
Implicit Computation Geometry

Henrik Blunck

Department of Computer Science

WWU Münster

Overview

1. Introduction: Motivation for implicit computation

2. Skylines and convex hulls

Henrik Blunck Implicit Computation Geometry 1

Motivation

Traditional focus in algorithm design: Running Time

Here: Second core issue: Memory utilization.

Historically: Space-Efficiency considered due to high memory
prices.

Nowadays: Space-Efficiency considered due to:

– Larger datasets.

∗ High-resolution survellaince data
∗ Temporal and spatio-temporal data

– Smaller computing devices.

∗ Location based services for mobile communication net-
works

∗ Data analysis and propagation in sensor networks
– Limited (read/write)-memory

Sensor Networks

Car Navigation

Henrik Blunck Implicit Computation Geometry 2

In-Place Algorithms

Definition 1.1

An algorithm A is called in-place iff during its execution A occupies

O (1) words, i.e. O (log2 n) bits, in addition to the space required by

the input.

(Assumption: Any pointer or data item occupies O (1) words.)

Consequences:

Classic recursive algorithms are not in-place.

{ Need to maintain a call stack of size

(

logn

)

.

Algorithms using auxiliary pointer-based data structures (such as

balanced binary trees or linked lists) are not in-place.

{ Need to resort to implicit data structures.

Example:

Heapsort is an in-place algorithm (uses in-place data structure).

Henrik Blunck Implicit Computation Geometry 3

In-Place Algorithms

Definition 1.1

An algorithm A is called in-place iff during its execution A occupies

O (1) words, i.e. O (log2 n) bits, in addition to the space required by

the input.

(Assumption: Any pointer or data item occupies O (1) words.)

Consequences:

Classic recursive algorithms are not in-place.

– Need to maintain a call stack of size Ω(logn).

Algorithms using auxiliary pointer-based data structures (such as

balanced binary trees or linked lists) are not in-place.

{ Need to resort to implicit data structures.

Example:

Heapsort is an in-place algorithm (uses in-place data structure).

Henrik Blunck Implicit Computation Geometry 3

In-Place Algorithms

Definition 1.1

An algorithm A is called in-place iff during its execution A occupies

O (1) words, i.e. O (log2 n) bits, in addition to the space required by

the input.

(Assumption: Any pointer or data item occupies O (1) words.)

Consequences:

Classic recursive algorithms are not in-place.

– Need to maintain a call stack of size Ω(logn).

Algorithms using auxiliary pointer-based data structures (such as

balanced binary trees or linked lists) are not in-place.

– Need to resort to implicit data structures.

Example:

Heapsort is an in-place algorithm (uses in-place data structure).

Henrik Blunck Implicit Computation Geometry 3

In-Place Algorithms

Definition 1.1

An algorithm A is called in-place iff during its execution A occupies

O (1) words, i.e. O (log2 n) bits, in addition to the space required by

the input.

(Assumption: Any pointer or data item occupies O (1) words.)

Consequences:

Classic recursive algorithms are not in-place.

– Need to maintain a call stack of size Ω(logn).

Algorithms using auxiliary pointer-based data structures (such as

balanced binary trees or linked lists) are not in-place.

– Need to resort to implicit data structures.

Example:

Heapsort is an in-place algorithm (uses in-place data structure).

Henrik Blunck Implicit Computation Geometry 3

Motivation: Dealing with Large Datasets

Algorithmic concepts for different scenarios:
Small, fast working memory. Data resides on slow disks.

– Cache-oblivious and I/O-efficient Algorithms: Minimize data (block) move-
ment.

Data is streamed and not constantly available.

– Streaming algorithms: (Approximation of) data aggregates.

(Almost) no memory to use additional to the given input.

Implicit data structures, in-place algorithms.

More motivation:

\The less memory used, the faster .."

Because of: Memory-, disk-, network latencies, less garbage to

collect, larger basecases . . .

In-place model \in between" I/O- and Streaming-Model . . .

May provide insights in computational complexity of problems.

Henrik Blunck Implicit Computation Geometry 4

Motivation: Dealing with Large Datasets

Algorithmic concepts for different scenarios:
Small, fast working memory. Data resides on slow disks.

– Cache-oblivious and I/O-efficient Algorithms: Minimize data (block) move-
ment.

Data is streamed and not constantly available.

– Streaming algorithms: (Approximation of) data aggregates.

(Almost) no memory to use additional to the given input.

Implicit data structures, in-place algorithms.

More motivation:

“The less memory used, the faster ..”

Because of: Memory-, disk-, network latencies, less garbage to

collect, larger basecases . . .

In-place model \in between" I/O- and Streaming-Model . . .

May provide insights in computational complexity of problems.

Henrik Blunck Implicit Computation Geometry 4

Motivation: Dealing with Large Datasets

Algorithmic concepts for different scenarios:
Small, fast working memory. Data resides on slow disks.

– Cache-oblivious and I/O-efficient Algorithms: Minimize data (block) move-
ment.

Data is streamed and not constantly available.

– Streaming algorithms: (Approximation of) data aggregates.

(Almost) no memory to use additional to the given input.

Implicit data structures, in-place algorithms.

More motivation:

“The less memory used, the faster ..”

Because of: Memory-, disk-, network latencies, less garbage to
collect, larger basecases . . .

In-place model \in between" I/O- and Streaming-Model . . .

May provide insights in computational complexity of problems.

Henrik Blunck Implicit Computation Geometry 4

Motivation: Dealing with Large Datasets

Algorithmic concepts for different scenarios:
Small, fast working memory. Data resides on slow disks.

– Cache-oblivious and I/O-efficient Algorithms: Minimize data (block) move-
ment.

Data is streamed and not constantly available.

– Streaming algorithms: (Approximation of) data aggregates.

(Almost) no memory to use additional to the given input.

Implicit data structures, in-place algorithms.

More motivation:

“The less memory used, the faster ..”

Because of: Memory-, disk-, network latencies, less garbage to
collect, larger basecases . . .

In-place model “in between” I/O- and Streaming-Model . . .

May provide insights in computational complexity of problems.

Henrik Blunck Implicit Computation Geometry 4

Motivation: Dealing with Large Datasets

Algorithmic concepts for different scenarios:
Small, fast working memory. Data resides on slow disks.

– Cache-oblivious and I/O-efficient Algorithms: Minimize data (block) move-
ment.

Data is streamed and not constantly available.

– Streaming algorithms: (Approximation of) data aggregates.

(Almost) no memory to use additional to the given input.

Implicit data structures, in-place algorithms.

More motivation:

“The less memory used, the faster ..”

Because of: Memory-, disk-, network latencies, less garbage to
collect, larger basecases . . .

In-place model “in between” I/O- and Streaming-Model . . .

May provide insights in computational complexity of problems.

Henrik Blunck Implicit Computation Geometry 4

Previous Results

In-Place Sorting and Related Problems:

Heapsort [Floyd, 1964].

