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Abstract

The string statistics problem consists of preprocessing a string of
length n such that given a query pattern of length m, the maximum num-
ber of non-overlapping occurrences of the query pattern in the string can
be reported efficiently. Apostolico and Preparata introduced the minimal
augmented suffix tree (MAST) as a data structure for the string statis-
tics problem, and showed how to construct the MAST in time O(n log2 n)
and how it supports queries in time O(m) for constant sized alphabets.
A subsequent theorem by Fraenkel and Simpson stating that a string
has at most a linear number of distinct squares implies that the MAST
requires space O(n). In this paper we improve the construction time for
the MAST to O(n log n) by extending the algorithm of Apostolico and
Preparata to exploit properties of efficient joining and splitting of search
trees together with a refined analysis.
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1 Introduction

The string statistics problem consists of preprocessing a string S of length n
such that given a query pattern α of length m, the maximum number of
non-overlapping occurrences of α in S can be reported efficiently. Without
preprocessing the maximum number of non-overlapping occurrences of α in S
can be found in time O(n), by using a linear time string matching algorithm
to find all occurrences of α in S, e.g. the algorithm by Knuth, Morris, and
Pratt [14], and then in a greedy fashion from left-to-right compute the maximal
number of non-overlapping occurrences.

Apostolico and Preparata in [3] described a data structure for the string
statistics problem, the minimal augmented suffix tree MAST(S), with prepro-
cessing time O(n log2 n) and query time O(m) for constant sized alphabets. In
this paper we present an improved algorithm for constructing MAST(S) with
preprocessing time O(n log n), and prove that MAST(S) requires space O(n),
which follows from a recent theorem of Fraenkel and Simpson [9].

The basic idea of the algorithm of Apostolico and Preparata and our al-
gorithm for constructing MAST(S), is to perform a traversal of the suffix tree
of S while maintaining the leaf-lists of the nodes visited in appropriate data
structures (see Section 1.1 for definition details). Traversing the suffix tree
of a string to construct and examine the leaf-lists at each node is a general
technique for finding regularities in a string, e.g. for finding squares in a string
(or tandem repeats), [2, 18], for finding maximal quasi-periodic substrings, i.e.
substrings that can be covered by a shorter substring, [1, 6], and for finding
maximal pairs with bounded gap [4]. All these problems can be solved using
this technique in time O(n log n). Other applications are listed by Gusfield
in [10, Chapter 7].

A crucial component of our algorithm is the representation of a leaf list
by a collection of search trees, such that the leaf-list of a node in the suffix
tree of S can be constructed from the leaf-lists of the children by efficient
merging. Hwang and Lin [13] described how to optimally merge two sorted
lists of length n1 and n2, where n1 ≤ n2, with O(n1 log n1+n2

n1
) comparisons.

Brown and Tarjan [7] described how to achieve the same number of compar-
isons for merging two AVL-trees in time O(n1 log n1+n2

n1
), and Huddleston and

Mehlhorn [12] showed a similar result for level-linked (2,4)-trees. In our algo-
rithm we will use a slightly extended version of level-linked (2,4)-trees where
each element has an associated weight.

The rest of this section contains basic definitions and lemmas that we will
use in the latter sections. In Section 2 we give a precise definition of the string
statistics problem and MAST(S). In Section 3 we give all the string properties
and definitions enabling us to construct MAST(S) in time O(n log n), and a
self-contained proof of the theorem of Fraenkel and Simpson that any string
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Figure 1: The string abaabaabaab has periods 3, 6, 9, and 11, i.e. the period
of the string is 3

has at most a linear number of distinct squares as substrings. In Section 4
we describe the variant of level-linked (2,4)-trees used by our algorithm. In
Section 5 we present our algorithm, and in Section 6 we prove that the running
time of the algorithm is O(n log n).

1.1 Preliminaries

Some of the terminology and notation used in the following originates from [3],
but with minor modifications. We let Σ denote a finite alphabet, and for a
string S ∈ Σ∗ we let |S| denote the length of S, S[i] the ith character in S,
for 1 ≤ i ≤ |S|, and S[i .. j] = S[i]S[i + 1] · · ·S[j] the substring of S from the
ith to the jth character, for 1 ≤ i ≤ j ≤ |S|. The suffix S[i .. |S|] of S starting
at position i will be denoted S[i .. ].

An integer p, for 1 ≤ p ≤ |S|, is denoted a period of S if and only if the
suffix S[p + 1 .. ] of S is also a prefix of S, i.e. S[p + 1 .. ] = S[1 .. |S| − p]. The
shortest period p of S is denoted the period of S, and the string S is said to
be periodic if and only if p ≤ |S|/2. Figure 1 shows the periods of a string of
length 11. A nonempty string S is a square, if S = αα for some string α.

In the rest of this paper S denotes the input string with length n and α a
substring of S. A non-empty string α is said to occur in S at position i if α =
S[i .. i + |α| − 1] and 1 ≤ i ≤ n− |α|+ 1. E.g. in the string b a b a a a a b a b a a b
the substring b a b occurs at positions 1 and 8. The maximum number of non-
overlapping occurrences of a string α in a string S, is the maximum number of
occurrences of α where no two occurrences overlap. E.g. the maximum number
of non-overlapping occurrences of b a b in b a b a b a b a b a b is three, since the
occurrences at positions 1, 5 and 9 do not overlap.

The suffix tree ST(S) of the string S is the compressed trie storing all
suffixes of the string S$ where $ /∈ Σ. Each leaf in ST(S) represents a suf-
fix S[i .. ]$ of S$ and is annotated with the index i. Each edge in ST(S) is
labeled with a nonempty substring of S$, represented by the start and end
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positions in S, such that the path from the root to the leaf annotated with
index i spells the suffix S[i .. ]$. We refer to the substring of S spelled by the
path from the root to a node v as the path-label of v and denote it L(v). We
refer to the set of indices stored at the leaves of the subtree rooted at v as
the leaf-list of v and denote it LL(v). Since LL(v) is exactly the set of start
positions i where L(v) is a prefix of the suffix S[i .. ]$, we have Fact 1 below.

Fact 1 If v is an internal node of ST(S), then LL(v) =
⋃

c child of v LL(c), and
i ∈ LL(v) if and only if L(v) occurs at position i in S.

Figure 2 shows the suffix tree of a string of length 13. The problem of
constructing ST(S) has been studied intensively and several algorithms have
been developed which for constant sized alphabets can construct ST(S) in time
and space O(|S|) [8, 16, 19, 20]. For non-constant alphabet sizes the running
time of the algorithms become O(|S| log |Σ|).

In the following we let the height of a tree T be denoted h(T ) and be
defined as the maximum number of edges in a root-to-leaf path in T , and let
the size of T be denoted |T | and be defined as the number of leaves of T . For
a node v in T we let Tv denote the subtree of T rooted at node v, and let
|v| = |Tv| and h(v) = h(Tv). Finally, for a node v in a binary tree we let
small(v) denote the child of v with smaller size (ties are broken arbitrarily).

