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ob�Abstra
tWe propose a version of 
a
he oblivious sear
h trees whi
h is simplerthan the previous proposal of Bender, Demaine and Fara
h-Colton andhas the same 
omplexity bounds. In parti
ular, our data stru
ture avoidsthe use of weight balan
ed B-trees, and 
an be implemented as just asingle array of data elements, without the use of pointers. The stru
turealso improves spa
e utilization.For storing n elements, our proposal uses (1 + ")n times the elementsize of memory, and performs sear
hes in worst 
ase O(logB n) memorytransfers, updates in amortized O((log2 n)=("B)) memory transfers, andrange queries in worst 
ase O(logB n+ k=B) memory transfers, where kis the size of the output.The basi
 idea of our data stru
ture is to maintain a dynami
 binarytree of height logn + O(1) using existing methods, embed this tree ina stati
 binary tree, whi
h in turn is embedded in an array in a 
a
heoblivious fashion, using the van Emde Boas layout of Prokop.We also investigate the pra
ti
ality of 
a
he obliviousness in the areaof sear
h trees, by providing an empiri
al 
omparison of di�erent methodsfor laying out a sear
h tree in memory.1 Introdu
tionModern 
omputers 
ontain a hierar
hy of memory levels, with ea
h level a
tingas a 
a
he for the next. Typi
al 
omponents of the memory hierar
hy are:registers, level 1 
a
he, level 2 
a
he, main memory, and disk. The time fora

essing a level in the memory hierar
hy in
reases from one 
y
le for registersand level 1 
a
he to �gures around 10, 100, and 100,000 
y
les for level 2 
a
he,main memory, and disk, respe
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a

ess depend highly on what is the 
urrent lowest memory level 
ontainingthe element a

essed. The evolution in CPU speed and memory a

ess timeindi
ates that these di�eren
es are likely to in
rease in the future [13, pp. 7and 429℄.As a 
onsequen
e, the memory a

ess pattern of an algorithm has be
omea key 
omponent in determining its running time in pra
ti
e. Sin
e 
lassi
asymptoti
al analysis of algorithms in the RAM model is unable to 
apturethis, a number of more elaborate models for analysis have been proposed.The most widely used of these is the I/O model of Aggarwal and Vitter [1℄,whi
h assumes a memory hierar
hy 
ontaining two levels, the lower level hav-ing size M and the transfer between the two levels taking pla
e in blo
ks of Belements. This model is illustrated in Figure 1. The 
ost of the 
omputationin the I/O model is the number of blo
ks transferred. This model is adequatewhen the memory transfer between two levels of the memory hierar
hy dom-inates the running time, whi
h is often the 
ase when the size of the datasigni�
antly ex
eeds the size of main memory, as the a

ess time is very largefor disks 
ompared to the remaining levels of the memory hierar
hy.
Blo
kMemory 1CPU Memory 2

Figure 1: The I/O modelRe
ently, the 
on
ept of 
a
he oblivious algorithms has been introdu
ed byFrigo et al. [12℄. In essen
e, this designates algorithms optimized in the I/Omodel, ex
ept that one optimizes to a blo
k size B and a memory sizeM whi
hare unknown. This seemingly simple 
hange has signi�
ant 
onsequen
es: sin
ethe analysis holds for any blo
k and memory size, it holds for all levels of thememory hierar
hy. In other words, by optimizing an algorithm to one unknownlevel of the memory hierar
hy, it is optimized to ea
h level automati
ally.Furthermore, the 
hara
teristi
s of the memory hierar
hy do not need to beknown, and do not need to be hardwired into the algorithm for the analysis tohold. This in
reases the portability of implementations of the algorithm, whi
his important in many situations, in
luding produ
tion of software librariesand 
ode delivered over the web. For further details on the 
on
ept of 
a
heobliviousness, see [12℄. 2



Frigo et al. [12℄ present optimal 
a
he oblivious algorithms for matrix trans-position, FFT, and sorting. Bender et al. [5℄, give a proposal for 
a
he obliv-ious sear
h trees with sear
h 
ost mat
hing that of standard (
a
he aware)B-trees [4℄. While most of the results in [5, 12℄ are of theoreti
al nature, [12℄
ontains some preliminary empiri
al investigations indi
ating the 
ompetitive-ness of 
a
he oblivious algorithms. The authors de
lare the determination ofthe range of pra
ti
ality of 
a
he oblivious algorithms an important avenuefor future resear
h.In this paper, we study further the subje
t of 
a
he oblivious sear
h trees.In the �rst part, we propose a simpli�ed version of the 
a
he oblivious sear
htrees from [5℄, a
hieving the same 
omplexity bounds. In parti
ular, our datastru
ture avoids the use of weight balan
ed B-trees of Arge and Vitter [3℄,and it 
an be implemented in a single array of data elements without theuse of pointers. Our stru
ture also improves spa
e utilization, implying thatfor given n, a larger fra
tion of the stru
ture 
an reside in lower levels of thememory hierar
hy. The la
k of pointers also makes more elements �t in a blo
k,thereby in
reasing the parameter B. These e�e
ts tend to de
rease runningtime in pra
ti
e. For storing n elements, our data stru
ture uses (1+")n timesthe element size of memory. Sear
hes are performed in worst 
ase O(logB n)memory transfers, updates in amortized O((log2 n)=("B)) memory transfers,and range queries in worst 
ase O(logB n + k=B) memory transfers, where kis the size of the output. This mat
hes the asymptoti
 