Linear-time merging/partitioning
[Mannila & Ukkonen, 1984; Geffert et al., 2000; Katajainen & Pasanen, 1999]. . .

Linear-time k-selection [Carlsson & Sundström, 1995; Geffert & Kollar,

2001; Bose et al., 2006].

In-Place, Cache-Oblivious(!) Dictionary:

O (logn) update/queries [Franceschini & Grossi, 2003].

Henrik Blunck Implicit Computation Geometry 5

Sapce-efficient Computational Geometry Results

In-Place Computational Geometry:

Closest Pair etc. [Bose et al., 2006].

Line-Segment Intersection [Bose et al., 2006; Vahrenhold, 2005].

Convex Hull and Maxima problems etc. [Brönnimann et al., 2004b;

Brönnimann & M.Chan, 2004; Blunck & Vahrenhold, 2006].

\Use-Polylog-Extra-Space-And-Time" Geometry Results:

3d-convex hull and related

[

Br�onnimann et al., 2004c

]

.

Multidimensional search sctructures

[

Br�onnimann et al., 2004a

]

.

Klee's Measure Problem

[

Chen & M.Chan, 2005

]

.

Henrik Blunck Implicit Computation Geometry 6

Sapce-efficient Computational Geometry Results

In-Place Computational Geometry:

Closest Pair etc. [Bose et al., 2006].

Line-Segment Intersection [Bose et al., 2006; Vahrenhold, 2005].

Convex Hull and Maxima problems etc. [Brönnimann et al., 2004b;

Brönnimann & M.Chan, 2004; Blunck & Vahrenhold, 2006].

“Use-Polylog-Extra-Space-And-Time” Geometry Results:

3d-convex hull and related [Brönnimann et al., 2004c].

Multidimensional search sctructures [Brönnimann et al., 2004a].

Klee’s Measure Problem [Chen & M.Chan, 2005].

Henrik Blunck Implicit Computation Geometry 6

In this lecture . . .

Henrik Blunck Implicit Computation Geometry 7

In-place techniques and algorithms for:

Convex hulls and sets of maxima ('skylines')

Layers of convex hulls and maxima

Regression Analysis: Estimating linear corre-

lations

In this lecture . . .

In-place techniques and algorithms for:

Convex hulls and sets of maxima ('skylines')

Layers of convex hulls and maxima

Regression Analysis: Estimating linear corre-

lations

Henrik Blunck Implicit Computation Geometry 7

In this lecture . . .

In-place techniques and algorithms for:

Convex hulls and sets of maxima (’skylines’)

Layers of convex hulls and maxima

Regression Analysis: Estimating linear corre-

lations

Henrik Blunck Implicit Computation Geometry 7

In this lecture . . .

In-place techniques and algorithms for:

Convex hulls and sets of maxima (’skylines’)

Layers of convex hulls and maxima

Regression Analysis: Estimating linear corre-

lations

Henrik Blunck Implicit Computation Geometry 7

In this lecture . . .

In-place techniques and algorithms for:

Convex hulls and sets of maxima (’skylines’)

Layers of convex hulls and maxima

Regression Analysis: Estimating linear corre-

lations

Henrik Blunck Implicit Computation Geometry 7

Overview

1. Introduction: Motivation for implicit computation

2. Skylines and convex hulls

Henrik Blunck Implicit Computation Geometry 8

Computing the Skyline

Maximal Points:

Given: Set P of n points in the plane.

p ∈ P is maximal ⇔
∀q ∈ P : p.x ≥ q.x ∨ p.y ≥ q.y

i.e., p 2 P is maximal i� no other q 2 P

in \upper-right quadrant" of p.

Union of maximal points:

`skyline', `pareto-optimal points'.

Objective:

Find \points" that cannot be \opti-

mized" in all d dimensions.

Generalizations:

De�nition generalizes to:

{ Arbitrary dimensions d.

{ 'Maxima' w.r.t. d arbitrary chosen co-

ordinate axes.

Henrik Blunck Implicit Computation Geometry 9

Computing the Skyline

Maximal Points:

Given: Set P of n points in the plane.

p ∈ P is maximal ⇔
∀q ∈ P : p.x ≥ q.x ∨ p.y ≥ q.y

i.e., p ∈ P is maximal iff no other q ∈ P
in “upper-right quadrant” of p.

Union of maximal points:

`skyline', `pareto-optimal points'.

Objective:

Find \points" that cannot be \opti-

mized" in all d dimensions.

Generalizations:

De�nition generalizes to:

{ Arbitrary dimensions d.

{ 'Maxima' w.r.t. d arbitrary chosen co-

ordinate axes.

Henrik Blunck Implicit Computation Geometry 9

Computing the Skyline

Maximal Points:

Given: Set P of n points in the plane.

p ∈ P is maximal ⇔
∀q ∈ P : p.x ≥ q.x ∨ p.y ≥ q.y

i.e., p ∈ P is maximal iff no other q ∈ P
in “upper-right quadrant” of p.

Union of maximal points:
‘skyline’, ‘pareto-optimal points’.

Objective:

Find \points" that cannot be \opti-

mized" in all d dimensions.

Generalizations:

De�nition generalizes to:

{ Arbitrary dimensions d.

{ 'Maxima' w.r.t. d arbitrary chosen co-

ordinate axes.

Henrik Blunck Implicit Computation Geometry 9

Computing the Skyline

Maximal Points:

Given: Set P of n points in the plane.

p ∈ P is maximal ⇔
∀q ∈ P : p.x ≥ q.x ∨ p.y ≥ q.y

i.e., p ∈ P is maximal iff no other q ∈ P
in “upper-right quadrant” of p.

Union of maximal points:
‘skyline’, ‘pareto-optimal points’.

Objective:

Find \points" that cannot be \opti-

mized" in all d dimensions.

Generalizations:

De�nition generalizes to:

{ Arbitrary dimensions d.

{ 'Maxima' w.r.t. d arbitrary chosen co-

ordinate axes.

Henrik Blunck Implicit Computation Geometry 9

Computing the Skyline

Maximal Points:

Given: Set P of n points in the plane.

p ∈ P is maximal ⇔
∀q ∈ P : p.x ≥ q.x ∨ p.y ≥ q.y

i.e., p ∈ P is maximal iff no other q ∈ P
in “upper-right quadrant” of p.

Union of maximal points:
‘skyline’, ‘pareto-optimal points’.

Objective:

Find \points" that cannot be \opti-

mized" in all d dimensions.

Generalizations:

De�nition generalizes to:

{ Arbitrary dimensions d.

{ 'Maxima' w.r.t. d arbitrary chosen co-

ordinate axes.

Henrik Blunck Implicit Computation Geometry 9

Computing the Skyline

Maximal Points:

Given: Set P of n points in the plane.

p ∈ P is maximal ⇔
∀q ∈ P : p.x ≥ q.x ∨ p.y ≥ q.y

i.e., p ∈ P is maximal iff no other q ∈ P
in “upper-right quadrant” of p.

