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Abstract

Tight bounds on the cost of cache-oblivious searching are proved. It is shown that
no cache-oblivious search structure can guarantee that a search performs fewer than
lg e log

B
N block transfers between any two levels of the memory hierarchy. This lower

bound holds even if all of the block sizes are limited to be powers of 2. A modified version
of the van Emde Boas layout is proposed, whose expected block transfers between any two
levels of the memory hierarchy arbitrarily close to [lg e + O(lg lg B/ lg B)] log

B
N + O(1).

This factor approaches lg e ≈ 1.443 as B increases. The expectation is taken over the
random placement of the first element of the structure in memory.

As searching in the Disk Access Model (DAM) can be performed in log
B

N + 1 block
transfers, this result shows a separation between the 2-level DAM and cache-oblivious
memory-hierarchy models. By extending the DAM model to k levels, multilevel memory
hierarchies can be modelled. It is shown that as k grows, the search costs of the optimal
k-level DAM search structure and of the optimal cache-oblivious search structure rapidly
converge. This demonstrates that for a multilevel memory hierarchy, a simple cache-
oblivious structure almost replicates the performance of an optimal parameterized k-level
DAM structure.

1 Introduction

Hierarchical Memory Models. Traditionally, algorithms were designed to run efficiently
in a random access model (RAM) of computation, which assumes a flat memory with uniform
access times. However, as hierarchical memory systems become steeper and more complicated,
algorithms are increasingly designed assuming more accurate memory models; see e.g., [2–5,
7,8,10,22,31–33,38–40]. Two of the most successful memory models are the disk-access model
(DAM) and the cache-oblivious model.
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The DAM model, developed by Aggarwal and Vitter [4], is a two-level memory model,
in which the memory hierarchy consists of an internal memory of size M and an arbitrarily
large external memory partitioned into blocks of size B. Algorithms are designed in the DAM
model with full knowledge of the values of B and M . Because memory transfers are relatively
slow, the performance metric is the number of block transfers.

The cache-oblivious model, developed by Frigo, Leiserson, Prokop, and Ramachandran [21,
29], allows programmers to reason about a two-level memory hierarchy but to prove results
about an unknown multilevel memory hierarchy. As in the DAM model, the objective is
to minimize the number of block transfers between two levels. The main idea of the cache-
oblivious model is that by avoiding any memory-specific parametrization (such as the block
sizes) the cache-oblivious algorithm has an asymptotically optimal number of memory trans-
fers between all levels of an unknown, multilevel memory hierarchy.

Optimal cache-oblivious algorithms have memory performance (i.e., number of memory
transfers) that is within a constant factor (independent of B and M) of the memory perfor-
mance of the optimal DAM algorithm, which knows B and M . There exist surprisingly many
(asymptotically) optimal cache-oblivious algorithms [1,9, 11–21,24,25,29,30,35].

I/O-Efficient Searching. This paper focuses on the fundamental problem of searching:
Given a set S of N comparison-based totally-ordered elements, produce a data structure that
can execute searches (or predecessor queries) on items in S.

We provide tight bounds on the cost of cache-oblivious searching. We show that no
cache-oblivious search structure can guarantee that a search performs fewer than lg e logB N
1 block transfers between any two levels of the memory hierarchy, even if all of the block
sizes are limited to powers of 2. We also prove a search structure in which the expected
number of block transfers between any two levels of the memory hierarchy is arbitrarily close
to [lg e + O(lg lg B/ lg B)] logB N + O(1), which approaches lg e logB N + O(1) for large B.
This expectation is taken over the random placement of the first element of the structure in
memory.

In contrast, the performance of the B-tree, the classic optimal search tree in the DAM
model, is as follows: A B-tree with N elements has nodes with fan-out B, which are designed
to fit into one memory block. The B-tree has height logB N + 1, and a search has logB N + 1
memory transfers (block cost).

A static cache-oblivious search tree, proposed by Prokop [29], also performs searches in
Θ(logB N) memory transfers. The static cache-oblivious search tree is built as follows: Embed
a complete binary tree with N nodes in memory, conceptually splitting the tree at half its
height, thus obtaining Θ(

√
N) subtrees each with Θ(

√
N) nodes. Lay out each of these trees

contiguously, storing each recursively in memory. This type of recursive layout is called a van
Emde Boas layout because it is reminiscent of the recursive structure of the van Emde Boas
tree [36,37]. The static cache-oblivious search tree is a basic building block of essentially all
cache-oblivious search structures, including the (dynamic) cache-oblivious B-tree of Bender,
Demaine, and Farach-Colton [14], its simplifications and improvements [15,19,30], and other
cache-oblivious search structures [1, 6, 12, 13, 17, 18]. Any improvements to the static cache-
oblivious search structure immediately translate to improvements to these dynamic structures.

1Throughout the paper lg N means log2 N
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Results. We present the following results:

• We give an analysis of Prokop’s static cache-oblivious search tree [29], proving that

searches perform at most 2
(

1 + 3√
B

)

logB N + O(1) expected memory transfers; the

expectation is taken only over the random placement of the data structure in memory.
This analysis is tight to within a o(1) factor.

• We then present a class of generalized van Emde Boas layouts that optimizes perfor-
mance through the use of uneven splits on the height of the tree. For any constant ǫ > 0,
we optimize the layout achieving a performance of [lg e + ǫ + O(lg lg B/ lg B)] logB N +
O(1) expected memory transfers. As before, the expectation is taken over the random
placement of the data structure in memory. We prove that a numerical analysis within
a limited range of values of N can bound this constant over an infinite range of values
of N .

