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Optimal Purely FunctionalPriority QueuesGerth St�lting Brodal�BRICSy, Department of Computer Science, University of AarhusNy Munkegade, DK-8000 �Arhus C, DenmarkChris OkasakizSchool of Computer Science, Carnegie Mellon University5000 Forbes Avenue, Pittsburgh, Pennsylvania, USA 15213AbstractBrodal recently introduced the �rst implementation of imperative priorityqueues to support �ndMin, insert, and meld in O(1) worst-case time, anddeleteMin in O(log n) worst-case time. These bounds are asymptoticallyoptimal among all comparison-based priority queues. In this paper, we adaptBrodal's data structure to a purely functional setting. In doing so, we bothsimplify the data structure and clarify its relationship to the binomial queuesof Vuillemin, which support all four operations in O(log n) time. Speci�cally,we derive our implementation from binomial queues in three steps: �rst, wereduce the running time of insert to O(1) by eliminating the possibility ofcascading links; second, we reduce the running time of �ndMin to O(1) byadding a global root to hold the minimumelement; and �nally, we reduce therunning time of meld to O(1) by allowing priority queues to contain otherpriority queues. Each of these steps is expressed using ML-style functors. Thelast transformation, known as data-structural bootstrapping, is an interestingapplication of higher-order functors and recursive structures.�Research partially supported by the ESPRIT II Basic Research Actions Program of theEC under contract no. 7141 (project ALCOM II) and by the Danish Natural Science ResearchCouncil (Grant No. 9400044). E-mail: gerth@daimi.aau.dk.yBasic Research in Computer Science, Centre of the Danish National Research Foundation.zResearch supported by the Advanced Research Projects Agency CSTO under the title\The Fox Project: Advanced Languages for Systems Software", ARPA Order No. C533,issued by ESC/ENS under Contract No. F19628-95-C-0050. E-mail: cokasaki@cs.cmu.edu.1



1 IntroductionPurely functional data structures di�er from imperative data struc-tures in at least two respects. First, many imperative data structuresrely crucially on destructive assignments for e�ciency, whereas purelyfunctional data structures are forbidden from using destructive assign-ments. Second, purely functional data structures are automaticallypersistent (Driscoll et al., 1989), meaning that, after an update, boththe new and old versions of a data structure are available for furtheraccesses and updates. In contrast, imperative data structures are al-most always ephemeral, meaning that, after an update, only the newversion of a data structure is available. In many cases, these di�er-ences prevent functional programmers from simply using o�-the-shelfdata structures, such as those described in most algorithms texts. Thedesign of e�cient purely functional data structures is thus of greattheoretical and practical interest to functional programmers, as wellas to imperative programmers for those occasions when a persistentdata structure is required. In this paper, we consider the design of ane�cient purely functional priority queue.The priority queue is a fundamental abstraction in computer pro-gramming, arguably surpassed in importance only by the dictionaryand the sequence. Many implementations of priority queues have beenproposed over the years; a small sampling includes (Williams, 1964;Crane, 1972; Vuillemin, 1978; Fredman & Tarjan, 1987; Brodal, 1996).However, all of these consider only imperative priority queues. Verylittle has been written about purely functional priority queues. To ourknowledge, only Paulson (1991), Kaldewaij and Schoenmakers (1991),Schoenmakers (1992), and King (1994) have explicitly treated priorityqueues in a purely functional setting.We consider priority queues that support the following operations:�ndMin (q) Return the minimum element of queue q.insert (x; q) Insert the element x into queue q.meld (q1; q2) Merge queues q1 and q2 into a single queue.deleteMin (q) Discard the minimum element of queue q. In addi-tion, priority queues supply a value empty representing the empty2



signature ORDERED =sig type T (� type of ordered elements �)val leq : T � T ! bool (� total ordering relation �)endsignature PRIORITY QUEUE =sig structure Elem : ORDEREDtype T (� type of priority queues �)val empty : Tval isEmpty : T ! boolval insert : Elem.T � T ! Tval meld : T � T ! Texception EMPTYval �ndMin : T ! Elem.T (� raises EMPTY if queue is empty �)val deleteMin : T ! T (� raises EMPTY if queue is empty �)end Figure 1: Signature for priority queues.queue and a predicate isEmpty. For simplicity, we will ignore emptyqueues except when presenting actual code. Figure 1 displays a Stan-dard ML signature for these priority queues.Brodal (1995) recently introduced the �rst imperative data struc-ture to support all these operations in O(1) worst-case time exceptdeleteMin, which requires O(logn) worst-case time. Several previousimplementations, most notably Fibonacci heaps (Fredman & Tarjan,1987), had achieved these bounds, but in an amortized, rather thatworst-case, sense. It is easy to show by reduction to sorting that thesebounds are asymptotically optimal among all comparison-based pri-ority queues | the bound on deleteMin cannot be decreased withoutsimultaneously increasing the bounds on �ndMin, insert , and/or meld.It is reasonably straightforward to adapt Brodal's data structureto a purely functional setting by combining the recursive-slowdowntechnique of Kaplan and Tarjan (1995) with a purely functional im-plementation of double-ended queues (Hood, 1982; Okasaki, 1995c).3