omplexities of [5℄. Wenote that as in [5℄, the amortized 
omplexity of updates 
an be lowered bythe te
hnique of substituting leaves with pointers to bu
kets ea
h 
ontaining�(logn) elements and maintaining the size bound of the bu
kets by splitting(merging) over
owing (under
owing) bu
kets. The pri
e to pay is that ranges
annot be reported in the optimal number �(k=B) of memory transfers, sin
ethe bu
kets 
an reside in arbitrary positions in memory.The basi
 idea of our data stru
ture is to maintain a dynami
 binary treeof height logn + O(1) using existing methods [2, 14℄, embed this tree in astati
 binary tree, whi
h in turn is embedded in an array in a 
a
he obliviousfashion, using the van Emde Boas layout [5, 19, 22℄. The stati
 stru
tures aremaintained by global rebuilding, i.e. they are rebuilt ea
h time the dynami
tree has doubled or halved in size.In the last part of this paper, we try to assess more systemati
ally theimpa
t of the memory layout of sear
h trees by 
omparing experimentallythe eÆ
ien
y of the 
a
he-oblivious van Emde Boas layout with a 
a
he-awarelayout based on multiway trees, and with 
lassi
al layouts su
h as Breath FirstSear
h (BFS), Depth First Sear
h (DFS), and inorder. Our results indi
atethat the ni
e theoreti
al properties of 
a
he oblivious sear
h trees a
tually do
arry over into pra
ti
e. We also implement our proposal, and 
on�rm itspra
ti
ality. 3



1.1 Related workOne te
hnique used by our data stru
ture is a 
a
he oblivious layout of stati
binary sear
h trees permitting sear
hes in the asymptoti
ally optimal num-ber of memory transfers. This layout, the van Emde Boas layout, was pro-posed by Prokop [19, Se
tion 10.2℄, and is related to a data stru
ture ofvan Emde Boas [21, 22℄.Another te
hnique used is the maintenan
e of binary sear
h trees of heightlogn+O(1) using lo
al rebuildings of subtrees. The small height of the tree al-lows it to be embedded in a perfe
t binary tree (a tree with 2k�1 internal nodesand optimal height) whi
h has only a 
onstant fa
tor more nodes. Te
hniquesfor maintaining small height in binary trees were proposed by Andersson andLai [2℄, who gave an algorithm for maintaining height dlog(n+ 1)e + 1 usingamortized O(log2 n) work per update. By viewing the tree as a linear list,this problem 
an be seen to be equivalent to the problem of maintaining nelements in sorted order in an array of length O(n), using even redistributionof the elements in a se
tion of the array as the reorganization primitive duringinsertions and deletions of elements. In this formulation, a similar solutionhad previously been given by Itai et al. [14℄, also using amortized O(log2 n)work per update. In [9℄, a mat
hing 
(log2 n) lower bound for algorithmsusing this primitive was given.Both the van Emde Boas layout and the te
hnique of Itai et al. were used inthe previous proposal for 
a
he oblivious sear
h trees [5℄. The diÆ
ulty of thisproposal originates mainly from the need to 
hange the van Emde Boas layoutduring updates, whi
h in turn ne
essitates the use of the weight balan
ed B-trees of Arge and Vitter [3℄. By managing to use a stati
 van Emde Boaslayout (ex
ept for o

asional global rebuildings of the entire stru
ture), weavoid the use of weight balan
ed B-trees, and arrive at a signi�
antly simplerstru
ture.Another improvement in our data stru
ture is to avoid the use of pointers.The term impli
it is often used for pointer-free implementations of trees andother data stru
tures whi
h are normally pointer based. One early exampleis the heap of Williams [23℄. There is a large body of work dealing withimpli
it data stru
tures, see e.g. [7, 11, 18℄ and the referen
es therein. In thatwork, the term impli
it is often de�ned as using only spa
e for the n elementsstored, plus O(1) additional spa
e. In the present paper, we will abuse theterminology a little, taking impli
it to mean a stru
ture stored entirely in anarray of elements of length O(n).We note that independently, a data stru
ture very similar to ours has beenproposed by Bender et al. [6℄. Essentially, their proposal is leaf-oriented, whereours is node-oriented. The leaf-oriented version allows an easy implementa-tion of optimal s
anning from any given lo
ation (the node-oriented versionneeds su

essor pointers for this), whereas the node-oriented version allows4



an impli
it implementation, with the asso
iated in
rease in B and de
rease inmemory usage.The impa
t of di�erent memory layouts for data stru
tures has been stud-ied before in di�erent 
ontexts. In 
onne
tion with matri
es, signi�
ant speed-ups 
an be a
hieved by using layouts optimized for the memory hierar
hy|seee.g. the paper by Chatterjee et al. [8℄ and the referen
es it 
ontains. LaMar
aand Ladner 
onsider the question in 
onne
tion with heaps [16℄. Among otherthings, they repeat an experiment performed by Jones [15℄ ten years earlier,and demonstrate that due to the in
reased gaps in a