• Finally, we demonstrate that it is harder to search in the cache-oblivious model than in
the DAM model. Previously the only lower bound for searching in the cache oblivious
model was the logB N lower bound from the DAM model. We prove a lower bound
of lg e logB N memory transfers for searching in the average case in the cache-oblivious
model, which also proves that our layout is optimal in this model to within an additive
constant as B increases.

Interpretation. We present a cache-oblivious search structure that takes 44% more block
transfers than the optimal DAM structure, and we prove that we cannot do any better.
However, this result does not mean that our cache-oblivious structure is 44% slower than
an optimal algorithm for a multilevel memory hierarchy. To the contrary, this worst-case
behavior only occurs on a two-level memory hierarchy. To design a structure for a k-level
memory hierarchy, one can extend the DAM model to k levels. A data structure for a k-
DAM is designed with full knowledge of the size and block size of each level of the memory
hierarchy. Thus, the 2-DAM is the standard DAM where searches cost logB N + 1 block
transfers (using a B-tree). Surprisingly, in the 3-DAM this performance cannot be replicated
in general. We show in Corollary 2.3 that a 3-DAM algorithm cannot achieve less than
1.207 logB N block transfers on all levels simultaneously. Thus, the performance gap between
a 3-DAM and the optimal cache-oblivious structure is about half that of the 2-DAM and
the optimal cache-oblivious structure; naturally, a modern memory hierarchy has more than
three levels. Furthermore, we show that as the number k of levels in the memory hierarchy
grows, the performance loss of our cache-oblivious structure relative to an optimal k-DAM
structure tends to zero. Thus, for a modern memory hierarchy, our cache-oblivious structure
combines simplicity and near-optimal performance.

Our cache-oblivious search trees also provide new insight into the optimal design strategy
for divide-and-conquer algorithms. More generally, it has been known for several decades that
divide-and-conquer algorithms frequently have good data locality [34]. The cache-oblivious
model provides a mechanism to understand why divide-and-conquer is advantageous.

When there is a choice, the splitting in a divide-and-conquer algorithm is traditionally
done evenly. The unquestioned assumption is that splitting evenly is best. Our new search
structure serves to disprove the myth that even splits yield the best results. This paper
suggests the contrary: uneven splits can yield better worst-case performance.
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2 Lower Bound

In this section, we prove lower bounds for the I/O cost of cache-oblivious comparison based
searching. The problem we consider is the average cost of successful searches among N distinct
elements, where the average is over a uniform distribution of the search key y on the N input
elements. For lower bounds, average case complexity is stronger than worst case complexity,
so our bounds also apply to the worst case cost. We note that our bounds hold even if the
block sizes are known to the algorithm, and that they hold for any memory layout of data,
including any specific placement of a single data structure.

Formally, our model is as follows. Given a set S of N elements x1 < · · · < xN from a
totally ordered universe, a search structure for S is an array M containing elements from S,
possibly with several copies of each. A search algorithm for M is a binary decision tree where
each internal node is labeled with either y < M [i] or y ≤ M [i] for some array index i, and
each leaf is labeled with a number 1 ≤ j ≤ N . A search on a key y proceeds in a top-down
fashion in the tree, and at each internal node advances to the left child if the comparison
given by the label is true, otherwise it advances to the right. A binary decision tree is a
correct search algorithm if for any xi ∈ S, the path taken by a search on key y = xi ends in
a leaf labeled i. Any such tree must have at least N leaves, and by pruning paths not taken
by any search for x1, . . . , xN , we may assume that it has exactly N leaves.

To add I/Os to the model, we divide the array M into contiguous blocks of size B. An
internal node of a search algorithm is said to access the block containing the array index i in
the label of the node. We define the I/O cost of a search to be the number of distinct blocks
of M accessed on the path taken by the search.

The main idea of our proof is to analyze the I/O cost of a given search algorithm with
respect to several block sizes simultaneously. We first describe our method for the case of two
block sizes. This will lead to a lower bound of 1.207 logB N . We then generalize this proof
to a larger number k of block sizes, and prove that in the limit as k grows, this gives a lower
bound of lg e logB N ≈ 1.443 logB N .

Throughout this section, we assume that block sizes are powers of two and that blocks
start at memory addresses divisible by the block size. This reflects the situation on actual
machines, and entails no loss of generality, as any cache-oblivious algorithm at least should
work for this case. The assumption implies that for two block sizes B1 < B2, a block of
size B1 is contained in exactly one block of size B2.

Lemma 2.1 ( [23, Section 2.3.4.5]) For a binary tree with N leaves, the average depth of
a leaf is at least lg N .

Lemma 2.2 If a search algorithm on a search structure for block sizes B1 and B2, where
B2 = B1

c and 1 < c ≤ 2, guarantees that the average number of block reads is at most
δ logB1

N and δ logB2
N , respectively, then

δ ≥ 1

2/c + c − 2 + 3/(c lg B1)
.

Proof: Let T denote the binary decision tree constituting the search algorithm. Our goal is
to transform T into a new binary decision tree T ′ by transforming each node that accesses a
new size B1 block in T into a binary decision tree of small height, and discarding all other
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nodes in T . A lower bound on the average depth of leaves in T ′ then translates into a lower
bound on the average number of blocks accesses in T .