Union of maximal points:
‘skyline’, ‘pareto-optimal points’.

Objective:

Find \points" that cannot be \opti-

mized" in all d dimensions.

Generalizations:

De�nition generalizes to:

{ Arbitrary dimensions d.

{ 'Maxima' w.r.t. d arbitrary chosen co-

ordinate axes.

Henrik Blunck Implicit Computation Geometry 9

Computing the Skyline

Maximal Points:

Given: Set P of n points in the plane.

p ∈ P is maximal ⇔
∀q ∈ P : p.x ≥ q.x ∨ p.y ≥ q.y

i.e., p ∈ P is maximal iff no other q ∈ P
in “upper-right quadrant” of p.

Union of maximal points:
‘skyline’, ‘pareto-optimal points’.

Objective:

Find \points" that cannot be \opti-

mized" in all d dimensions.

Generalizations:

De�nition generalizes to:

{ Arbitrary dimensions d.

{ 'Maxima' w.r.t. d arbitrary chosen co-

ordinate axes.

Henrik Blunck Implicit Computation Geometry 9

Computing the Skyline

Maximal Points:

Given: Set P of n points in the plane.

p ∈ P is maximal ⇔
∀q ∈ P : p.x ≥ q.x ∨ p.y ≥ q.y

i.e., p ∈ P is maximal iff no other q ∈ P
in “upper-right quadrant” of p.

Union of maximal points:
‘skyline’, ‘pareto-optimal points’.

Objective:

Find \points" that cannot be \opti-

mized" in all d dimensions.

Generalizations:

De�nition generalizes to:

{ Arbitrary dimensions d.

{ 'Maxima' w.r.t. d arbitrary chosen co-

ordinate axes.

Henrik Blunck Implicit Computation Geometry 9

Computing the Skyline

Maximal Points:

Given: Set P of n points in the plane.

p ∈ P is maximal ⇔
∀q ∈ P : p.x ≥ q.x ∨ p.y ≥ q.y

i.e., p ∈ P is maximal iff no other q ∈ P
in “upper-right quadrant” of p.

Union of maximal points:
‘skyline’, ‘pareto-optimal points’.

Objective:

Find \points" that cannot be \opti-

mized" in all d dimensions.

Generalizations:

De�nition generalizes to:

{ Arbitrary dimensions d.

{ 'Maxima' w.r.t. d arbitrary chosen co-

ordinate axes.

paid vacation/yr

salary

Henrik Blunck Implicit Computation Geometry 9

Computing the Skyline

Maximal Points:

Given: Set P of n points in the plane.

p ∈ P is maximal ⇔
∀q ∈ P : p.x ≥ q.x ∨ p.y ≥ q.y

i.e., p ∈ P is maximal iff no other q ∈ P
in “upper-right quadrant” of p.

Union of maximal points:
‘skyline’, ‘pareto-optimal points’.

Objective:

Find “points” that cannot be “opti-
mized” in all d dimensions.

Generalizations:

De�nition generalizes to:

{ Arbitrary dimensions d.

{ 'Maxima' w.r.t. d arbitrary chosen co-

ordinate axes.

paid vacation/yr

salary

Henrik Blunck Implicit Computation Geometry 9

Computing the Skyline

Maximal Points:

Given: Set P of n points in the plane.

p ∈ P is maximal ⇔
∀q ∈ P : p.x ≥ q.x ∨ p.y ≥ q.y

i.e., p ∈ P is maximal iff no other q ∈ P
in “upper-right quadrant” of p.

Union of maximal points:
‘skyline’, ‘pareto-optimal points’.

Objective:

Find “points” that cannot be “opti-
mized” in all d dimensions.

Generalizations:

Definition generalizes to:

– Arbitrary dimensions d.
– ’Maxima’ w.r.t. d arbitrary chosen co-

ordinate axes.

paid vacation/yr

salary

Henrik Blunck Implicit Computation Geometry 9

Computing all skylines in-place

Layers of Maxima:

Compute `skyline' MAX(P) of P.

If P nMAX(P) not empty, set P :=

MAX(P) and repeat.

Number of iterations (layers) can

be linear in n.

Convex Layers:

de�ned analogical.

In-place setting:

Group points by layer.

In each layer: points sorted (by x).

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:

Compute `skyline' MAX(P) of P.

If P nMAX(P) not empty, set P :=

MAX(P) and repeat.

Number of iterations (layers) can

be linear in n.

Convex Layers:

de�ned analogical.

In-place setting:

Group points by layer.

In each layer: points sorted (by x).

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:

Compute `skyline' MAX(P) of P.

If P nMAX(P) not empty, set P :=

MAX(P) and repeat.

Number of iterations (layers) can

be linear in n.

Convex Layers:

de�ned analogical.

In-place setting:

Group points by layer.

In each layer: points sorted (by x).

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:

Compute `skyline' MAX(P) of P.

If P nMAX(P) not empty, set P :=

MAX(P) and repeat.

Number of iterations (layers) can

be linear in n.

Convex Layers:

de�ned analogical.

In-place setting:

Group points by layer.

In each layer: points sorted (by x).

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:

Compute ‘skyline’ MAX(P) of P.

If P \MAX(P) not empty, set P :=

MAX(P) and repeat.

Number of iterations (layers) can

be linear in n.

Convex Layers:

de�ned analogical.

In-place setting:

Group points by layer.

In each layer: points sorted (by x).

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:

Compute ‘skyline’ MAX(P) of P.

If P \MAX(P) not empty, set P :=

MAX(P) and repeat.

Number of iterations (layers) can

be linear in n.

Convex Layers:

de�ned analogical.

In-place setting:

Group points by layer.

In each layer: points sorted (by x).

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:

Compute ‘skyline’ MAX(P) of P.

If P \MAX(P) not empty, set P :=

MAX(P) and repeat.

Number of iterations (layers) can

be linear in n.

Convex Layers:

de�ned analogical.

In-place setting:

Group points by layer.

In each layer: points sorted (by x).

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:

Compute ‘skyline’ MAX(P) of P.

If P \MAX(P) not empty, set P :=

MAX(P) and repeat.

Number of iterations (layers) can

be linear in n.

Convex Layers:

de�ned analogical.

In-place setting:

Group points by layer.

In each layer: points sorted (by x).

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:

Compute ‘skyline’ MAX(P) of P.

If P \MAX(P) not empty, set P :=

MAX(P) and repeat.

Number of iterations (layers) can

be linear in n.

Convex Layers:

de�ned analogical.

In-place setting:

Group points by layer.

In each layer: points sorted (by x).

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:

Compute ‘skyline’ MAX(P) of P.

If P \MAX(P) not empty, set P :=

MAX(P) and repeat.

Number of iterations (layers) can

be linear in n.

