm is ex-a
tly as analyzed for Algorithm 3. In summary we 
an formulate the followingtheorem.Theorem 4 Algorithm 4 �nds all maximal pairs (i; j; j�j) in a string S withgap at least g(j�j) in spa
e O(n) and time O(n+ z), where z is the number ofreported pairs and n is the length of S.27



Algorithm 4 Find all maximal pairs in S with lower bounded gap.1. Initializing: Build the binary suÆx tree TB(S). Create at ea
h leaf two
olored heap-trees of size one, H ordered by \�" and �H ordered by\�", that both store the index at the leaf with 
olor 
orresponding toits left-
hara
ter.2. Reporting and melding: When the 
olored heap-trees H1 and �H1 at theleft-
hild of node v, and the 
olored heap-trees H2 and �H2 at the right-
hild of node v are available we report pairs of �, the path-label of v, and
onstru
t the 
olored heap-trees H and �H as follows (remember that #is a 
hara
ter not appearing anywhere in S)1 pmin; pse
 = ColorMin(H1);ColorSe
(H1)2 Q0 = ColorFind( �H2; pse
 + j�j+ g(j�j);#)3 Q00 = ColorFind( �H2; pmin + j�j+ g(j�j); S[pmin � 1℄)4 for q in Q0 [Q00:5 Pq = ColorFind(H1; q � g(j�j) � j�j; S[q � 1℄)6 for p in Pq:7 report pair (p; q; j�j)8 qmin; qse
 = ColorMin(H2);ColorSe
(H2)9 P 0 = ColorFind( �H1; qse
 + j�j+ g(j�j);#)10 P 00 = ColorFind( �H1; qmin + j�j+ g(j�j); S[qmin � 1℄)11 for p in P 0 [ P 00:12 Qp = ColorFind(H2; p� g(j�j) � j�j; S[p� 1℄)13 for q in Qp:14 report pair (q; p; j�j)15 H = ColorMeld(H1;H2)16 �H = ColorMeld( �H1; �H2)5 Con
lusionWe have presented eÆ
ient and 
exible methods to �nd all maximal pairs(i; j; j�j) in a string under various 
onstraints on the gap j� i�j�j. If the gapis required to be between g1(j�j) and g2(j�j), the running time is O(n log n+z)where n is the length of the string and z is the number of reported pairs. Ifthe gap is only required to be at least g1(j�j), the running time redu
es toO(n+ z). In both 
ases we use spa
e O(n).In some 
ases it might be interesting only to �nd maximal pairs (i; j; j�j)ful�lling additional requirements on j�j, e.g. to �lter out pairs of short sub-28



strings. This is straightforward to do using our methods by only reportingfrom the nodes in the binary suÆx tree whose path-label � ful�lls the require-ments on j�j. In other 
ases it might be of interest just to �nd the vo
abularyof substrings that o

ur in maximal pairs. This is also straightforward to dousing our methods by just reporting the path-label � of a node if we 
an reportone or more maximal pairs from the node.Instead of just looking for maximal pairs, it 
ould be interesting to lookfor an array of o

urren
es of the same substring in whi
h the gap between
onse
utive o

urren
es is bounded by some 
onstants. This problem requiresa suitable de�nition of a maximal array. One de�nition and approa
h is pre-sented in [24℄. Another de�nition inspired by the de�nition of a maximal pair
ould be to require that every pair of o

urren
es in the array is a maximalpair. This de�nition seems very restri
tive. A more relaxed de�nition 
ouldbe to only require that we 
annot extend all the o

urren
es in the array tothe left or to the right without destroying at least one pair of o

urren
es inthe array.A
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