Implicit Computation Geometry

Henrik Blunck

Department of Computer Science
WWU Munster

Overview

1. Introduction: Motivation for implicit computation

2. Skylines and convex hulls

Henrik Blunck Implicit Computation Geometry

Motivation

m Traditional focus in algorithm design: Running Time
m Here: Second core issue: Memory utilization.

m Historically: Space-Efficiency considered due to high memory
prices.

m Nowadays: Space-Efficiency considered due to:
— Larger datasets.

x High-resolution survellaince data
* [emporal and spatio-temporal data
— Smaller computing devices.

* Location based services for mobile communication net-
WOrks

x Data analysis and propagation in sensor networks
— Limited (read/write)-memory

Car Navigation

Henrik Blunck Implicit Computation Geometry 2

In-Place Algorithms

Definition 1.1

An algorithm A is called in-place iff during its execution A occupies

O (1) words, i.e. O(logpon) bits, in addition to the space required by
the input.

(Assumption: Any pointer or data item occupies O (1) words.)

Henrik Blunck Implicit Computation Geometry 3

In-Place Algorithms

Definition 1.1
An algorithm A is called in-place iff during its execution A occupies

O (1) words, i.e. O(logpon) bits, in addition to the space required by
the input.

(Assumption: Any pointer or data item occupies O (1) words.)
Consequences:

m Classic recursive algorithms are not in-place.

— Need to maintain a call stack of size €2 (logn).

Henrik Blunck Implicit Computation Geometry 3

In-Place Algorithms

Definition 1.1
An algorithm A is called in-place iff during its execution A occupies

O (1) words, i.e. O(logpon) bits, in addition to the space required by
the input.

(Assumption: Any pointer or data item occupies O (1) words.)

Consequences:.
m Classic recursive algorithms are not in-place.

— Need to maintain a call stack of size €2 (logn).

s Algorithms using auxiliary pointer-based data structures (such as
balanced binary trees or linked lists) are not in-place.

— Need to resort to implicit data structures.

Henrik Blunck Implicit Computation Geometry 3

In-Place Algorithms

Definition 1.1

An algorithm A is called in-place iff during its execution A occupies
O (1) words, i.e. O(logpon) bits, in addition to the space required by
the input.

(Assumption: Any pointer or data item occupies O (1) words.)

Consequences:.
m Classic recursive algorithms are not in-place.

— Need to maintain a call stack of size €2 (logn).

s Algorithms using auxiliary pointer-based data structures (such as
balanced binary trees or linked lists) are not in-place.

— Need to resort to implicit data structures.

Example:

m Heapsort is an in-place algorithm (uses in-place data structure).

Henrik Blunck Implicit Computation Geometry 3

Motivation: Dealing with Large Datasets

Algorithmic concepts for different scenarios:
m Small, fast working memory. Data resides on slow disks.

— Cache-oblivious and I/O-efficient Algorithms: Minimize data (block) move-
ment.

m Data is streamed and not constantly available.
— Streaming algorithms: (Approximation of) data aggregates.

= (Almost) no memory to use additional to the given input.

m Implicit data structures, in-place algorithms.

Henrik Blunck Implicit Computation Geometry 4

Motivation: Dealing with Large Datasets

Algorithmic concepts for different scenarios:
m Small, fast working memory. Data resides on slow disks.

— Cache-oblivious and I/O-efficient Algorithms: Minimize data (block) move-
ment.

m Data is streamed and not constantly available.
— Streaming algorithms: (Approximation of) data aggregates.

= (Almost) no memory to use additional to the given input.

m Implicit data structures, in-place algorithms.

More motivation:
m “The less memory used, the faster ..

Henrik Blunck Implicit Computation Geometry 4

Motivation: Dealing with Large Datasets

Algorithmic concepts for different scenarios:
m Small, fast working memory. Data resides on slow disks.

— Cache-oblivious and I/O-efficient Algorithms: Minimize data (block) move-
ment.

m Data is streamed and not constantly available.
— Streaming algorithms: (Approximation of) data aggregates.

= (Almost) no memory to use additional to the given input.

m Implicit data structures, in-place algorithms.

More motivation:
m “The less memory used, the faster ..

m Because of: Memory-, disk-, network l|latencies, less garbage to
collect, larger basecases ...

Henrik Blunck Implicit Computation Geometry 4

Motivation: Dealing with Large Datasets

Algorithmic concepts for different scenarios:
m Small, fast working memory. Data resides on slow disks.

— Cache-oblivious and I/O-efficient Algorithms: Minimize data (block) move-
ment.

m Data is streamed and not constantly available.
— Streaming algorithms: (Approximation of) data aggregates.

= (Almost) no memory to use additional to the given input.

m Implicit data structures, in-place algorithms.

More motivation:
m “The less memory used, the faster ..

m Because of: Memory-, disk-, network l|latencies, less garbage to
collect, larger basecases ...

s In-place model “in between” I/O- and Streaming-Model . ..

Henrik Blunck Implicit Computation Geometry 4

Motivation: Dealing with Large Datasets

Algorithmic concepts for different scenarios:
m Small, fast working memory. Data resides on slow disks.

— Cache-oblivious and I/O-efficient Algorithms: Minimize data (block) move-
ment.

m Data is streamed and not constantly available.
— Streaming algorithms: (Approximation of) data aggregates.

= (Almost) no memory to use additional to the given input.

m Implicit data structures, in-place algorithms.

More motivation:
m “The less memory used, the faster ..

m Because of: Memory-, disk-, network l|latencies, less garbage to
collect, larger basecases ...

s In-place model “in between” I/O- and Streaming-Model . ..

= May provide insights in computational complexity of problems.

Henrik Blunck Implicit Computation Geometry

Previous Results

In-Place Sorting and Related Problems:

m Heapsort [Floyd, 1964].

s Linear-time merging/partitioning
[Mannila & Ukkonen, 1984: Geffert et al., 2000; Katajainen & Pasanen, 1999]. ..

m Linear-time k-selection [Carlsson & Sundstrom, 1995;: Geffert & Kollar,
2001; Bose et al., 2006].

In-Place, Cache-Oblivious(!) Dictionary:

= O (logn) update/queries [Franceschini & Grossi, 2003].

Henrik Blunck Implicit Computation Geometry 5

Sapce-efficient Computational Geometry Results

In-Place Computational Geometry:

m Closest Pair etc. [Bose et al., 2006].
m Line-Segment Intersection [Bose et al., 2006; Vahrenhold, 2005].

m Convex Hull and Maxima problems etc. [Bronnimann et al., 2004b;
Bronnimann & M.Chan, 2004; Blunck & Vahrenhold, 2006].

Henrik Blunck Implicit Computation Geometry 6

Sapce-efficient Computational Geometry Results

In-Place Computational Geometry:

m Closest Pair etc. [Bose et al., 2006].
m Line-Segment Intersection [Bose et al., 2006; Vahrenhold, 2005].

m Convex Hull and Maxima problems etc. [Bronnimann et al., 2004b;
Bronnimann & M.Chan, 2004; Blunck & Vahrenhold, 2006].

“Use-Polylog-Extra-Space-And-Time” Geometry Results:

m 3d-convex hull and related [Bronnimann et al., 2004c].
m Multidimensional search sctructures [Bréonnimann et al., 2004a].

m Klee's Measure Problem [Chen & M.Chan, 2005].

Henrik Blunck Implicit Computation Geometry 6

In this lecture ...

Henrik Blunck Implicit Computation Geometry

In this lecture ...

In-place techniques and algorithms for:

Henrik Blunck Implicit Computation Geometry

In this lecture ...

In-place techniques and algorithms for:
s Convex hulls and sets of maxima ('skylines’) ° el

Henrik Blunck Implicit Computation Geometry

In this lecture ...