ess time between levelsin the memory hierar
hy, the d-ary heap has in
reased 
ompetitiveness rel-ative to the pointer-based priority queues. For sear
h trees, B-trees are thestandard way to implement trees optimized for the memory hierar
hy. In theI/O-model, they use the worst 
ase optimal number of memory transfers forsear
hes. For external memory, they are the stru
ture of 
hoi
e, and are widelyused for storing data base indexes. Also at the 
a
he level, their memory op-timality makes them very 
ompetitive to other sear
h trees [17, p. 127℄.Re
ently, Rahman and Raman [20℄ made an empiri
al study of the perfor-man
e of various sear
h tree implementations, with fo
us on showing the signif-i
an
e of also minimizing translation look-aside bu�er (TLB) misses. Basedon exponential sear
h trees, they implemented a dynamization of the vanEmde Boas layout supporting sear
hes and updates in O(logB(n) + log log n)memory transfers. They 
ompared it experimentally to standard B-trees andthree-level 
a
he aware trees, and reported that the 
a
he oblivious trees werebetter than standard B-trees but worse than the 
a
he aware stru
tures.1.2 PreliminariesAs usual when dis
ussing sear
h trees, a tree is rooted and ordered. The depthd(v) of a node v in a tree T is the number of nodes on the simple path fromthe node to the root. The height h(T ) of T is the maximum depth of a nodein T , and the size jT j of T is the number of nodes in T . For a node v in atree, we let Tv denote the subtree rooted at v, i.e. the subtree 
onsisting of vand all its des
endants, and we let the height h(v) of v be the height of Tv.A 
omplete tree T is a tree with 2h(T )�1 nodes.A sear
h tree will denote a tree where all nodes store an element from sometotally ordered universe, and where all elements stored in the left and rightsubtrees of a node v are respe
tively smaller than and larger than the elementat v. We say that a tree T1 
an be embedded in another tree T2, if T1 
an beobtained from T2 by pruning subtrees. In Figure 2 is shown the embedding ofa sear
h tree of size 10 in a 
omplete tree of height 5.
5



641 3 5 87 1110 13Figure 2: The embedding of a sear
h tree with height 4 and size 10 in a 
ompletetree with height 52 Memory Layouts of Stati
 TreesIn this se
tion we dis
uss four memory layouts for stati
 trees: DFS, inorder,BFS, and van Emde Boas layouts. We assume that ea
h node is representedby a node re
ord and that all node re
ords for a tree are stored in one array.We distinguish between pointer based and impli
it layouts. In pointer basedlayouts the navigation between a node and its 
hildren is done via pointersstored in the node re
ords. In impli
it layouts no pointers are stored; thenavigation is based solely on address arithmeti
. Whereas all layouts havepointer based versions, impli
it versions are only possible for layouts where theaddress 
omputation is feasible. In this paper we will only 
onsider impli
itlayouts of 
omplete trees. A 
omplete tree of size n is stored in an array of nnode re
ords.DFS layout The nodes of T are stored in the order they are visited by aleft-to-right depth �rst traversal of T (i.e. a preorder traversal).Inorder layout The nodes of T are stored in the order that they are visitedby a left-to-right inorder traversal of T .BFS layout The nodes of T are stored in the order they are visited by aleft-to-right breath �rst traversal of T .van Emde Boas layout The layout is de�ned re
ursively: A tree with onlyone node is a single node re
ord. If a tree T has two or more nodes, letH0 = dh(T )=2e, let T0 be the tree 
onsisting of all nodes in T with depthat most H0, and let T1; : : : ; Tk be the subtrees of T rooted at nodes withdepth H0 + 1, numbered from left to right. We will denote T0 the toptree and T1; : : : ; Tk the bottom trees of the re
ursion. The van EmdeBoas layout of T 
onsists of the van Emde Boas layout of T0 followed bythe van Emde Boas layouts of T1; : : : ; Tk.Figure 3 gives the impli
it DFS, inorder, BFS, and van Emde Boas layouts fora 
omplete tree with height four.We now dis
uss how to 
al
ulate the position of the 
hildren of a node vat position i in the impli
it layouts. For the BFS layout, the 
hildren are atposition 2i and 2i + 1|a fa
t exploited already in the 1960s in the design ofthe impli
it binary heap [23℄. For the DFS layout, the two 
hildren are at6



DFS1234 5 67 8 91011 12 1314 15 inorder8421 3 65 7 12109 11 1413 15
BFS1248 9 510 11 3612 13 714 15 van Emde Boas1245 6 78 9 31011 12 1314 15Figure 3: The DFS, inorder, BFS, and van Emde Boas layouts for a 
omplete treewith height 4. Numbers designate positions in the array of node re
ordspositions i+ 1 and i+ 2h(v)�1, and in the inorder layout the two 
hildren areat positions i� 2h(v)�2 and i+ 2h(v)�2.For the impli
it van Emde Boas layout the 
omputations are more involved.Our solution is based on the fa
t that if we for a node in the tree unfold there
ursion in the van Emde Boas layout until this node is the root of a bottomtree, then the unfolding will be the same for all nodes of the same depth. In apre
omputed table of size O(log n), we for ea
h depth d store the size B[d℄ ofthis bottom tree, the size T [d℄ of the 
orresponding top tree, and the depthD[d℄of the root of the 
orresponding top tree. When laying out a stati
 tree, webuild this table in O(logn) time by a straightforward re
ursive algorithm.During a sear
h from the root, we keep tra
k of the position i in a BFSlayout of the 
urrent node v of depth d. We also store the position Pos [j℄ inthe van Emde Boas layout of the node passed at depth j for j < d during the
urrent sear
h. As the bits of the BFS number i represents the left and rightturns made during the sear
h, the log(T [d℄ + 1) least signi�
ant bits of i givesthe index of the bottom tree with v as root among all the bottom trees of the
orresponding top tree. Sin
e T [d℄ is of the form 2k�1, these bits 
an be foundas i and T [d℄. It follows that for d > 1, we 
an 
al
ulate the position Pos [d℄of v by the expressionPos [d℄ = Pos[D[d℄℄ + T [d℄ + (i and T [d℄) � B[d℄ :At the root, we have i = 1, d = 1, and Pos [1℄ = 1. Navigating from a nodeto a 
hild is done by �rst 
al
ulating the new BFS position from the old, andthen �nding the value of the expression above.The worst 
ase number of memory transfers during a top down traversal ofa path using the above layout s
hemes is as follows, assuming ea
h blo
k storesB nodes. With the BFS layout, the topmost blog(B + 1)
 levels of the tree7