To count the number of I/Os of each type (size B1 blocks and size B2 blocks) for each
path in T , we mark some of the internal nodes by tokens τ1 and τ2. A node v is marked iff
none of its ancestors accesses the size B1 block accessed by v, i.e. if v is the first access to
the block. The node v may also be the first access to the size B2 block accessed by v. In this
case, v is marked by τ2, else it is marked by τ1. Note that the word “first” above corresponds
to viewing each path in the tree as a timeline—this view will be implicit in the rest of the
proof.

For any root-to-leaf path, let bi denote the number of distinct size Bi blocks accessed and
let ai denote the number of τi tokens on the path, for i = 1, 2. By the assumption stated
above Lemma 2.1, a first access to a size B2 block implies a first access to a size B1 block, so
we have b2 = a2 and b1 = a1 + a2.

We transform T into a new binary decision tree T ′ in a top-down fashion. The basic
step in the transformation is to substitute a marked node v with a specific binary decision
tree Tv resolving the relation between the search key y and a carefully chosen subset Sv of
the elements. More precisely, in each step of the transformation, the subtree rooted at v is
first removed, then the tree Tv is inserted at v’s former position, and finally a copy of one
of the two subtrees rooted at the children of v is inserted at each leaf of Tv. The top-down
transformation then continues downwards at the leafs of Tv. When the transformation reaches
a leaf, it is left unchanged. The resulting tree can contain several copies of each leaf of T .

We now describe the tree Tv inserted, and first consider the case of a node v marked τ2. We
let the subset Sv consist of the at most B1 distinct elements in the block of size B1 accessed
by v, plus every B2

2B1
th element in sorted order among the at most B2 distinct elements in the

block of size B2 accessed by v. The size of Sv is at most B1 + B2/(B2/(2B1)) = 3B1.
The tree Tv is a binary decision tree of minimal height resolving the relation of the search

key y to all keys in Sv. If we have Sv = {z1, z2, . . . , zt}, with elements listed in sorted order
and t ≤ 3B1, this amounts to resolving which of the at most 6B1 + 1 intervals

(−∞; z1) , [z1; z1] , (z1; z2) , . . . , [zt; zt] , (zt;∞)

that y belongs to (we resolve for equality because we chose to allow both < and ≤ compar-
isons in the definition of comparison trees, and want to handle both types of nodes in the
transformation). The tree Tv has height at most ⌈lg(6B1 + 1)⌉, since a perfectly balanced
binary search tree on Sv, with one added layer to resolve equality questions, will do. As B1

is a power of two, lg(8B1) is an integer and hence an upper bound on the height.
For the case of a node v marked τ1, note that v in T has exactly one ancestor u marked

τ2 that accesses the same size B2 block β as v does. When the tree Tu was substituted for u,
the inclusion in Su of the 2B1 evenly sampled elements from β ensures that below any leaf
of Tu, at most B2

2B1
− 1 of the elements in β can still have an unknown relation to the search

key. The tree Tv is a binary decision tree of minimal height resolving these relations. Such a
tree has at most 2 B2

2B1
− 1 = B2

B1
− 1 leaves and hence height at most lg B2

B1
, as B1 and B2 are

powers of two.
Since in both cases Tv resolves the relation between the search key y and all sampled

elements, the relation between the search key and the element accessed at v is known at each
leaf of Tv, and we can choose either the left or right child of v to continue the transformation
with.
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When we in the top-down transformation meet an unmarked internal node v (i.e. a node
where the size B1 block accessed at the node has been accessed before), we can similarly
discard v together with either the left or right subtree, since we already have resolved the
relation between the search key y and the element accessed at v. This follows from the choice
of trees inserted at marked nodes: when we access a size B2 block β2 for the first time at
some node u, we resolve the relation between the search key y and all elements in the size B1

block β1 accessed at u (due to the inclusion of all of β1 in Su), and when we first time access
a key in β2 outside β1, we resolve all remaining relations between y and elements in β2.

The tree T ′ resulting from this top-down transformation is a binary decision tree. By
construction, each search in T ′ ends in a leaf having the same label as the leaf that the same
search in T ends in (this is an invariant during the transformation), so T ′ is a correct search
algorithm if T is.

By the height stated above for the inserted Tv trees, it follows that if a search for a key y
in T corresponds to a path containing a1 and a2 tokens of type τ1 and τ2, respectively, then
the search in T ′ corresponds to a path with length bounded by the following expression.

a2 lg(8B1) + a1 lg
B2

B1

= b2 lg(8B1) + (b1 − b2) lg
B2

B1

= b2

(

lg(8B1) − lg
B2

B1

)

+ b1 lg
B2

B1

The coefficients of b2 and b1 are positive by the assumption B1 < B2 ≤ B1
2, so upper

bounds on b1 and b2 imply an upper bound on the expression above. By assumption, the
average values over all search paths of b1 and b2 are bounded by δ logB1

N and δ logB2
N =

(δ logB1
N)/c, respectively.

