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Abstract

We present new general techniques for static orthogonal range searching problems in
two and higher dimensions. For the general range reporting problem in R

3, we achieve
query time O(log n + k) using space O(n log1+ε n), where n denotes the number of stored
points and k the number of points to be reported. For the range reporting problem on
an n × n grid, we achieve query time O(log log n + k) using space O(n logε n). For the
two-dimensional semi-group range sum problem we achieve query time O(logn) using
space O(n log n).
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1 Introduction

Let P be a finite set of points in R
d and Q a query range in R

d. Range searching is the
problem of answering various types of queries about the set of points which are contained
within the query range, i.e., the point set P ∩Q. A query is, e.g. to report the point set P ∩Q
(reporting queries), its cardinality |P ∩Q| (counting queries), or simply to decide if P ∩Q = ∅
(emptiness queries). Orthogonal range searching is the special case where the query ranges
are d-dimensional rectangles [a1, b1] × · · · × [ad, bd] ⊆ R

d.
Points can, e.g. represent a population of persons associated with a key with his or her

age, sex, weight, salary etc. A typical orthogonal range query is of the form “find all males
of age between 30 and 40 years with an income between $20,000 and $40,000”.

The orthogonal range searching problem has numerous applications and has been studied
extensively for the last decades, see e.g. [1, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 20, 22, 24, 25,
26, 27, 30, 31, 40, 41, 42, 43, 45, 46, 47]. Willard [43] gives a comprehensive list of references
on the subject and gives applications to the theory of databases. For surveys see, e.g. the
survey by Agarwal [1], and the books by Mehlhorn [27] and Preparate and Shamos [31].

In this paper we consider various orthogonal range searching problems on static point
sets. We give new techniques for static orthogonal range searching problems improving the
previous best results [11, 14, 18, 30, 32, 41, 42] for various models, problems and dimensions:
general range reporting in R

d, for fixed d ≥ 3, two-dimensional range reporting in rank space,
and for the two-dimensional semi-group range sum problem. In the following we let n denote
the number of stored points and k the number of points to be reported by a reporting query.

The model of computation we assume is a unit-cost RAM with word size logarithmic in n,
as used for the most upper bounds, e.g. as in [11, 14, 18, 30, 32, 41, 42]. The remaining of
the introduction gives a detailed discussion of our results.

1.1 Range reporting

Given n points P ⊆ R
d, the general static d-dimensional range reporting problem is to con-

struct a data structure for P that supports the query: report([a1, b1] × · · · × [ad, bd]) which
reports the point set { (v1, . . . , vd) ∈ P : a1 ≤ v1 ≤ b1, . . . , ad ≤ vd ≤ bd }. For three
dimensions we obtain the following result.

Theorem 1 For the static three-dimensional range reporting problem in R
3 there exists a

data structure supporting queries in time O(log n + k) and requiring space O(n log1+ε n).

Chazelle in 1986 [13] gave a data structure for three dimensions with query time O(log2 n+
k) and using space O(nlog2 n/log log n). Willard in 1992 [42] improved the query time of
Chazelle by a factor O(log log n) using fusion trees. Overmars in 1988 [30] gave a data
structure with query time O(log n log log n + k) using space O(n log2 n). The query time of
Overmars was improved by a factor O(log log n/ log∗∗ n)1 by Subramanian and Ramaswamy
in 1995 [32]. Using a factor O(log n) more space, the query time can be reduced by a fac-
tor O(log∗∗ n) [11]. Chazelle [14] gives a series of results using less space, but queries using
more time. Table 1 summarizes the bounds for range reporting in R

3.
Our data structure improves all the above mentioned results.

1log∗∗
n is the number of times to apply log∗

n to get a constant, and log∗
n is the number of times to apply

log n to get a constant.
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Query time Space Source

O( log2 n
log log n + k) O(n log2 n

log log n) [42]

O(log n log∗∗ n + k) O(n log2 n) [32]

O(log n + k) O(n log3 n) [11]
O(log2 n + k) O(n log1+ε n) [14]

O(log n + k) O(n log1+ε n) New

Table 1: Orthogonal range reporting in R
3.

Accepting a penalty for each reported point Chazelle [14] gave a data structure with
query time O(log2 n + k log log(4n/k)) and using space O(n log n log log n), or query time
O(log2 n + k logε(2n/k)) and using space O(n log n).

Using a method of Willard and Lueker [46], the above bounds can be extended, for any
fixed d, to d-dimensional range reporting, for d ≥ 4, with a penalty of a factor O(logd−3 n)
in space and query time (excluding the term involving k). We show how the above bounds
can be extended for any fixed d, to d-dimensional range reporting, for d ≥ 4, with a penalty
of a factor O(logd−3+ε n) in space and O(( log n

log log n)d−3) in query time (excluding the term
involving k).

Finally, accepting a penalty for each reported point, orthogonal range search in R
3 can

be solved with query time O(log n(log log n)2 + k log log n) using space O(n log n log log n).
This result is obtained by applying the method of Willard and Lueker to one of our results
for two-dimensional range searching on a grid in Section 1.2, using standard range reducing
technique [30], as described in Section 2.2.