However, this approach su�ers from at least two defects, one practicaland one pedagogical. First, both recursive slowdown and double-endedqueues carry non-trivial overheads, so the resulting data structure isquite slow in practice (even though asymptotically optimal). Second,the resulting design is di�cult to explain and understand. The de-sign choices are intermingled, and it is di�cult to see the purpose andcontribution of each. Furthermore, the relationship to other priorityqueue designs is obscured.For these reasons, we take an indirect approach to adapting Brodal'sdata structure. First, we isolate the design choices in Brodal's datastructure and rethink each in a functional, rather than imperative, en-vironment. This allows us to replace recursive slowdown with a simplertechnique borrowed from the random-access lists of Okasaki (1995b)and to eliminate the need for double-ended queues altogether. Then,starting from a well-known antecedent | the binomial queues of Vuil-lemin (1978) | we reintroduce each modi�cation, one at a time. Thisboth simpli�es the data structure and clari�es its relationship to otherpriority queue designs.We begin by reviewing binomial queues, which support all four ma-jor operations in O(logn) time. We then derive our data structurefrom binomial queues in three steps. First, we describe a variant of bi-nomial queues, called skew binomial queues, that reduces the runningtime of insert to O(1) by eliminating the possibility of cascading links.Second, we reduce the running time of �ndMin to O(1) by adding aglobal root to hold the minimum element. Third, we apply a tech-nique of Buchsbaum et al. (Buchsbaum et al., 1995; Buchsbaum &Tarjan, 1995) called data-structural bootstrapping, which reduces therunning time of meld to O(1) by allowing priority queues to containother priority queues. Each of these steps is expressed using ML-stylefunctors. The last transformation, data-structural bootstrapping, isan interesting application of higher-order functors and recursive struc-tures. After describing a few possible optimizations, we conclude withbrief discussions of related work and future work.All source code is presented in Standard ML (Milner et al., 1990)and is available through the World Wide Web fromhttp://foxnet.cs.cmu.edu/people/cokasaki/priority.html4



Rank 0s Rank 1ss Rank 2ss��ss Rank 3ss��ss,,,ss��ssFigure 2: Binomial trees of ranks 0{3.2 Binomial QueuesBinomial queues are an elegant form of priority queue introduced byVuillemin (1978) and extensively studied by Brown (1978). Althoughthey considered binomial queues only in an imperative setting, King(1994) has shown that binomial queues work equally well in a func-tional setting. In this section, we brie
y review binomial queues | seeKing (1994) for more details.Binomial queues are composed of more primitive objects known asbinomial trees. Binomial trees are inductively de�ned as follows:� A binomial tree of rank 0 is a singleton node.� A binomial tree of rank r + 1 is formed by linking two binomialtrees of rank r, making one tree the leftmost child of the other.From this de�nition, it is easy to see that a binomial tree of rank rcontains exactly 2r nodes. There is a second, equivalent de�nition ofbinomial trees that is sometimes more convenient: a binomial tree ofrank r is a node with r children t1 : : : tr, where each ti is a binomialtree of rank r� i. Figure 2 illustrates several binomial trees of varyingrank.Assuming a total ordering on nodes, a binomial tree is said to beheap-ordered if every node is � each of its descendants. To preserveheap order when linking two heap-ordered binomial trees, we make thetree with the larger root a child of the tree with the smaller root, withties broken arbitrarily.A binomial queue is a forest of heap-ordered binomial trees whereno two trees have the same rank. Because binomial trees have sizes5



of the form 2r, the ranks of the trees in a binomial queue of size nare distributed according to the ones in the binary representation ofn. For example, consider a binomial queue of size 21. The binaryrepresentation of 21 is 10101, and the binomial queue contains treesof ranks 0, 2, and 4 (of sizes 1, 4, and 16, respectively). Note that abinomial queue of size n contains at most blog2(n+ 1)c trees.We are now ready to describe the operations on binomial queues.Since all the trees in a binomial queue are heap-ordered, we know thatthe minimum element in a binomial queue is the root of one of thetrees. We can �nd this minimum element in O(logn) time by scanningthrough the roots. To insert a new element into a queue, we �rstcreate a new singleton tree (i.e., a binomial tree of rank 0). We thenstep through the existing trees in increasing order of rank until we�nd a missing rank, linking trees of equal rank as we go. Inserting anelement into a binomial queue corresponds precisely to adding one toa binary number, with each link corresponding to a carry. The worstcase is insertion into a queue of size n = 2k � 1, requiring a total of klinks and O(logn) time. The analogy to binary addition also appliesto melding two queues. We step through the trees of both queues inincreasing order of rank, linking trees of equal rank as we go. Onceagain, each link corresponds to a carry. This also requires O(logn)time.The trickiest operation is deleteMin. We �rst �nd the tree with theminimum root and remove it from the queue. We discard the root,but then must return its children to the queue. However, the childrenthemselves constitute a valid binomial queue (i.e., a forest of heap-ordered binomial trees with no two trees of the same rank), and somay be melded with the remaining trees of the queue. Both �ndingthe tree to remove and returning the children to the queue requireO(logn) time, for a total of O(logn) time.Figure 3 gives an implementation of binomial queues as a Stan-dard ML functor that takes a structure specifying a type of orderedelements and produces a structure of priority queues containing ele-ments of the speci�ed type. Two aspects of this implementation de-serve further explanation. First, the con
icting requirements of insertand link lead to a confusing inconsistency, common to virtually all im-6