Convex Layers:

de�ned analogical.

In-place setting:

Group points by layer.

In each layer: points sorted (by x).

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:

Compute ‘skyline’ MAX(P) of P.

If P \MAX(P) not empty, set P :=

MAX(P) and repeat.

Number of iterations (layers) can

be linear in n.

Convex Layers:

de�ned analogical.

In-place setting:

Group points by layer.

In each layer: points sorted (by x).

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:

Compute ‘skyline’ MAX(P) of P.

If P \MAX(P) not empty, set P :=

MAX(P) and repeat.

Number of iterations (layers) can

be linear in n.

Convex Layers:

defined analogical.

In-place setting:

Group points by layer.

In each layer: points sorted (by x).

Henrik Blunck Implicit Computation Geometry 10

Computing all skylines in-place

Layers of Maxima:

Compute ‘skyline’ MAX(P) of P.

If P \MAX(P) not empty, set P :=

MAX(P) and repeat.

Number of iterations (layers) can

be linear in n.

Convex Layers:

defined analogical.

In-place setting:

Group points by layer.

In each layer: points sorted (by x).

Henrik Blunck Implicit Computation Geometry 10

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (='tail') seen so far.

{ Invariant: Next point p: is maximum) p right of tail.

Swap maximal points to the front of the array.

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

µ0
µi

: maximal
 points

µ0

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

µ0
µi

: maximal
 points

µ0

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

p

µ0
µi

: maximal
 points p

current

µ0

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

µ0
µi

: maximal
 points

current

µ0

µ1

µ1

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

p

µ0
µi

: maximal
 points p

current

µ0

µ1

µ1

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

p

µ0
µi

: maximal
 points p

current

µ0

µ1

µ1

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

p

current

µ0
µi

: maximal
 points

µ0

µ1

µ1

p

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

current

µ0
µi

: maximal
 points

µ0

µ1

µ1

µ2

µ2

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

current

µ0
µi

: maximal
 points

µ0

µ1

µ1

µ2

µ2

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

µ2

current

µ0
µi

: maximal
 points

µ0

µ1

µ1

µ2

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

p

current

µ2

p

µ0
µi

: maximal
 points

µ0

µ1

µ1

µ2

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

p

current

µ2

p

µ0
µi

: maximal
 points

µ0

µ1

µ1

µ2

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

p

current

µ2

p

µ0
µi

: maximal
 points

µ0

µ1

µ1

µ2

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

p

current

µ2

p

µ0
µi

: maximal
 points

µ0

µ1

µ1

µ2

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

µ3

µ3

current

µ2µ0
µi

: maximal
 points

µ0

µ1

µ1

µ2

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

µ3

µ3

current

µ2µ0
µi

: maximal
 points

µ0

µ1

µ1

µ2

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

p

current

µ3

µ3

µ2

p

µ0
µi

: maximal
 points

µ0

µ1

µ1

µ2

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

p

current

µ3

µ3

µ2

p

µ0
µi

: maximal
 points

µ0

µ1

µ1

µ2

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

p

current

µ3

µ3

µ2

p

µ0
µi

: maximal
 points

µ0

µ1

µ1

µ2

“Skyline” (in <x-order): In-place, O (n logn) (sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (=’tail’) seen so far.

– Invariant: Next point p: is maximum ⇒ p right of tail.

Swap maximal points to the front of the array.

µ3

µ3

µ2µ0
µi

: maximal
 points

µ0

µ1

µ1

µ2

“Skyline” (in <x-order): In-place, O (n logn) (sort & scan).

Henrik Blunck Implicit Computation Geometry 11

Computing the Convex Hull in 2D:Graham's Scan

Presort points lexicographically using, e.g., heapsort.

Sweep left-right, maintain last two convex hull points seen so far.

{ Invariant: Point q not on upper convex hull i� (p; q; r) form a left-turn.

Swap upper hull points to the front of the array; then compute lower hull ..

Convex hull: In-place, O

(

n logn

)

(sort & scan)

[

Graham, 1972

]

.

Henrik Blunck Implicit Computation Geometry 12

Computing the Convex Hull in 2D:Graham's Scan

Presort points lexicographically using, e.g., heapsort.

Sweep left-right, maintain last two convex hull points seen so far.

– Invariant: Point q not on upper convex hull iff (p, q, r) form a left-turn.

Swap upper hull points to the front of the array; then compute lower hull ..

µi
: convex hull

 points

µ1

µ2

µ3

µ4
µ5

µ0

µ0 µ1 µ2 µ3

Convex hull: In-place, O

(

n logn

)

(sort & scan)

[

Graham, 1972

]

.

Henrik Blunck Implicit Computation Geometry 12

Computing the Convex Hull in 2D:Graham’s Scan

Presort points lexicographically using, e.g., heapsort.

Sweep left-right, maintain last two convex hull points seen so far.

– Invariant: Point q not on upper convex hull iff (p, q, r) form a left-turn.

Swap upper hull points to the front of the array; then compute lower hull ..

µi
: convex hull

 points

µ1

µ2

µ3

µ4
µ5

µ0

µ0 µ1 µ2 µ3 µ4 µ5

Convex hull: In-place, O (n logn) (sort & scan) [Graham, 1972].

Henrik Blunck Implicit Computation Geometry 12

Computing the Convex Hull in 2D output-sensitive [Chan, 1996]

Chan’s output-sensitive algorithm:
Avoid global presorting (if h << n).

Speed up Jarvis' March:

{ Bundle input in H groups G

1

; : : : ; G

H

{ Graham-Scan each group to build CH(G

1

); : : : ; CH(G

H

).

{ Jarvis-march with CH(G

1

); : : : ; CH(G

H

) (instead of points) as input-objects.

� To �nd next CH-vertex p

k

+1: Compute tangents to G

1

; : : : ; G

H

, each by

binary search on a CH(G

i

).

{) Runnig time: O

(

n=H �H � log

2

H + H � n=H � log

2

H

)

= O

(

n � log

2

H

)

Doing rounds: \Guess" h by choosing H = 2

2

1

;2

2

2

; : : :

) Global runnig time (with log

2

H = 2

t

):

O

�

P

dlog

2

log

2

he

t

n � 2

t

�

= O

�

n � 2

dlog

2

log

2

he+1

�

= O

(

n � log

2

h

)

:

Henrik Blunck Implicit Computation Geometry 13

Computing the Convex Hull in 2D output-sensitive [Chan, 1996]

Chan’s output-sensitive algorithm:
Avoid global presorting (if h << n).

Speed up Jarvis’ March:

– Bundle input in H groups G1, . . . , GH

– Graham-Scan each group to build CH(G1), . . . , CH(GH).
– Jarvis-march with CH(G1), . . . , CH(GH) (instead of points) as input-objects.

∗ To find next CH-vertex pk +1: Compute tangents to G1, . . . , GH, each by
binary search on a CH(Gi).