1.2 Two-dimensional range reporting

For n points in two-dimensional rank space, i.e., an n × n grid, we have the following result.

Theorem 2 For the static two-dimensional range reporting problem on an n × n grid, there
exist data structures supporting queries in time O(log log n+k) and O((log log n)2+k log log n)
respectively and requiring space O(n logε n) and O(n log log n) respectively, for any constant
ε > 0. In both cases the preprocessing time is expected O(n log n).

For n points on an n×n grid Overmars [30] achieves query time O(log log n+k) using space
O(n log n). Our Theorem 2 improves the result of Overmars, and settle an open problem he
raises by asking “It is not clear whether Ω(n log n) storage is necessary for obtaining efficient
solutions on a grid”.

Chazelle [14] provides the following series of results for the case of points in R
2:

Query time Space

O(log n + k) O(n logε n)
O(log n + k log log(4n/k)) O(n log log n)
O(log n + k logε(2n/k)) O(n)

Using the standard range reduction from R
2 to rank space, it can be seen that we only

match or almost match the results of Chazelle in R
2.
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Query time Space Source

O(log2 n) O(n logε n)

O(log2 n log log n) O(n log log n)







[14]
O(log2+ε n) O(n)

O(α(n) log n) O(n log n) [18]
O(log n) O(n log n) New

Table 2: Bounds for the orthogonal semi-group range sum problem in R
2.

Restricting the model to, e.g. a pointer machine [34], Chazelle [15] has shown that re-
porting in time O(log n + k) requires space Ω(n log n/ log log n). This bound is matched by
an optimal upper bound for the pointer machine model [13].

1.3 The semi-group range sum problem

For the semi-group range sum problem we consider a commutative semi-group 〈G,⊕〉, i.e.,
we do not assume the elements in G to have additive inverses. Let P be n points in some
space, e.g. R

2, where each point p ∈ P is associated with a semi-group element e(p) ∈ G. The
semi-group range sum problem is to construct a data structure that for a given rectangular
query range Q supports the query
sum(Q) returning the semi-group sum

∑

p∈P∩Q e(p).
A data structure cannot make use of subtractions or any internal property of the semi-

group. Hence, a data structure for the semi-group range sum problem can be applied to any
concrete choice of a semi-group which, e.g. may be available through function calls. For the
semi-group range sum problem in R

2 we have the following result.

Theorem 3 For the static semi-group range sum problem in R
2, there exists a data structure

supporting queries in time O(log n) and requiring space O(n log n). The preprocessing time is
expected O(n log2 n).

Results for the range sum problem often only state the space used as the number of
semi-group elements stored. However, for our data structure both the number of semi-group
elements stored and the additional space required is O(n log n). For the one-dimensional
semi-group range sum problem in [n], i.e., a table of semi-group elements, Yao [47, 48]
showed that using space m, the query time is Θ(α(m,n) + n/(m − n + 1)) in the arith-
metic model [47, 48], where α is the functional inverse of Ackermann’s function defined by
Tarjan [33]. Chazelle and Rosenberg [18] showed how to achieve the upper bound on the
RAM. Chazelle and Rosenberg combine their result for one dimension with the technique of
Lueker and Willard [46] to get a result for two dimensions: Using space O(n log n), queries
can be answered in time O(α(n) log n). Chazelle [14] gives a series of results using less space,
but queries using more time.

Table 2 summarizes the bounds for the orthogonal semi-group range sum problem in R
2.

The space bounds are the number of semi-group elements stored.
Willard [40] studied the range sum problem in the group model, i.e., he makes use of the

presence of additive inverses. Willard obtained query time O(log n) using space O(n log n),
i.e., the same bounds as we obtain for the semi-group model.
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If we consider the product of query time and space, our result is the first that achieves
a product trade-off of O(n log2 n). Chazelle in [16] provides the following lower bound for
the d-dimensional semi-group range sum problem: using m units of storage, the query time
is Ω((log n/ log(2m/n))d−1) (see also Yao [48]). The lower bound is given for the dominance
problem, i.e., the special case where the ranges are of the form [−∞, b1]× · · · × [−∞, bd], and
clearly holds for general orthogonal range sum queries. For the dominance problem Chazelle
gives matching upper bounds in the arithmetic model for m = Ω(n log1+ε n). Lower bounds
for the off-line version are given in [12].

2 Preliminaries

Let [n] denote the set of integers {0, 1, . . . , n − 1}. We let [a, b], denote the set (interval) of
integers between a and b including a and b. The sets (intervals) ]a, b], [a, b[ and ]a, b[ denotes
the same set of integers but excluding a, excluding b, and excluding both a and b respectively.
For a > b, the interval [a, b] = ∅ and for a = b, [a, b[=]a, b] =]a, b[= ∅. A rectangle is the cross
product of two intervals. Let u ≥ 1 denote an integer. Let R ⊆ [u] × [u] denote a rectangle
and let S denote a set of points in [u]× [u]. We let rect(S,R) denote the set of points from S
within rectangle R, i.e., rect(S,R) = S ∩R. Finally, for an interval I ⊆ [u] we let rectx(S, I)
denote the set rect(S, I × [u]) and recty(S, I) the set rect(S, [u] × I).