will be 
ontained in at most two blo
ks, whereas ea
h of the following blo
ksread only 
ontains one node from the path. The total number of memorytransfers is therefore �(log(n=B)). For the DFS and inorder layouts, we getthe same worst 
ase bound when following the path to the rightmost leaf, sin
ethe �rst dlog(n+ 1)e � dlogBe nodes have distan
e at least B in memory,whereas the last blog(B + 1)
 nodes are stored in at most two blo
ks. AsProkop [19, Se
tion 10.2℄ observed, in the van Emde Boas layout there are atmost O(logB n) memory transfers. Note that only the van Emde Boas layouthas the asymptoti
ally optimal bound a
hieved by B-trees [4℄.We note that DFS, inorder, BFS, and van Emde Boas layouts all supporteÆ
ient range queries (i.e. the reporting of all elements with keys within agiven query interval), by the usual re
ursive inorder traversal of the relevantpart of the tree, starting at the root.We argue below that the number of memory transfers for a range query inea
h of the four layouts equals the number of memory transfers for two sear
hesplus O(k=B), where k is the number of elements reported. If a range report-ing query visits a node that is not 
ontained in one of the sear
h paths to theendpoints of the query interval, then all elements in the subtree rooted at thenode will be reported. As a subtree of height dlog(B + 1)e stores between Band 2B� 1 elements, at most k=B nodes with height larger than dlog(B + 1)eare visited whi
h are not on the sear
h paths to the two endpoints. Sin
e sub-trees are stored 
ontiguously for both the inorder and DFS layouts, a subtreeof height dlog(B + 1)e is stored in at most three blo
ks. The 
laimed boundfollows for these layouts. For the van Emde Boas layout, 
onsider a subtree Tof height dlog(B + 1)e. There exists a level in the re
ursive layout where thetopmost levels of T will be stored in a re
ursive top tree and the remaininglevels of T will be stored in a 
ontiguous sequen
e of bottom trees. Sin
e thetop tree and ea
h bottom tree has size less than 2B � 1 and the bottom treesare stored 
ontiguously in memory, the bound for range reportings in the vanEmde Boas layout follows.For the BFS layout, we prove the bound under the assumption that thememory size is 
(B logB). Observe that the inorder traversal of the relevantnodes 
onsists of a left-to-right s
an of ea
h level of the tree. Sin
e ea
h levelis stored 
ontiguously in memory, the bound follows under the assumptionabove, as the memory 
an hold one blo
k for ea
h of the lowest dlog(B + 1)elevels simultaneously.3 Sear
h Trees of Small HeightIn the previous se
tion, we 
onsidered how to lay out a stati
 
omplete treein memory. In this se
tion, we des
ribe how the stati
 layouts 
an be usedto store dynami
 balan
ed trees. We �rst des
ribe an insertions only s
heme8



and later show how this s
heme 
an be extended to handle deletions and toa
hieve spa
e usage arbitrary 
lose to optimal.Our approa
h is to embed a dynami
 tree in a stati
 
omplete tree bymaintaining a height bound of logn + O(1) for the dynami
 tree, where nis its 
urrent size. It follows that the dynami
 tree 
an be embedded in a
omplete tree of height log n+O(1) and size O(n). Whenever n has doubled,we 
reate a new stati
 tree. The following subse
tions are devoted to treerebalan
ing s
hemes a
hieving height log n+O(1).Our s
heme is very similar to the tree balan
ing s
heme of Andersson [2℄and to the s
heme of Itai et al. [14℄ for supporting insertions into the middleof a �le. Bender et al. [5℄ used a similar s
heme in their 
a
he oblivious sear
htrees, but used it to solve the \pa
ked-memory problem", rather than dire
tlyto maintain balan
e in a tree. Note that the embedding of a dynami
 treein a 
omplete tree implies that we 
annot use rebalan
ing s
hemes whi
h arebased on rotations, or, more generally, s
hemes allowing subtrees to be movedby just 
hanging the pointer to the root of the subtree, as e.g. is the 
ase inthe rebalan
ing s
heme of Fagerberg [10℄ a
hieving height dlogn+ o(1)e.3.1 InsertionsLet T denote the dynami
 binary sear
h tree, and let H be the upper boundon h(T ) we want to guarantee, i.e. the height we will use for the 
ompletetree in whi
h T is embedded. For a node v in T , we let s(v) = 2H�d(v)+1 � 1denote the size of the subtree rooted at v in the 
omplete tree. We de�ne thedensity of v to be the ratio �(v) = jTvj=s(v), and de�ne a sequen
e of evenlydistributed density thresholds 0 < �1 < �2 < � � � < �H = 1 by �i = �1+(i�1)�for 1 � i � H and � = (1 � �1)=(H � 1). We maintain the invariant at theroot r of T that �(r) � �1. This implies the 
onstraint n=(2H � 1) � �1, i.e.H � log(n=�1+1). If for some N the 
urrent 
omplete tree should be valid forall n � N , we let H = dlog(N=�1 + 1)e. In the following we assume �1 � 1=2and N = O(n), su
h that H = logn+O(1).The insertion of a new element into a tree T of n � N�1 elements pro
eedsas follows:1. We lo
ate the position in T of the new node v via a top down sear
h,and 
reate v.2. If d(v) = H + 1, we rebalan
e T as follows. First, we in a bottom-upfashion �nd the nearest an
estor w of v with �(w) � �d(w). This happensat the root at the latest. We need not store the sizes of nodes expli
itly,as we 
an 
ompute jTwj by a traversal of Tw. Sin
e the an
estors of v areexamined bottom-up one by one, we have already 
omputed the size ofone 
hild when examining a node, and it suÆ
es to traverse the subtreerooted at the other 
hild in order to 
ompute the total size. After having9