– ⇒ Runnig time: O (n/H ·H · log2 H + H · n/H · log2 H) = O (n · log2 H)

Doing rounds: \Guess" h by choosing H = 2

2

1

;2

2

2

; : : :

) Global runnig time (with log

2

H = 2

t

):

O

�

P

dlog

2

log

2

he

t

n � 2

t

�

= O

�

n � 2

dlog

2

log

2

he+1

�

= O

(

n � log

2

h

)

:

3-44© Klaus Hinrichs Algorithmische Geometrie I – Konvexe Hülle

… Algorithmus von Chan …

• Beschleunigung des Einwickelschrittes durch Preprocessing:
– Wähle 1 ≤ m ≤ n und partitioniere die Menge S der n Punkte in

Èn/m˘ Teilmengen Si der Größe ≤ m.
– Berechne mit Graham's scan die konvexe Hülle CHi jeder Teilmenge

Si in jeweils O(m·log m) Zeit
fiÈn/m˘ möglicherweise überlappende konvexe Polygone CHi mit

jeweils höchstens m Eckpunkten werden bestimmt in

O((n/m)·m·log m) = O(n·log m) Zeit.

– Einwickelschritt: Bestimme nächste
Kante der konvexen Hülle CH von S
aus den Èn/m˘ Tangenten an die
konvexen Polygone CHi.

pk–1

pk

pk+1

Henrik Blunck Implicit Computation Geometry 13

Computing the Convex Hull in 2D output-sensitive [Chan, 1996]

Chan’s output-sensitive algorithm:
Avoid global presorting (if h << n).

Speed up Jarvis’ March:

– Bundle input in H groups G1, . . . , GH

– Graham-Scan each group to build CH(G1), . . . , CH(GH).
– Jarvis-march with CH(G1), . . . , CH(GH) (instead of points) as input-objects.

∗ To find next CH-vertex pk +1: Compute tangents to G1, . . . , GH, each by
binary search on a CH(Gi).

– ⇒ Runnig time: O (n/H ·H · log2 H + H · n/H · log2 H) = O (n · log2 H)

Doing rounds: “Guess” h by choosing H = 221

,222

, . . .

) Global runnig time (with log

2

H = 2

t

):

O

�

P

dlog

2

log

2

he

t

n � 2

t

�

= O

�

n � 2

dlog

2

log

2

he+1

�

= O

(

n � log

2

h

)

:

3-44© Klaus Hinrichs Algorithmische Geometrie I – Konvexe Hülle

… Algorithmus von Chan …

• Beschleunigung des Einwickelschrittes durch Preprocessing:
– Wähle 1 ≤ m ≤ n und partitioniere die Menge S der n Punkte in

Èn/m˘ Teilmengen Si der Größe ≤ m.
– Berechne mit Graham's scan die konvexe Hülle CHi jeder Teilmenge

Si in jeweils O(m·log m) Zeit
fiÈn/m˘ möglicherweise überlappende konvexe Polygone CHi mit

jeweils höchstens m Eckpunkten werden bestimmt in

O((n/m)·m·log m) = O(n·log m) Zeit.

– Einwickelschritt: Bestimme nächste
Kante der konvexen Hülle CH von S
aus den Èn/m˘ Tangenten an die
konvexen Polygone CHi.

pk–1

pk

pk+1

Henrik Blunck Implicit Computation Geometry 13

Computing the Convex Hull in 2D output-sensitive [Chan, 1996]

Chan’s output-sensitive algorithm:
Avoid global presorting (if h << n).

Speed up Jarvis’ March:

– Bundle input in H groups G1, . . . , GH

– Graham-Scan each group to build CH(G1), . . . , CH(GH).
– Jarvis-march with CH(G1), . . . , CH(GH) (instead of points) as input-objects.

∗ To find next CH-vertex pk +1: Compute tangents to G1, . . . , GH, each by
binary search on a CH(Gi).

– ⇒ Runnig time: O (n/H ·H · log2 H + H · n/H · log2 H) = O (n · log2 H)

Doing rounds: “Guess” h by choosing H = 221

,222

, . . .

⇒ Global runnig time (with log2 H = 2t):

O
(∑dlog2 log2 he

t n · 2t
)

= O
(
n · 2dlog2 log2 he+1

)
= O (n · log2 h) .

3-44© Klaus Hinrichs Algorithmische Geometrie I – Konvexe Hülle

… Algorithmus von Chan …

• Beschleunigung des Einwickelschrittes durch Preprocessing:
– Wähle 1 ≤ m ≤ n und partitioniere die Menge S der n Punkte in

Èn/m˘ Teilmengen Si der Größe ≤ m.
– Berechne mit Graham's scan die konvexe Hülle CHi jeder Teilmenge

Si in jeweils O(m·log m) Zeit
fiÈn/m˘ möglicherweise überlappende konvexe Polygone CHi mit

jeweils höchstens m Eckpunkten werden bestimmt in

O((n/m)·m·log m) = O(n·log m) Zeit.

– Einwickelschritt: Bestimme nächste
Kante der konvexen Hülle CH von S
aus den Èn/m˘ Tangenten an die
konvexen Polygone CHi.

pk–1

pk

pk+1

Henrik Blunck Implicit Computation Geometry 13

How to run Chan’s algorithm in-place?

Problems to solve:

H can be stored in single extra word ⇒ Only one round to consider.

Where to (out)put convex hull vertices?

Where to store convex hulls of the groups G

1

; : : : ; G

H

?

{ How to arrange w/o extra space G

i

's and global convex hull?

{ How to store sizes jG

i

j and jCH(G

i

)j?

Extra run time cost of in-place solution:

Binary search on G

i

(instead of on CH(G

i

)). O

(

1

)

per search step.

Recompute two CH(G

i

) for every output vertex p

k

. O

�

H

2

log

2

H

�

) Global costs still in O

(

n � log

2

h

)

for h < n= log

2

n.

For larger h: Just run Graham's Scan.

) O

(

n � log

2

h

)

in-place convex hull computation.

Henrik Blunck Implicit Computation Geometry 14

How to run Chan’s algorithm in-place?

Problems to solve:

H can be stored in single extra word ⇒ Only one round to consider.

Where to (out)put convex hull vertices?

Where to store convex hulls of the groups G

1

; : : : ; G

H

?

{ How to arrange w/o extra space G

i

's and global convex hull?

{ How to store sizes jG

i

j and jCH(G

i

)j?

Extra run time cost of in-place solution:

Binary search on G

i

(instead of on CH(G

i

)). O

(

1

)

per search step.

Recompute two CH(G

i

) for every output vertex p

k

. O

�

H

2

log

2

H

�

) Global costs still in O

(

n � log

2

h

)

for h < n= log

2

n.

For larger h: Just run Graham's Scan.

) O

(

n � log

2

h

)

in-place convex hull computation.