functor BinomialQueue (E : ORDERED) : PRIORITY QUEUE =structstructure Elem = Etype Rank = intdatatype Tree = Node of Elem.T � Rank � Tree listtype T = Tree list(� auxiliary functions �)fun root (Node (x,r,c)) = xfun rank (Node (x,r,c)) = rfun link (t1 as Node (x1,r1,c1), t2 as Node (x2,r2,c2)) = (� r1 = r2 �)if Elem.leq (x1, x2) then Node (x1,r1+1,t2 :: c1) else Node (x2,r2+1,t1 :: c2)fun ins (t, [ ]) = [t]j ins (t, t0 :: ts) = (� rank t � rank t0 �)if rank t < rank t0 then t :: t0 :: ts else ins (link (t, t0), ts)val empty = [ ]fun isEmpty ts = null tsfun insert (x, ts) = ins (Node (x,0,[ ]), ts)fun meld ([ ], ts) = tsj meld (ts, [ ]) = tsj meld (t1 :: ts1, t2 :: ts2) =if rank t1 < rank t2 then t1 :: meld (ts1, t2 :: ts2)else if rank t2 < rank t1 then t2 :: meld (t1 :: ts1, ts2)else ins (link (t1, t2), meld (ts1, ts2))exception EMPTYfun �ndMin [ ] = raise EMPTYj �ndMin [t] = root tj �ndMin (t :: ts) =let val x = �ndMin tsin if Elem.leq (root t, x) then root t else x endfun deleteMin [ ] = raise EMPTYj deleteMin ts =let fun getMin [t] = (t, [ ])j getMin (t :: ts) =let val (t0, ts0) = getMin tsin if Elem.leq (root t, root t0) then (t, ts) else (t0, t :: ts0) endval (Node (x,r,c), ts) = getMin tsin meld (rev c, ts) endend Figure 3: A functor implementing binomial queues.7



plementations of binomial queues. The trees in binomial queues aremaintained in increasing order of rank to support the insert opera-tion e�ciently. On the other hand, the children of binomial trees aremaintained in decreasing order of rank to support the link operatione�ciently. This discrepancy compels us to reverse the children of thedeleted node during a deleteMin. Second, for clarity, every node con-tains its rank. In a realistic implementation, however, only the rootswould store their ranks. The ranks of all other nodes are uniquelydetermined by the ranks of their parents and their positions amongtheir siblings. King (1994) describes an alternative representation thateliminates all ranks, at the cost of introducing placeholders for thoseranks corresponding to the zeros in the binary representation of thesize of the queue.3 Skew Binomial QueuesIn this section, we describe a variant of binomial queues, called skewbinomial queues, that supports insertion in O(1) worst-case time. Theproblem with binomial queues is that inserting a single element into aqueue might result in a long cascade of links, just as adding one to abinary number might result in a long cascade of carries. We can reducethe cost of an insert to at most a single link by borrowing a techniquefrom random-access lists (Okasaki, 1995b). Random-access lists arebased on a variant number system, called skew binary numbers (Myers,1983), in which adding one causes at most a single carry.In skew binary numbers, the kth digit represents 2k+1 � 1, ratherthan 2k as in ordinary binary numbers. Every digit is either zero orone, except that the lowest non-zero digit may be two. For instance,92 is written 002101 (least-signi�cant digit �rst). A carry occurs whenadding one to a number whose lowest non-zero digit is two. For in-stance, 1+ 002101 = 000201. Because the next higher digit is guaran-teed not to be two, only a single carry is ever necessary.Just as binomial queues are composed of binomial trees, skew bino-mial queues are composed of skew binomial trees. Skew binomial treesare inductively de�ned as follows:� A skew binomial tree of rank 0 is a singleton node.8



(a)sBBBB���� r��sBBBB���� r (b)s\\��sBBBB���� r sBBBB���� r (c)sBBBB���� r���s ��sBBBB���� rFigure 4: The three methods of constructing a skew binomial tree ofrank r + 1. (a) a simple link. (b) a type A skew link. (c) a type Bskew link.� A skew binomial tree of rank r+ 1 is formed in one of three ways:{ a simple link, making a skew binomial tree of rank r the leftmostchild of another skew binomial tree of rank r;{ a type A skew link, making two skew binomial trees of rank rthe children of a skew binomial tree of rank 0; or{ a type B skew link, making a skew binomial tree of rank 0 anda skew binomial tree of rank r the leftmost children of anotherskew binomial tree of rank r.Figure 4 illustrates the three kinds of links. Note that type A andtype B skew links are equivalent when r = 0. Ordinary binomial treesand perfectly balanced binary trees are special cases of skew binomialtrees obtained by allowing only simple links and type A skew links,respectively. A skew binomial tree of rank r constructed entirely withskew links (type A or type B) contains exactly 2r+1 � 1 nodes, but,in general, the size of a skew binomial tree t of rank r is bounded by2r � jtj � 2r+1 � 1. In addition, the height of a skew binomial tree isequal to its rank. Once again, there is a second, equivalent de�nition:a skew binomial tree of rank r > 0 is a node with up to 2k childrens1t1 : : : sktk (1 � k � r), where each ti is a skew binomial tree of rankr � i and each si is a skew binomial tree of rank 0, except that sk hasrank r � k (which is 0 only when k = r). Every si is optional exceptthat sk is optional only when k = r. Although somewhat confusing,this de�nition arises naturally from the three methods of constructinga tree. Every sktk pair is produced by a type A skew link, and every9