If we prune the tree for paths not taken by any search for the keys x1, . . . , xN , the lengths
of root-to-leafs paths can only decrease. The resulting tree has N leaves, and Lemma 2.1
gives a lg N lower bound on the average depth of a leaf. Hence, we get

lg N ≤ δ

c
logB1

N

(

lg(8B1) − lg
B2

B1

)

+ δ logB1
N lg

B2

B1

=
δ

c
logB1

N(3 + lg B1 − (c − 1) lg B1)

+ δ logB1
N(c − 1) lg B1

= δ lg N(3/(c lg B1) + 1/c − (c − 1)/c + (c − 1))

= δ lg N(3/(c lg B1) + c + 2/c − 2) .

It follows that δ ≥ 1/(3/(c lg B1) + c + 2/c − 2). 2

Corollary 2.3 If a search algorithm on a search structure guarantees, for all block sizes B,
that the average number of block reads for a search is at most δ logB N , then δ ≥ 1/(2

√
2−2) ≈

1.207.
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Proof: Letting c =
√

2 in Lemma 2.2, we get δ ≥ 1/(2
√

2 − 2 + 3/(
√

2 lg B1)). The lower
bound follows by letting B1 grow to infinity. 2

Lemma 2.4 If a search algorithm on a search structure for block sizes B1, B2, . . . , Bk, where
Bi = B1

ci and 1 = c1 < c2 < · · · < ck ≤ 2, guarantees that the average number of block reads
for a search is at most δ logBi

N for each block size Bi, then

δ ≥ 1
∑k−1

i=1
ci+1

ci
+ 2

ck

(

1 + lg(8k)
2 lg B1

)

− k
.

Proof: The proof is a generalization of the proof of Lemma 2.2 for two block sizes, and we
here assume familiarity with that proof. The transformation is basically the same, except
that we have a token τi, i = 1, . . . , k, for each of the k block sizes.

Again, a node v is marked if none of its ancestors access the size B1 block accessed by v,
i.e. if v is the first access to the block. The node v may also be the first access to blocks of
larger sizes, and we mark v by τi, where Bi is the largest block size for which this is true.
Note that v must be the first access to the size Bj block accessed by v for all j with 1 ≤ j ≤ i.

For any root-to-leaf path, let bi denote the number of distinct size Bi blocks accessed and
let ai denote the number of τi tokens on the path, for i = 1, . . . , k. We have bi =

∑k
j=i aj .

Solving for ai, we get ak = bk and ai = bi − bi+1, for i = 1, . . . , k − 1.
As in the proof of Lemma 2.2, the transformation proceeds in a top-down fashion, and

substitutes marked nodes v by binary decision trees Tv. We now describe the trees Tv for
different types of nodes v.

For a node v marked τk, the tree Tv resolves the relation between the query key y and a
set Sv of size (2k − 1)B1, consisting of the B1 elements in the block of size B1 accessed at v,
plus for i = 2, . . . , k every Bi

2B1
th element in sorted order among the elements in the block of

size Bi accessed at v. This tree can be chosen to have height at most ⌈lg(2(2k − 1)B1 + 1)⌉ ≤
lg(8kB1).

For a node v marked τi, i < k, let βj be the block of size Bj accessed by v, for 1 ≤ j ≤ k.
For i + 1 ≤ j ≤ k, βj has been accessed before, by the definition of τi. We now consider two
cases. Case I is that βi+1 is the only block of size Bi+1 that has been accessed inside βk. By
the definition of the tree Tu inserted at the ancestor u of v where βk was first accessed, at
most Bi+1/2B1 − 1 of the elements in βi+1 can have unknown relations with respect to the
search key y. The tree Tv inserted at v resolves these relations. It can be chosen to have
height at most lg Bi+1

B1
. Case II is that βi+1 is not the only block of size Bi+1 that has been

accessed inside βk. Then consider the smallest j for which βj+1 is the only block of size
Bj+1 that has been accessed inside βk. When we first time accessed the second block of size
Bj inside βk at some ancestor u of v, this access was necessarily inside βj+1, and a Case I
substitution as described above took place. Hence a tree Tu was inserted which resolved all
relations between the search key and elements in βj+1, and the empty tree can be used for
Tv, i.e. v and one of its subtrees can simply be discarded.

For an unmarked node v, there is a token τi on the ancestor u of v in T where the size B1

block β1 accessed by v was first accessed. This gave rise to a tree Tu in the transformation, and
this tree resolved the relations between the search key and all elements in β1, either directly
(i = k) or by resolving the relations for all elements in a block containing β1 (1 ≤ i < k), so
v and one of its subtrees can be discarded.
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After transformation and final pruning, the length of a root-to-leaf path in the final tree
is bounded by the following equation.

ak lg(8kB1) +

k−1
∑

i=1

ai lg
Bi+1

B1

= bk lg(8kB1) + lg B1

k−1
∑

i=1

(bi − bi+1)(ci+1 − 1)

= lg B1

[

bk

(

1 +
lg(8k)

lg B1

)

+ b1(c2 − 1)

+
k−1
∑

i=2

bi(ci+1 − ci) − bk(ck − 1)

]

= lg B1

[

k−1
∑

i=1

bi(ci+1 − ci) + bk

(

2 +
lg(8k)

lg B1
− ck

)

]

For all i, the average value of bi over all search paths is by assumption bounded by
δ logBi

N = (δ logB1
N)/ci, and the coefficient of bi is positive, so we get the following bound

on the average number of comparisons on a search path.

