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Computing the Quartet Distane BetweenEvolutionary Trees in Time O(n log2 n)Gerth St�lting Brodal� Rolf Fagerberg�Christian N. S. Pedersen�AbstratEvolutionary trees desribing the relationship for a set of speies areentral in evolutionary biology. Comparing evolutionary trees to quantifydi�erenes arising when estimating trees using di�erent methods or datais a fundamental problem. In this paper we present an algorithm foromputing the quartet distane between two unrooted evolutionary treesof n speies in time O(n log2 n). The previous best algorithm runs in timeO(n2). The quartet distane between two unrooted evolutionary trees isthe number of quartet topology di�erenes between the two trees, wherea quartet topology is the topologial subtree indued by four speies.1 IntrodutionThe evolutionary relationship for a set of speies is ommonly desribed byan evolutionary tree. This is a rooted tree where the leaves orrespond to thespeies, and the internal nodes orrespond to speialization events, i.e. the pointsin time where the evolution has diverged in di�erent diretions. The diretionof the evolution is desribed by the loation of the root, whih orresponds tothe most reent ommon anestor for all the speies, and the rate of evolutionis desribed by assigning lengths to the edges. The true evolutionary tree fora set of speies is rarely known, hene estimating it from obtainable informa-tion about the speies, e.g. genomi data, is of great interest. The problemof estimating aspets of the true evolutionary tree omputationally requires amodel desribing how to use the available information about the speies to solvethe problem. Given a model, the problem of estimating ertain aspets of thetrue evolutionary tree is often referred to as onstruting the evolutionary treein that model. Many models and methods for onstruting evolutionary treeshave been presented, see [10, Chapter 17℄ for an overview.�BRICS (Basi Researh in Computer Siene, www.bris.dk, funded by the Danish Na-tional Researh Foundation), Department of Computer Siene, University of Aarhus, NyMunkegade, DK-8000 �Arhus C, Denmark. E-mail: fgerth,rolf,stormg�bris.dk. Par-tially supported by the IST Programme of the EU under ontrat number IST-1999-14186(ALCOM-FT). 1



An important aspet of the true evolutionary tree is the undireted treetopology indued when ignoring the loation of root and the length of the edges.Many models and methods are onerned with estimating this important aspetof the true evolutionary tree, usually under the further assumption that allinternal nodes have degree three. We say that suh models and methods areonerned with onstruting the unrooted evolutionary tree of degree three fora set of speies. For the remainder of this paper an evolutionary tree denotesan unrooted evolutionary tree of degree three.Di�erent models and methods often yield di�erent estimates of the evolu-tionary tree for the same set of speies. The same model and method an alsogive rise to di�erent evolutionary trees for the same set of speies when appliedto di�erent information about the speies, e.g. di�erent genes. To study suhdi�erenes in a systemati manner, one must be able to quantify di�erenesbetween evolutionary trees using well-de�ned and eÆient methods.One approah for omparing two evolutionary trees is to determine a on-sensus tree (or forest) that reets ommon traits of the two trees, e.g. themaximum agreement subtree. Muh work has been onerned with developingeÆient methods for omputing the maximum agreement subtree of two or moreevolutionary trees, see e.g. [2℄. Another approah for omparing two evolution-ary trees is to de�ne a distane measure between two trees and ompare the twotrees by omputing the distane. Several distane measures have been proposed,e.g. the symmetri di�erene metri [12℄, the nearest-neighbor interhange met-ri [16℄, the subtree transfer distane [1℄, the Robinson and Foulds metri [13℄,and the quartet metri [8℄. Eah distane measure has di�erent properties andreets di�erent aspets of biology, e.g. the subtree transfer distane is relatedto the number of reombinations between the two sets of speies. The quartetmetri has several