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Abstract
In this paper we present an experimental evaluation of the
algorithms by Brodal et al. [SODA 2013] for computing
the triplet and quartet distance measures between two leaf
labelled rooted and unrooted trees of arbitrary degree,
respectively. The algorithms count the number of rooted tree
topologies over sets of three leaves (triplets) and unrooted
tree topologies over four leaves (quartets), respectively, that
have different topologies in the two trees.

The algorithms by Brodal et al. maintain a long se-
quence of variables (hundreds for quartets) for counting dif-
ferent cases to be considered by the algorithm, making it un-
clear if the algorithms would be of theoretical interest only.
In our experimental evaluation of the algorithms the typi-
cal overhead per node is about 2KB and 10KB per node in
the input trees for triplet and quartet computations, respec-
tively. This allows us to compute the distance measures for
trees with up to millions of nodes. The limiting factor is the
amount of memory available. With 31GB of memory all our
input instances can be solved within a few minutes.

In the algorithm by Brodal et al. a few choices were
made, where alternative solutions possibly could improve
the algorithm, in particular for quartet distance computa-
tions. For quartet computations we expand the algorithm
to also consider alternative computations, and make two ob-
servations: First we observe that the running time can be im-
proved from O(max(d1, d2)·n·lg n) to O(min(d1, d2)·n·lg n),
where n is the number of leaves in the two trees, and d1 and
d2 are the maximum degrees of the nodes in the two trees,
respectively. Secondly, by taking a different approach to
counting the number of disagreeing quartets we can reduce
the number of calculations needed to calculate the quartet
distance, improving both the running time and the space
requirement by our algorithm by a constant factor.

1 Introduction
Trees appear in many branches of science, for instance
in biology, where so-called phylogenetic trees can be
used to represent the evolutionary relationship between
species. There are, however, different ways to construct
such trees from the same data, or different datasets
might be available. In both cases a number of differ-
ent trees for the same set of species can be constructed,
and it is useful to have a distance measure to compare
how similar (or dissimilar) the constructed trees are [14].
A number of distance measures exist, among them the
Robinson-Foulds distance measure and the triplet and
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quartet distance measures. The Robinson-Foulds dis-
tance measure enumerates the number of non-common
splits in two unrooted input trees [12]. It can be com-
puted in linear time, but is sensitive to outliers, i.e.
changes to a few leaves might significantly influence the
output of the algorithm, a drawback that the triplet and
quartet distances do not suffer from [5].

The triplet distance [6], and the quartet distance,
introduced in [7], enumerate all subsets of leaves of size
three and four respectively, and count the number of
different induced topologies. The triplet distance is
applied to rooted trees whereas the quartet distance is
used on unrooted trees. Naive algorithms, that in fact
enumerate all of the

(
n
3
)
or

(
n
4
)
topologies, have running

time at least Ω(n3) and Ω(n4) respectively, and are thus
not practical for large inputs.

1.1 Previous work. In 1993 an algorithm calculat-
ing the quartet distance in time O(n3) was reported by
Steel and Penny [14]. It is unclear whether or not the
algorithm operates on trees of arbitrary degree.

An algorithm calculating the triplet distance for
binary trees in time O(n2) was given by Critchlow et
al. [6], and the quartet distance followed with Bryant
et al. [5], where, although the article states that “The
algorithm can be easily extended to handle partially-
resolved trees”, it only appears to work for binary
trees. Brodal et al. [2] improved the quartet calculation
runtime to O(n lg2 n) for binary trees, and subsequently
impro>ved this to O(n lgn) [3].

For trees of arbitrary degree Stissing et al. [15] gave
an algorithm for calculating the quartet distance in time
O(d9n lgn), where d is the maximum degree of any node
in the two trees. An algorithm for arbitrary degree
trees using matrix multiplication and with running time
O(n2.688) was given by Mailund et al. [11]. Bansal
et al. [1] gave an algorithm for calculating the triplet
distance of arbitrary degree trees in time O(n2).