The basic idea of our algorithm in Section 5 is to process the suffix tree
of the input string bottom-up, such that we at each node v spend amortized
time O(|small(v)| · log(|v|/|small(v)|)). Lemma 1 then states that the total
time becomes O(n log n) [17, Exercise 35].

Lemma 1 Let T be a binary tree with n leaves. If for every internal node v,
cv = |small(v)| · log(|v|/|small(v)|), and for every leaf v, cv = 0, then

∑

v∈T

cv ≤ n log n .

Proof. The proof is by induction in the size of T . If |T | = 1, then the lemma
holds vacuously. Now assume inductively that the upper bound holds for all
trees with at most n − 1 leaves. Consider a tree with n leaves where the
number of leaves in the subtrees rooted at the two children of the root are k
and n − k where 0 < k ≤ n/2. According to the induction hypothesis the
sum over all nodes in the two subtrees, is bounded by respectively k · log k and
(n− k) · log(n− k). The entire sum is thus bounded by k log(n/k) + k log k +
(n − k) log(n − k) = k log n + (n − k) log(n − k) < n log n, which proves the
lemma. 2
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Figure 2: To the left is the suffix tree ST(S) of the string S = a b a b b a b b a b a.
The node v has path-label L(v) = a b and leaf-list LL(v) = {1, 3, 6, 9}. To
the right is the minimal augmented suffix tree MAST(S) for the string S =
a b a b b a b b a b a. Internal nodes are labelled with the c-values.

2 The String Statistics Problem

Given a string S of length n and a pattern α of length m the following greedy
algorithm will compute the maximum number of non-overlapping occurrences
of α in S. Find all occurrences of α in S by using an exact string matching
algorithm. Choose the leftmost occurrence. Continue to choose greedily the
leftmost occurrence not overlapping with any so far chosen occurrence. This
greedy algorithm will compute the maximum number of occurrences of α in
S in time O(n), since all matchings can be found in time O(n), e.g. by the
algorithm by Knuth, Morris, and Pratt [14].

In the string statistics problem we want to preprocess a string S such
that queries of the following form are supported efficiently: Given a query
string α, what is the maximum number of non-overlapping occurrences of α
in S? The maximum number of non-overlapping occurrences of α is called the
c-value of α, denoted c(α). The preprocessing will be to compute the minimal
augmented suffix tree described below. Given the minimal augmented suffix
tree, string statistics queries can be answered in time O(m).

For any substring, α, of S there is exactly one path from the root of ST(S)
ending in a node or on an edge of ST(S) spelling out the string α. This
node or edge is called the locus of α. In a suffix tree ST(S) the number of
leaves in the subtree below the locus of α in ST(S) tells us the number of
occurrences of α in S. These occurrences may overlap, hence the suffix tree
is not immediately suitable for the string statistics problem. The minimal
augmented suffix tree for S, denoted MAST(S) can be constructed from the
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suffix tree ST(S) as follows. A minimum number of new auxiliary nodes are
inserted into ST(S) in such a way that the c-value for all substrings with locus
on an edge (u, v), where u is the parent of v, have c-value equal to c(L(v)),
i.e. the c-value only changes at internal nodes along a path from a leaf to the
root. Each internal node v in the augmented tree is then labeled by c(L(v))
to get the minimal augmented suffix tree. Figure 2 shows the suffix tree and
the minimal augmented suffix tree for the string a b a b b a b b a b a.

The space needed to store MAST(S) is O(n), since by Lemma 6 the minimal
augmented suffix tree has at most 3n internal nodes.

3 String Properties

Lyndon and Schutzenberger [15] proved the following periodicity lemma for
periodic strings.

Lemma 2 If a string S has two periods p, q ≤ |S|/2, then gcd(p, q) is also a
period of S.

If S is periodic, then by Lemma 2 the period p of S divides all periods of
S less than or equal to |S|/2. Any prefix S′ of S with length at least p also
has period p. If S′ has length at least 2p, then the period of S′ by Lemma 2
divides p, implying that the period of S′ also is a period of S.

Corollary 1 If S has period p ≤ |S|/2, then p is also the period of the pre-
fixes S[1 .. k] for 2p ≤ k ≤ |S|.

The lemma below gives a characterization of how the occurrences of a
string α can appear in S.

Lemma 3 Let S be a string and α a substring of S. If the occurrences of α
in S are at positions i1 < · · · < ik, then for all 1 ≤ j < k either ij+1 − ij = p
or ij+1 − ij > max{|α| − p, p}, where p denotes the period of α.

Proof. Consider two consecutive and overlapping occurrences of α at posi-
tions ij and ij+1 in S, i.e. there are no occurrences of α at position k for
ij < k < ij+1. Let d = ij+1 − ij ≥ 1. We will show that neither of the two
cases d < p or p < d ≤ |α| − p are possible. The two cases are illustrated in
Figure 3.

If d < p, then d < |α| since p ≤ |α|. By definition α occurs at positions ij
and ij + d, implying β = α[1 .. |α| − d] is both a prefix and suffix of α. See
Figure 3(a). By definition, d is then a period of α, contradicting that p is the
shortest period of α.
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α
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︸ ︷︷ ︸
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(a) The case d < p

S α
α

ij ij+1 − p ij+1 ij+1 + p ij + |α|

β β
︸ ︷︷ ︸ ︸ ︷︷ ︸

(b) The case p < d ≤ |α| − p

Figure 3: The two cases considered in the proof of Lemma 3

If p < d ≤ |α| − p, then we have the inequalities ij < ij+1 − p < ij+1 <
ij+1 + p ≤ ij + |α|. If α has period p, then α is a prefix of the infinite
string βββ . . ., where β = α[1 .. p]. It follows that β = S[ij+1 .. ij+1 + p −
1] = S[ij+1 − p .. ij+1 − 1], implying that α occurs at position ij+1 − p, which
contradicts the assumption that there is no occurrence of α between positions
ij and ij+1. 2

A consequence of Lemma 3 is that if p ≥ |α|/2, then an occurrence of α
in S at position ij can only overlap with the occurrences at positions ij−1

and ij+1. If p < |α|/2, then two consecutive occurrences ij and ij+1, either
satisfy ij+1 − ij = p or ij+1 − ij > |α| − p.

Corollary 2 If ij+1−ij ≤ |α|/2, then ij+1−ij = p where p is the period of α.

Motivated by the above observations we group the occurrences of α in S
into chunks and necklaces. Let p denote the period of α. Chunks can only
appear if p < |α|/2. A chunk is a maximal sequence of occurrences con-
taining at least two occurrences and where all consecutive occurrences have
distance p. The remaining occurrences are grouped into necklaces. A necklace
is a maximal sequence of overlapping occurrences, i.e. only two consecutive
occurrences overlap at a given position and the overlap of two occurrences is
between one and p − 1 positions long. Figure 4 shows the occurrences of the
string abaabaaba in a string of length 55 grouped into chunks and necklaces.
By definition two necklaces cannot overlap, but a chunk can overlap with an-
other chunk or a necklace at both ends. By Lemma 3 the overlap is at most
p − 1 positions.
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Figure 4: The grouping of occurrences in a string into chunks and necklaces.
Occurrences are shown below the string. Thick lines are occurrences in chunks.
The grouping into chunks and necklaces is shown above the string. Necklaces
are shown using dashed lines. Note that a necklace can consist of a single
occurrence

abababababababababa abababababababababa

Figure 5: Examples of the contribution to the c-values by an isolated necklace
(left; α = aba and the contribution is 5 = ⌈9/2⌉) and an isolated chunk (right;
α = ababa, p = 2, and the contribution is 3 = ⌈8/ ⌈5/2⌉⌉)

In Figure 4 the chunk covering positions 9–23 overlaps with the necklace
covering positions 1–9, and the chunk covering positions 23–37.