Henrik Blunck Implicit Computation Geometry 14

How to run Chan’s algorithm in-place?

Problems to solve:

H can be stored in single extra word ⇒ Only one round to consider.

Where to (out)put convex hull vertices?

Where to store convex hulls of the groups G1, . . . , GH?

– How to arrange w/o extra space Gi’s and global convex hull?
{ How to store sizes jG

i

j and jCH(G

i

)j?

Extra run time cost of in-place solution:

Binary search on G

i

(instead of on CH(G

i

)). O

(

1

)

per search step.

Recompute two CH(G

i

) for every output vertex p

k

. O

�

H

2

log

2

H

�

) Global costs still in O

(

n � log

2

h

)

for h < n= log

2

n.

For larger h: Just run Graham's Scan.

) O

(

n � log

2

h

)

in-place convex hull computation.

Henrik Blunck Implicit Computation Geometry 14

How to run Chan’s algorithm in-place?

Problems to solve:

H can be stored in single extra word ⇒ Only one round to consider.

Where to (out)put convex hull vertices?

Where to store convex hulls of the groups G1, . . . , GH?

– How to arrange w/o extra space Gi’s and global convex hull?
– How to store sizes |Gi| and |CH(Gi)|?

Extra run time cost of in-place solution:

Binary search on G

i

(instead of on CH(G

i

)). O

(

1

)

per search step.

Recompute two CH(G

i

) for every output vertex p

k

. O

�

H

2

log

2

H

�

) Global costs still in O

(

n � log

2

h

)

for h < n= log

2

n.

For larger h: Just run Graham's Scan.

) O

(

n � log

2

h

)

in-place convex hull computation.

Henrik Blunck Implicit Computation Geometry 14

How to run Chan’s algorithm in-place?

Problems to solve:

H can be stored in single extra word ⇒ Only one round to consider.

Where to (out)put convex hull vertices?

Where to store convex hulls of the groups G1, . . . , GH?

– How to arrange w/o extra space Gi’s and global convex hull?
– How to store sizes |Gi| and |CH(Gi)|?

Extra run time cost of in-place solution:

Binary search on Gi (instead of on CH(Gi)). O (1) per search step.

Recompute two CH(G

i

) for every output vertex p

k

. O

�

H

2

log

2

H

�

) Global costs still in O

(

n � log

2

h

)

for h < n= log

2

n.

For larger h: Just run Graham's Scan.

) O

(

n � log

2

h

)

in-place convex hull computation.

Henrik Blunck Implicit Computation Geometry 14

How to run Chan’s algorithm in-place?

Problems to solve:

H can be stored in single extra word ⇒ Only one round to consider.

Where to (out)put convex hull vertices?

Where to store convex hulls of the groups G1, . . . , GH?

– How to arrange w/o extra space Gi’s and global convex hull?
– How to store sizes |Gi| and |CH(Gi)|?

Extra run time cost of in-place solution:

Binary search on Gi (instead of on CH(Gi)). O (1) per search step.

Recompute two CH(Gi) for every output vertex pk. O
(
H2 log2 H

)
) Global costs still in O

(

n � log

2

h

)

for h < n= log

2

n.

For larger h: Just run Graham's Scan.

) O

(

n � log

2

h

)

in-place convex hull computation.

Henrik Blunck Implicit Computation Geometry 14

How to run Chan’s algorithm in-place?

Problems to solve:

H can be stored in single extra word ⇒ Only one round to consider.

Where to (out)put convex hull vertices?

Where to store convex hulls of the groups G1, . . . , GH?

– How to arrange w/o extra space Gi’s and global convex hull?
– How to store sizes |Gi| and |CH(Gi)|?

Extra run time cost of in-place solution:

Binary search on Gi (instead of on CH(Gi)). O (1) per search step.

Recompute two CH(Gi) for every output vertex pk. O
(
H2 log2 H

)
⇒ Global costs still in O (n · log2 h) for h <

√
n/ log2 n.

For larger h: Just run Graham's Scan.

) O

(

n � log

2

h

)

in-place convex hull computation.

Henrik Blunck Implicit Computation Geometry 14

How to run Chan’s algorithm in-place?

Problems to solve:

H can be stored in single extra word ⇒ Only one round to consider.

Where to (out)put convex hull vertices?

Where to store convex hulls of the groups G1, . . . , GH?

– How to arrange w/o extra space Gi’s and global convex hull?
– How to store sizes |Gi| and |CH(Gi)|?

Extra run time cost of in-place solution:

Binary search on Gi (instead of on CH(Gi)). O (1) per search step.

Recompute two CH(Gi) for every output vertex pk. O
(
H2 log2 H

)
⇒ Global costs still in O (n · log2 h) for h <

√
n/ log2 n.

For larger h: Just run Graham’s Scan.

) O

(

n � log

2

h

)

in-place convex hull computation.

Henrik Blunck Implicit Computation Geometry 14

How to run Chan’s algorithm in-place?

Problems to solve:

H can be stored in single extra word ⇒ Only one round to consider.

Where to (out)put convex hull vertices?

Where to store convex hulls of the groups G1, . . . , GH?

– How to arrange w/o extra space Gi’s and global convex hull?
– How to store sizes |Gi| and |CH(Gi)|?

Extra run time cost of in-place solution:

Binary search on Gi (instead of on CH(Gi)). O (1) per search step.

Recompute two CH(Gi) for every output vertex pk. O
(
H2 log2 H

)
⇒ Global costs still in O (n · log2 h) for h <

√
n/ log2 n.

For larger h: Just run Graham’s Scan.

⇒ O (n · log2 h) in-place convex hull computation.

Henrik Blunck Implicit Computation Geometry 14

Output-sensitive skyline computation

Idea applicable also to skyline problem?

Applicable:

{ Graham-like Scan

{ Jarvis-like March

{ Binary search on skylines

{ \Recognizing" the end of skylines

) O

(

n � log

2

h

)

in-place skyline computation.

Henrik Blunck Implicit Computation Geometry 15

Output-sensitive skyline computation

Idea applicable also to skyline problem?

Applicable:

– Graham-like Scan
{ Jarvis-like March

{ Binary search on skylines

{ \Recognizing" the end of skylines

) O

(

n � log

2

h

)

in-place skyline computation.

Henrik Blunck Implicit Computation Geometry 15

Output-sensitive skyline computation

Idea applicable also to skyline problem?

Applicable:

– Graham-like Scan
– Jarvis-like March
{ Binary search on skylines

{ \Recognizing" the end of skylines

) O

(

n � log

2

h

)

in-place skyline computation.

Henrik Blunck Implicit Computation Geometry 15

Output-sensitive skyline computation

Idea applicable also to skyline problem?

Applicable:

– Graham-like Scan
– Jarvis-like March
– Binary search on skylines
{ \Recognizing" the end of skylines

) O

(

n � log

2

h

)

in-place skyline computation.