In-place techniques and algorithms for:
s Convex hulls and sets of maxima ('skylines’) o

m Layers of convex hulls and maxima -LI—T
Y —

Henrik Blunck Implicit Computation Geometry

In this lecture ...

In-place techniques and algorithms for:
s Convex hulls and sets of maxima ('skylines’)

m [ayers of convex hulls and maxima

m Regression Analysis: Estimating linear corre-
lations

Henrik Blunck Implicit Computation Geometry

Overview

2. Skylines and convex hulls

Henrik Blunck Implicit Computation Geometry

Computing the Skyline

Maximal Points:
m Given: Set P of n points in the plane.

m pEPis maximal &
YgeP . px>qxVpy>qy

Henrik Blunck Implicit Computation Geometry

Computing the Skyline

Maximal Points:
m Given: Set P of n points in the plane.
m pEPis maximal &
YgeP . px>qxVpy>qy

m j.e., p € P is maximal iff no other ¢q € P
in “upper-right quadrant” of p.

Henrik Blunck Implicit Computation Geometry

Computing the Skyline

Maximal Points:
m Given: Set P of n points in the plane.
m pEPis maximal &
YgeP . px>qxVpy>qy
m j.e., p € P is maximal iff no other ¢q € P
in “upper-right quadrant” of p.

m Union of maximal points:
‘skyline’, ‘pareto-optimal points’.

Henrik Blunck Implicit Computation Geometry

Computing the Skyline

Maximal Points:
m Given: Set P of n points in the plane.
m pEPis maximal &
YgeP . px>qxVpy>qy
m j.e., p € P is maximal iff no other ¢q € P
in “upper-right quadrant” of p.

m Union of maximal points:
‘skyline’, ‘pareto-optimal points’.

Henrik Blunck Implicit Computation Geometry

Computing the Skyline

Maximal Points:
m Given: Set P of n points in the plane.
m pEPis maximal &
YgeP . px>qxVpy>qy
m j.e., p € P is maximal iff no other ¢q € P
in “upper-right quadrant” of p.

m Union of maximal points:
‘skyline’, ‘pareto-optimal points’.

Q==

Henrik Blunck Implicit Computation Geometry

Computing the Skyline

Maximal Points:
m Given: Set P of n points in the plane.
m pEPis maximal &
YgeP . px>qxVpy>qy
m j.e., p € P is maximal iff no other ¢q € P
in “upper-right quadrant” of p.

m Union of maximal points:
‘skyline’, ‘pareto-optimal points’.

Henrik Blunck Implicit Computation Geometry

Computing the Skyline

Maximal Points:
m Given: Set P of n points in the plane.
m pEPis maximal &
YgeP . px>qxVpy>qy
m j.e., p € P is maximal iff no other ¢q € P
in “upper-right quadrant” of p.

m Union of maximal points:
‘skyline’, ‘pareto-optimal points’.

Henrik Blunck Implicit Computation Geometry

Computing the Skyline

Maximal Points:
m Given: Set P of n points in the plane.
m pEPis maximal &
YgeP . px>qxVpy>qy
m j.e., p € P is maximal iff no other ¢q € P
in “upper-right quadrant” of p.

m Union of maximal points:
‘skyline’, ‘pareto-optimal points’.

Henrik Blunck Implicit Computation Geometry

Computing the Skyline

Maximal Points:
m Given: Set P of n points in the plane.
m pEPis maximal &
YgeP . px>qxVpy>qy
m j.e., p € P is maximal iff no other ¢q € P
in “upper-right quadrant” of p.

m Union of maximal points:
‘skyline’, ‘pareto-optimal points’.

4 paid vacation/yr

salar
y»

Henrik Blunck Implicit Computation Geometry

Computing the Skyline

Maximal Points:
m Given: Set P of n points in the plane.
m pEPis maximal &
YgeP . px>qxVpy>qy
m j.e., p € P is maximal iff no other ¢q € P
in “upper-right quadrant” of p.

m Union of maximal points:
‘skyline’, ‘pareto-optimal points’.

Objective:

m Find “points” that cannot be “opti-
mized’ in all d dimensions.

A

paid vacation/yr

salar
y»

Henrik Blunck Implicit Computation Geometry

Computing the Skyline

Maximal Points:
m Given: Set P of n points in the plane.
m pEPis maximal &
YgeP . px>qxVpy>qy
m j.e., p € P is maximal iff no other ¢q € P
in “upper-right quadrant” of p.

m Union of maximal points:
‘skyline’, ‘pareto-optimal points’.

Objective:

m Find “points” that cannot be “opti-
mized’ in all d dimensions.

Generalizations:
m Definition generalizes to:

— Arbitrary dimensions d.

— '"Maxima’ w.r.t. d arbitrary chosen co-
ordinate axes.

A

paid vacation/yr

salar
y»

Henrik Blunck Implicit Computation Geometry

Computing all skylines in-place

Layers of Maxima:

Henrik Blunck Implicit Computation Geometry

10

Computing all skylines in-place

Layers of Maxima:

Q==

Henrik Blunck Implicit Computation Geometry

10

Computing all skylines in-place

Layers of Maxima:

Henrik Blunck Implicit Computation Geometry

10

Computing all skylines in-place

Layers of Maxima:

Henrik Blunck Implicit Computation Geometry

10

Computing all skylines in-place

Layers of Maxima:
= Compute ‘skyline’ MAX(P) of P.

s If P\MAX(P) not empty, set P := l |
MAX(P) and repeat.

>

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:
= Compute ‘skyline’ MAX(P) of P.

s If P\MAX(P) not empty, set P := l . ‘
MAX(P) and repeat.

>

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:
= Compute ‘skyline’ MAX(P) of P.

s If P\MAX(P) not empty, set P :=
MAX(P) and repeat.

>

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:
= Compute ‘skyline’ MAX(P) of P.

s If P\MAX(P) not empty, set P :=
MAX(P) and repeat.

>

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:
= Compute ‘skyline’ MAX(P) of P.

s If P\MAX(P) not empty, set P :=
MAX(P) and repeat.

>

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:
= Compute ‘skyline’ MAX(P) of P. A

s If P\MAX(P) not empty, set P :=
MAX(P) and repeat.

= Number of iterations (layers) can
be linear in n.

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:
= Compute ‘skyline’ MAX(P) of P. A

s If P\MAX(P) not empty, set P := o
MAX(P) and repeat.

= Number of iterations (layers) can
be linear in n. o

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:
= Compute ‘skyline’ MAX(P) of P. A

s If P\MAX(P) not empty, set P := o
MAX(P) and repeat.

= Number of iterations (layers) can
be linear in n. o

Convex Layers: >
m defined analogical.

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:
= Compute ‘skyline’ MAX(P) of P. A

s If P\MAX(P) not empty, set P := o
MAX(P) and repeat.

= Number of iterations (layers) can
be linear in n. o

Convex Layers: >
m defined analogical.

In-place setting:
m Group points by layer.
m In each layer: points sorted (by x).
D T

Henrik Blunck Implicit Computation Geometry 10

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.

Henrik Blunck Implicit Computation Geometry

11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.

m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.

K, © maximal
points

Henrik Blunck Implicit Computation Geometry

11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.
m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.

K, © maximal
points

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.

m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.

OMO

K, © maximal
points

Uo| P{Oo|o|0o|O|O|O|O|O]|O]|O

f

current

Henrik Blunck Implicit Computation Geometry

11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.
m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.

L
o 0
Mg
o \J
| o o |
(o) o
o o)
o}
o}
o}
. > maximal
u'points Uo|H |0 |O|O|O|O|O|O|O|O]|O
current

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.
m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.