We now turn to the contribution of chunks and necklaces to the c-values.
We first consider the case where chunks and necklaces do not overlap. An
isolated necklace or chunk is a necklace or chunk that does not overlap with
other necklaces and chunks. Figure 5 gives an example of the contribution to
the c-values by an isolated necklace and chunk.

Lemma 4 An isolated necklace of k occurrences of α contributes to the c-
value of α with ⌈k/2⌉. An isolated chunk of k occurrences of α contributes to
the c-value of α with ⌈k/⌈|α|/p⌉⌉, where p is the period of α.

Proof. Since only two consecutive occurrences in a necklace overlap, exactly
every second occurrence in the necklace can contribute to the c-values (see
Figure 5 (left)).

In a chunk of k occurrences all occurrences have distance p, implying that
only every ⌈|α|/p⌉th occurrence contributes to the c-value of α and the stated
contribution follows (see Figure 5 (right)). 2

Motivated by Lemma 4, we define the nominal contribution of a necklace
of k occurrences of α to be ⌈k/2⌉ and the nominal contribution of a chunk of
k occurrences of α to be ⌈k/⌈|α|/p⌉⌉. The nominal contribution of a necklace
or chunk of α’s is the contribution to the c-value of α if the necklace or chunk
appeares isolated. The actual contribution to the c-value of α as a result of
applying the greedy algorithm can at most be one less for each necklace and
chunk as argued in the proof of Lemma 5 below.
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We define the excess of a necklace of k occurrences to be

(k − 1) mod 2 ,

and the excess of a chunk of k occurrences to be

(k − 1) mod ⌈|α|/p⌉ .

The excess describes the number of occurrences of α[1 .. p] which are covered
by the necklace or chunk, but not covered by the maximal sequence of non-
overlapping occurences.

We group the chunks and necklaces into a collection of chains C by the
following two rules:

1. A chunk with excess at least two is a chain by itself.

2. A maximal sequence of overlapping necklaces and chunks with excess
zero or one is a chain.

For a chain c ∈ C we define #0(c) to be the number of chunks and necklaces
with excess zero in the chain.

We are now ready to state our main lemma enabling the efficient compu-
tation of the c-values. The lemma gives an alternative to the characterization
in [3, Proposition 2].

Lemma 5 The maximum number of non-overlapping occurrences of α in S
equals the sum of the nominal contributions of all necklaces and chunks minus

∑

c∈C

⌊#0(c)/2⌋ .

Proof. We consider the maximum number of non-overlapping occurrences
generated by the greedy algorithm described in Section 2.

Let b be a chunk or a necklace of k occurrences, and let z = ⌈|α|/p⌉
if b is chunk, and z = 2 if b is a necklace. From Lemma 3 only the first
occurrence in b can overlap with the occurrence immediately preceding b, and
the overlap is at most p − 1 positions. If there is no immediate preceding
occurrence that overlaps with b, or the immediate preceding occurrence is not
reported by the greedy algorithm, then the contribution to the c-value of b
equals the nominal contribution. If the immediate preceding occurrence of b
was reported and overlaps with the first occurrence in b, then the 2 + i · zth

occurrences in b are reported for i = 0, . . . , ⌈(k − 1)/z⌉ − 1, i.e. the number of
non-overlapping occurrences reported in b equals the nominal contribution if
and only if ⌈k/z⌉ = ⌈(k − 1)/z⌉, i.e. b has nonzero excess. If the excess is zero,
then the contribution of the chunk is one less than the nominal contribution.
It remains to count how often this last case happens.
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Consider a chain consisting of a single chunk with excess at least two. Then
the contribution of the chain equals the nominal contribution and #0(c) = 0.
None of the two possible ways to report occurrences in the chunk by the
greedy algorithm includes the last occurrence of the chunk. This implies that
the reporting within a chunk or necklace b of excess zero is only influenced by
the necklaces and chunks to the left of b contained within the same chain as b.

Consider a chain c where all necklaces and chunks have excess zero or one.
For all chunks and necklaces in the chain with excess one, the last occurrence
in the chunk or necklace is reported if and only if the last occurrence in the
immediate preceding chunk or necklace in the chain is reported. It follows
that the last occurrence is reported for every second chunk or necklace in the
chain with excess zero, including the first with excess zero. We conclude that
the number of chunks and necklaces with excess zero in the chain c where
the contribution to the c-value of α is one less than the nominal contribution
is ⌊#0(c)/2⌋. 2

To bound the size of a minimal augmented suffix tree we need the following
theorem of Fraenkel and Simpson, who proved that a string can at most contain
a linear number of distinct squares [9]. The proof given below is a slight
simplification of [9, Theorem 1].

Theorem 1 (Fraenkel and Simpson) The number of distinct squares oc-
curring in a nonempty string S is less than 2|S|.

Proof. We prove that any position i in S can at most be the rightmost occur-
rence of two distinct squares in S. Assume for the sake of contradiction that
i is the rightmost occurrence of three squares αα, ββ and γγ with a = |α|,
b = |β|, c = |γ| and 0 < a < b < c. Without loss of generality we assume
s = γγ and i = 1. Figure 6 shows the two cases to be considered.

If a ≤ c/2, then αα is a prefix of γ. Therefore αα also occurs at positions
c + 1, which contradicts the assumption that position one is the rightmost
occurrence of αα.

If a > c/2, then we will show that αα occurs at position p+1, where p is the
period of α. By Lemma 3 the occurrences of α at positions a+1, b+1, and c+1
will have distance at least p (α is a prefix of β and γ, which occur respectively
at positions b + 1 and c + 1), i.e. a + p ≤ b ≤ c − p. Since α has period p and
occurs at positions one and a + 1, it follows that α occurs at positions p + 1
and a+p+1 if S[a−p+1 .. a+p] and S[2a−p+1 .. 2a+p] are substrings of α.
We have S[a−p+1 .. a+p] = β[a−p+1 .. a+p] = S[a+b−p+1 .. a+b+p] =
α[a+b−c−p+1 .. a+b−c+p] since a+b−c−p+1 ≥ a+a+p−c−p+1 > 1
and a+b−c+p ≤ a, and S[2a−p+1 .. 2a+p] = β[2a−b−p+1 .. 2a−b+p] =
α[2a−b−p+1 .. 2a−b+p] since 2a−b−p+1 > c−b−p+1 ≥ p−p+1 = 1 and
2a−b+p ≤ 2a−(a+p)+p = a. We conclude that αα occurs at position p+1,
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α α
β β

γ γ

(a) 2|α| ≤ |γ|

α α
β β

γ γ

(b) 2|α| > |γ|

≥ p ≥ p

Figure 6: The two cases in the proof of Theorem 1. Long dashed lines are
occurrences of α and short dashed lines are occurrences of α[1 .. p]

which contradicts the assumption that the rightmost occurrence of αα is at
position one. Since no square starts at position |S| the theorem holds. 2

Lemma 6 The minimal augmented suffix tree for a string S has at most 3|S|
internal nodes.