2.1 Three-sided queries reporting

In our solutions for answering general queries in two dimensions, we will use data structures
for three-sided queries in two dimensions. Let P be a point set in a two-dimensional space.

A three-sided query takes as arguments three coordinates x1, x2, y1 and reports:

report(x1, x2, y1): report { (x, y) ∈ P : x1 ≤ x ≤ x2 ∧ y ≤ y1 } .

Note that the three-sided query equals the general query report([x1, x2] × [−∞, y1]).
Fries et al. [23] considered three-sided queries in [N ]×R. Given n lexicographically sorted

points from [N ]×R, they showed how to achieve query time O(log log n+ k), using O(N +n)
space and preprocessing time. We have the following result (following immediately from [24]):

Theorem 4 For n points in [N ]×R, using O(N+n) space and preprocessing time, three-sided
queries can be answered in O(k) time.

To show this let Sx = {y | (x, y) ∈ P}∪{∞} be stored as sorted lists and let sx = minSx, for
x ∈ [N ]. From [24, Sect. 3] we have that using O(N +n) space and preprocessing time, we can
for a query report(x1, x2, y1) in constant time find i such that si = min{sx | x1 ≤ x ≤ x2}.
If si > y1 we stop; otherwise we return the points {(i, y) | y ∈ Si ∧ y ≤ y1}, and proceed
with report(x1, i − 1, y1) and report(i + 1, x2, y1). In total we spend O(k) time.

Corollary 1 For n points in [u] × [u], using O(n) space and expected preprocessing time,
three-sided queries can be answered in O(k + log log u) time.
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2.2 Reduction to rank space

Using a standard technique from the literature, e.g. Chazelle [14] and Gabow et al. [24], we
can reduce a general static range searching problem in R

d to a range searching problem in
the d-dimensional grid [0, 1, . . . , n − 1]d = [n]d, in the following denoted rank space. For a
point x, let xi denote the ith coordinate of x. If P is a set of n points in R

d, then P is
translated to the set P̂ in rank space by the order preserving mapping τP , where τP is defined
by (τP (p))i = rank(pi, Pi), and Pi = {qi | q ∈ P} and rank(x, S) = |{y ∈ S | y < x}|. The
construction of the set P̂ is easily accomplished by sorting the points in P once with respect
to each of the d coordinates. A d-dimensional range query R = [a1, b1]× · · · × [ad, bd] in R

d is
translated to the range query τP (R) = [â1, b̂1] × · · · × [âd, b̂d] in rank space by performing 2d
binary searches such that âi = rank(ai, Pi) and b̂i = rank(pred(bi, Pi), Pi), where pred(x, S) =
max{y ∈ S∪{−∞} | y ≤ x}. This translation satisfies τP (R∩P ) = τP (R)∩P̂ . In the following
we let the mapping τP from P to P̂ be denoted the range reduction for P , and P̂ the range
reduced set of points. Note that P̂i = [ni], where ni is the number of different ith-coordinates
of the points in P .

Algorithms given in this paper uses range reductions to reduce the problems defined for
general spaces R

d to point sets in rank spaces. In order to support the range reduction from R
d

to rank space, we sort the set of stored points by each of the d dimensions in time O(dn log n).
A range reduced query originally from R

d is then transformed to rank space using a binary
search for each dimension in time O(d log n). If the coordinates of the points are integers
in a universe of size U , we can alternatively use the data structure of van Emde Boas that
supports searches in time O(log log U) [28, 37, 38, 39] and uses space O(n). Depending on
the computational model and the sort of problem, several different constructions can be used
see e.g. [2, 4, 35, 36, 44].

3 Range searching on the grid

In this section we describe the data structure for range reporting on the two-dimensional grid.
Let M be the input set of n points in [n] × [n]. We assume word size of at least log n, and
when we say space cost, we measure this in terms of number of words used.

Our data structure uses the divide and conquer approach, and consists of a number of
recursive levels. Each recursive level holds a number of auxiliary range searching structures
supporting various limited kinds of range queries. We consider a division of the points into
subsets called rows and columns. Each point is represented in at most two recursive substruc-
tures for a row subset and a column subset.

In the following we use the function f(m) = ⌈√m log m⌉. We let f (0)(m) = m and
f (k)(m) = f(f (k−1)(m)) for k ≥ 1. We let f∗(m) denote the minimal integer k such that
f (k)(m) ≤ 3. We need the following fact for f .

Fact 1 For any integer l, 1 ≤ l ≤ f∗(n), 2l log(f (l)(n)) ≤ 4 log n and f∗(n) = log log n+O(1).