U
oO !
,\p ol
= o)
| o |
(o) o
o o)
o}
o}
o}
. > maximal
u'points Uo|H4| P|lOo|O|O|O|O|O|O|O|O

f

current

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.

m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.

U
o} 0 !
1
o P9
o
l (o) O ¢
o o)
o}
o}
o}
. > maximal
H'points Uo|Hi|O| P|lOo|O|O|O|O|O|O|O

f

current

Henrik Blunck Implicit Computation Geometry

11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.

m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.

K, © maximal
points Ho

W|o|o| p|lo|lo|o|o|lo|o|o

f

current

Henrik Blunck Implicit Computation Geometry

11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.

m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.
m Swap maximal points to the front of the array.

vl
o Y !
o) ot
o))
(o) o
| . o
o)
o)
o)
. > maximal
Hi points Ho|Hi| 0|0 |My|0|0|0|0|0]0]|0
current

Henrik Blunck Implicit Computation Geometry

11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.

m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.
m Swap maximal points to the front of the array.

K, © maximal
points Ho

Hjo|o|HJo|0|O|O|O|O]|O

f

current

Henrik Blunck Implicit Computation Geometry

11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.

m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.
m Swap maximal points to the front of the array.

. > maximal
Hi points Ho|H{|Ho| 0|0 |0 |0|O|O|O|0O]|O0O

f

current

Henrik Blunck Implicit Computation Geometry

11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.
m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.
m Swap maximal points to the front of the array.

U
o 0 '
o) ot
o) Mo
O \9
' S 0 |
o
o
o
. maximal
Hi points Ho|H{|Ho| 0|0 | p|lo|o|ofofo]o
current

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.
m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.
m Swap maximal points to the front of the array.

Hi:&?r)](t';nal bolHy|Hol o[0|0 plo|o|o|o]o
1

current

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.
m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.
m Swap maximal points to the front of the array.

vl
o 0 !
o) ot IJ
(@) o 2
o p O
= (®)
! ° }
o)
o
. maximal
Hi points Uo|y|Hs| 0|0 |00 | pPlO|O|0O]|0O
current

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.
m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.
m Swap maximal points to the front of the array.

vl
o Y !
o) o't IJ
(@) o 2
o)
o) . Cp
| e |
o
. » maximal
Hi points Uo|y|Hs| 0|0 |00 |O|p|lOo|o]|0O
current

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.
m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.
m Swap maximal points to the front of the array.

L
o 0 !
o) o't IJ
(@) o 2
© 0o © AIJ'3
| o |
o)
- maximal * *
ui'points Ho|H{|Hs]Oo|O|O|O|O[H3l0 |00
f
current

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.
m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.
m Swap maximal points to the front of the array.

vl
o 0 !
o) o't IJ
(@) o 2
© 0o © A“3
| o |
o)
- maximal ' '
ui'points Ho|H{|Ms|Hg|0|O|O|O|O|O|0O|O
f
current

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.

m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.
m Swap maximal points to the front of the array.

oHO
o) o™ IJ
O . o 2
o Uy
o
P 9
° i |

Hi:&?rﬂ;nal Ho|Hy|Hy|Hsl 0|0 |O|O|O|pP|O|O
f

current

Henrik Blunck Implicit Computation Geometry

11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.
m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.
m Swap maximal points to the front of the array.

. maximal
M points Ho|H{|Ho|Hgl 0|0 |0 |0 |O|O|P|O
current

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.
m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.
m Swap maximal points to the front of the array.

oHO
o) o™ H
(o) o 2
(o] o o 0“3
o
0
b
Hi:g(‘)?r)](,g‘al Ho|Hy|Ho|Hsl 0|0 |O|O|O|O|O|P
f
current

m “Skyline” (in < -order): In-place, O (nlogn) (sort & scan).

Henrik Blunck Implicit Computation Geometry

Computing the Skyline: Selecting Maximal Points in 2D

m Presort points by y-coordinate using, e.g., heapsort.

m Sweep top-down, maintain lowest maximal point (='tail’) seen so far.

— Invariant: Next point p: is maximum = p right of tail.
m Swap maximal points to the front of the array.

L
oO '
o) o't M
o)
of 2
(o) O vl
(@) 03
o)
o)
o)
. > maximal
Hi points Ho|H{|Ho|Hgl 0|0 |0 |0 |O|0O|0O]|O0O

m “Skyline” (in < -order): In-place, O (nlogn) (sort & scan).

Henrik Blunck Implicit Computation Geometry

11

Computing the Convex Hull in 2D

m Presort points lexicographically using, e.g., heapsort.

Henrik Blunck Implicit Computation Geometry

12

Computing the Convex Hull in 2D

m Presort points lexicographically using, e.g., heapsort.

m Sweep left-right, maintain last two convex hull points seen so far.

— Invariant: Point ¢ not on upper convex hull iff (p,q,r) form a left-turn.
m Swap upper hull points to the front of the array; then compute lower hull ..

. . convex hull
Hi points g |Hi|Ho|ps| ©| @0 |00 |0]0O]0

Henrik Blunck Implicit Computation Geometry 12

Computing the Convex Hull in 2D:Graham’s Scan

m Presort points lexicographically using, e.g., heapsort.

m Sweep left-right, maintain last two convex hull points seen so far.

— Invariant: Point ¢ not on upper convex hull iff (p,q,r) form a left-turn.
m Swap upper hull points to the front of the array; then compute lower hull ..

. convex hull

» Convex hull: In-place, O (nlogn) (sort & scan) [Graham, 1972].

Henrik Blunck Implicit Computation Geometry 12

Computing the Convex Hull in 2D output-sensitive [Chan, 1996]

Chan’s output-sensitive algorithm:
s Avoid global presorting (if h << n).

Henrik Blunck Implicit Computation Geometry 13

Computing the Convex Hull in 2D output-sensitive [Chan, 1996]

Chan’s output-sensitive algorithm:
s Avoid global presorting (if h << n).

m Speed up Jarvis’ March:

— Bundle input in H groups G1,...,Gg
— Graham-Scan each group to build CH(G1),...,CH(Gpg).
— Jarvis-march with CH(G1),...,CH(Gg) (instead of points) as input-objects.
x To find next CH-vertex p,+ 1. Compute tangents to G1,...,Gg, each by
binary search on a CH(G;).
— = Runnig time: O(n/H-H-l0ogo H + H-n/H -logo H) = O(n-log, H)

Henrik Blunck Implicit Computation Geometry 13

Computing the Convex Hull in 2D output-sensitive [Chan, 1996]

Chan’s output-sensitive algorithm:
s Avoid global presorting (if h << n).

m Speed up Jarvis' March:
— Bundle input in H groups G1,...,Gg
— Graham-Scan each group to build CH(G1),...,CH(Gpg).
— Jarvis-march with CH(G1),...,CH(Gg) (instead of points) as input-objects.

x To find next CH-vertex p,+ 1. Compute tangents to G1,...,Gg, each by
binary search on a CH(G;).

— = Runnig time: O(n/H-H-l0ogo H + H-n/H -logo H) = O(n-log, H)
= Doing rounds: “Guess’ h by choosing H = 22" 22° .

Henrik Blunck Implicit Computation Geometry 13

Computing the Convex Hull in 2D output-sensitive [Chan, 1996]

Chan’s output-sensitive algorithm:
s Avoid global presorting (if h << n).

m Speed up Jarvis’ March:

Bundle input in H groups G1,...,Gg
Graham-Scan each group to build CH(G1),...,CH(Gg).