attrative properties. Bryant et al. in [5℄ disuss the proper-ties of the quartet metri and onlude that it does not su�er from drawbaksof the other distane measures. For example, measures based on transformationoperations, e.g. the subtree transfer distane, do not distinguish between trans-formations that a�et a large number of leaves and transformations that a�eta small number of leaves.In this paper we study the quartet metri. For an evolutionary tree, the quar-tet topology of four speies is the topologial subtree indued by these speies.In general, the possible quartet topologies for four speies are the four shownin Fig. 1. Of these, the right-most annot our if we assume that all internalnodes have degree three. It is well known that the omplete set of quartets isunique for a given tree and that the tree an be uniquely reovered from its setof quartets in polynomial time [6℄. However, if the tree has degree three, then,as observed in [11℄, it an be reovered from its set of quartets in time O(n logn)using methods for onstruting an evolutionary tree in the experiment model intime O(n logn) as desribed in [4, 9, 11℄.Given two evolutionary trees on the same set of n speies, the quartet dis-tane between them is the number of quartet topology di�erenes. Sine thereare �n4� di�erent quartets, the quartet distane an be alulated in time O(n4)by omparing the possible quartets one by one. Steel and Penny in [14℄ present2



an algorithm for omputing the quartet distane in time O(n3). Bryant et al.in [5℄ present an algorithm that omputes the quartet distane in time O(n2).In this paper we present an algorithm that omputes the quartet distane intime O(n log2 n) making it possible to ompare muh larger evolutionary trees.Our solution is based on two tehniques: the smaller-half trik, also used bymethods for �nding tandem repeats in strings, e.g. [15℄, and a data struturerelated to the data struture for dynami expression trees f. [7℄.The rest of the paper is organized as follows. In Set. 2 we introdue quar-tets and present our algorithm for omputing the quartet distane between twounrooted evolutionary trees. In Set. 3 we desribe a hierarhial deompositionof unrooted trees whih is an essential part of the data struture used by ouralgorithm. In Set. 4 we present the details of our data struture.2 The AlgorithmAs mentioned, we in this paper by evolutionary tree mean an unrooted treewhere all nodes are either leaves (i.e. have degree one) or have degree three,and where the leaves are uniquely labelled by the elements of a set S of speies.Let n denote the size of S.For an evolutionary tree T , the quartet topology of four speies a; b; ; d isthe topologial subtree of T indued by these speies. In general, the possiblequartet topologies for speies a; b; ; d are the four shown in Fig. 1. Of these,the right-most does not our in our setting, due to the assumption about allinternal nodes having degree tree. Hene, the quartet topology is a pairing ofthe four speies into two pairs, de�ned by letting a and b be a pair if among thethree paths in T from a to b, , and d, the path to b is the �rst to separate fromthe others.ab d a bd ad b ab dFigure 1: The four possible quartet topologies of speies a, b, , and d.Given two evolutionary trees T1 and T2 on the same set S of speies, thequartet distane between the two trees is the number of four-sets fa; b; ; dg � S,for whih the quartet topologies in T1 and T2 di�er. As there are �n4� di�erentfour-sets in S, the quartet distane an also be alulated as �n4� minus thenumber of four-sets for whih the quartet topologies in T1 and T2 are idential.In this paper, we give an algorithm for �nding this number in O(n log2 n) time.To failitate the ounting of idential quartet topologies in the two trees,we view the quartet topology of a four-set fa; b; ; dg as two oriented quartettopologies given by the two possible orientations of the \middle edge" of thetopology. Figure 2 shows the two oriented quartet topologies arising from oneunoriented quartet topology. 3