s s s s��� ��� ��� ���LLL LLL LLL LLLs s s ss s s ss s s s�� ��s ss ss s s s��� ��� ��� ���LLL LLL LLL LLLs s s ss s s s��� ��� ��� ���DDD DDD DDD DDDs s s ss s s s�� ��s ss ss s s s��� ��� ��� ���LLL LLL LLL LLLs s s ss s s ss ss s��� ���DDD DDDs ss s��� ���DDD DDDs ss sFigure 5: The twelve possible shapes of skew binomial trees of rank 2.Dashed boxes surround each siti pair.siti pair (i < k) is produced by a type B skew link. Every ti withouta corresponding si is produced by a simple link. Unlike ordinary bino-mial trees, skew binomial trees may have many di�erent shapes. Forexample, the twelve possible shapes of skew binomial trees of rank 2are shown in Figure 5.A skew binomial tree is heap-ordered if every node is � each of itsdescendants. To preserve heap order during a simple link, we makethe tree with the larger root a child of the tree with the smaller root.During a skew link, we make the two trees with larger roots childrenof the tree with the smallest root. We perform a type A skew link ifthe rank 0 tree has the smallest root, and a type B skew link if one ofthe rank r trees has the smallest root.A skew binomial queue is a forest of heap-ordered skew binomialtrees where no two trees have the same rank, except possibly the twosmallest ranked trees. Since skew binomial trees of the same rank mayhave di�erent sizes, there may be several ways to distribute the ranksfor a queue of any particular size. For example, a skew binomial queueof size 4 may contain one rank 2 tree of size 4; two rank 1 trees, eachof size 2; a rank 1 tree of size 3 and a rank 0 tree; or a rank 1 tree ofsize 2 and two rank 0 trees. However, the maximum number of treesin a queue is still O(logn).We are now ready to describe the operations on skew binomial10



queues. The �ndMin and meld operations are almost unchanged. To�nd the minimum element in a skew binomial queue, we simply scanthrough the roots, taking O(logn) time. To meld two queues, we stepthrough the trees of both queues in increasing order of rank, perform-ing a simple link (not a skew link!) whenever we �nd two trees of equalrank. Once again, this requires O(logn) time.The big advantage of skew binomial queues over ordinary binomialqueues is that we can now insert a new element in O(1) time. We �rstcreate a new singleton tree (i.e., a skew binomial tree of rank 0). Wethen check the ranks of the two smallest trees in the queue. If bothtrees have rank r, then we skew link these two trees with the new rank0 tree to get a new rank r+1 tree. We know that there can be no morethan one existing rank r + 1 tree, and that this is the smallest rankin the new queue, so we simply add the new tree to the queue. If thetwo smallest trees in the queue have di�erent ranks, then we simplyadd the new rank 0 tree to the queue. Since there was at most oneexisting tree of rank 0, the new queue contains at most two trees ofthe smallest rank. In either case, we are done.Again, deleteMin is the most complicated operation. We �rst �ndand remove the tree with the minimum root. After discarding the root,we partition its children into two groups, those with rank 0 and thosewith rank > 0. Other than sk and tk, every si has rank 0 and everyti has rank > 0. The ranks of sk and tk are both 0 when k = r andboth > 0 when k < r. Note that every rank 0 child contains a singleelement. The children with rank > 0 constitute a valid skew binomialqueue, so we meld these children with the remaining trees in the queue.Finally, we reinsert each of the rank 0 children. Each of these stepsrequires O(logn) time, so the total time required is O(logn).Figures 6 and 7 present an implementation of skew binomial queuesas a Standard ML functor. Like the binomial queue functor, this func-tor takes a structure specifying a type of ordered elements and producesa structure of priority queues containing elements of the speci�ed type.Once again, lists of trees are maintained in di�erent orders for di�erentpurposes. The trees in a queue are maintained in increasing order ofrank (except that the �rst two trees may have the same rank), but thechildren of skew binomial trees are maintained in a more complicated11



functor SkewBinomialQueue (E : ORDERED) : PRIORITY QUEUE =structstructure Elem = Etype Rank = intdatatype Tree = Node of Elem.T � Rank � Tree listtype T = Tree list(� auxiliary functions �)fun root (Node (x,r,c)) = xfun rank (Node (x,r,c)) = rfun link (t1 as Node (x1,r1,c1), t2 as Node (x2,r2,c2)) = (� r1 = r2 �)if Elem.leq (x1,x2) then Node (x1,r1+1,t2 :: c1) else Node (x2,r2+1,t1 :: c2)fun skewLink (t0 as Node (x0,r0, ), t1 as Node (x1,r1,c1), t2 as Node (x2,r2,c2)) =if Elem.leq (x1,x0) andalso Elem.leq (x1,x2) then Node (x1,r1+1,t0 :: t2 :: c1)else if Elem.leq (x2,x0) andalso Elem.leq (x2,x1) then Node (x2,r2+1,t0 :: t1 :: c2)else Node (x0,r1+1,[t1, t2])fun ins (t, [ ]) = [t]j ins (t, t0 :: ts) = (� rank t � rank t0 �)if rank t < rank t0 then t :: t0 :: ts else ins (link (t, t0), ts)fun uniqify [ ] = [ ]j uniqify (t :: ts) = ins (t, ts) (� eliminate initial duplicate �)fun meldUniq ([ ], ts) = tsj meldUniq (ts, [ ]) = tsj meldUniq (t1 :: ts1, t2 :: ts2) =if rank t1 < rank t2 then t1 :: meldUniq (ts1, t2 :: ts2)else if rank t2 < rank t1 then t2 :: meldUniq (t1 :: ts1, ts2)else ins (link (t1, t2), meldUniq (ts1, ts2))val empty = [ ]fun isEmpty ts = null tsFigure 6: A functor implementing skew binomial queues (part I).12