lo
ated w, we rebalan
e Tw by evenly distributing the elements in Tw asfollows. We �rst 
reate a sorted array of all elements in Tw by an inordertraversal of Tw. The djTwj=2eth element be
omes the element stored atw, the smallest b(jTwj � 1)=2
 elements are re
ursively distributed in theleft subtree of w and the largest d(jTwj � 1)=2e elements are re
ursivelydistributed in the right subtree of w.In the redistribution step, the use of an additional array 
an be avoidedby 
ompa
ting the elements into the rightmost end of the 
omplete subtreerooted at v by a right-to-left inorder traversal, and then inserting the elementsat the positions des
ribed above in a left-to-right inorder traversal.Lemma 1 A redistribution at v implies b�(v) � s(w)
�1 � jTwj � d�(v) � s(w)efor all des
endants w of v.Proof. We prove the bounds by indu
tion on the depth of w. The bounds holdfor w = v, sin
e by de�nition jTvj = �(v)�s(v). Let u be a des
endant of v, let wand w0 be the 
hildren of u, and assume the bounds hold for u. Sin
e �(v) � 1,we have jTuj � d�(v) � s(u)e = d�(v) � (1 + s(w) + s(w0))e � 1+d�(v) � s(w)e+d�(v) � s(w0)e. From s(w) = s(w0) we get d(jTuj � 1)=2e � d�(v) � s(w)e. Thedistribution algorithm guarantees that jTwj � d(jTuj � 1)=2e, implying jTwj �d�(v) � s(w)e.We also have jTuj � b�(v) � s(u)
 � 1 � b�(v) � (s(w) + s(w0))
 � 1 �(b�(v) � s(w)
 � 1) + (b�(v) � s(w0)
 � 1) + 1. Be
ause s(w) = s(w0), we getb(jTuj � 1)=2
 � b�(v) � s(w)
�1. The distribution algorithm guarantees thatjTwj � b(jTuj � 1)=2
, implying jTwj � b�(v) � s(w)
 � 1. 2Theorem 1 Insertions require amortized O((log2 n)=(1��1)) time and amor-tized O(logB n+ (log2 n)=(B(1� �1))) memory transfers.Proof. Consider a redistribution at a node v, 
aused by an insertion below v.By the rebalan
ing algorithm, we for a 
hild w of v have jTwj > �d(w) � s(w),as the redistribution otherwise would have taken pla
e at w. Immediatelyafter the last time there was a redistribution at v or at an an
estor of v,we by Lemma 1 had jTwj < �d(v) � s(w) + 1. It follows that the number ofinsertions below w sin
e the last redistribution at v or an an
estor of v is atleast �d(w) �s(w)�(�d(v) �s(w)+1) = � �s(w)�1. The redistribution at v takestimeO(s(v)), whi
h 
an be 
overed by 
harging O(s(v)=maxf1;��s(w)�1g) =O(1=�) to ea
h of the mentioned insertions below w. Sin
e ea
h 
reated nodehas at most H an
estors and hen
e is 
harged at most H times, the amortizedredistribution time for an insertion is O(H=�) = O(H2=(1 � �1)).Sin
e a top-down sear
h requires O(logB N) memory transfers and theredistribution is done solely by inorder traversals requiringO(maxf1; s(v)=Bg)memory transfers, the bound on memory transfers follows. 210



Example. Assume that �1 = 0:9. This implies that we in
rease H by onewhenever an insertion 
auses n > �1(2H � 1). Sin
e in
reasing H by onedoubles the size of the 
omplete tree, this implies that we always have densityat least 0.45, i.e. the array used for the layout has size at most 1=0:45n = 2:2n.Note that the spa
e usage in the worst 
ase is at least 2n, independently ofthe 
hoi
e of �1. Sin
e the size of the 
omplete tree doubles ea
h time H isin
reased, the global rebuilding only in
reases the amortized update 
ost bya 
onstant additive term. By Lemma 1, all nodes v with depth H � 2 in the
omplete tree, i.e. with s(v) = 7, are present in T , sin
e b0:45 � 7
 � 1 > 0.The number of memory transfers for range sear
hes is therefore guaranteed tobe asymptoti
ally optimal.3.2 DeletionsOne standard approa
h to add deletions is to simply mark elements as deleted,removing marked nodes by a global rebuilding when, say, half of the elementshave been deleted. The disadvantage of this s
heme is that lo
ally, elements
an end up being sparsely distributed in memory, su
h that no bound on thenumber of memory transfers for a range sear
h 
an be guaranteed.To support range queries with a worst-
ase guarantee on the number ofmemory transfers, the tree T must be rebalan
ed after deletions. The ideais similar to the s
heme used for insertions, ex
ept that we now also havelower bound density thresholds 0 � 
H < � � � < 
2 < 
1 < �1, where 
i =
1 � (i� 1)�0 for 1 � i � H and �0 = (
1 � 
H)=(H � 1). For the root r of Twe require the invariant 
1 � �(r) � �1.Deletion is done as des
ribed below. Insertions are handled as des
ribedin Se
tion 3.1, ex
ept that Step 2 is repla
ed by Step 2 below.1. First, we lo
ate the node v in T 
ontaining the element e to be deleted,via a top down sear
h in T . If v is not a leaf and v has a right subtree,we then lo
ate the node v0 
ontaining the immediate su