ab d ! ab d- + ab d�Figure 2: The two orientations of a quartet topology.Clearly, the number of idential oriented quartet topologies between thetrees T1 and T2 is twie the number of idential unoriented quartet topologies.The goal of our algorithm is to ount idential oriented quartet topologies. Forbrevity, we in the rest of this paper let the word quartet denote an orientedquartet topology of a four-set.We assoiate quartets to internal nodes in T1 as follows: Consider the generiquartet in Fig. 3, where the orientation is from the pair fa; bg to the pair f; dg.There is a unique node v in T1 where the paths from a and b to  (and d) meet.We assoiate the quartet of Fig. 3 with the node v. This partitions the 2�n4�quartets into n� 2 disjoint sets (as there are n� 2 internal nodes in a tree of nleaves, when all internal nodes have degree three).ab d-Figure 3: A generi quartet.For an internal node v in T1, let the three subtrees whih arise if v and itsthree inident edges are removed be denoted by A, B, and C. The number ofquartets assoiated with v is given by the expression�jAj2 � � jBj � jCj+ �jBj2 � � jCj � jAj+�jCj2 � � jAj � jBj ;where jT j denotes the number of leaves in subtree.The strategy of the algorithm is for eah internal node v in T1 to ount howmany of the quartets assoiated with v do also exist in T2. The sum over allnodes in T1 of these ounts then gives the required number of idential quartetsin T1 and T2.The algorithm will make essential use of the data struture desribed inSet. 4. The data struture maintains a oloring of the elements of S using thethree olorsA, B, and C. Given a pointer to an element in the data struture, itsolor an be hanged in O(logn) time. The entral feature of the data strutureis the following: Let v be an internal node in T1 with three inident subtrees A,B, C, as desribed above. Assume that the elements of S whih are labels ofleaves in A all have olor A, and that the same statement also holds for B andolor B, and for C and olor C. Then the data struture also supports that thenumber of quartets assoiated with v whih also are in T2 an be returned inO(1) time. When the elements of S are olored as just desribed, we say thatthey are olored aording to v. 4



The algorithm starts by rooting T1 at an arbitrary leaf. It then alulatesthe size of eah node in T1 during a postorder traversal starting at the root(where the size of a node denotes the number of leaves below it), storing thisinformation in the nodes. It also olors all elements of S by the olor C.The algorithm then alulates the ount for the internal nodes in T1 in areursive fashion, starting at the single hild of the root of T1. To ahieve thelaimed omplexity, the algorithm at a node v will reurse �rst on its smallesthild, then on its largest hild, and �nally add the ount for v to the sum so far.In Fig. 4, the pseudo-ode for the reursive proedure, termed Count(v), isshown. The two routines Small(v) and Large(v) return the smallest, respe-tively the largest, of the two hildren of an internal node v in T1. The routineNodeCount(v) is a all to the data struture of Set. 4, returning the ount forthe node v. The routine ColorLeaves(v, X ) olors with the olor X all elementsin the data struture whih are labels of leaves below v in T1. This is done by atraversal of the subtree in T1 rooted at v. By maintaining bi-diretional pointersbetween elements of S in the data struture, and the leaves in T1 and T2 whihthey label, this takes time O(jvj � logn), where jvj denotes the size of v.Proedure Count(v)if v is a leaf thenolor v by the olor Areturn 0x = Count(Small(v))ColorLeaves(Small(v), C)y = Count(Large(v))ColorLeaves(Small(v), B)z = NodeCount(v)ColorLeaves(Small(v), A)return x+ y + zFigure 4: The algorithm.Theorem 1 Let T1 and T2 be two unrooted evolutionary trees on the same set Sof speies, and let all internal nodes in the trees have degree three. Then thequartet distane between T1 and T2 an be found in O(n log2 n) time.Proof. We here assume the existene of the data struture disussed above. Thisexistene is proven in Set. 4. We laim that the algorithm above maintains thefollowing invariant:
5