— Jarvis-march with CH(G1),...,CH(Gg) (instead of points) as input-objects.
To find next CH-vertex p,. + 1: Compute tangents to GGq1,...,Gg, each by

binary search on a CH(G;).
— = Runnig time: O(n/H-H-l0ogo H + H-n/H -logo H) = O(n-log, H)

= Doing rounds: “Guess’ h by choosing H = 22" 22° .

= = Global runnig time (with log, H = 2%):
O (1tﬂogzlogziﬂ n - Qt)) (n . 2[log, log, h]+1)) (n - 109, h) -

*

13

Henrik Blunck Implicit Computation Geometry

How to run Chan’s algorithm in-place?

Problems to solve:
m H can be stored in single extra word = Only one round to consider.

Henrik Blunck Implicit Computation Geometry

14

How to run Chan’s algorithm in-place?

Problems to solve:
m H can be stored in single extra word = Only one round to consider.

= Where to (out)put convex hull vertices?

Henrik Blunck Implicit Computation Geometry

14

How to run Chan’s algorithm in-place?

Problems to solve:

m H can be stored in single extra word = Only one round to consider.

= Where to (out)put convex hull vertices?
= Where to store convex hulls of the groups Gi1,...,Gg?

— How to arrange w/o extra space G;'s and global convex hull?

Henrik Blunck Implicit Computation Geometry

14

How to run Chan’s algorithm in-place?

Problems to solve:

m H can be stored in single extra word = Only one round to consider.

= Where to (out)put convex hull vertices?
= Where to store convex hulls of the groups Gi1,...,Gg?

— How to arrange w/o extra space G;'s and global convex hull?
— How to store sizes |G;| and |CH(G;)|?

Henrik Blunck Implicit Computation Geometry

14

How to run Chan’s algorithm in-place?

Problems to solve:
m H can be stored in single extra word = Only one round to consider.

= Where to (out)put convex hull vertices?
= Where to store convex hulls of the groups Gi1,...,Gg?

— How to arrange w/o extra space G;'s and global convex hull?
— How to store sizes |G;| and |CH(G;)|?

Extra run time cost of in-place solution:
m Binary search on G; (instead of on CH(G;)). O (1) per search step.

Henrik Blunck Implicit Computation Geometry 14

How to run Chan’s algorithm in-place?

Problems to solve:
m H can be stored in single extra word = Only one round to consider.

= Where to (out)put convex hull vertices?
= Where to store convex hulls of the groups Gi1,...,Gg?

— How to arrange w/o extra space G;'s and global convex hull?
— How to store sizes |G;| and |CH(G;)|?

Extra run time cost of in-place solution:
m Binary search on G; (instead of on CH(G;)). O (1) per search step.

m Recompute two CH(G;) for every output vertex p. O (H?log, H)

Henrik Blunck Implicit Computation Geometry 14

How to run Chan’s algorithm in-place?

Problems to solve:
m H can be stored in single extra word = Only one round to consider.

= Where to (out)put convex hull vertices?
= Where to store convex hulls of the groups Gi1,...,Gg?

— How to arrange w/o extra space G;'s and global convex hull?
— How to store sizes |G;| and |CH(G;)|?

Extra run time cost of in-place solution:
m Binary search on G; (instead of on CH(G;)). O (1) per search step.

m Recompute two CH(G;) for every output vertex p. O (H?log, H)
m = Global costs still in O (n-log,h) for h < \/n/l0gsn.

Henrik Blunck Implicit Computation Geometry 14

How to run Chan’s algorithm in-place?

Problems to solve:
m H can be stored in single extra word = Only one round to consider.

= Where to (out)put convex hull vertices?
= Where to store convex hulls of the groups Gi1,...,Gg?

— How to arrange w/o extra space G;'s and global convex hull?
— How to store sizes |G;| and |CH(G;)|?

Extra run time cost of in-place solution:
m Binary search on G; (instead of on CH(G;)). O (1) per search step.

m Recompute two CH(G;) for every output vertex py. O (H2 l0g-» H)

m = Global costs still in O (n-log,h) for h < \/n/l0gsn.
m For larger h: Just run Graham’s Scan.

Henrik Blunck Implicit Computation Geometry 14

How to run Chan’s algorithm in-place?

Problems to solve:
m H can be stored in single extra word = Only one round to consider.

= Where to (out)put convex hull vertices?
= Where to store convex hulls of the groups Gi1,...,Gg?

— How to arrange w/o extra space G;'s and global convex hull?
— How to store sizes |G;| and |CH(G;)|?

Extra run time cost of in-place solution:
m Binary search on G; (instead of on CH(G;)). O (1) per search step.

m Recompute two CH(G;) for every output vertex py. O (H2 l0g-» H)

m = Global costs still in O (n-log,h) for h < \/n/l0gsn.
m For larger h: Just run Graham’s Scan.

m = O(n-log,h) in-place convex hull computation.

Henrik Blunck Implicit Computation Geometry 14

Output-sensitive skyline computation

Idea applicable also to skyline problem?
m Applicable:

Henrik Blunck Implicit Computation Geometry

15

Output-sensitive skyline computation

Idea applicable also to skyline problem?
m Applicable:

— Graham-like Scan

Henrik Blunck Implicit Computation Geometry

15

Output-sensitive skyline computation

Idea applicable also to skyline problem?
m Applicable:

— Graham-like Scan
— Jarvis-like March

Henrik Blunck Implicit Computation Geometry

15

Output-sensitive skyline computation

Idea applicable also to skyline problem?
m Applicable:

— Graham-like Scan
— Jarvis-like March
— Binary search on skylines

Henrik Blunck Implicit Computation Geometry

15

Output-sensitive skyline computation

Idea applicable also to skyline problem?
m Applicable:

— Graham-like Scan

— Jarvis-like March

— Binary search on skylines

— "“Recognizing” the end of skylines

Henrik Blunck Implicit Computation Geometry

15

Output-sensitive skyline computation

Idea applicable also to skyline problem?
m Applicable:

— Graham-like Scan

— Jarvis-like March

— Binary search on skylines

— "“Recognizing” the end of skylines

m = O(n-logsh) in-place skyline computation.

Henrik Blunck Implicit Computation Geometry

15

Computing Layers of Maxima

A
Def. of 'Layers of Maxima’:

s Compute ‘skyline’ MAX(P) of P.

= If P\ MAX(P) not empty, set P = °

MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):
m Group points by layer.
m In each layer, sort by =x.
I [W [

Henrik Blunck Implicit Computation Geometry

16

Computing Layers of Maxima

A
Def. of 'Layers of Maxima’:

s Compute ‘skyline’ MAX(P) of P.

= If P\ MAX(P) not empty, set P = °

MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

Q==

To achieve (in in-place setting):
m Group points by layer.
m In each layer, sort by =x.
I [W [

Henrik Blunck Implicit Computation Geometry

16

Computing Layers of Maxima

A
Def. of 'Layers of Maxima’:

s Compute ‘skyline’ MAX(P) of P.

= If P\ MAX(P) not empty, set P = °

MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):
m Group points by layer.
m In each layer, sort by =x.
I [W [

Henrik Blunck Implicit Computation Geometry

16

Computing Layers of Maxima

A
Def. of 'Layers of Maxima’:

s Compute ‘skyline’ MAX(P) of P.

= If P\ MAX(P) not empty, set P = °

MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):
m Group points by layer.
m In each layer, sort by =x.
I [W [

Henrik Blunck Implicit Computation Geometry

16

Computing Layers of Maxima

A
Def. of 'Layers of Maxima’:

s Compute ‘skyline’ MAX(P) of P.

= If P\ MAX(P) not empty, set P = °

MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):
m Group points by layer.
m In each layer, sort by =x.
I [W [

Henrik Blunck Implicit Computation Geometry

16

Computing Layers of Maxima

A
Def. of 'Layers of Maxima’:

s Compute ‘skyline’ MAX(P) of P.