essor to e (thenode rea
hed by following left 
hildren in the right subtree of v), swapthe elements at v and v0, and let v = v0. We repeat this until v is aleaf. If v is not a leaf but v has no right subtree, we symmetri
ally swapv with the node 
ontaining the prede
essor of e. Finally, we delete theleaf v from T .2. We rebalan
e the tree by rebuilding the subtree rooted at the lowestan
estor w of v satisfying 
d(w) � �(w) � �d(w).Theorem 2 Insertions and deletions require amortized O((log2 n)=�) timeand amortized O(logB n+(log2 n)=(B�)) memory transfers, where � is de�nedas minf
1 � 
H ; 1� �1g. 11



Proof. Consider a redistribution at a node v. If the redistribution is 
ausedby an update below a 
hild w of v leading to jTwj > �d(w) � s(w), then theargument is exa
tly as in Theorem 1. Otherwise the redistribution is 
ausedby an update below a 
hild w of v leading to jTwj < 
d(w) � s(w). Immediatelyafter the last time there was a redistribution at v or at an an
estor of v,we by Lemma 1 had jTwj > 
d(v) � s(w) � 2. It follows that the number ofdeletions sin
e the last rebuild at v or an an
estor of v is at least (
d(v) �s(w)�2) � 
d(w) � s(w) = �0 � s(w) � 2. By averaging the redistribution time overthe deletions, the amortized redistribution time of a deletion is seen to beO(H=�0) = O(H2=(
1 � 
H)). 2Example. Assume �1 = 0:9, 
1 = 0:35, and 
H = 0:3. We in
rease H byone whenever an insertion 
auses n > �1(2H � 1) and de
rease H by onewhenever a deletion 
auses n < 
1(2H � 1). With the parameters above, wehave that when H is 
hanged, at least (�1=2 � 
1)n = 0:1n updates must beperformed before H is 
hanged again, so the global rebuilding only in
reasesthe amortized update 
ost by a 
onstant additive term. The array used for thelayout has size at most n=
1 = 2:9n. By Lemma 1, all nodes with depth H�2(and hen
e size 7) in the 
omplete tree are present in T , as b
H � 7
 � 1 > 0.The number of memory transfers for range sear
hes is therefore asymptoti
allyoptimal.3.3 Improved densitiesThe rebalan
ing s
hemes 
onsidered in the previous se
tion require in theworst 
ase spa
e at least 2n, due to the o

asional doubling of the array. Inthis se
tion, we des
ribe how to a
hieve spa
e (1 + ")n, for any " > 0. As a
onsequen
e, we a
hieve spa
e usage 
lose to optimal and redu
e the numberof memory transfers for range sear
hes.Our solution is the following. Let N be the spa
e we are willing to use(not ne
essarily a power of two), and let �1 and 
1 be density thresholds su
hthat 
1 � n=N � �1. Whenever the density threshold be
omes violated, anew N must be 
hosen. If N = 2k � 1 for some k, then we 
an apply theprevious s
hemes dire
tly. Otherwise, assume N = 2b1 + 2b2 + � � � 2bk , whereb1; : : : ; bk are non-negative integers satisfying bi > bi+1, i.e. the bi values arethe positions of 1s in the binary representation of N . For ea
h bi, we will have atree Fi 
onsisting of a root ri with no left 
hild and a right subtree Ci whi
h is a
omplete tree of size 2bi�1. The elements will be distributed among F1; : : : ; Fksu
h that all elements stored in Fi are smaller than the elements in Fi+1. If Fistores at least one element, the minimum element in Fi is stored at ri andthe remaining elements are stored in a tree Ti whi
h is embedded in Ci. Thetrees are laid out in memory in the order r1; r2; : : : ; rk; C1; C2; : : : ; Ck, whereea
h Ci is laid out using the van Emde Boas layout.12



A sear
h for an element e pro
eeds by examining the elements at r1; : : : ; rkin in
reasing order until e is found or the subtree Ti is lo
ated that must
ontain e, i.e. e is larger than the element at ri and smaller than the elementat ri+1. In the latter 
ase, we perform a top-down sear
h on Ti. The total timefor a sear
h is O(i+ bi) = O(logN) using O(i=B+logB(2bi �1)) = O(logB N)I/Os.For the rebalan
ing, we view F1; : : : ; Fk as being merged into one big tree F ,where all leafs have the same depth and all internal nodes are binary, ex
ept forthe nodes on the rightmost path whi
h may have degree three. The tree Ci+1is 
onsidered a 
hild of the rightmost node ui in Ci with h(ui) = bi+1+1, andwith the element of ri+1 being a se
ond element of ui. Note that the elementsof F satisfy inorder. For a node v in F , we de�ne s(v) to be the subtree Tvof F plus the number of nodes of degree three, i.e. the number of slots to storeelements in Tv, and jTvj the number of elements stored in Tv. As in Se
tion 3.1and 3.2, we de�ne �(v) = jTvj=s(v). The rebalan
ing is done as in Se
tions 3.1and 3.2, ex
ept that if we have to redistribute the 
ontent of v, we will expli
-itly ensure that the inequality b�(v) � s(w)
 � 1 � jTwj � d�(v) � s(w)e fromLemma 1 is satis�ed for all des
endants w of v. That this is possible followsfrom the inequalities below, where u is a des
endant of v and w1; : : : ; wk arethe 
hildren of u for k = 2 or 3:d�(v) � s(u)e = l�(v) � �k � 1 +Pki=1 s(wi)�m� k � 1 +Pki=1 d�(v) � s(wi)e ;b�(v) � s(u)
 � 1 � j�(v) �Pki=1 s(wi)k� 1� k � 1 +Pki=1(b�(v) � s(wi)
 � 1) :Be
ause Lemma 1 still holds, Theorem 2 also holds. The only 
hange inthe analysis of Theorem 2 is that for a node v on the rightmost path with a
hild w, we now have s(v) � 4s(w), i.e. the bound on the amortized time andnumber of memory transfers in
reases by a fa
tor two.Example. Let " > 0 be an arbitrary small 
onstant su
h that when N is
hosen, N = (1 + ")n. Valid density thresholds 
an then be �1 = (Æ + 1)=2,
1 = (3Æ�1)=2, and 
H = 2Æ�1, where Æ = 1=(1+") is the density immediatelyafter having 
hosen N . After 
hoosing an N , at least N(1 � Æ)=2 = O(N=")updates must be performed before a new N is 
hosen. Hen
e, the amortized
ost of the global rebuildings is O(1=") time and O(1=("B)) memory transfersper update. The worst 
ase spa
e usage is n=
1 = n(1 + ")=(1 � "=2) =n(1 +O(")).
13