Henrik Blunck Implicit Computation Geometry 15

Output-sensitive skyline computation

Idea applicable also to skyline problem?

Applicable:

– Graham-like Scan
– Jarvis-like March
– Binary search on skylines
– “Recognizing” the end of skylines

) O

(

n � log

2

h

)

in-place skyline computation.

Henrik Blunck Implicit Computation Geometry 15

Output-sensitive skyline computation

Idea applicable also to skyline problem?

Applicable:

– Graham-like Scan
– Jarvis-like March
– Binary search on skylines
– “Recognizing” the end of skylines

⇒ O (n · log2 h) in-place skyline computation.

Henrik Blunck Implicit Computation Geometry 15

Computing Layers of Maxima

Def. of ’Layers of Maxima’:

Compute ‘skyline’ MAX(P) of P.

If P \ MAX(P) not empty, set P :=
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):

Group points by layer.

In each layer, sort by x.

Caveat:

Na��ve approach: Iteratively compute sky-

lines.

Cost: O

(

n logn

)

time per layer, i.e.,

O

�

n

2

logn

�

time in total.

Henrik Blunck Implicit Computation Geometry 16

Computing Layers of Maxima

Def. of ’Layers of Maxima’:

Compute ‘skyline’ MAX(P) of P.

If P \ MAX(P) not empty, set P :=
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):

Group points by layer.

In each layer, sort by x.

Caveat:

Na��ve approach: Iteratively compute sky-

lines.

Cost: O

(

n logn

)

time per layer, i.e.,

O

�

n

2

logn

�

time in total.

Henrik Blunck Implicit Computation Geometry 16

Computing Layers of Maxima

Def. of ’Layers of Maxima’:

Compute ‘skyline’ MAX(P) of P.

If P \ MAX(P) not empty, set P :=
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):

Group points by layer.

In each layer, sort by x.

Caveat:

Na��ve approach: Iteratively compute sky-

lines.

Cost: O

(

n logn

)

time per layer, i.e.,

O

�

n

2

logn

�

time in total.

Henrik Blunck Implicit Computation Geometry 16

Computing Layers of Maxima

Def. of ’Layers of Maxima’:

Compute ‘skyline’ MAX(P) of P.

If P \ MAX(P) not empty, set P :=
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):

Group points by layer.

In each layer, sort by x.

Caveat:

Na��ve approach: Iteratively compute sky-

lines.

Cost: O

(

n logn

)

time per layer, i.e.,

O

�

n

2

logn

�

time in total.

Henrik Blunck Implicit Computation Geometry 16

Computing Layers of Maxima

Def. of ’Layers of Maxima’:

Compute ‘skyline’ MAX(P) of P.

If P \ MAX(P) not empty, set P :=
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):

Group points by layer.

In each layer, sort by x.

Caveat:

Na��ve approach: Iteratively compute sky-

lines.

Cost: O

(

n logn

)

time per layer, i.e.,

O

�

n

2

logn

�

time in total.

Henrik Blunck Implicit Computation Geometry 16

Computing Layers of Maxima

Def. of ’Layers of Maxima’:

Compute ‘skyline’ MAX(P) of P.

If P \ MAX(P) not empty, set P :=
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):

Group points by layer.

In each layer, sort by x.

Caveat:

Na��ve approach: Iteratively compute sky-

lines.

Cost: O

(

n logn

)

time per layer, i.e.,

O

�

n

2

logn

�

time in total.

Henrik Blunck Implicit Computation Geometry 16

Computing Layers of Maxima

Def. of ’Layers of Maxima’:

Compute ‘skyline’ MAX(P) of P.

If P \ MAX(P) not empty, set P :=
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):

Group points by layer.

In each layer, sort by x.

Caveat:

Na��ve approach: Iteratively compute sky-

lines.

Cost: O

(

n logn

)

time per layer, i.e.,

O

�

n

2

logn

�

time in total.

Henrik Blunck Implicit Computation Geometry 16

Computing Layers of Maxima

Def. of ’Layers of Maxima’:

Compute ‘skyline’ MAX(P) of P.

If P \ MAX(P) not empty, set P :=
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):

Group points by layer.

In each layer, sort by x.

Caveat:

Na��ve approach: Iteratively compute sky-

lines.

Cost: O

(

n logn

)

time per layer, i.e.,

O

�

n

2

logn

�

time in total.

Henrik Blunck Implicit Computation Geometry 16

Computing Layers of Maxima

Def. of ’Layers of Maxima’:

Compute ‘skyline’ MAX(P) of P.

If P \ MAX(P) not empty, set P :=
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):

Group points by layer.

In each layer, sort by x.

Caveat:

Na��ve approach: Iteratively compute sky-

lines.

Cost: O

(

n logn

)

time per layer, i.e.,

O

�

n

2

logn

�

time in total.

Henrik Blunck Implicit Computation Geometry 16

Computing Layers of Maxima

Def. of ’Layers of Maxima’:

Compute ‘skyline’ MAX(P) of P.

If P \ MAX(P) not empty, set P :=
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):

Group points by layer.

In each layer, sort by x.

Caveat:

Na��ve approach: Iteratively compute sky-

lines.

Cost: O

(

n logn

)

time per layer, i.e.,

O

�

n

2

logn

�

time in total.

Henrik Blunck Implicit Computation Geometry 16

Computing Layers of Maxima

Def. of ’Layers of Maxima’:

Compute ‘skyline’ MAX(P) of P.

If P \ MAX(P) not empty, set P :=
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):

Group points by layer.

In each layer, sort by x.

Caveat:

Na��ve approach: Iteratively compute sky-

lines.

Cost: O

(

n logn

)

time per layer, i.e.,

O

�

n

2

logn

�

time in total.

Henrik Blunck Implicit Computation Geometry 16

Computing Layers of Maxima

Def. of ’Layers of Maxima’:

Compute ‘skyline’ MAX(P) of P.

If P \ MAX(P) not empty, set P :=
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):

Group points by layer.

In each layer, sort by x.

Caveat:

Na��ve approach: Iteratively compute sky-

lines.

Cost: O

(

n logn

)

time per layer, i.e.,

O

�

n

2

logn

�

time in total.

Henrik Blunck Implicit Computation Geometry 16

Computing Layers of Maxima

Def. of ’Layers of Maxima’:

Compute ‘skyline’ MAX(P) of P.

If P \ MAX(P) not empty, set P :=
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):

Group points by layer.

In each layer, sort by x.

Caveat:

Näıve approach: Iteratively compute sky-
lines.

Cost: O

(

n logn

)

time per layer, i.e.,

O

�

n

2

logn

�

time in total.

Henrik Blunck Implicit Computation Geometry 16

Computing Layers of Maxima

Def. of ’Layers of Maxima’:

Compute ‘skyline’ MAX(P) of P.

If P \ MAX(P) not empty, set P :=
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):

Group points by layer.

In each layer, sort by x.