Proof. Since the suffix tree for a string S has |S| internal nodes we only need
to show that there are at most 2|S| extra nodes in the minimal augmented
suffix tree. If the number of extra nodes are limited by the number of squares
in the string the thesis follows from Theorem 1.

Extra nodes are only located on edges when there is a change in the c-
value along that edge. The c-value changes due to two reasons. First, when two
substrings become equal as they get shorter and second, when two occurrences
of a substring no longer overlap as they get shorter. The first reason only
gives rise to changed c-values in nodes already in the suffix tree. If α occurs
at position i and i + |α| − 1 both occurrences can not be counted in the c-
value of α. However, the occurrences of α′ = α[1..|α| − 1], at positions i and
i + |α| − 1, do not overlap and the c-value may change. This only happens
when there is a square α′α′ in S. 2

4 Level-Linked (2,4)-Trees

In this section we consider how to maintain a set of sorted lists of elements as a
collection of level-linked (2,4)-trees where the elements are stored at the leaves
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in sorted order from left-to-right, and each element can have an associated
real valued weight. For a detailed treatment of level-linked (2,4)-trees see [12]
and [17, Section III.5]. The operations we consider supported are:

NewTree(e,w): Creates a new tree T containing the element e with associated
weight w.

Search(p, e): Searches for the element e starting the search at the leaf of a
tree T that p points to. Returns a reference to the leaf in T containing e
or the immediate predecessor or successor of e.

Insert(p, e, w): Creates a new leaf containing the element e with associated
weight w and inserts the new leaf immediate next to the leaf pointed to
by p in a tree T , provided that the sorted order is maintained.

Delete(p): Deletes the leaf and element that p is a pointer to in a tree T .

Join(T1, T2): Concatenates two trees T1 and T2 and returns a reference to the
resulting tree. It is required that all elements in T1 are smaller than the
elements in T2 w.r.t. the total order.

Split(T, e): Splits the tree T into two trees T1 and T2, such that e is larger
than all elements in T1 and smaller than or equal to all elements in T2.
Returns references to the two trees T1 and T2.

Weight(T ): Returns the sum of the weights of the elements in the tree T .

Hoffman et al. [11, Section 3] considered the case where elements are un-
weighted, and showed how level-linked (2,4)-trees support all the above oper-
ations, except Weight, within the time bounds stated in Theorem 2 below.

Theorem 2 (Hoffmann et al.) Level-linked (2,4)-trees support the opera-
tions NewTree, Insert and Delete in amortized constant time, Search in time
O(log d) where d is the number of elements in T between e and p, and Join

and Split in amortized time O(log min{|T1|, |T2|}).

To allow each element to have an associated weight we extend the con-
struction from [11, Section 3] such that we for all nodes v in a tree store the
sum of the weights of the leaves in the subtree Tv, except for the nodes on the
paths to the leftmost and rightmost leaves, in the following denoted extreme
nodes. These sums are straightforward to maintain while rebalancing a (2,4)-
tree under node splittings and fusions, since the sum at a node is the sum of
the weights at the children of the node. For each tree we also store the total
weight of the tree.
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Theorem 3 Weighted level-linked (2,4)-trees support the operations NewTree

and Weight in amortized constant time, Insert and Delete in amortized time
O(log |T |), Search in time O(log d) where d is the number of elements in T
between e and p, and Join and Split in amortized time O(log min{|T1|, |T2|}).

Proof. The operations NewTree and Weight take amortized constant time,
since the total weight of a tree is explicitly stored, and Search takes time
O(log d) since it is unaffected by the presence of weights. The presence of
weights increases the time for Insert and Delete to O(log |T |), since in the
worst-case all weights stored on the path from the root to the new/deleted
leaf must be recomputed for every insertion and deletion.

For the operations Join and Split we need to argue that the stored weights
can be updated within the claimed time bounds. The Join operation proceeds
by first linking the root of the tree of minimal height h = O(log min{|T1|, |T2|})
as a child of an extreme node with height h + 1, followed by a sequence of
node splittings. The linking causes 2h − 1 extreme nodes not to be extreme
nodes any longer, forcing the weights to be computed for these nodes. This
can be done in time O(h). Since for each node splitting the weights can
be updated in constant time and the total weight of T is the sum of the
weights of T1 and T2, the amortized time bound for Join follows. A Split

consists of a sequence of node splittings, unlinking the subtree rooted a node of
height h = O(log min{|T1|, |T2|}), and a sequence of node fusions. The weights
at the involved nodes can similarly to Join be updated during the sequence of
node splittings and fusions. The unlinking only creates new extreme nodes.
Finally the weight of the resulting tree of minimal height can be computed
by traversing the extreme nodes of this tree in time O(h). The weight of the
larger tree can be computed as the difference between the weight of T and the
weight of the tree of minimal height. 2

5 The Algorithm

In this section we describe the algorithm for constructing the minimal aug-
mented suffix tree for a string S of length n. The analysis is presented in
Section 6 and shows that the algorithm runs in time O(n log n).

5.1 Algorithm idea

The algorithm starts by constructing the suffix tree, ST(S), for S. The suffix
tree is then augmented with extra nodes and c-values for all nodes to get the
minimal augmented suffix tree, MAST(S), for S. The augmentation of ST(S)
to MAST(S) starts at the leaves and the tree is processed in a bottom-up
fashion. At each node v encountered on the way up the tree the c-value for
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Figure 7: The data structure is a 3-level search tree.

the path-label L(v) is added to the tree, and at each edge new nodes and their
c-values are added if there is a change in the c-value along the edge. To be able
to compute efficiently the c-values and decide if new nodes should be added
along edges the indices in the leaf-list of v, LL(v), are stored in a data structure
that keeps track of necklaces, chunks, and chains, as defined in Section 3.

5.2 Data structure

Let α be a substring of S. The data structure D(α) is a search tree for the
indices of the occurrences of α in S. The leaves in D(α) are the leaves in LL(v),
where v is the node in ST(S) such that the locus of α is the edge directly above
v or the node v. The search tree, D(α), will be organized into three levels to
keep track of chains, chunks, and necklaces. The top level in the search tree
stores chains, the middle level chunks and necklaces, and the bottom level
occurrences. See Figure 7.

Top level: Unweighted (2,4)-tree (cf. Theorem 2) with the chains as leaves.
The key of a chain is the leftmost index in the chain.

Middle level: One weighted (2,4)-tree (cf. Theorem 3) for each chain, with
the chunks and necklaces as leaves. The leftmost indices in the chunks
and necklaces are the keys. The weight of a leaf is 1 if the excess of the
chunk or necklace is zero, otherwise the weight is 0. The total weight of
a tree on the middle level is #0(c), where c denotes the chain represented
by the tree.