= If P\ MAX(P) not empty, set P = °

MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):
m Group points by layer.
m In each layer, sort by =x.
I [W [

Henrik Blunck Implicit Computation Geometry

16

Computing Layers of Maxima

Def. of 'Layers of Maxima’:
s Compute ‘skyline’ MAX(P) of P.
m If P\ MAX(P) not empty, set P =

MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):
m Group points by layer.
m In each layer, sort by =x.
I [W [

Henrik Blunck Implicit Computation Geometry

16

Computing Layers of Maxima

Def. of 'Layers of Maxima’:
s Compute ‘skyline’ MAX(P) of P.

m If P\ MAX(P) not empty, set P =
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):
m Group points by layer.
m In each layer, sort by =x.
I [W [

Henrik Blunck Implicit Computation Geometry

16

Computing Layers of Maxima

Def. of 'Layers of Maxima’:
s Compute ‘skyline’ MAX(P) of P.

m If P\ MAX(P) not empty, set P =
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):
m Group points by layer.
m In each layer, sort by =x.
I [W [

Henrik Blunck Implicit Computation Geometry

16

Computing Layers of Maxima

Def. of 'Layers of Maxima’:
s Compute ‘skyline’ MAX(P) of P.

m If P\ MAX(P) not empty, set P =
MAX(P) and repeat.

Number of iterations (layers) can be lin-

ear in n.

To achieve (in in-place setting):
m Group points by layer.
m In each layer, sort by =x.
I [W [

Henrik Blunck Implicit Computation Geometry

16

Computing Layers of Maxima

A
Def. of 'Layers of Maxima’:

s Compute ‘skyline’ MAX(P) of P.

= If P\ MAX(P) not empty, set P = °

MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):
m Group points by layer.
m In each layer, sort by =x.
I [W [

Henrik Blunck Implicit Computation Geometry

16

Computing Layers of Maxima

A
Def. of 'Layers of Maxima’:

s Compute ‘skyline’ MAX(P) of P.

= If P\ MAX(P) not empty, set P = °

MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):
m Group points by layer.
m In each layer, sort by =x.
I [W [

Henrik Blunck Implicit Computation Geometry

16

Computing Layers of Maxima

A
Def. of 'Layers of Maxima’:

s Compute ‘skyline’ MAX(P) of P.

= If P\ MAX(P) not empty, set P = °

MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):
m Group points by layer.
m In each layer, sort by =x.
I [W [

Caveat:

m Nalve approach: Iteratively compute sky-

lines.

Henrik Blunck Implicit Computation Geometry

16

Computing Layers of Maxima

Def. of 'Layers of Maxima’:

Compute ‘skyline’ MAX(P) of P.

If P\ MAX(P) not empty, set P =
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):

Group points by layer.

In each layer, sort by x.
I [W [

Caveat:

Nailve approach: Iteratively compute sky-
lines.

Cost: O(nlogn) time per layer, i.e.,
O (n%logn) time in total.

Henrik Blunck

Implicit Computation Geometry

16

Computing Layers of Maxima

Def. of 'Layers of Maxima’:
= Compute ‘skyline’ MAX(P) of P. ° °
» If P\ MAX(P) not empty, set P = ° °

MAX(P) and repeat.

= Number of iterations (layers) can be lin- ° °
ear in n. ©

To achieve (in in-place setting): g
= Group points by layer. f A
= In each layer, sort by z.) oL o'
S50 HE EEN o 0"

Caveat: |

m Nalve approach: Iteratively compute sky-
lines.

m Cost: O(nlogn) time per layer, i.e.,
O (n%logn) time in total.

Hi :&?gtignal lo| g |bo|Hsl o[o] o] o]o]o] p|o]

1

current

Henrik Blunck Implicit Computation Geometry 16

Computing Layers of Maxima in-place: Overview

Agenda:
m Compute (and arrange!) all points on each of the O (n) layers in-place.

Henrik Blunck Implicit Computation Geometry

17

Computing Layers of Maxima in-place: Overview

Agenda:
m Compute (and arrange!) all points on each of the O (n) layers in-place.

Approach:
m Process multiple layers at a time.

Henrik Blunck Implicit Computation Geometry

17

Computing Layers of Maxima in-place: Overview

Agenda:
m Compute (and arrange!) all points on each of the O (n) layers in-place.

Approach:
m Process multiple layers at a time.

m Number of batches: O (logn).

Henrik Blunck Implicit Computation Geometry

17

Computing Layers of Maxima in-place: Overview

Agenda:
m Compute (and arrange!) all points on each of the O (n) layers in-place.

Approach:
m Process multiple layers at a time.
m Number of batches: O (logn).
m Per batch:

— Process O (n/logn) layers at a time by ...
— sweeping the input array (similar to skyline sweep).
— Maximum allowed cost: O (n) time per batch, i.e., no pre-sorting.

Henrik Blunck Implicit Computation Geometry

17

Computing Layers of Maxima in-place: Overview

Agenda:
m Compute (and arrange!) all points on each of the O (n) layers in-place.

Approach:
m Process multiple layers at a time.
m Number of batches: O (logn).
m Per batch:

— Process O (n/logn) layers at a time by ...
— sweeping the input array (similar to skyline sweep).
— Maximum allowed cost: O (n) time per batch, i.e., no pre-sorting.

m Charging scheme: Spend extra O (logn) time per point processed.

Henrik Blunck Implicit Computation Geometry

17

For starters: Counting the Number of Layers

= Sweep points top-down, maintain tail r; for each layer L; in (in-
verse) <g-order.

Lh—l T
L T_O
h
L
K-1 - Th_l
T
T 1 h

Henrik Blunck Implicit Computation Geometry 18

For starters: Counting the Number of Layers

= Sweep points top-down, maintain tail r; for each layer L; in (in-

verse) <g-order.

L

h-1 ?
L o Q

@)
h ®)
o) O
K-1 o
(ON§
oT vl
OT h
K-1

TO 'R Th 'EE] |l-K':l

tails of L;... L, 4

Henrik Blunck Implicit Computation Geometry

18

For starters: Counting the Number of Layers

= Sweep points top-down, maintain tail r; for each layer L; in (in-
verse) <g-order.

L
h-1 ?
. o
o)
h 0
) o
K- o oT
o h-1
o1
K-1
ep
TO Th |rK'] p
tails of L;... L, 4 current
processed

Henrik Blunck

Implicit Computation Geometry

18

For starters: Counting the Number of Layers

= Sweep points top-down, maintain tail r; for each layer L; in (in-
verse) <g-order.

L
h-1 ?
L
h
o
K-1
o
h
Ty T, - |rK_] P
tails of L;... L, 4 current
processed

Henrik Blunck

Implicit Computation Geometry

18

For starters: Counting the Number of Layers

= Sweep points top-down, maintain tail r; for each layer L; in (in-
verse) <g-order.

L

h-1 0
L

h

O
K-1
O
Y1
v

Ty T

tails of L;... L, 4

current
processed

Henrik Blunck

Implicit Computation Geometry

18

For starters: Counting the Number of Layers

= Sweep points top-down, maintain tail r; for each layer L; in (in-
verse) <g-order.

L
h-1 ?
L) ?
o)
h o)
o) O
K-1 o
o1
h-1
ot 7
K-1
oT
tails of L;... L, 4
processed

Henrik Blunck

Implicit Computation Geometry

18

For starters: Counting the Number of Layers

= Sweep points top-down, maintain tail r; for each layer L; in (in-
verse) <g-order.