4 ExperimentsIn this se
tion, we des
ribe our empiri
al investigations of methods for layingout a sear
h tree in memory.We implemented the four impli
it memory layouts dis
ussed in Se
tion 2:DFS, inorder, BFS, and van Emde Boas. We also implemented a 
a
he awareimpli
it layout based on a d-ary version of the BFS, where d is 
hosen su
hthat the size of a node equals a 
a
he line. Our experiments thus 
omparelayouts whi
h in term of optimization for the memory hierar
hy 
over three
ategories: not optimized, 
a
he oblivious, and 
a
he aware.We also implemented pointer based versions of the layouts, where ea
hnode stored in the array 
ontains the indi
es of its 
hildren. Compared toimpli
it layouts, pointer based layouts have lower instru
tion 
ount for nav-igation, higher total memory usage, and lower number of nodes per memoryblo
k. We implemented one further pointer based layout, namely the layoutwhi
h arises when building a binary tree by random insertions, pla
ing nodesin the array in order of allo
ation. We 
all this the random insertion layout.Our experiments fall in two parts: one dealing with sear
hes in stati
layouts, and one dealing with the dynamization method from Se
tion 3.1. InSe
tion 4.2, we report on the results. We tested several 
ombinations andvariations of the memory layouts and algorithms, but for brevity we onlydes
ribe a subset representative of our general observations.4.1 MethodologyThe 
omputer used to perform the experiments had two 1 GHz Pentium III(Coppermine) pro
essors, 256 KB of 
a
he, and 1 GB of RAM. The programswere written in C, 
ompiled by the GNU g

 
ompiler version 2.95.2.1 withfull optimization (option -O3). The operating system was Linux with kernelversion 2.4.3-12smp.The timing was based on wall 
lo
k time. For the sear
h based experiments,we used the getitimer and setitimer system 
alls to interrupt the programevery 10 se
onds, giving us a relative timing pre
ision of roughly 0:001 formost experiments.The elements were 32 bit in size, as was ea
h of the two pointers pernode used in the pointer based layouts. We only report on integer keys|ourresults with 
oating point keys did di�er (probably due in parts to the di�erent
osts of 
omparisons), but not signi�
antly. We generated uniformly randomintegers by 
asting double pre
ision 
oats returned by drand48(). We onlysear
hed for present keys.Where possible, the programs shared sour
e 
ode, in order to minimize
oding in
onsisten
ies. We also tried to avoid artifa
ts from the 
ompilationpro
ess by e.g. inlining fun
tion 
alls ourselves.14



We performed experiments for n = 2k; 2k�1; 2k+1, and 0:7�2k for a rangeof k. For n not a power of two, the assumption from Se
tion 2 of dealing with
omplete trees is not ful�lled. We adapted to this situation by 
utting thetree at the boundary of the array: If the address of both 
hildren of node v isoutside the array, i.e. larger than n, then v is a leaf, if only the right 
hild isoutside, it is a degree one node. This works be
ause the addresses of 
hildrenare higher than that of their parent (whi
h does not hold for the inorder layout,but there, we simply used binary sear
h).Due to the small di�eren
e between the 1 GB RAM size and 2 GB addressspa
e, experiments beyond main memory required a di�erent setup. This wea
hieved by booting the ma
hine su
h that only 32 MB of RAM was available.However, the bulk of our experiments 
overed trees 
ontained in 
a
he andRAM.The sour
e 
ode of the programs, our s
ripts and tools, and the data wepresent here are available online underftp://ftp.bri
s.dk/RS/01/36/Experiments/.4.2 ResultsFor all graphs, the y-axis is logarithmi
, and depi
ts the average time for onesear
h for (or insertion of) a randomly 
hosen key, measured in se
onds. Allthe x-axes depi
ts log2 n, where n is the number of keys stored in the sear
htree. Note that this translates to di�erent memory usage for impli
it andpointer based layouts.Figure 4 
ompares the time for random sear
hes in pointer based layouts.Pointer based layouts all have the same instru
tion 
ount per level during asear
h. This is re
e
ted in the range n = 210; : : : ; 214 (for whi
h the tree �tsentirely in 
a
he), where the three layouts of optimal height behave identi
ally,while the random insertion layout (whi
h has larger average height) is worse.As n gets bigger, the di�eren
es in memory a