fun insert (x, ts as t1 :: t2 :: rest) =if rank t1 = rank t2 then skewLink (Node (x,0,[ ]),t1,t2) :: restelse Node (x,0,[ ]) :: tsj insert (x, ts) = Node (x,0,[ ]) :: tsfun meld (ts, ts0) = meldUniq (uniqify ts, uniqify ts0)exception EMPTYfun �ndMin [ ] = raise EMPTYj �ndMin [t] = root tj �ndMin (t :: ts) =let val x = �ndMin tsin if Elem.leq (root t, x) then root t else x endfun deleteMin [ ] = raise EMPTYj deleteMin ts =let fun getMin [t] = (t, [ ])j getMin (t :: ts) =let val (t0, ts0) = getMin tsin if Elem.leq (root t, root t0) then (t, ts) else (t0, t :: ts0) endfun split (ts,xs,[ ]) = (ts, xs)j split (ts,xs,t :: c) =if rank t = 0 then split (ts,root t :: xs,c) else split (t :: ts,xs,c)val (Node (x,r,c), ts) = getMin tsval (ts0,xs0) = split ([ ],[ ],c)in fold insert xs0 (meld (ts, ts0)) endendFigure 7: A functor implementing skew binomial queues (part II).
13



order. The ti children are maintained in decreasing order of rank, butthey are interleaved with the si children, which have rank 0 (exceptsk, which has rank r � k). Furthermore, recall that each si is optional(except that sk is optional only if k = r).4 Adding a Global RootWe next describe a simple module-level transformation on priorityqueues to reduce the running time of �ndMin to O(1). Although thistransformation can be applied to any priority queue module, it is onlyuseful on priority queues for which �ndMin requires more than O(1)time.Most implementations of priority queues represent a queue as a singleheap-ordered tree so that the minimum element can always be foundat the root in O(1) time. Unfortunately, binomial queues and skewbinomial queues represent a queue as a forest of heap-ordered trees,so �nding the minimum element requires scanning all the roots in theforest. However, we can convert this forest into a single heap-orderedtree, thereby supporting �ndMin in O(1) time, by simply adding aglobal root to hold the minimum element. In general, this tree will notbe a binomial or skew binomial tree, but this is irrelevant since theglobal root will be treated separately from the rest of the queue. Thedetails of this transformation are quite routine, but we present themanyway as a warm-up for the more complicated transformation in thenext section.Given some type P� of primitive priority queues containing elementsof type �, we de�ne the type of rooted priority queues RP� to beRP� = femptyg + (� � P�)In other words, a rooted priority queue is either empty or a pair of asingle element (the root) and a primitive priority queue. We maintainthe invariant that the minimum element of any non-empty priorityqueue is at the root. For each operation f on priority queues, let f14



functor AddRoot (Q : PRIORITY QUEUE ) : PRIORITY QUEUE =structstructure Elem = Q.Elemdatatype T = Empty j Root of Elem.T � Q.Tval empty = Emptyfun isEmpty Empty = truej isEmpty (Root ) = falsefun insert (y, Empty) = Root (y, Q.empty)j insert (y, Root (x, q)) =if Elem.leq (y, x) then Root (y, Q.insert (x, q)) else Root (x, Q.insert (y, q))fun meld (Empty, rq) = rqj meld (rq, Empty) = rqj meld (Root (x1, q1), Root (x2, q2)) =if Elem.leq (x1, x2) then Root (x1, Q.insert (x2, Q.meld (q1, q2)))else Root (x2, Q.insert (x1, Q.meld (q1, q2)))exception EMPTYfun �ndMin Empty = raise EMPTYj �ndMin (Root (x, q)) = xfun deleteMin Empty = raise EMPTYj deleteMin (Root (x, q)) =if Q.isEmpty q then Empty else Root (Q :�ndMin q, Q :deleteMin q)endFigure 8: A functor for adding a global root to existing priority queues.and f 0 indicate the operations on P� and RP�, respectively. Then,�ndMin 0 (hx; qi) = xinsert 0 (y; hx; qi) = hx; insert (y; q)i if x � yinsert 0 (y; hx; qi) = hy; insert (x; q)i if y < xmeld 0 (hx1; q1i; hx2; q2i) = hx1; insert (x2;meld (q1; q2))i if x1 � x2meld 0 (hx1; q1i; hx2; q2i) = hx2; insert (x1;meld (q1; q2))i if x2 < x1deleteMin 0 (hx; qi) = h�ndMin (q); deleteMin (q)iIn Figure 8, we present this transformation as a Standard ML functorthat takes a priority queue structure and produces a new structureincorporating this optimization. When applied to the skew binomialqueues of the previous section, this tranformation produces a priority15