1. At the beginning of the exeution of an instane of Count(v), all elementsin S are olored by the olor C.2. At the end of the exeution of an instane of Count(v), all elements in Swhih are labels of leaves below v in T1 are olored by the olor A.The laimed invariants follow by indution on the number of alls to Count(v).The invariants imply that when a all to NodeCount(v) takes plae, the oloringof the elements in S are as required for the data struture { i.e., the elementslabelling the leaves of the three subtrees of T1 indued by a removal of v areolored with a di�erent olor for eah of the three subtrees. Corretness of thealgorithm follows.For omplexity, note that the work inurred by an instane of Count(v), notounting reursive alls made during this instane, is O(1 + x logn), where xdenotes the size of Small(v). Let this work be aounted for by harging eahleaf below Small(v) in T1 (or v itself, if it is a leaf) an amount O(logn) of work.For a given leaf l, this harging an only happen at nodes v on the path from lto the root where the path goes from Small(v) to v. As the size of v is at leasttwie as large as the size of Small(v), this an only happen logn times. Hene,eah leaf is at most harged O(log2 n) work in total, and the result follows. 23 Hierarhial DeompositionAn essential part of the data struture in Set. 4, is a hierarhial deompositionof the evolutionary tree T2. Given an unrooted tree T where all nodes havedegree at most three, we in the following desribe how to obtain a hierarhialdeomposition of T with logarithmi height. Our deomposition is very similarto the deompositions used for solving the parallel and dynami expression treeevaluation problems [3, 7℄, but in our setting the underlying tree is onsideredto be unrooted.We base our hierarhial deomposition on the notion of omponents. Wede�ne a omponent C in T to be either1. A single node of T , or2. A onneted subset of the nodes of T , suh that at most two nodes in Care onneted by an edge to nodes in T n C.The external edges of a omponent C of T are the edges in T onneting nodesin C and T n C. The degree of a omponent is the number of external edges ofthe omponent. By the seond ondition above, a omponent with two or morenodes an have degree at most two.A hierarhial deomposition of an unrooted tree T is a rooted binary tree,in the following denoted H(T ). There is a one-to-one mapping between thenodes of T and the leaves of H(T ). Eah node of H(T ) represents a omponent6



in T . An internal node v of H(T ) represents the omponent in T that is theunion of the two omponents represented by the two hildren of v. The fourpossible legal types of ompositions of adjaent omponents are depited inFig. 5. Nodes represent ontrated omponents and ovals possible omponentompositions. Types (i), (iii), and (iv) are the ases where a omponent withone external edge is omposed with the adjaent omponents of degree three,two and one respetively. Type (ii) is the ase where two adjaent omponentswith degree two are omposed into a new omponent with degree two. Notethat eah omposition of two omponents orresponds to a unique edge in thetree T , namely the edge onneting the two omponents.
(i) (ii) (iii) (iv)Figure 5: The four possible types of ompositions of omponents.Lemma 1 For every unrooted tree with n nodes and all nodes having degree atmost three, there exists a hierarhial deomposition tree with height O(logn).The deomposition an be omputed in time O(n).Proof. Given a tree with n leaves, we will onstrut a hierarhial deompositionbottom-up in O(logn) steps. Initially we start with eah node in T being aomponent by itself. Let n denote the urrent number of omponents, and n1,n2, and n3 the number of omponents of degree one, two and three respetively,i.e. n = n1+n2+n3 for n � 2. From (i), (iii), and (iv) we have that a omponentwith degree one an always be omposed with its adjaent omponent. Forn � 5, it holds that no degree three node is adjaent to three omponents withdegree one. Hene, a omposition of type (i), (iii), and (iv) an at most onitwith one other omposition involving a omponent with degree one. It followsthat for n � 5, at least dn1=2e nononiting ompositions an be identi�ed ifwe selet ompositions of type (i), (iii), and (iv) greedily in time O(n).For n � 2 we have n1 = n3 + 2 and n2 = n � n1 � n3 = n � 2n1 + 2. Forn � 4 eah omponent with degree two is adjaent to at least one omponentwith degree two or three. Sine at most three omponents with degree two anbe adjaent to a omponent with degree three, the number of omponents withdegree two that are adjaent to a omponent also with degree two is at leastn2 � 3n3 = (n � 2n1 + 2) � 3(n1 � 2) = n � 5n1 + 8. Sine eah ompositionof type (ii) an at most onit with two other ompositions of type (ii), itfollows that for n � 4, at least d(n� 5n1 + 8)=4e nononiting ompositions oftype (ii) an be identi�ed if we selet the ompositions greedily in time O(n).7