Recently an O(n lg2 n) algorithm calculating the
triplet distance for binary trees was given by Sand et
al. [13], and an algorithm calculating the quartet dis-
tance in time O(dn lgn), as well as the triplet distance
of two trees of arbitrary degree in time O(n lgn) was
given by Brodal et al. [4]. Tables 1 and 2 summarize the
theoretical work on triplet and quartet distance compu-



Year Reference Runtime Arb.
Naive O(n4) X

1996 [6] O(n2)
2011 [1] O(n2) X
2013 [13] O(n · lg2 n)
2013 [4] O(n · lgn) X

Table 1: Triplet distance calculation algorithms.

Year Reference Runtime Arb.
Naive O(n5) X

1993 [14] O(n3)
2000 [5] O(n2)
2001 [2] O(n · lg2 n)
2004 [3] O(n · lgn)
2007 [15] O(d9 · n lgn) X
2011 [11] O(n2.688) X
2013 [4] O(max(d1, d2) ·n · lgn) X
2014 New O(min(d1, d2) · n · lgn) X

Table 2: Quartet distance calculation algorithms.

tations. The last column in the tables indicates if the
algorithms also work for trees of arbitrary degree. An
experimental evaluation of the algorithms in [4] is the
subject of this paper.

2 Results of triplet and quartet calculations
2.1 Existing implementations. The algorithm for
calculating the quartet distance for binary trees in time
O(n lg2 n) from [2] has been implemented and docu-
mented to be useful in practice [10].1 The algorithm
calculating the quartet distance for trees of arbitrary de-
gree in time O(n2.688) has also been implemented [11].2
The algorithm calculating the triplet distance for binary
trees in time O(n lg2 n) has been implemented and doc-
umented to be useful in practice [13]. While the source
code is not generally available at the time of writing, a
copy has been provided to us by the first author of [13].
In Sect. 5 we present experiments on these algorithms,
comparing them to the algorithms described in this pa-
per.

2.2 Our Results. We present an implementation,
evaluation and improvements to the algorithms in [4].
The algorithm in [4] for computing the triplet distance
between two trees of arbitrary degree uses time O(n ·

1Source code at http://cs.au.dk/~mailund/qdist.html
2Source code at http://birc.au.dk/software/qdist/

lgn) and space O(n · min(d1, lgn)). Runtime and
memory usage results for this algorithm are presented
in Sect. 5.

The algorithm in [4] for computing the quartet
distance between two trees of arbitrary degree uses time
O(max(d1, d2) · n · lgn) and space O(max(d1, d2) · n ·
min(max(d1, d2), lgn)). The algorithm in [4] maintains
over a hundred variables per tree node for counting
different topological subsets. To limit the complexity of
the algorithm description in [4], a symmetry is exploited
in the computation where the rôle of the two input
trees is swapped. By extending the algorithm in [4]
to maintain even more counters but circumventing the
symmetric computations, we in Sect. 3 describe how to
improve both the runtime and memory usage bounds for
the quartet distance calculation to O(min(d1, d2)·n·lgn)
and O(min(d1, d2) · n · min(d1, d2, lgn)), respectively.
These changes from a maximum to a minimum can be
significant for input consisting of one tree with large
maximum degree and one tree with small maximum
degree. By extending the algorithm with even more
counters, we are able to compute the final quartet
distance in several alternative ways. By an experimental
comparison of the different approaches (Sect. 5), we
arrive at an algorithm reducing both the asymptotic
runtime and memory usage of the quartet distance
calculation by a constant factor.