Bottom level: One weighted (2,4)-tree (cf. Theorem 2) for each chunk and
necklace, with the occurrences in the chunk or necklace as the leaves.
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The weight of a leaf is 1. The total weight of a tree is the number of
occurrences in the chunk or the necklace.

Together with each of the 3-level search trees, D(α), some variables are
stored. NCS(α) stores the sum of the nominal contribution as defined in
Section 3 for all chunks and necklaces, ZS(α) stores the sum

∑

c∈C⌈#0(c)/2⌉,
where C is the set of chains. By Lemma 5 the maximum number of non-
overlapping occurrences of α is NCS(α) − ZS(α). We also store the total
number of indices in D(α) and a list of all chains containing at least one
chunk, denoted CHAINLIST(α). The list will keep pointers to the roots of the
trees for the chains, and pointers in the opposite direction are kept in the tree.
CHAINLIST(α) will be useful when all chunks are processed at the same time
and we do not want to spend time on searching for chunks in chains with no
chunks. Finally we store, p(α), which is the smallest difference between the
indices of two consecutive occurrences in D(α). Note that, by Corollary 2,
p(α) is the period of α if there is at least one chunk. For convenience, we will
sometimes refer to the tree for a chain, chunk, or necklace just as the chain,
chunk, or necklace.

For the top level tree in D(α) we will use level-linked (2,4)-trees, according
to Theorem 2, and for the middle and bottom level trees in D(α) we will
use weighted level-linked (2,4)-trees, according to Theorem 3. In these trees
predecessor and successor queries are supported in constant time. We denote
by ℓ(e) and r(e) the indices to the left and right of index e. To be able to
check fast if there are overlaps between two consecutive trees on the middle
and bottom levels we store the first and last index in each tree in the root of
the tree. This can easily be kept updated when the trees are joined and split.

We will now describe how the suffix tree is processed and how the data
structures are maintained during this process.

5.3 Processing events

We want to process edges in the tree bottom-up, i.e. for decreasing length
of α, so that new nodes are inserted if the c-value changes along the edge,
the c-values for nodes are added to the tree, and the data structure is kept
updated. The following events can cause changes in the c-value and the chain,
chunk, and necklace structure.

1. Excess change: When |α| becomes i · p(α), for i = 2, 3, 4, . . . the excess
and nominal contribution of chunks changes and we have to update the
data structure and possibly add a node to the suffix tree.

2. Chunks become necklaces: When |α| decreases and becomes 2p(α) a
chunk degenerates into a necklace. At this point we join all overlapping
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chunks and necklaces into one necklace and possibly add a node to the
suffix tree.

3. Necklaces and chains break-up: When |α| decreases two consecutive oc-
currences at some point no longer overlap. The result is that a necklace
or a chain may split, and we have to update the necklace and chain
structure and possibly add a node to the suffix tree.

4. Merging at internal nodes: At internal nodes in the tree the data struc-
tures for the subtrees below the node are merged into one data structure
and the c-value for the node is added to the tree.

To keep track of the events we use an event queue, denoted EQ, that is
a common priority queue of events for the whole suffix tree. The priority of
an event in EQ is equal to the length of the string α when the event has to
be processed. Events of type 1 and 2 store a pointer to any leaf in D(α).
Events of type 3, i.e. that two consecutive overlapping occurrences with index
e1 and e2, where e1 < e2, terminate to overlap, store a pointer to the leaf e1

in the suffix tree. For the leaf e1 in the suffix tree a pointer to the event in
EQ is also stored. Events of type 4 stores a pointer to the internal node in
the suffix tree involved in the event. When the suffix tree is constructed all
events of type 4 are inserted into EQ. For a node v in ST(S) the event has
priority |L(v)| and stores a pointer to v. The pointers are used to be able to
decide which data structure to update. The priority queue EQ is implemented
as a table with entries EQ[1] . . . EQ[|S|]. All events with priority x are stored
in a linked list in entry EQ[x]. Since the priorities of the events considered are
monotonic decreasing, it is sufficient to consider the entries of EQ in a single
scan starting at EQ[|S|].

The events are processed in decreasing order of the priority and for events
with the same priority they are processed in the order as above. Events of the
same type and with the same priority are processed in arbitrary order. In the
following we only look at one edge at the time when events of type 1, 2, and
3 are taken care of.

5.3.1 Excess change

The excess changes for all chunks at the same time, namely when |α| = i ·p(α)
for i = 2, 3, 4, . . .. To update the data structure when the excess changes,
all chunks are first removed from D(α). Then the new excess and nominal
contribution are computed and finally the tree is reconstructed as the re-
moved chunks are reinserted into D(α). This is all done for each chain in
CHAINLIST(α) seperately. In details the following is done.
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1. For each chain in CHAINLIST(α) find the sorted list of chunks in the
chain. Note that at least every other element in the chain are chunks,
since two necklaces do not overlap.

2. For each chunk remove it from its chain by splitting the tree for the
chain. At most two Split-operations per chunk are needed to temporary
make each chunk a chain by itself. The chain which the chunk is part of
is replaced by the at most three new (overlapping) chains in the top-level
tree, unless the chunk already was a chain by itself. Keep CHAINLIST(α)
updated by deleting the split chain from the list and inserting the re-
sulting chains, if they contain at least one chunk. Keep ZS(α) updated
by first subtracting the old contribution of the chain to ZS(α) and then
adding the contributions of the resulting chains.

3. Recompute the excess and nominal contribution for all chunks and up-
date NCS(α) accordingly by adding the change in nominal contribution
to NCS(α) for each chunk. Set the weight of chunks with excess 0 to 1
and set the weight of chunks with excess at least 1 to 0. In the new tree
the chain structure may have changed. Chunks for which the excess in-
creases to two or more will become separate chains, while chunks where
the excess becomes less than two may join two or three chains into a
single chain.

4. Now we want to reconstruct the tree by reinserting the chunks into the
tree. This is done seperately for each chain in the original CHAINLIST(α).
Let c1, . . . , cm denote the chunks from left to right in a chain and let Ti

denote the tree for the chain containing chunk ci and do the following.

If ci has excess 2 or more then nothing is done since ci is a chain by
itself. If the excess is 0 or 1 we check if the chunk overlaps the chains to
the left and right, denoted Tℓ and Tr, and in that case if the chains shall
be joined.

(a) If ci to the left overlaps with a necklace or a chunk with excess 0
or 1, then remove Tℓ from the top-level tree and join Ti and Tℓ.
Denote the resulting tree Ti. Delete from CHAINLIST(α) the chain
containing ci and also the chain Tl if it is in the list. Insert the new
chain into CHAINLIST(α). Update ZS(α) accordingly.

(b) If Tr to the right overlaps with a necklace then join Ti with Tr after
removing Tr from the top-level tree. Denote the resulting tree Ti.
Update ZS(α) accordingly.

If Tr = Ti+1, i.e. it is also a chunk, then the overlap between Ti and Ti+1

will be checked as described above when continuing with Ti+1.
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Continue until all chunks are checked and repeat the same procedure for
each chains in the original CHAINLIST(α).