L
h-1 ?
L Q 7
o)
h o)
o o
K-1 o
ot
h-1
ot]
K-1
o)
L T
Ty T, - |rK_] P
tails of Ll LK-l current
processed

Henrik Blunck

Implicit Computation Geometry

18

For starters: Counting the Number of Layers

= Sweep points top-down, maintain tail r; for each layer L; in (in-
verse) <g-order.

L
h-1 ?
L Q 7
o
h o
o o
K-1 o
o
Yha
ot]
K-1
o
L T
! v
Ty T, - |rK_] P
tails of Ll LK-l current
processed

Henrik Blunck

Implicit Computation Geometry

18

For starters: Counting the Number of Layers

= Sweep points top-down, maintain tail r; for each layer L; in (in-
verse) <g-order.

L
h-1 ?
L o ?
o)
h o)
o) O
K-1 o
oT
h-1
o1 ?
K-1
ot oT
K
) Th |rK-] Ty
tails of L;... L,
processed

Henrik Blunck

Implicit Computation Geometry

18

For starters: Counting the Number of Layers

= Sweep points top-down, maintain tail r; for each layer L; in (in-
verse) <g-order.

m In-place, O (logn) time per point = O (nlogn) overall.

L
h-1 ?
L o ?
o)
h o)
o) O
K-1 o
oT
h-1
o1 ?
K-1
ot oT
K
) Th |rK-] Ty
tails of L;... L,
processed

Henrik Blunck

Implicit Computation Geometry

18

For starters: Counting the Number of Layers

= Sweep points top-down, maintain tail r; for each layer L; in (in-
verse) <g-order.

m In-place, O (logn) time per point = O (nlogn) overall.

m Use this algorithm to count points on topmost layers.

L
h-1 ?
L) ?
o)
h o)
o) O
K-1 o
o1
h-1
ot 7
K-1
ot o1
K
To Th] - |rK-] Ty
tails of L;... L,
processed

Henrik Blunck

Implicit Computation Geometry

18

Counting the Points on the Topmost « Layers

m Fix kK € w(1l) and run essentially the same algorithm.

m Increment a global counter per “tail’-update.

L
h-1
L 0 %
o

h o)

1 ? 7
K- 0 o1

oT rl
oT h
K-1

T T o g
tailsof L;... L, 4

Henrik Blunck

Implicit Computation Geometry 19

Counting the Points on the Topmost « Layers

m Fix kK € w(1l) and run essentially the same algorithm.

m Increment a global counter per “tail’-update.

L
h-1
L o "
o}
h o
1 ? ?
K- 0 o1
oT i
oT h
K-1
el
Ty Th (-1 P
tailsof L;... L, 4

Henrik Blunck

Implicit Computation Geometry 19

Counting the Points on the Topmost « Layers

m Fix kK € w(1l) and run essentially the same algorithm.

m Increment a global counter per “tail’-update.

L
h-1
L O]
h
0
LK 1 e}
] o °
. T
o)
T 1 h
4T p
o Th k-1 P
tailsof L;... L, 4

Henrik Blunck

Implicit Computation Geometry 19

Counting the Points on the Topmost « Layers

m Fix kK € w(1l) and run essentially the same algorithm.

m Increment a global counter per “tail’-update. O (logn)/point
Lh-1
L o ?
h o) o

o) o
K-1 o

OTh_l
OoT 7
K-1
QTh

TO Th . rK_]
tailsof L;... L, 4

Henrik Blunck

Implicit Computation Geometry 19

Counting the Points on the Topmost « Layers

m Fix kK € w(1l) and run essentially the same algorithm.

m Increment a global counter per “tail’-update.

A closer look:

m Query: Is some point p not on topmost « layers?

L
h-1 ?
o)
Lh o) o
o) o)
K-1 o
OoT
h-1
OT
K-1
OoT
oP h
To| = [Th!| = Fud

tailsof L;... L, 4

O (logn)/point

O (1)/point

Henrik Blunck

Implicit Computation Geometry

19

Counting the Points on the Topmost « Layers

m Fix kK € w(1l) and run essentially the same algorithm.

m Increment a global counter per “tail’-update. O (logn)/point

A closer look:

m Query: Is some point p not on topmost « layers? O (1)/point
Ly =9 = Sum: O(n+€logn), &€ =12) L.
L o ¢
h o - o
O

K-1

o ot .

o1 ?
K-1

.p OTh

Tol - |Th| - [-1

tailsof L;... L, 4

Henrik Blunck Implicit Computation Geometry 19

Counting the Points on the Topmost « Layers

m Fix kK € w(1l) and run essentially the same algorithm.

m Increment a global counter per “tail’-update. O (logn)/point

A closer look:

m Query: Is some point p not on topmost « layers? O (1)/point
L, = Sum: O (n+£€logn), ¢ =12 |L.
L o °

P To compute each |L;|. ..

O

K-1 o) oT . m ...Wwe need to increment a coun-

ot ¢ ter ¢; for each update of ;.

; o1 |-
Y h

Wait a minute!

m Did you say “k € w(1)"7

TO e | T o

K-1

. . ?
tails of Ly L., = Where/how to store k counters™

Henrik Blunck Implicit Computation Geometry 19

Finding “extra’ space

Space needed: k € w(1l) counters.

Henrik Blunck Implicit Computation Geometry

20

Finding “extra’ space

Space needed: k € w(1) counters, i.e., k- [logpyn] bits.

Henrik Blunck Implicit Computation Geometry

20

Finding “extra’ space

Space needed: k € w(1) counters, i.e., k- [logpyn] bits.

Bit-encoding technique [Munro, 1986]:
m Use permutation of two adjacent elements to encode one bit.

m p<yq: pg=0, gp=1. Counter: 2[logyn| elements.

Henrik Blunck Implicit Computation Geometry

20

Finding “extra’ space

Space needed: k € w(1) counters, i.e., k- [logpyn] bits.

Bit-encoding technique [Munro, 1986]:
m Use permutation of two adjacent elements to encode one bit.

m p<yq: pg=0, gp=1. Counter: 2[logyn| elements.

m Set Kk = %n/|092n = Kk counters need %n representing points.

Henrik Blunck Implicit Computation Geometry 20

Finding “extra’ space

Space needed: k € w(1) counters, i.e., k- [logpyn] bits.

Bit-encoding technique [Munro, 1986]:
m Use permutation of two adjacent elements to encode one bit.

m p<yq: pg=0, gp=1. Counter: 2[logyn| elements.

m Set Kk = %n/|092n = Kk counters need %n representing points.

Partitioning the input array:.:

= Start working on the first 2n entries.

0 n/3 2n/3 n-1

work space scratch space counter space

Henrik Blunck Implicit Computation Geometry 20

Finding “extra’ space

Space needed: k € w(1) counters, i.e., k- [logpyn] bits.

Bit-encoding technique [Munro, 1986]:
m Use permutation of two adjacent elements to encode one bit.

m p<yq: pg=0, gp=1. Counter: 2[logyn| elements.

m Set Kk = %n/|092n = Kk counters need %n representing points.

Partitioning the input array:.:
= Start working on the first 2n entries.

s Use last %n entries for counters.

0 n/3 2n/3 n-1

work space scratch space counter space

Henrik Blunck Implicit Computation Geometry 20

Extracting the Topmost « Layers

Setup:

= Compute size ¢; of i-th layer, 0 <i < k= ¢n/logsn.

0 n/3 2n/3 n-1

work space scratch space counter space

Henrik Blunck Implicit Computation Geometry

Extracting the Topmost « Layers

Setup:

= Compute size ¢; of i-th layer, 0 <i < k= ¢n/logsn.