Using our implementation with the improvements
introduced above, the quartet distance between two
balanced binary trees with 1,000,000 leaves, can be
calculated in approximately 1 minute and 45 seconds
on the system presented in Sect. 5. The limiting
factor in our computations is the amount of memory
available. To our knowledge, the results presented are
the current state of the art. The source code will be
available for download embedded into a package with
Python and R interfaces and available under the GNU
LGPL license from the Bioinformatics Research Center,
Aarhus Univeristy.3

3 Theory
In this paper we consider rooted and unrooted trees
with n leaves and where the leaves are labeled uniquely.
Given three leaves labeled a, b, c in a rooted tree, the
subtree induced by a, b, c is denoted a triplet. Similarly
four leaves labeled a, b, c, d in an unrooted tree induce
a quartet. Both triplet and quartet topologies can be
in one of two configurations: Resolved and unresolved,
see Fig. 1a. Note that unresolved triplet configurations
only occur in non-binary rooted trees and unresolved
quartet configurations only occur in unrooted trees of

3http://birc.au.dk/software/
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degree larger then three.
For a pair of input trees, T1 and T2, this results

in four combinations as depicted in Fig. 1b. If the
induced topology of a triplet or quartet is the same
(different) in T1 and T2, it is denoted as agreeing
(disagreeing). Unresolved-unresolved (E) topologies
always agree, resolved-unresolved (C) and unresolved-
resolved (D) topologies always disagree. Resolved-
resolved topologies can either agree (A) or disagree (B).
The triplet and quartet distance between two rooted
and unrooted trees, respectively, counts the number of
triplets and quartets having disagreeing topologies in
the two trees, and the goal for any triplet and quartet
distance algorithm is thus to find the value B + C +D
in Fig. 1b. Note that for triplets in binary rooted trees
and quartets in unrooted trees of degree at most three,
the values C, D, and E are always zero.

For a single rooted or unrooted tree the number of
resolved and unresolved triplets or quartets can be com-
puted in linear time by a simple dynamic programming,
i.e. A + B + C, A + B + D, D + E and C + E can be
computed in O(n) time (see [4]). The total number of
triplets or quartets A+B +C +D +E in a tree is

(
n
3
)

and
(

n
4
)
, respectively. From knowing D + E, C + E,

and either A + B, C, D or E, we can deduce C, D,
E and A + B in constant time. From knowing A + B
and A we can obviously also deduce B by a single sub-
traction. It follows that from e.g. knowing i) A and B,
or ii) A and E, the remaining values of A, . . . , E can
be deduced and the triplet or quartet distance be com-
puted. In [4], ii) is used for computing triplet distances
as

(
n
3
)

− A − E, and i) is used for computing quartet
distances as (A+B +D) + (A+B + C) − 2A−B. In
our implementation we consider quartet distances com-
puted by both i) and ii), and it turns out that ii) is
faster and more space efficient than i), see Sect. 5.

3.1 Recursive counting. The main idea of the algo-
rithm presented in [4] (generalizing the approach of [3]
from binary trees to arbitrary degree trees) is to consider
both trees to be rooted trees and to construct a locally
balanced version of T2, a so-called hierarchical decom-
position tree (HDT), link together the leaves of T1 and
the leaves of the HDT with bi-directional pointers and
then color the leaves via a depth-first traversal of T1.
At each node in T1, after all nodes have been colored
accordingly, the contribution to a subset of A, . . . , E is
calculated by counting in the HDT. Before recursing on
a subtree of size x, the relevant parts of the HDT are
extracted and contracted so that they have size O(x).
As done in [4] the algorithm in its entirety runs in time
O(n lgn) for triplets and O(dn lgn) for quartets, where
d is the maximum degree of any node in the two in-
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Figure 1: Configurations for triplets and quartets (a),
and cases for topologies in two trees (b).

put trees. In fact A can be computed in O(n lgn) time
for quartets, but B requires O(dn lgn) time. The al-
gorithms in [2] and [13] for unrooted trees of degree at
most three and binary rooted trees, repectively, follow
the same principle, but without contracting the HDT
for a lgn factor time-penalty.

We have to refer the reader to [4] and [8] for
the details of the counting. The details of all the
variables maintained in the recursive counting can be
found [8, Appendix A–C]—where you will find 12 pages
of variable listings and equations for maintaining the
variables at the nodes of the HDT for T2 required for
computing the contributions to A, B and E.