Consider a point set S from a universe [u]× [u], where u ≤ n. Let m ≤ n be the size of S.
We define the row and column subsets relative to a set of row borders R ⊆ [u+1] and column
borders C ⊆ [u+1] defined as follows. Let c(0) = 0. The kth column border c(k) is defined to be
the minimal x > c(k−1) such that |rectx(S, [c(k−1), x])| > f(m). If no such x exists, c(k) = u
and is then the last column border. The kth column is the set C(k) = rectx(S, [c(k−1), c(k)[)
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and the interior of the column is Ċ(k) = rectx(S, ]c(k−1), c(k)[). Note that by definition of the
borders, |Ċ(k)| ≤ f(m) for all k. The row borders and associated rows are defined similarly.
That is r(0) = 0 and r(k) = min({ y > r(k − 1) : |recty(S, [r(k − 1), y])| > f(m) } ∪ {u}).
The kth row is R(k) = recty(S, [r(k − 1), r(k)[) and Ṙ(k) = recty(S, ]r(k − 1), r(k)[). Finally,
let Q(i, j) denote the intersection of column i and row j, i.e., Q(i, j) = C(i) ∩ R(j) =
rect(S, [c(i − 1), c(i)[×[r(j − 1), r(j)[). By definition of row and column borders, there can
be at most ⌈2m/f(m)⌉ columns and ⌈2m/f(m)⌉ rows. We define the top set of points
Ŝ ⊆ [⌈2m/f(m)⌉]2 by (i, j) ∈ Ŝ if and only if Q(i, j) 6= ∅.

A range query for the query rectangle [a, b] × [c, d] ⊆ [u] × [u] can be expressed in terms
of range queries for the above sets. We split between two cases for the query.

Case a) [a, b] ∩ C 6= ∅ and [c, d] ∩R 6= ∅.
In this case let [ia, ib] be the set of column borders spanned by [a, b], i.e., {c(ia), c(ia +
1), . . . , c(ib)} = [a, b] ∩ C. Similarly let [ic, id] be the set of row borders spanned
by [c, d]. Define the rectangles Cl = [a, c(ia)[×[c, d], Cr = [c(ib), b] × [c, d], Rlow =
[c(ia), c(ib)[×[c, r(ic)[ and Rup = [c(ia), c(ib)[×[r(id), d]. Let R̂ = rect(Ŝ, ]ia, ib]×]ic, id]).
Then rect(S, [a, b] × [c, d]) can be expressed as the following disjoint union

(

⋃

(i,j)∈R̂

Q(i, j)
)

∪ (1)

rect(C(ia), Cl) ∪ rect(C(ib + 1), Cr) ∪
rect(R(ic), Rlow) ∪ rect(R(id + 1), Rup).

Case b) [a, b] ∩ C = ∅ or [c, d] ∩R = ∅.
In this case the query rectangle [a, b] × [c, d] is completely within the interior of a row
or a column. That is, if it is completely within a column (in case of [a, b] ∩ C = ∅) we
can express rect(S, [a, b] × [c, d]) as rect(Ċ(k), [a, b] × [c, d]) for the unique k satisfying
c(k − 1) < a ≤ b < c(k). Similar for the rectangle completely within a row (in case of
[c, d]∩R = ∅), rect(S, [a, b]× [c, d]) = rect(Ṙ(k), [a, b]× [c, d]) for the unique k satisfying
r(k − 1) < c ≤ d < r(k).

Hence by the above two cases, we can answer any reporting query for a rectangle provided
access to reporting queries for the following types of ranges.

1. Three-sided rectangle ranges contained in a column or a row, with a side fixed to a
column or row border, i.e., as the rectangle ranges Cl, Cr, Rlow and Rup in (1).

2. A range properly included in a column or row as in Case b).

3. A general range query for the top set Ŝ within domain [⌈2m/f(m)⌉]2. This range query
computes the points corresponding to R̂ in (1). Using these points and information
stored for each Q(i, j) for a (i, j) ∈ Ŝ, we can form the union corresponding to the first
term in (1).

Our data structure reflects the above partition into rows and columns, with auxiliary
structures supporting queries 1. and 3. above, and recursive structures for 2. To be more
precise, the data structure consists of ℓ recursive levels (which by Fact 1 will turn out to
be log log n + O(1)), starting with the input set at level 0. Consider a structure at level l,
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0 ≤ l ≤ ℓ, storing point set S. If S has size less than a constant larger than 3, the recursion
stops and we represent the points in a list with queries supported by a linear scan in constant
time. Otherwise S is partitioned according to the above description. For each 1 < k ≤ |C|,
the column border c(k) is associated two three-sided range searching structures, a structure
for points in C(k − 1) and one for all points in C(k). Both supports the three-sided queries
with a side fixed to c(k). That is, these queries enable answers for the rectangles as given
in 1. For k = 1 or k = |C|, the border c(k) is only associated one structure for the points C(k)
and C(k − 1) respectively. Similarly we associate three-sided structures for the rows with a
side fixed to a row border for rectangles like Rlow and Rup in Case a).