If |α| = 2p(α) then insert an event of type 2 with priority 2p(α) into EQ,
with a pointer to any leaf in D(α). If |α| = i · p(α) > 2p(α), then insert an
event of type 1 with priority (i − 1) · p(α) into EQ, with a pointer to any leaf
in D(α).

5.3.2 2. Chunks become necklaces.

When |α| decreases to 2p(α) all chunks become necklaces at the same time.
At this point all chunks and necklaces that overlap must be joined into one
necklace. Note that all chunks have excess 0 or 1 when |α| = 2p(α) and since
we first recompute the excess, all overlapping chunks and necklaces are in the
same chain. Hence, what we have to do is to join all chunks and necklaces
from left to right, in each chain. The following is done.

1. For each chain in CHAINLIST(α) join all chunks and necklaces from
left to right. Note that there are never two consecutive necklaces in the
same chain, i.e. there are at most two Join-operations per chunk. Update
NCS(α) and ZS(α) by adding the difference in nominal contribution to
NCS(α) and by subtracting #0(c) from ZS(α) for each changed chain
and add it for the new chains.

2. Set CHAINLIST(α) to be empty, since there are no chunks left.

5.3.3 Necklaces and chains break-up

When two consecutive occurrences of α with indices e1 and e2 terminate to
overlap this may cause a necklace or a chain to break up into two necklaces or
chains. If e1 and e2 belong to the same chain then the chain breaks up in two
chains. If e1 and e2 belong to the same necklace then both the necklace and
the chain split between e1 and e2. The following is done to update the data
structure.

1. Using the pointers stored at the leaves of ST(S), check if the indices e1

and e2 are already in different chains. If they are then nothing is done.

2. If e1 and e2 are in the same chain, represented in the tree by Tc, then c
shall be split.

(a) If both indices belong to the same necklace then the necklace shall
be split. Remove the tree for the necklace from Tc by perform-
ing two Split-operations. The result is three trees, Tc1, Tn, and
Tc2. Split the tree for the necklace into two parts by performing
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Split(Tn, e2) = Tn1
, Tn2

. Insert Tn1
in Tc1 and Tn2

in Tc2 using two
Join-operation. Finally, insert the new chain into the top-level tree
and update NCS(α) and ZS(α).

(b) If the two indices belong to two different subtrees at the bottom-
level then only the chain has to be split. Insert the new chain into
the top-level tree and update ZS(α).

Update CHAINLIST(α) if necessary, by first removing c from the list (if
it is in it). Then for the two new chains, check if they contain at least
one chunk and in that case insert the chains into CHAINLIST(α).

5.3.4 Merging at internal nodes

Let α be a substring such that the locus of α is a node v in the suffix tree.
The leaf-list for v, LL(v), is the union of the leaf-lists for the subtrees below v.
Hence, at the nodes in the suffix tree the data structures for the subtrees
should be merged into one. We assume that the edges below v have been
processed for α as described above for events 1, 2, and 3.

Let T1, . . . , Tt be the subtrees below v in the suffix tree. We never merge
more than two data structures at the time. If there are more than two subtrees,
the merging is done in the following order: T = Merge(T, Ti), for i = 2, . . . , t,
where T = T1 to start with. This can also be viewed as if the suffix tree is
made binary by replacing all nodes of degree larger than 2 by a binary tree
with edges with empty labels. We will now describe how to merge the data
structures for two subtrees.

The merging will be done by inserting all indices from the smaller of the
two leaf-lists into the data structure for the larger one. Let T denote the 3-
level search tree to insert new indices in and denote by e1, . . . , em the indices
to insert, where ei < ei+1. The insertion is done by first splitting the tree T
at all positions ei for increasing i = 1, . . . ,m. The tree is then reconstructed,
from left to right, at the same time as the new indices are inserted. More
exactly the following is done.

1. For all indices ei, i = 1, . . . ,m split T (at all levels necessary) by per-
forming Split(ei). Denote the resulting 3-level trees T0, . . . , Tm+1 where
ei is larger than all indices in Tj for j < i, and smaller than all other in-
dices. Note that Ti is an empty tree if there are no indices in T between
ei and ei+1.

When a middle-level tree, for a chain c, is split, update ZS(α) by sub-
tracting #0(c) and adding the new #0-values for the two new trees.
Update CHAINLIST(α) (from the tree T ) if necessary, by first removing
c from the list (if it is in it). Then for the two new chains, check if
they contain at least one chunk and in that case insert the chains into
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CHAINLIST(α). When a bottom-level tree is split, update NCS(α) by
subtracting the nominal contribution of the split chunk or necklace and
adding the two new nominal contributions.

2. The tree is reconstructed from left to right by inserting the new indices in
increasing order. Let T ′ be the tree reconstructed for all indices smaller
than ei in the two trees to be merged, i.e. T ′ is the union of e0, . . . , ei and
T0, . . . , Ti. Initially T ′ equals T0. To proceed, we want to insert ei and
all indices between ei and ei+1 into T ′. (If i = m we insert all remaining
indices.) This is done as follows.

Check if the occurrence with index ei overlaps the occurrence for the
rightmost index in the tree T ′ reconstructed so far and in that case,
check if this index is part of a necklace or a chunk.

(a) If the occurrence with index ei does not overlap any occurrence to
the left then create a new chain with one necklace with ei as the
only index. Insert the chain into T ′.

(b) If the occurrence with index ei overlaps an occurrence with index eℓ

to the left and the overlap is less than |α|/2 then if eℓ is part of a
necklace then insert ei into this necklace using one Join-operation.
If eℓ is part of a chunk, cℓ, then create a new chain with one necklace
with ei as the only index. If the excess of cℓ is 2 or more then insert
the chain in T ′, otherwise join the two chains.

(c) If the occurrence with index ei overlaps an occurrence with index eℓ

to the left and the overlap is more than |α|/2 then if eℓ is part of a
necklace remove eℓ from the necklace and create a new chunk with
eℓ and ei as the two indices. Create a new chain for the chunk with
two indices eℓ and ei. Since the excess of the chunk with 2 indices
is 1, join the two chains. If eℓ is part of a chunk then insert ei into
the chunk. If the excess increases from 1 to 2 then let the chunk be
a chain by itself. If the excess changes to 0 after being 2 or more
then join the chunk with the chain to the left if possible.

The tree T ′ is at this point the tree reconstructed for all indices up to
index ei. The next step is to include also the tree Ti. Unless Ti is empty
the following is done.

Check if the occurrence with index ei overlaps the leftmost occurrence
in Ti, with index er . If it does not we just join the trees T ′ and Ti. If
it does overlap the following is done.

(a) The overlap between ei and er is less than |α|/2. If both ei and er

are part of necklaces then join the necklaces and the chains they
are part of. If at least one of ei and er is part of a chunk, then join
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the chains they are part of unless the excess of the chunk is 2 or
more.