3.2 Improving the running time. When counting
resolved-resolved quartet topologies in two rooted ver-
sions of T1 and T2, the quartets occur in three config-
urations named α, β and γ in [4] (see Fig. 2). This
gives rise to 9 different combinations that must be han-
dled when calculating A and B. The algorithm in [4]
reduces this to six by handling only the cases marked in
Fig. 2, swapping T1 and T2 and re-doing the calculation
for the three missing symmetric values. One run of the
partial quartet calculation has running time bounded
by O(dn lgn) and space bounded by O(dn lg min(d, n)),
where d is the largest degree of any node in T1. Swap-
ping means that both input trees will serve their turn
as T1 and thus d becomes the largest degree of any node
in the two trees.



T2
α β γ

α ×
T1 β × ×

γ × × ×
Figure 2: Counted resolved-resolved quartet configura-
tion combinations for A and B in [4].

We improve this by handling the previously unhan-
dled cases directly (details in [8, Appendix B]). By us-
ing the tree with the smallest maximum degree as T1
we achieve running time O(dn lgn) and space usage
O(dn lg min(d, n)), where d = min(d1, d2) and di is the
maximum degree of any node in tree Ti. The optimiza-
tion also removes (some of) the obvious overhead of
running the algorithm twice, but increases the space re-
quired by our variation by a constant factor (see Sect. 5).
To add support for the computation of E for quartets,
we handle directly all the additional cases (details in [8,
Appendix C]). All these extensions follow the counting
framework introduced in [4].

It should be mentioned that all the additional
variables make a substantial increase in the number of
variables to be handled. In the original solution [4]
107 different types of topologies were counted. Our
improvements added 53 additional types of topologies
to be handled.

4 Implementation
We have implemented the triplet and quartet distance
calculation algorithms as presented in [4] as well as our
variations. The implementation was done in plain C++
with cross-platform compatibility in mind, although
non-standard gcc features can be enabled at compile-
time (see Sect. 4.4). The implementation has been
tested on both Windows and Linux machines.

The purpose of our implementation was to address
the following questions:

• The quartet distance calculation algorithm in [4]
seems to have very large constants, e.g. we need to
calculate up to 2d2 + 79d + 22 variables for each
component in the HDT. For a binary input this
is up to 188 variables per HDT component. This
leads to the question of whether or not [4] has any
practical value.

• The previous related implementations for binary
trees [10, 13] use only one static HDT for T2, i.e. the
implementations do not try to contract the HDT of

T2 during the recursion. Theoretically this should
lead to a lgn factor overhead in [10, 13] compared
to [4] (and [3]). This leads to the question of
whether or not the added work of contracting
the HDT during recursion outweigh the saved lgn
factor in practice.

• Our asymptotic improvement discussed in Sect. 3.2
adds up to 5d2 + 18d + 7 variables to each HDT
component, for a total of 7d2 + 97d + 29 variables
per HDT component. For a binary input this
becomes up to 251 variables per HDT component.
This leads to the question of whether or not using
this variation compared to the algorithm presented
in [4] has any practical advantages.

Before attempting to answer these questions we will
go through some of the details of the implementation.

4.1 Representation of counters in the HDT. To
store the variables in each HDT node, a natural first
step is to use a number of arrays, each of size d. This,
however, is not a good idea. In the worst case the
degree, d, can equal n. Thus, if T1 is a single node
with n leaves directly below the root, each of the O(n)
nodes in the HDT of T2 will have arrays of size n
yielding at least a quadratic space usage for the triplet
distance calculation. In addition, the time-analysis of
the algorithm only holds when the updating of nodes
only handles the colors actually in use below it. When
using arrays, this is not possible and what should have
been constant time is now instead linear time in d. The
solution we adopted was to use linked lists so that only
the colors in use are actually handled. This results in a
guarantee of the claimed runtime and space usage.