The point set Ŝ is represented in an general range searching structure we call the top
structure. In addition to this, we store information for each set Q(i, j), i.e., a list of the
points. For each Q(i, j) we keep this information in an entry in a two-dimensional array with
⌈2m/f(m)⌉2 entries. Hence in order to report the points for Q(i, j) we simply return the list
for entry (i, j) in the array.

Finally, for each interior point set I, i.e., I is a set Ċ(k) and Ṙ(k) for an integer k, we
store I in a recursive structure corresponding to level l+1. We will use two strategies for this
recursive representation depending upon the time and space cost we aim at. The recursive
point set for I may either be stored relative to the universe used for S, or we may reduce the
universe to rank space for I. In the latter case, all structures recursively represented at level
l + 1 are range reduced, and we say a range reduction on level l takes place. For levels where
a range reduction takes place, we keep a van Emde Boas data structure which enable us to
transform a rectangle query within a range reduced point set I to the rank space domain for I.
Furthermore we also store a perfect hash table [21] enabling us to map the points from range
reduced points sets at level l + 1 back to the original domain for S. We call the non-recursive
data structures associated the recursive structures at level l such as the three-sided range
searching structures and the top structure for auxiliary structures at level l.

The set of recursive range searching data structures at level l is denoted D(l), for instance
D(0) is the general structure for the input set M , D(1) is the set of structures for the interior
column and row sets for M . Let d ∈ D(l) be a recursive structure at level l. The number of
points stored in d is denoted m(d). We let u(d) denote the universe size for structure d, i.e.,
d stores points in the grid [u(d)] × [u(d)]. We let u(l) be the size of the largest universe size
at a recursive level l, i.e., u(l) = maxd∈D(l) u(d). Before describing the query computation we
state three simple lemmas relevant for the analysis of the data structure.

Lemma 1 For any l, 0 ≤ l ≤ ℓ, the number of points m(d) in a structure d ∈ D(l) is bounded
by f (l)(n).

Proof. Proof by induction on l, using that the largest structure in D(l + 1) contains at most
f(m) points, where m = maxd∈D(l) m(d), and the initial level 0 has n points.

Lemma 2 The number of levels ℓ is bounded by O(log log n).

Proof. By Lemma 1, any structure at level f∗(n) = O(log log n) contains at most 3 points
and hence the recursion can not have depth of more than this.
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Lemma 3 For any level l, 0 ≤ l ≤ ℓ,
∑

d∈D(l) m(d) ≤ 2ln.

Proof. Proof by induction on l. At the initial level 0 it clearly holds. Next for a point set S
at a level l, a point in S is represented in at most two recursive structures at level l + 1, i.e.,
in the interior point sets for a column and a row. Hence the number of points at level l + 1
is at most the double of level l.

3.1 Query computation

Consider a query for rectangle [a, b] × [c, d] to a structure d ∈ D(l) for some level l, where
0 ≤ l ≤ ℓ. First the computation decides whether the query rectangle satisfy Case a) or Case
b) above. That is, we need a structure to decide whether the interval [a, b] contains a column
border or whether [c, d] contains a row border. In case one of these intervals does not contain
a border, the structure returns the column (or row) number the rectangle is contained in,
i.e., the predecessor for a (or c). We call the data structure supporting this kind of query for
column or row borders, the interval range (IR) structure. We will express the time cost of a
query to the IR structure in terms of n and let q(n) denote this cost. The IR structures we use
will have linear space cost in terms of m(d), i.e., a bit cost of O(m(d) log u(l)). If the query
is in Case a), there will be no further recursive calls, and the computation is reflected by the
expression (1). That is the computation consists of computing the five rectangles Rup, Rlow,
Cl, Cr and R̂ using the respective three-sided column and row range searching structures and
top structure. In total, the computation of the rectangle boundaries takes time O(log log n)
using the van Emde Boas data structure. Points to be returned are then the collection of
points from these queries together with the points in the lists associated sets Q(i, j), for points
(i, j) to be reported for R̂ in (1).

In Case b) we need a recursive call for an interior point set I for either a column or a row.
If a range reduction takes place, i.e., I is represented recursively in rank space, we need to
transform the query rectangle [a, b] × [c, d] to the corresponding range reduced region valid
for the rank space for I at level l + 1. Furthermore, each recursively returned point from this
query needs to be mapped back to the domain for this level l using the perfect hash table
storing the inverse of the range reduction for I.

We summarize the time cost of the various steps for a level l. The first step is to establish
whether the query corresponds to Case a) or Case b). We can use a van Emde Boas data
structure in which case we get q(n) = O(log log n). Later we will describe how to avoid this
cost of O(log log n), using a certain approximate version of IR structure allowing time cost of
q(n) = O(1) within bit cost O(m(d) log u(l)).