0 n/3 2n/3 n-1
work space scratch space counter space
Henrik Blunck Implicit Computation Geometry 21

Extracting the Topmost « Layers

Setup:

= Compute size ¢; of i-th layer, 0 <i < k= ¢n/logsn.

m Compute maximal j s.t. Zj:o c < %n

0 n/3 2n/3 n-1

00 Py
90 ®

work space scratch space counter space

Henrik Blunck Implicit Computation Geometry

21

Extracting the Topmost « Layers

Setup:

= Compute size ¢; of i-th layer, 0 <i < k= ¢n/logsn.

m Compute maximal j s.t. Z‘j:o c; < %n

Extracting the topmost ;5 layers:

m Combine extraction with counting sort.

0 n/3 2n/3

n-1

work space scratch space counter space

Henrik Blunck Implicit Computation Geometry

21

Extracting the Topmost « Layers

Setup:
= Compute size ¢; of i-th layer, 0 <i < k= ¢n/logsn.
m Compute maximal j s.t. Z‘j:o c; < %n
Extracting the topmost ;5 layers:

m Combine extraction with counting sort.

m Maintain “tails” in “work space” ; construct layers in sorted order
in “scratch space”.

0 n/3 2n/3 n-1

work space scratch space counter space

Henrik Blunck Implicit Computation Geometry 21

Extracting the Topmost « Layers

Setup:
= Compute size ¢; of i-th layer, 0 <i < k= ¢n/logsn.

m Compute maximal j s.t. Z‘j:o c; < %n

Extracting the topmost ;5 layers:

m Combine extraction with counting sort.

m Maintain “tails” in “work space” ; construct layers in sorted order
in “scratch space”.

m Move constructed layers to front.

0 n/3 2n/3 n-1

work space scratch space counter space

Henrik Blunck Implicit Computation Geometry 21

Extracting All Layers—I

First phase, i.e., for earlier iterations:

m Construct (groups of%) layers in first part of the array.

"Togn

0 n/3 2n/3 n-1

e Py
90 2

work space scratch space counter space

Henrik Blunck Implicit Computation Geometry

22

Extracting All Layers—I

First phase, i.e., for earlier iterations:

s Construct (groups of % : %) layers in first part of the array.

0 n/3 2n/3 n-1

work Space scratch Space counter space

Analysis:

m Cost per iteration that processes all £ points on %- |o’5n layers:
O(n—+E&logn).

= Invariant: Keep unprocessed(!) points in sorted <,-order.

Henrik Blunck Implicit Computation Geometry 22

Extracting All Layers—I

First phase, i.e., for earlier iterations:

s Construct (groups of % : %) layers in first part of the array.

0 n/3 2n/3 n-1

work Space scratch Space counter space

Analysis:
m Cost per iteration that processes all £ points on %- |o’5n layers:
O(n—+E&logn).

= Invariant: Keep unprocessed(!) points in sorted <,-order.

m No more than O (logn) such iterations, i.e., O (nlogn) global cost.

Henrik Blunck Implicit Computation Geometry 22

Extracting All Layers—II

Second phase (with a grain of salt):

m Construct (in O (nlogn) time) one layer crossing the boundary
between work and scratch space using the skyline algorithm.

0 n/3 2n/3 n-1

work space scratch space counter space

Henrik Blunck Implicit Computation Geometry 23

Extracting All Layers—II

Second phase (with a grain of salt):

m Construct (in O (nlogn) time) one layer crossing the boundary
between work and scratch space using the skyline algorithm.

0 n/3 n-1

counter space work & scratch space

Third phase i.e., for later iterations:

m Construct (groups of % - %) layers in second part of the array.

Henrik Blunck Implicit Computation Geometry 23

Extracting All Layers—II

Second phase (with a grain of salt):

m Construct (in O (nlogn) time) one layer crossing the boundary
between work and scratch space using the skyline algorithm.

0 n/3 n-1

counter space work & scratch space

Third phase i.e., for later iterations:

m Construct (groups of 1) layers in second part of the array.

Iog

m O(n+&logn) time to process 1 layers with & points.
6 Iog

Henrik Blunck Implicit Computation Geometry 23

Extracting All Layers—II

Second phase (with a grain of salt):

m Construct (in O (nlogn) time) one layer crossing the boundary
between work and scratch space using the skyline algorithm.

0 n/3 n-1

counter space work & scratch space

Third phase i.e., for later iterations:

m Construct (groups of 1 |Og) layers in second part of the array.

m O(n+£&logn) time to process (15 Iog layers with £ points.

= \Whenever scratch space is too small, perform skyline computa-
tions on subarrays of geometrically decreasing size = O (nlogn).

Henrik Blunck Implicit Computation Geometry 23

Repairing the Layer Order

Finishing up:
m Bit-encoding corrupts layer order (locally).

m Repairing after last iteration by linear time sweep:

m Each bit-neighbour pair (g,r) can be correctly ordered by only
looking at ¢, » and predecessor p:

(see figure to the right) prq o _ﬁ L
_____ N — Palr 3
qlr o I'qQ | | (2) ﬁ pl
- - 4y PITa
T Trrlqogr o
alr | 1
(seefigureto theright,
with g and r exchanged)

m = |Layer order repairable by linear scan.

m = O(n-logon) in-place computation of layers of maxima.

Henrik Blunck Implicit Computation Geometry 24

Convex layers computation

Henrik Blunck Implicit Computation Geometry

25

Ideas applicable also to convex layers problem?
m Applicable:

Convex layers computation

Ideas applicable also to convex layers problem?
m Applicable:

— Sweep-framework.

Henrik Blunck Implicit Computation Geometry 25

Convex layers computation

Ideas applicable also to convex layers problem?
m Applicable:

— Sweep-framework.
— Maintainance of tails for each layer.

Henrik Blunck Implicit Computation Geometry 25

Convex layers computation

Ideas applicable also to convex layers problem?
m Applicable:

— Sweep-framework.
— Maintainance of tails for each layer.

Problem:

m A point changes its convex layer O (n) times during
sweep.

Henrik Blunck Implicit Computation Geometry

25

Convex layers computation

Ideas applicable also to convex layers problem?
m Applicable:

— Sweep-framework.
— Maintainance of tails for each layer.

Problem:

m A point changes its convex layer O (n) times during
sweep.

Solutions (for 2D layers and 3D hull)?
m for 2D convex layers?

m for 3D convex hull?

Henrik Blunck Implicit Computation Geometry

25

Computing the skyline in 3D

Time-Optimal algorithm [Kung et al., 1975]:
m Do divide-and-conquer along z.
m For each conquer-step:

— Problem broken down to 2D ...
— Divide in upper and lower part.

— Simultanious y—sweep over upper and lower maxima and exploit:
— For each maximum of P.... on skyline (of whole input).

— For each maximum of P, on skyline = z-larger than actual tail.

Maxima of P« Maxima of P~ -
28 ¢, L(6y + £e)/2] £, le
U
Maxima of P« U P~ ..
4 v Le
Henrik Blunck Implicit Computation Geometry 26

Computing the skyline in 3D

Time-Optimal algorithm [Kung et al., 1975]:
m Do divide-and-conquer along z.
m For each conquer-step:

— Problem broken down to 2D ...
— Divide in upper and lower part.

— Simultanious y—sweep over upper and lower maxima and exploit:

— For each maximum of P.... on skyline (of whole input).
— For each maximum of P, on skyline = z-larger than actual tail.

Making it in-place:
m Use in-place recursion framework [Bose et al., 2006].

Maxima of P« Maxima of P~
0 A (6 + £0) /2] A le
U
Maxima of P« U P~ ..
4 4 le
Henrik Blunck Implicit Computation Geometry 26

Computing the skyline in 3D

Time-Optimal algorithm [Kung et al., 1975]:

Do divide-and-conquer along z.
For each conquer-step:

— Problem broken down to 2D ...
— Divide in upper and lower part.