4.2 Extract & Contract. One of the cornerstones
of the algorithm is the two functions extract and
contract. The process of extracting and contracting
is three-step. The extract function creates a copy of
the input HDT with non-marked sub-trees replaced with
0-leaves representing one or more leaves that have been
cut off. The extracted copy of the HDT is converted into
the tree it represents, and finally the contract function
takes this input and returns the minimal tree with the
same induced topologies for the given coloring. To
reduce the overhead of multiple traversals of the HDT,
we have combined the extract and goBack functions
into a single function, which, given an HDT with marked
leaves, outputs the extracted and converted HDT as a
rooted tree. This effectively turns the three-step process
into a two-step process.

In our implementation, extracting and contracting
can be enabled or disabled at compile-time. If disabled,



the asymptotic runtime will incur a lgn factor penalty.
If enabled, the non-largest children are always extracted
and contracted. The largest child, however, is only
extracted and contracted when the size of this child is
at most some fraction of the size of the current HDT.
The fraction can be varied for different results. We have
experimentally found the implementation to run faster,
when the denominator of the fraction, herein named Q,
is around 20,000. The value can be modified at compile-
time.

4.2.1 Different Values for Q. We have tested the
implementation on a randomly generated binary input
consisting of two trees with 100,000 leaves each. The
input was run with different values of Q on two different
systems. System 1 is the same system as the one
used in the experiments, and is outlined in Sec. 5.1.
The runtimes for this system are depicted in Fig. 3a.
System 2 is a Windows 7 system, with a quad-core
3.3GHz 64-bit Intel Core i5 2500K processor and 16GB
of RAM. The runtimes for this system are depicted in
Fig. 3b.

In Fig. 3a the runtimes are lower with contract
enabled compared to having contract disabled, even
with Q set to 10. This is not the case in Fig. 3b. As
such, we note that the effects of different values of Q
are somewhat machine dependent. However, a clear
tendency is evident in both plots, and even though
the system in Fig. 3b is generally slower than the
system in Fig. 3a, the optimal value of Q seems to be
approximately 20,000 in both cases.

As a result of the above, all experiments in Sec. 5
have been run with Q set to 20,000.

4.3 Optimizations. Since the initial implementa-
tion of the algorithm we have identified a number of
optimizations. For the following, memory usage is based
on polling 10 times per second. This implies that the re-
ported value for the memory usage is subject to a degree
of uncertainty, especially on small input. All measure-
ments were taken on runs for the non-extended quartet
distance calculation algorithm, as described in [4], with
Q set to 10. This value was chosen arbitrarily at the
time. Note that, as stated in Sec. 4.2, increasing Q to
20,000 decreases the runtime further.

The algorithm hints at creating contracted copies
of the HDT rather early. To create a contracted copy,
we convert the extracted HDT back to the tree it
represents, and contract this tree before constructing a
new HDT. This allows us to extract and contract early
in the process, but postpone the construction of the
updated HDT until it is needed. Since the HDT uses
more memory than the tree it represents, this reduces

Initial Optimizations
# Leaves measure 1 1 & 2 1, 2 & 3

1.0 · 103 17.29 10.49 7.39 11.09
1.6 · 103 21.75 15.91 10.90 22.69
2.5 · 103 41.69 24.27 19.31 31.80
4.0 · 103 69.19 37.62 35.42 46.24
6.3 · 103 107.20 58.79 56.40 67.57
1.0 · 104 185.52 92.14 87.43 102.83
1.6 · 104 292.91 144.37 132.21 158.46
2.5 · 104 462.94 228.70 206.70 246.37
4.0 · 104 735.15 362.10 354.03 390.33
6.3 · 104 1,162.43 575.43 544.87 613.91

Table 3: Memory usage in MB with different levels of
optimization.