Next consider the computation needed for Case b). The IR structure gives us the number
of the column or row containing the rectangle, i.e., which recursive structure to call. If a
range reduction takes place at l, there is an additional cost of O(log log n + k); we need to
compute the range reduced query rectangle for the recursive call appropriate for the domain
at level l +1. In addition we need O(k) calls to the perfect hash table for mapping the points
from the domain of level l + 1 back to original domain at level l.

Next consider Case a). First we need O(log log n) time for the computation of the
query boundaries. By Corollary 1 these three-sided queries take time O(log log u(l) + k) =
O(log log n + k) for k elements to be reported. Hence the overall work for Case a) is
O(log log n + k).

9



Let r denote the number of levels for which a range reduction takes place. For a query
computation, the total time spend on recursive levels of this kind is by the above analysis
O(r log log n + rk). For levels without a range reduction and where a Case b) computation
takes place we only use constant time. Finally, since there is only one level for which a query
computation corresponds to Case a) (we do not recurse from such case) and this takes time
O(log log n + k), the total computation for all levels along the computation path is

O(ℓq(n)) + O(log log n + k) + O(r log log n + rk) (2)

= O(q(n) log log n + (r + 1) log log n + (r + 1)k).

also using Lemma 2.

3.2 Analysis

In our analysis we will bound the number of bits used at each recursive level. First we analyze
the number of bits used for auxiliary structures associated a recursive level l, in terms of u(l)
and n.

By Lemma 3 there is a total of 2ln points at level l. Since the IR structure uses linear space
and by Corollary 1 each auxiliary three-sided structure storing m points uses at most O(m)
words of size O(log u(l)), the total bit cost of these structures are bounded by O(2ln log u(l)).

Next, each top structure associated a structure with a total of m points, keeps at most
s = (⌈2m/f(m)⌉)2 = O(m/ log m) points. Hence, any auxiliary general range searching
structure using O(s log s) words of size log u(l) for s points in universe [u(l)]2, keeps the total
bit cost for the top structure at O(m log u(l)). Hence, the total bit cost of top structures at
level l is bounded by O(2ln log u(l)). The bound on O(s log s) for space cost is met by the
Overmars’ data structure [30] with queries in time O(log log u(l) + k) = O(log log n + k).

For the reporting case we consider two variants of the above structure with different
trade-offs between space and time. We start by the variant with the best space cost.

In this variant a range reduction takes place on each recursive level. Hence the universe size
of a point set at level l is bounded by the number of points in the set. Since range reduction
takes place at level l − 1, u(l) is bounded by maxd∈D(l) m(d) ≤ f (l)(n), the last inequality

follows from Lemma 1. Hence the total bit cost of structures at level l is O(n2l log(f (l)(n))).
Fact 1 bound the total bit cost for all levels by

n log n +
ℓ

∑

l=1

n2l log(f (l)(n)) = O(nf∗(n) log n) = O(n log n log log n) .

Hence, this variant has the claimed O(n log log n) bound on space cost in terms of words of
size Ω(log n).

In this variant we use the van Emde Boas data structure for the IR structure, i.e., q(n) =
O(log log n) and hence by the bound given in (2) we get a total time cost of O((log log n)2 +
k log log n) since r = ℓ = O(log log n). This proves the second part of Theorem 2.

The other trade-off variant we consider for reporting uses more space, but provides better
query performance. Let c be an integer such that 1 ≤ c ≤ ℓ. The only difference from the
previous variant is that range reductions only take place on levels l − 1 where c divides l.
This leads to an increase of space cost which is analyzed as follows. Let l be a recursive
level for which c divides l. Since a range reduction takes place on level l − 1, u(l) is bounded
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by f (l)(n). Using the same argumentation as for the previous reporting variant, the bit
cost for any level l′, l ≤ l′ < l + c is bounded by 2l′n log(u(l′)). Since u(l′) = u(l) we get
2l′n log(u(l′)) ≤ 2l′n log(f (l)(n)). From this we can bound the sum of bit costs of recursive
levels l, l+1, . . . , l+c−1 by

∑l+c−1
l′=l 2l′n log(f (l)(n)) ≤ n2c2l log(f (l)(n)) = O(2cn log n), since

2l log(f (l)(n)) is O(log n) by Fact 1.
Hence for any constant ǫ > 0, we can choose another constant ǫ′ > 0 where we for

c = ⌈ǫ′ℓ⌉ obtain a total bit cost of O((ℓ/c)2cn log n) = O(n log1+ǫ n). In terms of log n
size words, the space cost is thus O(n logǫ n). Furthermore, the number r of levels where
a range reduction takes place is O(ℓ/c) = O(1/ǫ′) = O(1). Thus the total time cost is
O(q(n) log log n + (log log n)(ℓ/c + 1) + k(ℓ/c + 1)) = O(q(n) log log n + k) by the general
bound (2) on the time cost for a query. Implementing the IR structure using the van Emde
Boas data structure, leads to O((log log n)2 + k).