queue that supports both insert and �ndMin in O(1) time. However,meld and deleteMin still require O(logn) time.If a program requires several priority queues with di�erent elementtypes, it may be more convenient to implement this transformation as ahigher-order functor (MacQueen & Tofte, 1994). First-order functorscan only take and return structures, but higher-order functors cantake and return other functors as well. Although the de�nition ofStandard ML (Milner et al., 1990) describes only �rst-order functors,some implementations of Standard ML, notably Standard ML of NewJersey, support higher-order functors.A priority queue functor, such as BinomialQueue or SkewBinomi-alQueue, is one that takes a structure specifying a type of ordered ele-ments and returns a structure of priority queues containing elements ofthe speci�ed type. The following higher-order functor takes a priorityqueue functor and returns a priority queue functor incorporating theAddRoot optimization.functor AddRootToFun (functor MakeQ (E : ORDERED) :siginclude PRIORITY QUEUEsharing Elem = Eend)(E : ORDERED) : PRIORITY QUEUE =AddRoot (MakeQ (E ))Note that this functor is curried, so although it appears to take twoarguments, it actually takes one argument (MakeQ) and returns afunctor that takes the second argument (E ). The sharing constraint isnecessary to ensure that the functor MakeQ returns a priority queuewith the desired element type. Without the sharing constraint, MakeQmight ignore E and return a priority queue structure with some arbi-trary element type.Now, if we need both a string priority queue and an integer priorityqueue, we can writefunctor RootedSkewBinomialQueue =AddRootToFun (functor MakeQ = SkewBinomialQueue)structure StringQueue = RootedSkewBinomialQueue (StringElem)structure IntQueue = RootedSkewBinomialQueue (IntElem)where StringElem and IntElem match the ORDERED signature andde�ne the desired orderings over strings and integers, respectively.16



5 Bootstrapping Priority QueuesFinally, we improve the running time of meld to O(1) by applying atechnique of Buchsbaum et al. (Buchsbaum et al., 1995; Buchsbaum& Tarjan, 1995) called data-structural bootstrapping. The basic ideais to reduce melding to simple insertion by using priority queues thatcontain other priority queues. Then, to meld two priority queues, wesimply insert one priority queue into the other.As in the previous section, we describe bootstrapping as a module-level transformation on priority queues. Let P� be the type of primitivepriority queues containing elements of type �. We wish to constructthe type BP� of bootstrapped priority queues containing elements oftype �. A bootstrapped priority queue will be a primitive priorityqueue whose \elements" are other bootstrapped priority queues. As a�rst attempt, we consider BP� = PP�Here we have applied a single level of bootstrapping. However, thissimple solution does not work because the elements of the top-levelprimitive priority queue have the wrong type | they are simple primi-tive priority queues rather than bootstrapped priority queues. Clearly,we need to apply the idea of bootstrapping recursively, as inBP� = PBP�Unfortunately, this solution o�ers no place to store simple elements.We therefore borrow from the previous section and add a root to everyprimitive priority queue. BP� = � � PBP�Thus, a bootstrapped priority queue is a simple element (which shouldbe the minimum element in the queue) paired with a primitive priorityqueue containing other bootstrapped priority queues ordered by theirrespective minimums. Since bootstrapping adds a root to every prim-itive priority queue, the bootstrapping transformation subsumes the17



AddRoot transformation. Finally, we must allow for the possibility ofan empty queue. The �nal de�nition is thusBP� = femptyg+ R� where R� = � � PR�Note that the primitive priority queues contain only non-empty boot-strapped priority queues as elements.Now, each of the operations on bootstrapped priority queues can bede�ned in terms of the operations on the primitive priority queues. Foreach operation f on priority queues, let f and f 0 indicate the operationson PR� and BP�, respectively. Then,�ndMin 0 (hx; qi) = xinsert 0 (x; q) = meld 0 (hx; emptyi; q)meld 0 (hx1; q1i; hx2; q2i) = hx1; insert (hx2; q2i; q1)i if x1 � x2meld 0 (hx1; q1i; hx2; q2i) = hx2; insert (hx1; q1i; q2)i if x2 < x1deleteMin 0 (hx; qi) = hy;meld (q1; q2)iwhere hy; q1i = �ndMin (q)q2 = deleteMin (q)Next, we consider the e�ciency of bootstrapped priority queues.Since the minimum element is stored at the root, �ndMin requiresO(1)time regardless of the underlying implementation. The insert and meldoperations depend only on the insert of the primitive implementation.By bootstrapping a priority queue with O(1) insertion, such as the skewbinomial queues of Section 3, we obtain both O(1) insertion and O(1)melding. Finally, deleteMin on bootstrapped priority queues dependson �ndMin, meld, and deleteMin from the underlying implementation.Since skew binomial queues support each of these in O(logn) time,deleteMin on bootstrapped skew binomial queues also requiresO(logn)time.In summary, bootstrapped skew binomial queues support every op-eration in O(1) time except deleteMin, which requires O(logn) time.It is easy to show by reduction to sorting that these bounds are opti-mal among all comparison-based priority queues. Other tradeo�s be-tween the running times of the various operations are also possible, butno comparison-based priority queue can support insert in better thanO(logn) worst-case time or meld in better than O(n) worst-case time18



unless one of �ndMin or deleteMin takes at least O(logn) worst-casetime (Brodal, 1995).The bootstrapping process can be elegantly expressed in StandardML extended with higher-order functors and recursive structures, asshown in Figure 9. The higher-order nature of Bootstrap is analogousto the higher-order nature of AddRootToFun, while the recursion be-tween RootedQ and Q captures the recursion between R� and PR�. Un-fortunately, although some implementations of Standard ML supporthigher-order functors (MacQueen & Tofte, 1994), none support recur-sive structures, so the recursion between RootedQ and Q is forbidden.In fact, there are good reasons for not supporting recursion like this ingeneral. For instance, this recursion may not even be sensible ifMakeQcan have computational e�ects! However, many priority queue func-tors, such as SkewBinomialQueue, simply de�ne a few datatypes andfunctions, and have no computational e�ects. For these well-behavedfunctors, the recursion between RootedQ and Q does appear to be sen-sible, and it would be pleasant to be able to bootstrap these functorsin this manner.Without recursive structures, we can still implement bootstrappedpriority queues, but much less cleanly. We manually specialize Boot-strap to each desired primitive priority queue by inlining the appropri-ate priority queue functor for MakeQ and eliminating Q and RootedQas separate structures. This reduces the recursion on structures to re-cursion on datatypes, which is easily supported by Standard ML. Ofcourse, as with any manual program transformation, this process istedious and error-prone.
19