Initial Optimizations
# Leaves measure 1 1 & 2 1, 2 & 3

1.0 · 103 0.18 0.17 0.15 0.12
1.6 · 103 0.33 0.30 0.28 0.21
2.5 · 103 0.59 0.54 0.51 0.38
4.0 · 103 1.06 0.98 0.93 0.70
6.3 · 103 1.89 1.77 1.68 1.28
1.0 · 104 3.35 3.14 2.98 2.31
1.6 · 104 5.91 5.60 5.28 4.14
2.5 · 104 10.33 9.84 9.27 7.36
4.0 · 104 17.92 17.18 16.14 13.03
6.3 · 104 31.15 29.83 27.89 22.87

Table 4: Runtime in seconds with different levels of
optimization.

the memory usage. We observed a reduction in memory
usage of 25-50%, with approximately 50% as a relatively
stable reduction on large input. As an added effect, the
runtime was decreased by 4-10%, less on large input.
This optimization is documented in Columns 2 and 3 in
Tables 3 and 4.

Initially we used the standard C++ data structure
vector to hold child pointers. As random-access is
not needed, we could replace this by a purpose-built
linked list. In doing so, we observed a 6-9% increase
in the speed of the implementation when tested on
binary trees. The memory usage also decreased slightly.
This optimization is documented in Columns 3 and 4 in
Tables 3 and 4.

Our final optimization was a more clever memory
allocation. The basic idea was to allocate each datatype
in a large pool and subsequently releasing memory back
to this pool. This reduced the number of allocations



needed, giving an 18-25% increase in the speed of the
program. The memory usage, however, increased with
10-20% on large input, and by more than 100% on small
input. We expect at least some of this to be due to the
reported memory usage being based on polling. When
releasing memory back to the operating system, which
was the case before this optimization, the polling might
by chance measure between peaks. This is in contrast to
after the optimization, where releasing memory merely
releases it back to the pool. As such, the memory is
still allocated by the program, and polling is thus more
likely to measure the peak-usage. This optimization is
documented in Columns 4 and 5 in Tables 3 and 4.

In total, on inputs larger than 10,000 leaves, these
optimizations increased the speed by approximately
25% and decreased the memory usage by approximately
45%. The raw data is available in Tables 3 and 4.

4.4 Limitations. During the development, we have
identified a number of limitations. These are discussed
below.

4.4.1 Integer representation. As part of the algo-
rithm,

(
n
3
)
is calculated for triplets and

(
n
4
)
for quar-

tets. These numbers increase rapidly and representing
them is therefore a problem. We generally use 64-bit
signed integers and will therefore run into overflows at
n ≈ 2, 000, 000 for triplets and n ≈ 55, 000 for quartets.
For this reason, we have made it a compile-time option
to use the non-standard type __int128 available in gcc
for variables that can potentially contain O(n4). 128-bit
integers are used in the experiments below.

4.4.2 Recursion depth. The underlying operating
system imposes a limit on the number of recursions
a program can perform. Since the implementation is
written in a recursive manner it will not work for very
high trees. On inputs which include a tree consisting of
a very long chain, the program fails when n ≈ 4, 000 on
Windows and n ≈ 48, 000 on Linux.

5 Experiments
Using our implementation we have performed a number
of experiments presented below.

5.1 Setup. The experiments have been performed on
a computer running Ubuntu Linux Server 12.04, with a
quad-core 3.4GHz 64-bit Intel Core i7-3770 processor
and 31.2GB of RAM.

Runtime-values are averages of wall-time runtimes
across three runs, measured externally. This results in a
slight startup overhead, but gives a better indication of
the real-world runtime of the algorithm. Memory usage

is based on polling. The reported number is the peak
value. In addition to actual runtime-values we have
instrumented the code with a global counter of recursive
calls and loop rounds. This provides us with a stable
look at the work done by the implementation, unaffected
by other processes running on the test-system. We,
however, do not try to weigh some operations more
than others, and doing constant work is thus recorded
as such.

We have compared our implementation to a number
of previous implementations for both triplet and quartet
calculations.

5.2 Test input. Since we are primarily interested
in the scalability of our implementations we have only
performed tests on randomly generated data. In the
following section we utilize random, fully balanced trees,
i.e. all leaves are at the same level in the tree (or as close
to this as the number of leaves allow) and all leaf-labels
have been randomly permuted. Two random trees will
likely have a very large distance.