ess pattern starts showing. Forrandom sear
hes, we 
an expe
t the top levels of the trees to reside in 
a
he.For the remaining levels, a 
a
he fault should happen at every level for the BFSlayout, approximately at every se
ond level for the DFS layout (most nodesreside in the same 
a
he line as their left 
hild), and every �(logB n) levels forthe van Emde Boas layout. This analysis is 
onsistent with the graphs.Figure 5 
ompares the time for random sear
hes in impli
it layouts. Forsizes up to 
a
he size (n = 216), it appears that the higher instru
tion 
ountfor navigating in an impli
it layout dominates the running times: most graphsare slightly higher than 
orresponding graphs in Figure 4, and the van EmdeBoas layout (most 
ompli
ated address arithmeti
) is the slowest while theBFS layout (simplest address arithmeti
) is fastest. For larger n, the memorya

ess pattern shows its e�e
t. The high arity layouts (d = 8 and 16) are15
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hes for pointer basedlayouts Figure 5: Sear
hes for impli
it layoutsthe fastest, as expe
ted|they are 
a
he-optimized and have simple addressarithmeti
. The van Emde Boas layout is quite 
ompetitive, eventually beatingBFS and only being 50% slower than the 
a
he aware layouts.The inorder layout has bad performan
e, probably be
ause no nodes in thetop part of the tree share 
a
he lines. It is worst when n is a power of two. Webelieve this as an e�e
t of the limited asso
iativity of the 
a
he: For these n,the nodes of the top of the tree are large powers of two apart in memory, andare mapped to the same few lines in 
a
he.In Figure 6, we 
ompare the sear
h times for the pointer based and theimpli
it versions of the BFS and the van Emde Boas layout. The aim is tosee how the e�e
t of a smaller size and a more expensive navigation 
ompeteagainst ea
h other. For the BFS, the impli
it version wins for all sizes, indi-
ating that its address arithmeti
 is not slower than following pointers. Thisis not the 
ase for the van Emde Boas layout|however, outside of 
a
he, theimpli
it version wins, most likely due to the higher value of B resulting fromthe absen
e of pointers.In Figure 7, we 
ompare the performan
e of the dynami
 versions of someof the data stru
tures. The inorder and the van Emde Boas layout is madesemi-dynami
 by the method from Se
tion 3.1. For the inorder layout, theredistribution during rebalan
ing 
an be implemented parti
ularly simple, justby s
ans of 
ontiguous segments of the array. We use this implementation here.The random insertion layout is semi-dynami
 by de�nition.Starting with a bulk of 10,000 randomly 
hosen elements, we insert bulksof sizes in
reasing by a fa
tor of 1.5. We time the insertion of one blo
k and
al
ulate the average time for inserting one element. The amortization in16
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it BFS and van Emde Boaslayouts Figure 7: Insert time per element
the bounds of the method from Se
tion 3.1 is apparent in the instability ofthe graphs. In 
ontrast, the unbalan
ed pointer based sear
h tree has a rela-tively smooth graph. We remark that the dynamization method of Se
tion 3.1seems quite 
ompetitive, eventually winning over the unbalan
ed pointer basedtree, whi
h for random insertions is known to 
ompete well against stan-dard rebalan
ing s
hemes for binary sear
h trees, su
h as red-bla
k trees (seee.g. [17, p. 127℄). The inorder layout is somewhat faster than the van EmdeBoas layout, whi
h we think is due to the simpler redistribution algorithm.In Figure 8, we 
ompare in more detail the performan
e of the randominsertion layout with the impli
it, semi-dynami
 van Emde Boas layout, show-ing the time for random insertions as well as for random sear
hes. If the datastru
ture is to be used mainly for sear
hes and only o

asionally for updates,the 
a
he oblivious version is preferable already at roughly 216 elements. Buteven if updates dominate, it be
omes advantageous around 223 elements.In Figure 9, we look at the performan
e of the layouts as our memoryrequirement ex
eeds main memory. As said, for this experiment we bootedthe ma
hine in su
h a way that only 32 MB of RAM was available. We
ompare the van Emde Boas layout, the usual BFS layout, and a 1024-aryversion version of it, optimized for the page size of the virtual memory. Thekeys of a 1024-ary nodes are stored in sorted order, and a node is sear
hed bya �xed, inlined de
ision tree. We measure the time for random sear
hes on astati
 tree.Inside main memory, the BFS is best, but looses by a fa
tor of �ve outside.The tree optimized for page size is the best outside main memory, but looses17
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itveb and unbalan
ed sear
h trees Figure 9: Beyond main memoryby a fa
tor of two inside. Remarkably, the van Emde Boas layout is on parwith the best throughout the range.4.3 Con
lusionFrom the experiments reported in this paper, it is apparent that the e�e
tsof the memory hierar
hy in todays 
omputers play a dominant role for therunning time of tree sear
h algorithms, already for sizes of trees well withinmain memory.It also appears that in the area of sear
h trees, the ni
e theoreti
al prop-erties of 
a
he obliviousness seems to 
arry over into pra
ti
e: in our experi-ments, the van Emde Boas layout was 
ompetitive with 
a
he aware stru
tures,was better than stru
tures not optimized for memory a

ess for all but thesmallest n, and behaved robustly over several levels of the memory hierar
hy.One further observation is that the e�e
ts from the spa
e saving and in-
rease in fanout 
aused by impli
it layouts are notable.Finally, the method for dynami
 
a
he oblivious sear
h tree suggested inthis paper seems pra
ti
al, not only in terms of implementation e�ort but alsoin terms of running time.Referen
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