functor Bootstrap (functor MakeQ (E : ORDERED) : siginclude PRIORITY QUEUEsharing Elem = Eend)(E : ORDERED) : PRIORITY QUEUE =structstructure Elem = E(� recursive structures not supported in SML! �)structure rec RootedQ =structdatatype T = Root of Elem.T � Q.Tfun leq (Root (x1, q1), Root (x2, q2)) = Elem.leq (x1, x2)endand Q = MakeQ (RootedQ)open RootedQ (� expose Root constructor �)datatype T = Empty j NonEmpty of RootedQ.Tval empty = Emptyfun isEmpty Empty = truej isEmpty (NonEmpty ) = falsefun insert (x, xs) = meld (NonEmpty (Root (x, Q.empty)), xs)and meld (Empty, xs) = xsj meld (xs, Empty) = xsj meld (NonEmpty (r1 as Root (x1, q1)), NonEmpty (r2 as Root (x2, q2))) =if Elem.leq (x1, x2) then NonEmpty (Root (x1, Q.insert (r2, q1)))else NonEmpty (Root (x2, Q.insert (r1, q2)))exception EMPTYfun �ndMin Empty = raise EMPTYj �ndMin (NonEmpty (Root (x, q))) = xfun deleteMin Empty = raise EMPTYj deleteMin (NonEmpty (Root (x, q))) =if Q :isEmpty q then Emptyelse let val (Root (y, q1)) = Q :�ndMin qval q2 = Q :deleteMin qin NonEmpty (Root (y, Q.meld (q1, q2))) endendFigure 9: A higher-order functor for bootstrapping priority queues.20



6 OptimizationsAlthough bootstrapped skew binomial queues as described in the pre-vious section are asymptotically optimal, there are still further opti-mizations we can make. Consider the type of priority queues resultingfrom inlining SkewBinomialQueue for MakeQ:datatype Tree = Node of Root � Rank � Tree listand Root = Root of Elem.T � Tree listdatatype T = Empty j NonEmpty of RootIn this representation, a node has the formNode(Root(x; f); r; c), wherex is an element, f is a list of trees representing a forest, r is a rank, andc is a list of trees representing the children of the node. Since everynode contains both x and f we can 
atten the representation of nodesto bedatatype Tree = Node of Elem.T � Tree list � Rank � Tree listIn many implementations, this will eliminate an indirection on everyaccess to x.Next, note that f is completely ignored until its root is deleted.Thus, we do not require direct access to f and can in fact store it atthe tail of c, combining the two into a single list representing c++ f .This leads to the following representation, which usually saves a wordof storage at every node:datatype Tree = Node of Elem.T � Rank � Tree listIn this representation, it is necessary to traverse c during deleteMinto access f , but we need to traverse c anyway to extract the rank 0children and reverse the remaining children. Given a rank r node,determining where c ends and f begins is usually quite easy. If r = 0,then c = [ ]. If r = 1, then c consists of either one or two rank 0nodes. If r > 1, then c ends with either a pair of nodes of the samenon-zero rank or a rank 1 node followed by one or two rank 0 nodes.The only ambiguities involve rank 0 nodes: it is sometimes impossibleto distinguish the case where c ends with two rank 0 nodes from thecase where c ends with a single rank 0 node and f begins with a rank21



0 node. However, in every such situation, it does no harm to treat theambiguous node as if it were part of c rather than f .As a �nal simpli�cation, note that the distinction between trees androots is unnecessary, since every root can be treated as a tree of rank0. Our �nal representation is thendatatype Tree = Node of Elem.T � Rank � Tree listdatatype T = Empty j NonEmpty of TreeThis increases the size of every root slightly, but also eliminates someminor copying during melds.7 Related WorkAlthough there is an enormous literature on imperative priority queues,there has been very little work on purely functional priority queues.Paulson (1991) describes a (non-meldable) priority queue combiningthe techniques of implicit heaps (Williams, 1964), which traditionallyare implemented using arrays, with a balanced-tree representation ofarrays supporting extension at the rear. Hoogerwoord (1992) repre-sents arrays using the same trees as Paulson, but also allows the arraysto be extended at the front. A variant of Paulson's queues, using theslightly simpler front-extension of Hoogerwoord, appears to be part ofthe functional programming folklore.King (1994) presents a purely functional implementation of binomialqueues. Although binomial queues are considered to be rather com-plicated in imperative settings (Jones, 1986), King demonstrates thatthe more convenient list-processing capabilities of functional languagessupport binomial queues quite elegantly.Schoenmakers (1992), extending earlier work with Kaldewaij (1991),uses functional notation to aid in the derivation of amortized boundsfor a number of data structures, including three priority queues: skewheaps1 (Sleator & Tarjan, 1986), Fibonacci heaps (Fredman & Tarjan,1987), and pairing heaps (Fredman et al., 1986). Schoenmakers alsodiscusses splay trees (Sleator & Tarjan, 1985), a form of self-adjusting1Note that the \skew" in skew heaps is completely unrelated to the \skew" in skewbinomial queues. 22