It follows that for n � 5, we an identify maxfdn1=2e; d(n� 5n1 + 8)=4eg �n=14 nononiting ompositions in time O(n). By repeating the above ktimes, at most n(13=14)k omponents remain. In partiular, after at mostdlog14=13(n=4)e steps, at most four omponents remain. By at most three addi-tional ompositions we have the �nal hierarhial deomposition. It follows thatthe height of the hierarhial deomposition tree is bounded by dlog14=13(n=4)e+3 = O(logn). Sine the number of omponents dereases geometrially foreah time we identify a set of nononiting ompositions, the total time be-omes O(n). 24 Counting Quartets in ComponentsGiven a oloring of the elements in S with the olors A, B, and C, and given aquartet oriented as in Fig. 3 from the pair fa; bg to the pair f; dg, we say thatthe quartet is ompatible with the oloring if a and b have di�erent olors, and and d both have the remaining olor.Let T be an evolutionary tree for S, and let H(T ) be the hierarhial deom-position tree for T , as de�ned in Set. 3. We now desribe how to deorate thenodes of H(T ) with information suh that the number of quartets of T whihare ompatible with a given oloring of S an be returned in onstant time.Furthermore, for a given oloring, the information an be generated in O(n)time, and if one element of S hanges olor, the information an be updated inO(logn) time.For eah node of H(T ), we store a tuple (a; b; ) of integers and a funtion F .Reall that a node in H(T ) represents a omponent in T . The integers a, b,and  of the tuple are the number of leaves ontained in this omponent whihare olored A, B, and C, respetively. A omponent has k external edges for kbetween zero and three (the ase of zero external edges ours only at the rootof H(T )). The funtion F has three variables for eah of the external edges ofthe omponent. For a omponent with at least one external edge, we numberthese edges arbitrarily from 1 to k and denote the three variables orrespondingto edge i by ai, bi, and i. If edge i were removed from T , two subtrees of Twould arise, one of them not ontaining the omponent in question. We allthis the subtree indued by the external edge of the omponent. The variablesai, bi, and i denote the number of leaves from the subtree indued by edge iwhih are olored A, B, and C, respetively. Finally, the funtion F states howmany of the quartets assoiated (in the sense de�ned in Set. 2) with nodes inthe omponent are ompatible with the given oloring, seen as a funtion of thevariables ai, bi, and i, for 1 � i � k. It will turn out that F is atually apolynomial of total degree at most four.The root of H(T ) has no external nodes, so the funtion F stored thereis a atually a onstant. Furthermore, the root represents a omponent whihomprises the entire tree T . Hene, the number of quartets of T whih areompatible with a given oloring of S is part of the information stored at theroot. 8



Lemma 2 The tree H(T ) an be deorated with the information desribed abovein time O(n).Proof. The information is found in a bottom up fashion during a traversalof H(T ). We �rst desribe how the information for leaves in H(T ), i.e. fornodes representing single node omponents, is generated.For a omponent onsisting of a single leaf olored A, B, or C, the tuplelearly is (1; 0; 0), (0; 1; 0), and (0; 0; 1), respetively. The funtion F is identi-ally zero, as quartets are only assoiated with internal nodes of T , not withleaves of T .For a omponent onsisting of a single degree three node u, the tuple learlyis (0; 0; 0), as no leaves of T are ontained in the omponent. The funtion Fshould ount the number of quartets whih are ompatible with the oloring andwhih are assoiated with u in T . A quartet oriented