— Simultanious y—sweep over upper and lower maxima and exploit:
— For each maximum of P.... on skyline (of whole input).
— For each maximum of P, on skyline = z-larger than actual tail.

Making it in-place:

Use in-place recursion framework [Bose et al., 2006].
For each conquering: Explicit reconstruction of skyline bounds.

Maxima of P« Maxima of P~ -
28 ¢, L(6y + £e)/2] £, le
U
Maxima of P« U P~ ..
4 v Le
Henrik Blunck Implicit Computation Geometry 26

Convex hull and layers computation

Solutions (for 2D layers and 3D hull):
m Build recursively defined hull data structure . ..

()_{11,4,1,5,12}, 3

Of2h1

()8} 1

6

o}

M) {6} 1

12

Henrik Blunck Implicit Computation Geometry

27

Convex hull and layers computation

Solutions (for 2D layers and 3D hull):
m Build recursively defined hull data structure . ..
m ...then remove points iteratively.

()_{11,4,1,5,12}, 3

Of2h1

()8} 1

6

o}

M) {6} 1

12

Henrik Blunck Implicit Computation Geometry

27

Convex hull and layers computation

Solutions (for 2D layers and 3D hull):
m Build recursively defined hull data structure . ..
m ...then remove points iteratively.
= = 2D Convex layers in O (nlog,n) time [Chazelle, 1985].

()_{11,4,1,5,12}, 3
oz

oIty ot
ol INeICE!

5 8 6| |12

Henrik Blunck Implicit Computation Geometry

27

Convex hull and layers computation

Solutions (for 2D layers and 3D hull):
m Build recursively defined hull data structure . ..
m ...then remove points iteratively.
= = 2D Convex layers in O (nlog,n) time [Chazelle, 1985].

= = 3D Convex hull in O (nlog3n) time and O (1) space [Bronnimann et al.,
2004a].

()_{11,4,1,5,12}, 3
oz

oIty ot
ol INeICE!

5 8 6| |12

Henrik Blunck Implicit Computation Geometry 27

Overview

Henrik Blunck

Implicit Computation Geometry

28

Bibliography

[Blunck & Vahrenhold, 2006] H. Blunck and J. Vahrenhold. In-place algorithms
for computing (layers of) maxima. In: Proceedings of the 10th Scandinavian
Workshop on Algorithm Theory (SWAT ’'06), volume 4059 of Lecture Notes
of Computer Science, pages 363—374. Springer, Berlin, 2006.

[Bose et al., 2006] P. Bose, A. Maheshwari, P. Morin, J. Morrison, M. Smid,
and J. Vahrenhold. Space-efficient geometric divide-and-conquer algorithms.
Computational Geometry: Theory & Applications, 2006.

[Bronnimann & M.Chan, 2004] H. Bronnimann and T. M.Chan. Space-effcient
algorithms for computing the convex hull of a simple polygonal line in linear
time. In: Proceedings of the 6th Latin American Symposium on Theoretical
Informatics (LATIN '04), volume 2976 of Lecture Notes in Computer Science,
pages 162—171, Berlin, 2004. Springer.

[Bronnimann et al., 2004a] H. Bronnimann, T. M. Chan, and E. Y. Chen. To-
wards in-place geometric algorithms and data structures. In: Proceedings of
the 20th Annual ACM Symposium on Computational Geometry (SoCG '04),
pages 239—246, New York, NY, USA, 2004. ACM Press.

[Bronnimann et al., 2004b] H. Bronnimann, J. lIacono, J. Katajainen, P. Morin,
J. Morrison, and G. T. Toussaint. Space-efficient planar convex hull algorithms.
Theoretical Computer Science, 321(1):25—-40, June 2004.

[Bronnimann et al., 2004c] H. Bronnimann, T. M.Chan, and E. Y. Chen. To-
wards in-place geometric algorithms. In: Proceedings of the 20th Annual ACM
Symposium on Computational Geometry (SoCG '04), pages 239-246. ACM
Press, 2004.

[Carlsson & Sundstrom, 1995] S. Carlsson and M. Sundstrom. Linear-time in-
place selection in less than 3n comparisons. In: Proceedings of the 6th Annual
International Symposium on Algorithms and Computation (ISAAC’02), volume
3827 of Lecture Notes in Computer Science, pages 244—253, Berlin, 1995.
Springer.

[Chan, 1996] T. M. Chan. Optimal output-sensitive convex hull algorithms in
two and three dimensions. Discrete & Computational Geometry, 16:361—368,
1996.

[Chazelle, 1985] B. Chazelle. On the convex layers of a planar set. IEEE Trans-
actions on Information Theory, 31:509-517, 1985.

[Chen & M.Chan, 2005] E. Y. Chen and T. M.Chan. Space-efficient algorithms
for klee's measure problem. In: Proceedings of the 17th Canadian Conference
on Computational Geometry (CCCG '05), 2005.

[Floyd, 1964] R. W. Floyd. Algorithm 245: Treesort. Communications of the
ACM, 7(12):701, December 1964.

[Franceschini & Grossi, 2003] G. Franceschini and R. Grossi. Optimal worst-
case operations for implicit cache-oblivious search trees. In: Proceedings of

the 8th International Workshop on Algorithms and Data Structures (WADS
'03), pages 114—126, 2003.

[Geffert & Kollar, 2001] V. Geffert and J. Kollar. Linear-time in-place selection
in €-n element moves. Technical report, P. J. Safarik University, 2001.

[Geffert et al., 2000] V. Geffert, J. Katajainen, and T. Pasanen. Asymptotically
efficient in-place merging. Theoretical Computer Science, 237(1-2):159-181,
April 2000.

[Graham, 1972] R. L. Graham. An effcient algorithm for determining the convex
hull of a finite planar set. Information Processing Letters, 1:132—133, 1972.

[Katajainen & Pasanen, 1999] J. Katajainen and T. A. Pasanen. In-place sort-
ing with fewer moves. Information Processing Letters, 70(1):31-37, 1999.

[Kung et al., 1975] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the
maxima of a set of vectors. Journal of the ACM, 22(4):469—-476, 1975.

[Mannila & Ukkonen, 1984] H. Mannila and E. Ukkonen. A simple linear-time
algorithm for in situ merging. Information Processing Letters, 18(4):203—208,
1984.

[Munro, 1986] J.I. Munro. An implicit data structure supporting insertion, dele-
tion, and search in o(log n) time. Journal of Computer and System Sciences,
33(1):66—74, 1986.

[VVahrenhold, 2005] J. Vahrenhold. Line-segment intersection made in-place. In:
Proceedings of the 9th International Workshop on Algorithms and Data Struc-
tures (WADS '05), volume 3608 of Lecture Notes in Computer Science, pages
146—157, Berlin, 2005. Springer.

	Introduction: Motivation for implicit computation
	Motivation
	In-Place Algorithms
	Motivation: Dealing with Large Datasets
	Previous Results
	Sapce-efficient Computational Geometry Results
	In this lecture …

	Skylines and convex hulls
	Computing the Skyline
	Computing all skylines in-place
	Computing the Skyline: Selecting Maximal Points in 2D
	Computing the Convex Hull in 2D output-sensitive chan96optimal
	How to run Chan's algorithm in-place?
	Output-sensitive skyline computation
	Computing Layers of Maxima
	Computing Layers of Maxima in-place: Overview
	For starters: Counting the Number of Layers
	Counting the Points on the Topmost k Layers
	Finding ``extra'' space
	Extracting the Topmost k Layers
	Extracting All Layers--I
	Extracting All Layers--II
	Repairing the Layer Order
	Convex layers computation
	Computing the skyline in 3D
	Convex hull and layers computation