(b) The overlap between ei and er is more than |α|/2. If both ei and
er are part of necklaces then remove ei and er from their trees and
create a new chunk with the two indices. Since the excess of the
new chunk is 1, insert the chunk in one of the chains and join the
chains. If one of ei and er is part of a chunk and the other is part of
a necklace, then remove the index in the necklace and insert it into
the chunk. Let c1 and c2 be the two chains where the two indices
were located originally. If the excess of the chunk becomes 0 or 1
then join the chains c1 and c2, otherwise let the chunk be a chain by
itself by splitting the chain for the chunk. If both ei and er are part
of chunks then join them. Check the excess of the joined chunk. If
the excess is 2 or more, then make the chunk a chain by its own.

Keep CHAINLIST(α) updated all the time during the above procedure.
Each time a chain is split, joined, or removed, delete the chain from
CHAINLIST(α) (if it is in the list). Each time a new chain is created,
e.g. as a result of a split or join, insert the chain into CHAINLIST(α) if
it contain at least one chunk.

Update the global variables ZS(α) and NCS(α), respectively, whenever two
trees, at the middle or bottom level, respectively, are joined or split.

Every time, during the above described procedure, when two overlapping
occurrences with indices ei and ej , where ei < ej , from different subtrees are
encountered the event (ei, ej) with priority ej − ei is inserted into the event
queue EQ and the previous event, if any, with a pointer to ei is removed
from EQ. Update p(α) to ej − ei if this is smaller than the current p(α) value.
If |α| > 2p(α) then insert an event of type 1 with priority ⌊|α|/p(α)⌋p(α)
into EQ, with a pointer to any leaf in D(α).

6 Analysis

Theorem 4 The minimal augmented suffix tree, MAST(S), for a string S of
length n can be constructed in time O(n log n) and space O(n).

Proof. The algorithm in Section 5 starts by constructing the suffix tree, ST(S),
for the input string S in time O(n log n). The leaf-lists of all n leaves in ST(S)
are created in constant time for each leaf, i.e. in total time O(n). The proof
uses an amortization argument, allowing each edge to be processed in amor-
tized constant time, and each binary merge at a node (in the binary version)
of ST(S) of two leaf-lists of sizes n1 and n2, with n1 ≥ n2, in amortized
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time O(n2 log n1+n2

n2
). From Lemma 1 it follows that the total time for pro-

cessing the internal nodes and edges of ST(S) is O(n). In the following we will
first give the time for processing the different events. We will then define a
potential for each data structure maintained along an edge or node of ST(S).
We will argue that the processing of events of type 1, 2, and 3 release sufficient
potential to pay for processing the event, and that a binary merge in an event
of type 4 takes time O(n2 log n1+n2

n2
) and increases the potential by at most

the same amount.
When events of type 1 are processed the first step is to find the sorted list

of chunks in each chain. For a leaf-list containing m chunks, this is done in
time O(m) since only chains containing at least one chunk are examined and
since at least every other element in a chain is a chunk. The next step is to
make each chunk a chain by itself by performing at most two split operations
per chunk, hence at most 2m split operations. The splitting is done from left
to right in each chain. Let |CHAINLIST(α)| = b and let |ci|, for i = 1, . . . , b
be the size of chain i in the list. Let sij be the size of the left tree resulting
from the jth splitting of chain i in CHAINLIST(α). Then

∑b
i=1 |ci| ≤ |LL(v)|

and
∑2ai

j=1 sij ≤ |ci| where ai is the number of chunks in chain i. Hence,
∑b

i=1

∑2ai

j=1 sij ≤ |LL(v)|. According to Theorem 2 and 3 a split operation
takes time log(min{|T ′|, |T ′′|}), where T ′ and T ′′ are the resulting trees. The

total time of all splittings is at most O(
∑b

i=1

∑2ai

j=1 log sij) ≤ O(m log |LL(v)|
m

).
Finally the chains for the chunks are joined with other chains. Similarly to the
split operations, the joining takes time O(m log |LL(v)|

m
). All other operations,

e.g. to recompute the excess and update the global variables, take O(m).

Hence, the total time to process an event of type 1 is O(m log |LL(v)|
m

).
When an event of type 2 is processed all chunks and necklaces in the same

chain are joined into one chain by joining the trees in each chain containing at
least one chunk. Since the joining is done from left to right in each chain the
total time for all join operations in an event of type 2, like in event of type 1,
is O(m log |LL(v)|

m
), which is also the total time for processing of type event 2.

When an event of type 3 is processed, it is first checked if the two occur-
rences, that terminate to overlap, belong to the same chain. Let e1 and e2

be the indices of the two occurrences and let c be the chain which e1 be-
longs to. Denote by |c| the number of occurrences of α in c. Since we have a
pointer to e1, walking up the tree for c to decide if e2 also belongs to c takes
time O(log |c|). At the same time it can also be checked if the two indices be-
long to the same necklace. If the two indices belong to the same chain and/or
necklace the chain and/or necklace is split by using at most two split operation
on each level, i.e. at most four split operations. According to Theorem 3, a
split operation takes time O(log |c|). According to Theorem 2, inserting the
new chain in the top-level tree takes constant time. Hence, the total time to
process an event of type 3 is O(log |c|).
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For each node v in ST(S) an event of type 4 is processed, which consists
of a sequence of binary mergings as described in Section 5, by viewing ST(S)
as a binary tree. A binary merging is performed by inserting the indices
from the smaller of the two subtrees into the data structure for the larger
subtree. Denote by e1, . . . , en1

the n1 indices in the smaller subtree. Denote
by D(α) the data structure for the larger subtree and let n2 be the number of
indices in D(α). When e1, . . . , en1

are inserted into D(α) the tree T for D(α)
is split at e1, . . . , en1

into n1 + 1 smaller trees T0, . . . , Tn1+1. Let s0 be the
number of indices in D(α) smaller than e1, let si, for i = 1, . . . , n1 − 1, be the
number of indices larger than ei and smaller than ei+1 in D(α), and let sn1

be the number of indices in D(α) larger than en1
. According to Theorems 2

and 3 split takes time O(log min{|T ′|, |T ′′|}), where T ′ and T ′′ are the two
resulting trees. It follows that the total time for the splitting at e1, . . . , en1

is
∑n1+1

i=1 O(log si) =
∑n1+1

i=1 O(log n1+n2

n1
) = O(n1 log n1+n2

n1
). After the splitting

the trees and the indices e1, . . . , en1
are joined. The time bound for joining

is proportional to the time bound for splitting. All other operations, like
updating NCS(α) and ZS(α), take time O(n1). Since both splitting and joining
takes time O(n1 log n1+n2

n1
) it follows from Lemma 1 that the total time for

processing all events of type 4 is O(n log n).
We now turn to combine the above time bounds for the different events into

an amortization argument, showing that the running time of the algorithm
is dominated by the time for all events of type 4, i.e. the running time of
the algorithm is O(n log n). Let v be a node in the suffix tree and let α
be a string with locus v or locus on the edge immediately above v. The
data structure D(α) has potential Φ(D(α)). Let C be the set of chains stored
in D(α). For a chain c, let |c| denote the number of occurrences of α in c. We
define the potential of D(α) by the sum