In order to avoid the log log n factor for the additive term we use a modified version of
a data structure of Miltersen et al. [29] which supports range reporting in one dimension
in constant time per point to be reported. By a lookup of an associated column and row
number for a returned point, we can determine the information needed for the IR query.
Unfortunately the data structure of Miltersen et al. [29] uses slightly too much space, i.e., it
has a bit cost of O(m(d) log2 u(l)). By only keeping a sparse sample of m(d)/ log u(l) points
in the structure, we can reduce the bit cost to the desired O(m(d) log u(l)). However, this
sparsification leads to a special case for interval ranges that contain very few points (less than
log u(l)). This case can be handled by a simple additional linear space auxiliary structure
for thin rows and thin columns with at most log(u(l)) points in each. For these thin rows
and columns we can support general range queries in time O(log log n + k) for k points to be
reported. Details will be given in the full paper. We conclude that this variant of the range
reporting proves the first part of Theorem 2.

4 Semi-group sum

In the semi-group variant we measure the space cost in terms of the number of stored semi-
group sums and the bit cost of remaining parts of the data structure. We will analyze these
two measures separately in what follows. The structure is very similar to the reporting
variants, and we will thus just describe how to modify these variants to obtain the result.

Before we begin a description we need a certain parameterized version of the semi-group
variant for three-sided and general range searching structures.

Lemma 4 Let S ⊆ [n] × [n] be a set of points with n = |S|. For any integer parameter p,
1 ≤ p ≤ log n we can construct a three-sided range searching data structure for S in time
O(n log n) time using space O(n log n) containing at most O(n log n/p) semi-group elements,
such that range queries can be answered in O(p log n) time.

For the proof see Section 5.
In addition to the three-sided range query we also need a general semi-group range search-

ing data structure, but for this we allow a log n factor extra in the space cost, stated in the
following lemma.

Lemma 5 Let p be an integer parameter such that 1 ≤ p ≤ log n. The general semi-group
sum problem can be solved in time O(p log n) and space O(n log2 n/p) in terms of semi-group
elements, and space O(n log2 n) in terms of words.
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For the proof see Section 5.
The semi-group variant is a modification of the data structure from Section 3. Fix c such

that 1 < c ≤ 2. For the three-sided range searching structures at level l we use the structure
from Lemma 4 with parameter p = ⌈cl⌉. For the top structure we use the data structure from
Lemma 5 again with parameter p = ⌈cl⌉. The semi-group element e(i, j) associated (i, j) ∈ Ŝ
is the semi-group sum of elements in Q(i, j). The analogy of (1) for the semi-group sum is
then

rect(S, [a, b] × [c, d]) =
∑

(i,j)∈R̂

e(i, j) ⊕

sum(rect(C(ia), Cl)) ⊕ sum(rect(C(ib + 1), Cr)) ⊕
sum(rect(R(ic), Rlow) ⊕ sum(rect(R(id + 1), Rup)).

Note that the term
∑

(i,j)∈R̂ e(i, j) corresponds to a single range query for the top set Ŝ with

the associated semi-group sums e(i, j) for the points (i, j) ∈ Ŝ.

4.1 Analysis

Consider a structure d ∈ D(l) for a level l. We will show that the number of semi-group ele-
ments used for the the auxiliary three-sided structures and the top structure for d is bounded
O((m(d) log m(d))/cl). First, the top structure contains at most O((m(d)/f(m(d)))2) =
O(m(d)/ log m(d)) points. Hence the use of structure from Lemma 5 with parameter p = ⌈cl⌉
implies a cost of O((m(d) log m(d))/cl) semi-group elements. For the three-sided structures we
store at most O(m(d)) points, hence by Lemma 4 also leading to a cost of O(m(d) log m(d)/cl)
semi-group elements.

By these bounds and by Lemma 1, Lemma 3 and Fact 1 we have the following total bound
on the number of semi-group elements stored in auxiliary structures at level l

∑

d∈D(l)

(m(d) log m(d))/cl ≤ n2l log f (l)(n)/cl

= O((n log n)/cl).

For the chosen parameter c, the sum of semi-group element cost of all levels is

O(n

ℓ
∑

l=0

log n/cl) = O(n log n)

as desired. Using argumentation very similar to the reporting variant (except from an ad-
ditional log n factor) the additional space cost (in terms of log n size words) is bounded by
O(n log n).

The time cost is also very similar to the analysis for the reporting variant. Time cost for
traversing through the recursive structures until we reach a structure at some level l for which
Case a) holds is the same, i.e., with a cost of O(ℓ log log n) = O((log log n)2). The remaining
computation is the calls for three-sided queries and the top structure at the level l where the
query satisfy Case a) for a structure d ∈ D(l). By Lemma 1 m(d) is bounded by f (l)(n). The
chosen structures for the three-sided queries and the top structure has time cost bounded by
O(cl log m(d)) which by Fact 1 is O(log n) since c ≤ 2. Hence the total time cost is O(log n)
as claimed.
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5 Range searching in d dimensions