δ logB1
N lg B1

[

k−1
∑

i=1

1

ci

(ci+1 − ci)

+
1

ck

(

2 +
lg(8k)

lg B1
− ck

)]

= δ lg N

[

k−1
∑

i=1

ci+1

ci

+
1

ck

(

2 +
lg(8k)

lg B1

)

− k

]

By Lemma 2.1 we have

δ lg N

[

k−1
∑

i=1

ci+1

ci

+
1

ck

(

2 +
lg(8k)

lg B1

)

− k

]

≥ lg N ,

and the lemma follows. 2

Theorem 2.5 If a search algorithm on a search structure guarantees, for all block sizes B,
that the average number of block reads for a search is at most δ logB N , then δ ≥ lg e ≈ 1.443.

Proof: Let k be an integer, and for i = 1, . . . , k define Bi = 2k+i−1. In particular, we have
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Bi = B1
ci with ci = (k + i − 1)/k. Consider the following subexpression of Lemma 2.4.

2

ck

(

1 +
lg(8k)

2 lg B1

)

+
k−1
∑

i=1

ci+1

ci

− k

=
2k

2k − 1

(

1 +
lg(8k)

2k

)

+
k−1
∑

i=1

k + i

k + i − 1
− k

=
2k

2k − 1

(

1 +
lg(8k)

2k

)

− 1 +

k−1
∑

i=1

1

k + i − 1

≤ 2k

2k − 1

(

1 +
lg(8k)

2k

)

− 1 +

∫ 2k−2

k−1

1

x
dx

=
2k

2k − 1

(

1 +
lg(8k)

2k

)

− 1 + ln 2

Letting k grow to infinity Lemma 2.4 implies δ ≥ 1/ ln 2 = lg e. 2

3 Upper Bound

In this section we give a tight analysis of the van Emde Boas layout of Prokop [29]. Then we
propose and analyze a generalized van Emde Boas layout.

In Prokop’s vEB layout, we split the tree evenly by height, except for roundoff. Thus,
a tree of height h is split into a top tree of height ⌈h/2⌉ and bottom tree of height ⌊h/2⌋.
In Subsection 3.1 we analyze this method. It is shown in [14, 15, 19] that the number of
memory transfers for a search is 4 logB N in the worst case; we give a matching configuration
showing that this analysis is tight. We then consider the average-case performance over
starting positions of the tree in memory, and we show that the expected search cost is 2(1 +
3/
√

B) logB N + O(1) memory transfers, which is tight within a o(1) factor. We assume that
the data structure begins at a random position in memory; if there is not enough space, then
the data structure “wraps around” to the first locations in memory.

In Prokop’s vEB layout, the top recursive subtree and the bottom recursive subtrees have
the same height (except for roundoff). At first glance this even division would seem to yield
the best memory-transfer cost. Surprisingly, we can improve the van Emde Boas layout
substantially by selecting different sizes for the top and bottom subtrees instead of the even
split of the Prokop’s vEB layout. The result is that we generate a constant approximation
where the constant is significantly less than 2.

The generalized vEB layout is as follows: Suppose the complete binary tree contains
N − 1 = 2h − 1 nodes and has height h = lg N . Let a and b be constants such that 0 < a < 1
and b = 1 − a. Conceptually we split the tree at the edges below the nodes of depth ⌈ah⌉.
This splits the tree into a top recursive subtree of height ⌈ah⌉, and k = 2⌈ah⌉ bottom recursive
subtrees of height ⌊bh⌋. Thus, there are roughly Na bottom recursive subtrees and each
bottom recursive subtree contains roughly N b nodes. We map the nodes of the tree into
positions in the array by recursively laying out the subtrees contiguously in memory. The
base case is reached when the trees have one node as in the standard vEB layout.

In Subsection 3.2 we find the values of a and b, which yield a layout whose memory-
transfer cost is arbitrarily close to [lg e + O(lg lg B/ lg B)] logB N + O(1) for a = 1/2 − ǫ. In
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the full version we show that a numerical analysis within a limited range of values of N can
bound this constant over an infinite range of values of N .

Memory transfers can be classified in two types. We focus our analysis on the first level of
detail where recursive subtrees have size at most the block size B. There are V path-length
memory transfers, which are caused by accessing different recursive subtrees in the level of
detail, and there are C page-boundary memory transfers, which are caused when a single
recursive subtree in this level of detail straddles two consecutive blocks. The total number of
memory transfers is V + C by linearity of expectation.

The idea of the analysis is to derive a recursive equation for the number of memory
transfers V + C from the recursive definition of the layout. It turns out that each of these
components has the same general recursive expression and differs only in the base cases.

The recursive form obtained contains rounded-off terms (⌊·⌋ and ⌈·⌉) that are cumbersome
to analyze. We establish that if we ignore the roundoff operators, the error term is small.
We obtain a solution expressed in terms of power series of the roots of the characteristic
polynomial of the recurrence. We show for both V and C that the largest root is unique and
hence dominates all other roots, resulting in asymptotic expressions in terms of the dominant
root.

Using this asymptotic expressions, we obtain the main result, namely a layout whose total
cost is arbitrarily close to [lg e+O(lg lg B/ lg B)] logB N +O(1) as the split factor a = 1/2− ǫ
approaches 1/2. This matches the lower bound from the previous section up to low-order
terms. However, in our experiments we observed that the O(1) factor becomes too large
when a is too near to 1/2. Based on preliminary simulations, a reasonable tradeoff is a = 3/7.