5.3 Results. In this section we have run our imple-
mentation of the quartet distance calculation (under
different configurations) and our implementation of the
triplet distance calculation on a number of trees. The
implementations running in time O(n lg2 n) [10, 13] and
O(n2.688) [11] have also been run on the input, although
these have not been tested for inputs larger than n =
10,000.

5.3.1 Quartet Distance. From Fig. 5a we observe
that all three configurations of our implementation can
easily compute the difference between two binary trees
of size up to one million leaves. The implementation
of [4] without additions is slowest at a still respectable
≈ 213 seconds. Faster then is the implementation
calculating the three missing symmetric values directly
and fastest where we instead of calculating A and B
calculate A and E (≈ 140 seconds and ≈ 105 seconds,
respectively).

From Fig. 5b we observe, however, that calculating
the missing symmetric values directly, not surprisingly,
requires more memory, because of additional counters
and sums. Again, however, calculating A and E instead
is better, using the least memory. For one million leaves,
the variations use ≈ 11.3GB, ≈ 9.3GB and ≈ 8.5GB,
respectively. While this is a lot of memory, it is not
more than some desktops or even laptops would be able
to handle, even at 1,000,000 leaves.

Comparing our fastest variation to previous algo-
rithms, our implementation is a clear winner, spend-
ing less than half a second on 10,000 leaves, whereas



[10] spends more than 29 seconds, and [11] spends more
than 62 seconds, meaning that it is more than 140 times
slower than our result. In all observed cases our vari-
ation, calculating A and E is faster in practice than
anything else.

Going from binary to non-binary trees, as seen
in Fig. 6a-c, the story is more or less unchanged.
Calculating A and E is still fastest overall, and can
calculate the quartet distance between two trees with
one million leaves, at least with d = 256 as the case
in Fig. 6a-b. Our variation, calculating A and B and
the symmetric values directly, however, use too much
memory at one million leaves to be able to run on our
test system. The plot for this run thus tops out at 105.8

leaves.
With d = 1024 [11] is actually faster than our im-

plementation on small instances, but once the instance
gets large enough, the time spend increases rapidly, and
our implementation is more than twice as fast a the
10,000 leaves mark. Additionally, our implementation
uses significantly less memory, even at large instances.

In all observed cases our variation is faster in
practice than the algorithm in [4]. With contract
enabled the quartet distance for the binary balanced
trees with 1,000,000 leaves can be calculated in less than
two and a half minutes using our variation.

The importance of contraction is studied in Fig. 4a
and 4b. In Fig. 4a we observe that with contract
enabled the actual runtime appears to be O(n · lg2 n),
an additional lgn factor compared to the theoretical
timebound (d is the constant 2 here). The counter
value, as can be seen from Fig. 4b, however, appears
to be O(n · lgn), and thus agrees with the theory. In
both cases disabling contract results in an additional
lgn factor as the theory predicts. An explanation for
the additional lgn factor in the actual runtime could be
“the cost of address translation” [9], but as the focus
of this paper has been on scalability, this has not been
explored in depth.

In Fig. 8 two other types of input are studied. Leaf
moved describes the situation where T1 is a random tree
and T2 is merely T1 where the leaves labeled 1 and 2
have switched places. This results in a relatively small
distance. The x% left-biased trees are trees, where a
node with n leaves below it has x% of these leaves in
the first child, and the rest evenly distributed among
the rest of the children. From Figs. 8a and c we observe
that leaf moved input is processed much faster than two
random trees. We believe this is because the leaves
being recolored are close to each other in the HDT.
This will result in a lower number of internal nodes
that require updating than if both input trees were
random. From the same figures we observe that 75%

left-biased trees are actually processed slightly faster
than completely balanced trees. We believe this is
because of the number of times a leaf is recolored during
the course of the algorithm. As only the non-largest
children are recolored, leaves are recolored more in
balanced trees than in unbalanced trees. From Figs. 8b
and d we observe that with T1 being fully balanced, the
type of T2 does not seem to have a significant influence
on the runtime.