Let A be a data structure for d-dimensional range reporting, using space O(s(n)) and time
O(t(n)+k), where t(n) ≥ log log n, for n points P ⊆ R

d. We show how to extend A to support
(d+1)-dimensional range reporting, using space O(s(n) log1+ε n) and O(t(n)(log n/ log log n)+
k) time. For a point x, let xi denote the ith coordinate of x. To avoid tedious details
we assume xi 6= yi for all x, y ∈ P and i. Let Pi = {pi|p ∈ P}. Let T be a rooted
tree, with n leafs, node degree B, where the different between two leafs depth is at most 1.
The leafs are ordered from left to right, and to the jth leaf we associate the point p ∈ P ,
where rank(pd+1, Pd+1) = j. For a node in T , we for each of the B2 pairs of its children
c1, . . . , cB associate a d-dimensional data structure. Such data structure associated a pair,
say (ci, cj), contains the points associated all leafs to descendents of ci, . . . , cj . A point in
these d-dimensional data structures is only represented by the first d coordinates. Each point
is represented in B2 d-dimensional data structures at each of the O(log n/ log B) levels in the
tree, leading to space cost O(s(n)B2 log n/ log B). A d + 1-dimensional query can now be
answered by O(log n/ log B) d-dimensional queries. In addition we need O(log n/ log B log B)
time to determine these queries. Choosing B = (log n)1/l, for a constant l > 1, we have a d+1
dimensional data structure with the claimed complexity. The construction can be repeated a
fixed number of times proving the following theorem.

Theorem 5 Given a data structure A for two-dimensional static range reporting problem,
using space O(s(n)) and time O(t(n)+k), t(n) ≥ log log n, for n points A can be extended, for
any fixed d ≥ 3, to d-dimensional range reporting, with space complexity O(s(n) logd−2+ε n)
and time complexity O(k + t(n)( log n

log log n)d−2).

Combining Theorem 5 with the first part of Theorem 2, using the observations in Sec-
tion 2.2, proves Theorem 1.

6 Subproblems for the semi-group result

Proof. (Lemma 4) We solve the three-sided range query by using a dynamic to static
transformation technique of a persistent dynamic one-dimensional version of the semi-group
sum problem. The one-dimensional problem is as follows. For an A array of semi-group
elements we will support two operations: update(i, f) : A[i] := A[i]⊕f and interval(i, j) :=
A[i]⊕A[i+1] · · ·⊕A[j]. Initially A[i] = e for all i, where e is the neutral element for the semi-
group. Over the array we span a complete binary tree (we assume without loss of generality
that n = 2k for integer k ≥ 0). The leafs are ordered from left to right, and the ith leaf
holds the value of A[i]. An internal node that spans the leafs from i to j holds the value
interval(i, j). An update(i, f) operation corresponds to updating the ith leaf. Updating a
leaf i is done by updating in constant time each of its O(log |A|) ancestors. Similarly, a query
can be answered by computing the sum of O(log |A|) values from internal nodes. Now we
use a standard approach to get a solution for the static three-sided two-dimensional range
query. The degree of the nodes in the above structure is clearly bounded by a constant
implying that we can use a persistent technique by Driscoll et. al. [19]. This is done with a
worst case slowdown O(1) for queries, amortized slowdown O(1) for updates and amortized
space cost O(1) per memory modification. Using the above one-dimensional structure for
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the first coordinate of the points, we now insert the points in increasing order by the second
coordinate. A three-sided query (x0, x1, y) corresponding to interval(x0, x1) in the persistent
one-dimensional structure at the time where all points with second coordinates ≤ y have been
inserted, and no one else. This gives an O(n log n) space and O(log n) query time solution
for three-sided range queries. Next we show how to decrease the space used for semi-group
elements to O(n log n/p), by increasing the query time to O(p log n) still using O(n log n)
space in total. This is done by a slight modification of the above dynamic one-dimensional
algorithm. For an internal node z spanning the leafs i · · · j we associate a bucket of pointers
to semi-group elements. Updating z with f we insert a pointer to f in z’s bucket. If the
bucket holds p pointers, we empty the bucket and update z. Let z hold the semi-group value
v(z), let the semi-group element a pointer q points to be v(q), and let the pointers in z’s
bucket be q1, · · · qp. Updating z is to set v(z) := v(z) ⊕ v(q1)⊕ · · · ⊕ v(qp). This change does
not decrease the total space used, but it does decrease the number of semi-group elements
in memory to O(n log n/p). To perform a query we have to examine O(log n) ancestors and
their buckets of size p, leading to complexity O(p log n) for a query.

Proof. (Lemma 5) To avoid tedious details we assume x1 6= y1 for all x, y ∈ S. We divide the
points into two subsets A and B, such that A = { p : rank(p1, S1) < |S|/2 } and B = S \ A.
To each of the point sets A and B we associate a three-sided structure that enable us to
answer queries not entirely enclosed in either A or B. In order to answer queries entirely
enclosed in either A or B we associate a recursive structure. Now using O(log n) time we find
the structure in which we can combine two three-sided queries for the answer leading to the
complexity O(log n+p log n). Since a point is at most included in O(log n) structures we also
achieve the claimed space complexity.
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