3.1 Exact Analysis of van Emde Boas Layout

A simple analysis of this layout shows that the number of memory transfers of this layout,
in the worst case, is no greater than four times that of the optimal cache-size-aware layout.
More formally,

Theorem 3.1 Consider an (N − 1)-node complete binary search tree that is stored using the

Prokop vEB layout. A search in this tree has memory-transfer cost of
(

4 − 4
2+lg B

)

logB N in

the worst case.

Proof: The upper bound has been established before in the literature [14, 15, 19]. For
the lower bound we show that this value is achieved asymptotically. Let the block size be
B =

(

22k − 1
)

/3 for any odd number k and consider a tree T of size N − 1, where N = 22k2m

for some constant m. Number the positions within a block from 0 to B − 1. As we recurse,
we eventually obtain subtrees of size 3B = 22k − 1 and one level down of size 2k − 1. We
align the subtree of size 3B containing the root of T so that its first subtree of size 2k − 1
(which also contains the root of T ) starts in position B − 1 of a block. In other words, any
root-to-leaf search path in this subtree crosses the block boundary because the root is in the

last position of a block. Consider the
(

2k+1
3 + 1

)

-th subtree of size 2k − 1. The root of this

tree starts at position B − 1+ (2k − 1)(2k +1)/3 = 2B − 1, which is also the last position of a
block. Thus, any root-to-leaf search path in this subtree crosses the block boundary. Observe
that because trees are laid out consecutively, and 3B is a multiple of the block size, all other
subtrees of size 3B start at position B − 1 inside a block and share the above property (that
we can find a root-to-leaf path that has cost 4 inside this size-3B subtree). Notice that a

10



root-to-leaf path accesses 2m many size-3B subtrees, and if we choose the path according to
the above position we know that the cost inside each size 3B subtree is 4. More precisely,
each size 2k − 1 subtree on this path starts at position B − 1 in a block. Thus, the total cost

is 4 · 2m = 4 log3B+1 N = 4(log3B+1 B) logB N ≤ 4
(

1 − 1
2+lg B

)

logB N . 2

However, few paths in the tree have this property, which suggests that in practice, the
Prokop vEB layout results in a much lower memory-transfer cost assuming random placement
in memory. We formalize this notion as follows:

Claim 3.2 Let B be a power of 2, t and t′ be positive numbers satisfying t/2 ≤ t′ ≤ 2t,√
B/2 ≤ t ≤

√
B, and t · t′ ≥ B. Then

2 +
t + t′

B
≤ 2

(

1 +
3√
B

)

lg t + lg t′

lg B
.

Theorem 3.3 Consider a path in an (N − 1)-node binary complete search tree of height h
that is stored in vEB layout, with the initial page starting at a uniformly random position in a
block B. Then the expected memory-transfer cost of the search is at most 2(1+3/

√
B) logB N .

Proof: Although the recursion proceeds to the base case where trees have height 1, concep-
tually we stop the recursion at the level of detail where each recursive subtree has at most
B nodes. Define t so that the number of nodes in T is t − 1; thus the height of T is lg t.
Therefore, any recursive subtree T has (t−1)-nodes, where

√
B/2 ≤ t ≤ B. Note that because

of roundoff, we cannot guarantee that
√

B ≤ t. In particular, if a tree has B + 1 nodes and
the height h is odd, then the bottom trees have height ⌊h/2⌋, and therefore contain roughly√

B/2 nodes. Then there are t − 2 initial positions for the upper tree that results in T being
laid out across a block boundary. Similarly there are B − t + 2 positions in which the block
does not cross a block boundary. Hence, the local expected cost of accessing T is

2(t − 2)

B
+

B − t + 2

B
= 1 +

t − 2

B
.

If
√

B/2 ≤ t <
√

B for the recursive subtree T , we consider the next larger level of detail.
There exists another recursive subtree T ′ immediately above T on the search path in this
level of detail. Notice that tt′ ≥ B. Because otherwise conceptually there is no conceptual
recursion splitting into T and T ′. Also because we always cut in the middle, we know that
2t′ ≥ t ≥ 1

2t′. From Lemma 3.2 the expected cost of accessing T and T ′ is

1 +
t − 2

B
+ 1 +

t′ − 2

B
≤ 2

(

1 +
3√
B

)

lg(tt′)
lg B

.

If
√

B ≤ t < B for the recursive subtree T , define

f(x) = 2
lg x

lg B

(

1 +
1√
B

)

− 1 − t − 2

B
.

By calculating f ′′(x) we learn that f(x) ≤ 0 for the entire range
√

B ≤ x ≤ B. Thus, the
expected cost of accessing T is at most 2(1 + 1/

√
B) lg t/ lg B.
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Combining the above arguments, we conclude that although the recursive subtrees on a
search path may have different sizes, their expected memory-transfer cost is at most

∑

T

2

(

1 +
3√
B

)

lg t

lg B
= 2

(

1 +
3√
B

)

logB N.

This is a factor of 2(1 + 3/
√

B) times the (optimal) performance of a B-tree. 2

3.2 Analysis of Generalized vEB Layout

We now analyze the generalized vEB layout. In Theorems 3.1 and 3.3 we focus on the first
level of detail where recursive subtrees have sizes less than B. If a recursive subtree crosses a
block boundary, then we assume its block cost is 2. Thus, the expected block cost of accessing
a recursive subtree T , where |T | = t− 1, is at most 1 + (t− 2)/B. If the height of a recursive
subtree is x = lg t, where 1 ≤ x ≤ lg B, then the block cost B(x) for this subtree is at most
B(x) = 1 + 2x−2

B
. Note that by linearity of expectation the expected memory-transfer cost

B(x) satisfies B(x) = B(⌈ax⌉) + B(⌊bx⌋) for x > lg B.