Φ(D(α)) = Φ1(α) + Φ2(α) +
∑

c∈C

Φ3(c) ,

where the rôle of Φ1, Φ2, and Φ3 is to account for the potential required to be
able to process events of type 1, 2, and 3 respectively. Let k denote the number
of chunks in D(α) and let g denote the number of green chunks (defined below)
in D(α). The three potentials Φ1, Φ2, and Φ3, are defined by

Φ1(α) = 7g log
|v| · e

g
,

Φ2(α) = k log
|v| · e

k
,

Φ3(c) = 2|c| − log |c| − 2 ,

with the exceptions that Φ1(α) = 0 if g = 0, and Φ2(α) = 0 if k = 0.
Note that the potential of a leaf of ST(()S) is zero and that Φ1 and Φ2 are
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Figure 8: Coloring of chunks while shortening α: (a) red chunk, (b) green
chunk, (c) recomputation of excess and green-to-red color change

monotonic increasing for g and k in the range [0 .. |v|]. For a chunk, with
leftmost occurrence of α at position i, consider the substring S[i .. j] with
maximal j and S[i .. j] having period p, where p = p(α) is the period of α.
Note that the rightmost occurrence at position r in the chunk always covers
position j−p+1, since otherwise there is an occurrence of α at position r+p.
We denote the chunk green if and only if |α| mod p ≤ j−i+1 mod p. Otherwise
the chunk is red.

The important property of the color of chunks is that when a chunk changes
color from red to green while shortening α, then there exists a node in ST(S)
where the merging of the leaf lists increases the number of occurrences in the
chunk by exactly one occurrence, i.e. it is sufficient to charge each insertion
in a binary merge by the creation of one green chunk. The increase in the
potential Φ1 can then be charged to the processing of events of type 4. When
a chunk becomes green in ST(S), then |α| mod p = j − i + 1 mod p, implying
that the last occurrence of α in the chunk is at position j − |α|+ 1 and covers
position j but not j + 1. Since S[j + 1] 6= S[j + 1 − p], it follows that the
indices of the occurrences of α at positions j−|α|+1 and j−α+1−p cannot
be contained in the same leaf-list of a child, i.e. the locus of α in ST(S) is
a node v of degree at least two, and the chunk consists of indices from the
leaf-lists of two distinct children of v. Figure 8 illustrates the color changes
for a chunk while shortening α.

Consider an event of type 1 where the excess of all k chunks is recomputed.
This event only occurs when |a| mod p = 0, i.e. all chunks are green and g = k.
After the recomputation of the excess all chunks become red. The change of
excess of the k chunks in the worst-case implies that the number of chains is
reduced by 2k, because chunks previously having excess ≥ 2 now have excess
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≤ 1 and are merged with overlapping necklaces. It follows that
∑

c∈C Φ3(c)

is increased by at most 2k log |v|
2k

+ 4k ≤ 6k log |v|
k

. The change in potential

is ∆Φ(D(α)) ≤ −7k log |v|·e
k

+ 6k log |v|
k

≤ −k log |v|
k

, i.e. sufficient potential is

released to pay for the O(k log |v|
k

) time for processing the event.
Consider an event of type 2 where all k chunks become necklaces, and

where g of the k chunks are green. Converting the k chunks to necklaces does
not change the number of chains, since all chunks have excess zero or one.
The change in potential is ∆Φ(D(α)) ≤ −k log |v|

k
, i.e. sufficient potential is

released to pay for the O(k log |v|
k

) time for processing the event.
Consider an event 3 where a chain is split into two chains of size n1 and n2,

where n1 ≤ n2. The change in potential is ∆Φ(D(α)) = ∆Φ3(D(α)) ≤ (2n1 −
log n1 − 2) + (2n2 − log n2 − 2) − (2(n1 + n2) − log(n1 + n2) − 2) = log(n1 +
n2) − log n1 − log n2 − 2 ≤ log(2n2) − log n1 − log n2 − 2 = − log n1 − 1, i.e.
sufficient potential is released to pay for the O(log n1) time for processing the
event.

Above we argued that the total time for processing all events of type 4
is O(n log n), by showing that inserting the indices from a leaf-list of size n1

into the data structure for a leaf-list of size n2 takes time O(n1 log n1+n2

n1
),

where n1 ≤ n2. The merging can at most create n1 new chunks in the data
structure, and increase the number of green chunks by at most n1. If there
are g green chunks before the merging, then there are at most g + n1 green
chunks after the merging and the change in the Φ1 potential for the resulting
data structure is

∆Φ1 ≤ 7(g + n1) log
(n1 + n2) · e

g + n1
− 7g log

n2 · e

g
≤ 7n1 log

(n1 + n2) · e

g + n1
,

which is O
(

n1 log n1+n2

n1

)

.

Similarly, the merging creates at most n1 new chunks and we get ∆Φ2 =

O
(

n1 log n1+n2

n1

)

. For
∑

Φ3 we observe that the n1 insertions first create n1

singleton chains with Φ3 potential zero. Each new singleton chain can then be
joined with the chains to the left and right of it. If c1, . . . , ck are the chains
which are joined into other chains, k ≤ 2n1, then the change in the potential
∑

Φ3 for the data structure is

∆
∑

Φ3 ≤
k∑

i=1

(log |ci| + 2) ≤ 2k + k log
n1 + n2

k
= O(n1 log

n1 + n2

n1
) .

We conclude that the total amortized time for the binary merging of two leaf-
lists of size n1 and n2 is O(n1 log n1+n2

n1
). By Lemma 1 the total amortized

time for handling all events of type 4 is O(n log n).
The event queue EQ is implemented as an array with n entries, each con-

taining a linked list of the events with a specific priority. Insertions and
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deletions can be done in constant time, given that we maintain a pointer to
the event to delete. Hence, the total time for the operations in EQ is limited
by the total number of events processed by the algorithm and the space used
is O(n + m), where fm is the maximum number of events in EQ at the same
time.

To show that the number of events of type 1 is O(n) we have to show that
the excess changes at most once on an edge (u, v) in the suffix tree. Let u be
above v in the suffix tree. Assume that the excess changes twice along (u, v).
Let L(u) = αu and let L(v) = αv. Say that the excess changes at length i·p(αv)
and (i − 1) · p(αv), where |αv| > i · p(αv) > (i − 1) · p(αv) > |αu|. It follows
that αv[1 .. (i − 1) · p(αv)] occurs at both positions 1 and 1 + p(αv) in αv. By
considering the rightmost occurence of αv in S, this means that there has to
be an insertion into the leaf-list between v and u, i.e. there is a node between
v and u. This is a contradiction and we conclude that there can not be two
excess changes along any single edge. The number of events of type 2 is not
more than the number of events of type 1, i.e. at most O(n). The total number
of events of type 3 is limited by the number of insertions of indices into the
data structure in processing event of type 4. This is shown above to be at
most O(n log n). At any time during the execution of the algorithm each leaf
is involved in at most one event of type 3 as the first of the indices for the
overlapping occurrences, hence at most O(n) events of type 3 are in EQ at
the same time. The total number of events of type 4 is equal to the number
of internal nodes in the suffix tree, which is at most O(n). It follows that
the event queue EQ will use O(n) space and insertions and deletions will take
time O(n log n) in total. 2
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