binary search tree that has been shown by Jones (1986) to be particu-larly e�ective as a non-meldable priority queue. Each of these four datastructures is e�cient only in the amortized sense. Although he usesfunctional notation, Schoenmakers restricts his attention to ephemeraluses of data structures, where only the most recent version of a datastructure may be accessed or updated. Ephemerality is closely relatedto the notion of linearity (Wadler, 1990). When persistence is allowed,traditional amortized analyses break down because operations on \ex-pensive" versions of a data structure can be repeated arbitrarily often.Okasaki (1995a; 1996) describes how to use the memoization implicitin lazy evaluation to support amortized data structures whose boundshold even under persistence. However, of the above data structures,only pairing heaps appear to be amenable to this technique.Finally, our data structure borrows techniques from several sources.Skew linking is borrowed from the random-access lists of Okasaki(1995b), which in turn are a modi�cation of the random-access stacksof Myers (1983). We use skew linking to reduce the cost of insertionin binomial queues to O(1), but recursive slowdown (Kaplan & Tar-jan, 1995) and lazy evaluation (Okasaki, 1996) could be used for thesame purpose. Data-structural bootstrapping is used by Buchsbaumet al. (Buchsbaum et al., 1995; Buchsbaum & Tarjan, 1995) to sup-port catenation for double-ended queues, much as we use it to supportmelding for priority queues.8 DiscussionWe have described the �rst purely functional implementation of pri-ority queues to support �ndMin, insert, and meld in O(1) worst-casetime, and deleteMin in O(logn) worst-case time. These bounds areasymptotically optimal among all comparison-based priority queues.Our data structure is an adaptation of an imperative data structureintroduced by Brodal (1995), but we have both simpli�ed his originaldata structure and clari�ed its relationship to the binomial queues ofVuillemin (1978). Our data structure is reasonably e�cient in practice;however, there are several competing data structures that, althoughnot asymptotically optimal, are somewhat faster than ours in practice.23



Hence, our work is primarily of theoretical interest. The major areain which our data structure should be useful in practice is applicationsdominated by melding, particularly applications that also require per-sistent priority queues.Although we have implemented our data structure in Standard ML, astrict functional language, it could easily be translated into other func-tional languages, even lazy languages such as Haskell (Hudak et al.,1992). However, in a lazy language, the worst-case bounds becomeamortized because the actions of each insert, meld, and deleteMin aredelayed until their results are needed by a �ndMin. For instance, a�ndMin following a sequence of m insertions and melds will take 
(m)time, although that time can be amortized over the insertions andmelds in the usual way. This problem is not unique to our data struc-ture | it applies to virtually all nominally worst-case data structuresin a lazy language. See Okasaki (1995a; 1996) for a fuller discussion ofthe interaction between lazy evaluation and amortization.Next, we note that imperative priority queues often support two ad-ditional operations, decreaseKey and delete, that decrease and deletea speci�ed element of the queue, respectively. The element in questionis usually speci�ed by a pointer into the middle of the queue, but thisis awkward in a functional setting. One approach is to represent thequeue as a binary search tree, so that we can e�ciently search for arbi-trary elements. This is essentially the approach taken by King (1994).Empirical comparisons by Jones (1986) suggest that splay trees wouldbe ideal for this purpose, at least for predominantly ephemeral usage.2Unfortunately, melding binary search trees (including splay trees) re-quires O(n) time.An alternative approach is to use two priority queues, one contain-ing \positive" occurrences of elements and one containing \negative"occurrences of elements. To delete an element, simply insert it intothe negative queue. To decrease an element, delete the old value andinsert the new value. Positive and negative occurrences of the sameelement cancel each other out when they both become the minimumelements of their respective queues. This approach can be viewed as2However, since �ndMin on splay trees takes O(logn) amortized time, it may be desirableto �rst apply the AddRoot transformation of Section 4.24



the functional analogue of the lazy delete operation of Tarjan (1983).This solution works well provided the number of negative elements isrelatively small. However, when there are many positive-negative pairsthat have not yet cancelled each other out, this solution may be inef-�cient in both time and space. Further research is needed to supportdecreaseKey and delete e�ciently in a functional setting.A �nal area of future work concerns the Standard ML module sys-tem. As noted in Section 5, recursive modules are not always sensible,and hence are currently disallowed in implementations of the language.However, recursion at the module level does appear to be sensible |and useful | for certain well-behaved modules. It would be interestingto formalize the conditions under which recursive modules should beallowed, and extend some implementation of Standard ML accordingly.AcknowledgmentsThanks to Peter Lee, David King, and Amy Moormann Zaremski fortheir comments and suggestions on an earlier draft of this paper.ReferencesBrodal, Gerth St�lting. (1995). Fast meldable priority queues. Pages 282{290 of:Workshop on Algorithms and Data Structures. LNCS, vol. 955. Springer-Verlag.Brodal, Gerth St�lting. 1996 (Jan.). Worst-case priority queues. Pages 52{58 of:ACM-SIAM Symposium on Discrete Algorithms.Brown, Mark R. (1978). Implementation and analysis of binomial queue algorithms.SIAM Journal on Computing, 7(3), 298{319.Buchsbaum, Adam L., & Tarjan, Robert E. (1995). Con
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