3.2.1 Where Memory Transfers Come From: Path-Length and Block-Boundary-
Crossing Functions

We decompose the cost of B(x). Let V(x) be the number of recursive subtrees visited along
a root-to-leaf path (V stands for “vertical”), i.e.,

V(x) = V(⌈ax⌉) + V(⌊bx⌋)

with V(x) = 1 for 1 ≤ x ≤ lg B. Let C(x) be the expected number of subtrees straddling
block boundaries along the root-to-leaf path (C stands for “crossing”), with

C(x) = C(⌈ax⌉) + C(⌊bx⌋).

Hence, by linearity of expectation B(x) = V(x) + C(x) for all x ≥ 1. It is easy to see that the
three recursive functions above are monotonically increasing.

The recurrences describing the functions B(x), V(x), and C(x) are of the form F(x) =
F(⌈ax⌉) + F(⌊bx⌋), for 0 < a ≤ b < 1 and a + b = 1. The floor and ceiling in the recurrence
make the analysis more complicated. As we will see, it is easier to analyze the recurrence
G(x) = G(ax) + G(bx) with the roundoff removed. The base cases for the recursively defined
functions F(x) and G(x) are the range 1 ≤ x ≤ lg B, in which F(x) = G(x).

3.2.2 Roundoff Error Is Small

We analyze the difference between these two functions F(x) and G(x) defined above, and we
show that the difference is small.

Definition Let a < min{1/2, 1 − 2/ lg B}. Define the recursive function β(x) and δ(x) as
follows:

β(x) =

{

0, x ≤ lg B;
β(ax + 1) + 1, x > lg B.
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δ(x) =

{

1, x ≤ lg B;

δ(ax + 1)(1 + 2aβ(x)−2

lg B
), x > lg B.

Lemma 3.4 For all x > lg B, the function β(x) satisfies

2

a2x
≥ aβ(x)−2

lg B
≥ 1

2ax
.

Lemma 3.5 The function δ(x) has the following properties:
(1) If β(x) = β(y), then δ(x) = δ(y).
(2) For all x > lg B,

δ(ax + 1)(ax + 1) ≤ axδ(x).

(3) For all x ≥ 1,

δ(x) ≤ e
2

a(1−a) lg B ,

which is 1 + O
(

2
a(1−a) lg B

)

= 1 + O(1/ lg B).

Proof: (1) This claim follows from induction.
(2) This claim follows from the recursive definition of δ(x) and

aβ(x)−2

lg B
≥ 1

2ax
.

(3) For all x > lg B,

δ(x)

δ(ax + 1)
= 1 + 2 · aβ(x)−2

lg B
≤ exp

(

2
aβ(x)−2

lg B

)

.

Thus, δ(x) ≤ exp

(

2
β(x)
∑

i=1

ai−2

lg B

)

≤ exp
(

2
a(1−a) lg B

)

. 2

Theorem 3.6 (Roundoff Error) Let F(x) = F(⌈ax⌉) + F(⌊bx⌋), and G(x) = G(ax) +
G(bx), for 0 < a ≤ b < 1, and a + b = 1. Then for all x ≥ 1, F(x) ≤ G(x δ(x)).

Proof: We prove the bound inductively. First recall that F(x) and G(x) are monotonically
increasing. The base case is F(x) = G(x) and δ(x) = 1 when x ≤ lg B. If F(x) ≤ G(xδ(x))
when x ≤ t, then for all lg B < x ≤ t/a − 1, we have

F(x) = F(⌈ax⌉) + F(⌊bx⌋) ≤ F(ax + 1) + F(bx)
≤ G((ax + 1)δ(ax + 1)) + G(bxδ(bx))
≤ G(axδ(x)) + G(bxδ(x))
= G(xδ(x)).

Thus, for all x ≥ 1, we have F(x) ≤ G(xδ(x)). Furthermore, if G(x) ≤ c x + O(1), then by of
Lemma 3.5 Condition 3, F(x) ≤ G(xδ(x)) ≤ c x δ(x) + O(1) ≤ c[1 + O(1/ lg B)]x + O(1). 2
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3.2.3 Bounding the Path-Length and the Page-Boundary Crossing Function

We now develop methods so that given values for a and b, we can determine values of the
approximation ratio. We restrict ourselves to splits a and b of the form a = 1

qk and b = 1
qm , for

integers m and k that are relatively prime and q > 1. Notice that k > m, and thus qk = qn+1,
where n = k − m. The rationale behind this choice is that this additional structure helps us
in the analysis while still being dense; that is, for any given a′ and b′, we can find a and b
defined as above that are as close as we want to a′ and b′. We call such an (a, b) pair a twin
power pair.

We ignore the roundoff based on Corollary 3.6. Furthermore, we normalize the range
for which V(x) = 1 by introducing a function H(x) = H(ax) + H(bx) with H(x) = 1 for
0 < x ≤ 1 as desired. Note that V(x lg B) ≤ H(xδ(x lg B)) by Theorem 3.6.

First we state a lemma, which we prove later in this subsection.