from the pair fa; bg to thepair f; dg ful�lls this requirement exatly if  and d are ontained in the samesubtree indued by an external edge of the omponent, and they have the sameolor, and a and b eah are in one of the remaining two indued subtrees andeah have one of the remaining two olors. Assuming that  and d are in thesubtree indued by edge number one, and have olor A, the number of possiblequartets ful�lling this is �a12 � � (b23 + b32) :Summing over all 3 � 3 = 9 hoies of the indued subtree and olor for  and d,we get:F (a1; b1; 1;a2; b2; 2;a3; b3; 3)= �a12 � � (b23 + b32) + �a22 � � (b13 + b31) + �a32 � � (b21 + b12)+ �b12 � � (a23 + a32) + �b22 � � (a13 + a31) + �b32 � � (a21 + a12)+ �12 � � (b2a3 + b3a2) + �22 � � (b1a3 + b3a1) + �32 � � (b2a1 + b1a2)We now turn to the generation of the information stored in the internal nodesofH(T ). Consider the omponent omposition of of two omponents C 0 and C 00.Let (a0; b0; 0) and F 0, and (a00; b00; 00) and F 00 be the information stored at thenodes representing the omponents C 0 and C 00. The information stored at thenode representing the omposition C of C 0 and C 00 is (a0+a00; b0+b00; 0+00) andF , where F depends on the type of omposition. If the omponent ompositionis of type (ii) we onsider the ase where the �rst external edge of C 0 and C 00 inthe edge onneting C 0 and C 00, and the seond external edge of C 0 is the �rstexternal edge of C and the seond external edge of C 00 is the seond externaledge of C. The remaining ases of numbering the external edges are obtainedby appropriate permutations of the arguments to F 0 and F 00.F (a1; b1; 1;a2; b2; 2)= F 0(a2 + a00; b2 + b00; 2 + 00;a1; b1; 1)+ F 00(a1 + a0; b1 + b0; 1 + 0;a2; b2; 2)9



Component ompositions of type (iii) and (iv) are idential to type (ii),exept that the de�nition of F is simpler. For type (iii) we have (assuming thatC 00 is the omponent of degree one)F (a1; b1; 1) = F 0(a00; b00; 00) + F 00(a1 + a0; b1 + b0; 1 + 0) ;and for type (iv) we haveF = F 0(a00; b00; 00) + F 00(a0; b0; 0) :Note that for type (iv) ompositions F is a onstant. Finally, we for type (i)ompositions get the following ontribution assuming C 0 has degree one and thetwo external edges of C are the seond and third external edge of C 00 respetively.F (a1; b1; 1;a2; b2; 2)= F 0(a1 + a2 + a00; b1 + b2 + b00; 1 + 2 + 00)+ F 00(a0; b0; 0;a1; b1; 1;a2; b2; 2)By strutural indution on the de�nition of the F funtion in the ontribu-tion of a omponent, it follows that F is a polynomial of total degree at mostfour. Polynomials with total degree at most four and at most nine variablesan be stored in onstant spae by storing the oeÆients of the polynomials,and they an be manipulated in onstant time, e.g. the addition and omposi-tion of two polynomials. We onlude that the ontribution of a omponent C,that is omposed of two omponents C 0 and C 00, an be omputed in onstanttime, provided that the ontribution of C 0 and C 00 are known, i.e. H(T ) an bedeorated in O(n) time. 2Lemma 3 The deoration of H(T ) an be updated in O(logn) time when hang-ing the olor of an element in S.Proof. From the proof of Lemma 2 we know that the deoration of a node inH(T ) only depends on the deoration of the hildren of the node in H(T ), i.e.the only deorations that need to be updated in H(T ) while hanging the olorof an element in S are the anestors of the leaf in H(T ) orresponding to theelement. Sine H(T ) has height O(logn) and the deoration of a node takesonstant time to ompute knowing the deoration of the hildren, it follows thatthe deoration of H(T ) an be updated in time O(logn). 2Lemma 4 When S is olored aording to a hoie of v in T1, then the set ofquartets ompatible with the oloring is exatly the quartets assoiated with v.Proof. Follows from the de�nitions of the olors and ompatible quartets. 2Corollary 1 If the above onstrution is done with T2 for T , and the oloringof S is aording to a hoie of v in T1, then the quartets in T2 ompatible withthe oloring are exatly the quartets whih are in both T1 and T2. Furthermore,the number of suh quartets is exatly the value of the onstant funtion F storedat the root of H(T2). 10
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