5.3.2 Triplet Distance. In Fig. 7a-b, our implemen-
tation, running in time O(n lgn) is plotted against [13]
running in time O(n lg2 n). Despite the theoretical ad-
vantage, our implementation is both slower and uses
significantly more memory. Moving away from binary
trees (which is the only trees [13] supports), the runtime
of our implementation gets faster, most likely because
of fewer internal nodes that needs updating.

When comparing the time and memory usage of the
triplet distance calculation to the memory usage of the
quartet distance calculation, however, the triplet dis-
tance calculation is seen to be faster and less memory-
heavy. Our triplet distance calculation can calculate
the triplet distance for 1,000,000 leaves in less than a
minute. While this is slower than [13] we believe that
this it is still very much acceptable.

6 Conclusion and future work
We have improved upon the algorithm in [4]. The first
variation improves the runtime, although at the cost of a
constant factor memory-increase. The second variation
both improves the runtime and decreases the memory
usage. We have found the algorithm, in all variations,
to be useful in practice.

For practical purposes the amount of memory is
likely going to be a limiting factor before time-usage
is. With 1,000,000 nodes the memory consumption of
our algorithm, calculating A and B, is approximately
11.5GB. Calculating A and E instead reduces this
number to approximately 8.5GB.

Using our first variation, we are able to calculate
the quartet distance for 1,000,000 leaves in less than
two and a half minutes. The second variation reduces
this to under two minutes. The triplet calculation is
faster than this, although an implementation for binary
trees which is even faster in practice does exist [13].

6.1 Future work. As the memory consumption ap-
pears to be the first limiting factor, an obvious question
is if the amount of memory used can be decreased. For
instance, would it be possible to decrease the number of
counters further than we did by calculating E instead
of B? Or could the number of nodes in the generated



HDT somehow be decreased? Alternatively, if a pre-
cise result is not strictly necessary, could 32-bit floats
be used to decrease the memory usage while still being
correct within a small margin of error of a few percent?

Another question is whether or not the asymptotic
run time can be reduced. Can triplets or quartets
(binary or of arbitrary degree) for instance be solved
in linear time instead? Can the d factor be removed?

Since most processors today have multiple cores,
it would be interesting to see, if the algorithm can be
multithreaded. A possible approach for this, might be to
split T1 in two, extracting and contracting the relevant
parts of T2, and delegating each subproblem to different
threads. If this approach is feasible, it could perhaps
be extended to more cores by, for example, repeating
the process on each subproblem. Furthermore, if this
technique is feasible, it might make it possible to split
the problem into smaller chunks, solving one at a time
for a smaller memory footprint.

Going in an entirely different direction, can the
distances be approximated faster instead? Would it
for instance be possible to create an approximation
algorithm that produce a correct result within a margin
of error of a few percent, while running in linear or
sublinear time?
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Figure 3: Runtimes with different values of Q as discussed in Sect. 4.2.1. Input trees had 100,000 leaves. Trees
are the same for both runs. The x and y axis are the values of Q and runtime in seconds respectively.
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Figure 4: Quartet distance calculation. Random balanced binary tree against random balanced binary tree. The
x axis denotes number of leaves.
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Figure 5: Comparison of algorithms for computing the quartet distance on binary trees.
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(c) Runtimes in seconds, d = 1024.

Figure 6: Comparison of algorithms for computing the quartet distance on trees of degree larger than three.
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Figure 7: Comparison of algorithms for computing the triplet distance on binary, and high degree trees.
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Figure 8: Quartet distance calculation. All trees are binary, the algorithm is our variation with contract enabled.
The x and y axis are number of leaves and runtime in seconds respectively. Note the (a) and (c) depict the same
data, although (c) uses a logarithmic y-axis. As such the legend from (a) applies to (c) as well. The same is the
case for (b) and (d).
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