Lemma 3.7 Let (1/qk, 1/qm) be a twin power pair, and let n = k − m. Then, we have
H(x) ≤ (c1 + ǫ)qkx + O(1), where the value of c1 is

(

n
∑

i=1

q−i +

k
∑

i=n+1

qk−i

)

/
(

kqk−1 − nqn−1
)

.

Corollary 3.8 The number of recursive subtrees V(x) on a root-to-leaf path is bounded by
(c1 + ǫ)qk logB N + O(1).

Theorem 3.9 (Path-Length Cost) The number of recursive subtrees on a root-to-leaf path
is (lg e + ǫ) logB N + O(1) ≈ 1.443 logB N + O(1).

Proof: Let a = 1/qk and b = 1/qk−1, where 1/qk + 1/qk−1 = 1. From this we have

q ≈ 1 + ln 2/k. Applying Lemma 3.7 and for large k we obtain c1q
k k→∞−−−→ 1/ ln 2 = lg e and

hence V(x) → lg e logB N + O(1) ≈ 1.443 logB N + O(1) as claimed. 2

To complete the proof of Lemma 3.7, we establish some properties of H(x). Since H(x)
is monotonically increasing we can bound the value H(x)/x for qi ≤ x ≤ qi+1 as follows:

1

q
min

{

H(qi)

qi
,
H(qi+1)

qi+1

}

≤ H(qi)

qi+1
≤ H(x)

x

≤ H(qi+1)

qi
≤ q max

{

H(qi)

qi
,
H(qi+1)

qi+1

}

.

Hence, if d is a lower bound and c is an upper bound on H(qi)/qi when i is larger than a
given integer s, then d/q is a lower bound on H(x)/x and cq is an upper bound on H(x)/x
when x > qs.

Define αi = H(qi−k+1). From the recursive formula for H(x) we know that for i ≥ 0,

αi+k = H(qi+1) = H(aqi+1) + H(bqi+1)

= H(qi−k+1) + H(qi+n−k+1) = αi+n + αi.

Let r1, r2, . . . , rk be the (possibly complex) roots of the characteristic polynomial function
w(x) = xk − xn − 1. We will claim they are all unique.

The following four lemmas have technical proofs, which appear in the full version.
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Lemma 3.10 The k roots of w(x) = xk − xn − 1 are unique, when k and n are relatively
prime integers such that 1 ≤ n < k.

Because h′(x) = kxk−1 − nxn−1 > 0 when x > 1 and by construction q > 1, there is one
unique root q > 1 of w(x). Without loss of generality let r1 = q.

We now show that if the k roots of the characteristic polynomial function of a series are
unique, then the series in question is a linear combination of power series {ri

j} of the roots.

Lemma 3.11 Consider a series {αi} satisfying αk+s =
∑k−1

i=0 diαi+s for complex numbers di,

and let r1, r2, . . . , rk be the k unique roots of the characteristic function g(x) = xk−∑k−1
i=0 dix

i

for the series {αi}. Then there exists complex numbers c1, c2, . . . , ck such that for all i,
αi =

∑k
j=1 cjr

i
j .

Hence we can solve the recurrence {αi} by finding ci that satisfy αi =
∑k

j=1 cjr
i
j for

i = 0, . . . , k − 1. The base cases of {αi}k−1
i=0 are determined by the original definition of

αi = H(qi−k+1). For i = 0, . . . , k − 1 we have 0 < qi−k+1 < 1 and hence H(qi−k+1) = 1 = αi.

Lemma 3.12 The dominant root (i.e., the root with largest absolute value) for w(x) = xk −
xn − 1 is r1 = q. All other roots r2,. . .rk have absolute value less than q.

Lemma 3.13 The coefficient c1 in Lemma 3.11 is

(

n
∑

i=1

q−i +
k
∑

i=n+1

qk−i

)

/(kqk−1 − nqn−1).

After establishing the properties of H(x), we give the proof of Lemma 3.7:
Proof of Lemma 3.7: To complete the proof we only need to show that H(x) ≤ (c1 +ǫ)qkx,
where ǫ = o(1).

Observe that the function H(x) is monotonically increasing and for each x > 1, we have
qx ≥ q⌈lnq x⌉ ≥ x. So H(x) ≤ α⌈lnq x⌉+k−1 ≤ (c1 + ǫ)q⌈lnq x⌉+k−1 ≤ (c1 + ǫ)qkx, as claimed.
The first inequality is from the definition of H(x); the second inequality is from the equation
αi =

∑k
j=1 cjr

i
j and r1 = q is the dominant root; the third inequality is from the monotonic

property of H(x). 2

We study the memory-transfer cost from block-boundary crossings, and show that it is
dominated by the the memory-transfer cost from the path length. We consider the case
when a ≥ 1/4, which includes the best layouts. Using similar reasoning for computing the
path-length cost, we obtain the following theorem:

Theorem 3.14 (Block-Boundary Crossing Cost) The expected number of block-
boundary-induced memory transfers C(x) on a search is at most O(lg lg B/ lg B) logB x when
1/4 ≤ a < 1/2.

Combining Theorems 3.9 and 3.14, we obtain the main theorem.

Theorem 3.15 (Generalized vEB Layout) The expected cost of a search in the general-
ized vEB layout is at most (lg e + o(1)) logB N + O(lg lg B/ lg B) logB N + O(1).
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