Caveat:

Näıve approach: Iteratively compute sky-
lines.

Cost: O (n logn) time per layer, i.e.,
O

(
n2 logn

)
time in total.

Henrik Blunck Implicit Computation Geometry 16

Computing Layers of Maxima

Def. of ’Layers of Maxima’:

Compute ‘skyline’ MAX(P) of P.

If P \ MAX(P) not empty, set P :=
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):

Group points by layer.

In each layer, sort by x.

Caveat:

Näıve approach: Iteratively compute sky-
lines.

Cost: O (n logn) time per layer, i.e.,
O

(
n2 logn

)
time in total.

p

current

µ3

µ3

µ2

p

µ0
µi

: maximal
 points

µ0

µ1

µ1

µ2

Henrik Blunck Implicit Computation Geometry 16

Computing Layers of Maxima in-place: Overview

Agenda:

Compute (and arrange!) all points on each of the O (n) layers in-place.

Approach:

Process multiple layers at a time.

Number of batches: O

(

logn

)

.

Per batch:

{ Process O

(

n= logn

)

layers at a time by . . .

{ sweeping the input array (similar to skyline sweep).

{ Maximum allowed cost: O

(

n

)

time per batch, i.e., no pre-sorting.

Charging scheme: Spend extra O

(

logn

)

time per point processed.

Henrik Blunck Implicit Computation Geometry 17

Computing Layers of Maxima in-place: Overview

Agenda:

Compute (and arrange!) all points on each of the O (n) layers in-place.

Approach:

Process multiple layers at a time.

Number of batches: O

(

logn

)

.

Per batch:

{ Process O

(

n= logn

)

layers at a time by . . .

{ sweeping the input array (similar to skyline sweep).

{ Maximum allowed cost: O

(

n

)

time per batch, i.e., no pre-sorting.

Charging scheme: Spend extra O

(

logn

)

time per point processed.

Henrik Blunck Implicit Computation Geometry 17

Computing Layers of Maxima in-place: Overview

Agenda:

Compute (and arrange!) all points on each of the O (n) layers in-place.

Approach:

Process multiple layers at a time.

Number of batches: O (logn).

Per batch:

{ Process O

(

n= logn

)

layers at a time by . . .

{ sweeping the input array (similar to skyline sweep).

{ Maximum allowed cost: O

(

n

)

time per batch, i.e., no pre-sorting.

Charging scheme: Spend extra O

(

logn

)

time per point processed.

Henrik Blunck Implicit Computation Geometry 17

Computing Layers of Maxima in-place: Overview

Agenda:

Compute (and arrange!) all points on each of the O (n) layers in-place.

Approach:

Process multiple layers at a time.

Number of batches: O (logn).

Per batch:

– Process O (n/ logn) layers at a time by . . .
– sweeping the input array (similar to skyline sweep).
– Maximum allowed cost: O (n) time per batch, i.e., no pre-sorting.

Charging scheme: Spend extra O

(

logn

)

time per point processed.

Henrik Blunck Implicit Computation Geometry 17

Computing Layers of Maxima in-place: Overview

Agenda:

Compute (and arrange!) all points on each of the O (n) layers in-place.

Approach:

Process multiple layers at a time.

Number of batches: O (logn).

Per batch:

– Process O (n/ logn) layers at a time by . . .
– sweeping the input array (similar to skyline sweep).
– Maximum allowed cost: O (n) time per batch, i.e., no pre-sorting.

Charging scheme: Spend extra O (logn) time per point processed.

Henrik Blunck Implicit Computation Geometry 17

For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

L
h-1

L
h

L
κ-1

τ
hτ

κ-1 ...

...
τ

h-1

In-place, O

(

logn

)

time per point) O

(

n logn

)

overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18

For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

L
h-1

L
h

L
κ-1

τ
hτ

κ-1 ...

...
τ

h-1

τ0 τh τκ-1... ...

tails of L1... Lκ-1

In-place, O

(

logn

)

time per point) O

(

n logn

)

overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18

For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

p

L
h-1

L
h

L
κ-1

τ
hτ

κ-1 ...

...
τ

h-1

τ0 τh τκ-1 p... ...

processed

tails of L1... Lκ-1 current

In-place, O

(

logn

)

time per point) O

(

n logn

)

overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18

For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

p

L
h-1

L
h

L
κ-1

τ
hτ

κ-1 ...

...
τ

h-1

τ0 τh τκ-1 p... ...

processed

tails of L1... Lκ-1 current

In-place, O

(

logn

)

time per point) O

(

n logn

)

overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18

For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

p

L
h-1

L
h

L
κ-1

τ
hτ

κ-1 ...

...
τ

h-1

τ0 τh τκ-1 p... ...

processed

tails of L1... Lκ-1 current

In-place, O

(

logn

)

time per point) O

(

n logn

)

overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18

For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

L
h-1

L
h

L
κ-1

τ
h

τ
κ-1 ...

...
τ

h-1

τ0 τh τκ-1... ...

processed

tails of L1... Lκ-1

In-place, O

(

logn

)

time per point) O

(

n logn

)

overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18

For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

L
h-1

L
h

L
κ-1

τ
h

τ
κ-1 ...

...
τ

h-1

τ0 τh τκ-1... ...

processed

tails of L1... Lκ-1

p

current

p

In-place, O

(

logn

)

time per point) O

(

n logn

)

overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18

For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

L
h-1

L
h

L
κ-1

τ
h

τ
κ-1 ...

...
τ

h-1

τ0 τh τκ-1... ...

processed

tails of L1... Lκ-1

p

current

p

In-place, O

(

logn

)

time per point) O

(

n logn

)

overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18

For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

L
h-1

L
h

L
κ-1

τ
h

τ
κ-1 ...

...
τ

h-1

τ0 τh τκ-1... ...

processed

tails of L1... Lκ

τ
κ

τκ

In-place, O

(

logn

)

time per point) O

(

n logn

)

overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18

For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

L
h-1

L
h

L
κ-1

τ
h

τ
κ-1 ...

...
τ

h-1

τ0 τh τκ-1... ...

processed

tails of L1... Lκ

τ
κ

τκ

In-place, O (logn) time per point ⇒ O (n logn) overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18

For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

L
h-1

L
h

L
κ-1

τ
h

τ
κ-1 ...

...
τ

h-1

τ0 τh τκ-1... ...

processed

tails of L1... Lκ

τ
κ

τκ

In-place, O (logn) time per point ⇒ O (n logn) overall.

Use this algorithm to count points on topmost layers. =⇒
Henrik Blunck Implicit Computation Geometry 18

Counting the Points on the Topmost κ Layers

Fix κ ∈ ω(1) and run essentially the same algorithm.

Increment a global counter per “tail”-update. O

(

logn

)

/point

A closer look:

Query: Is some point p not on topmost � layers? O

(

1

)

/point

L
h-1

L
h

L
κ-1

τ
hτ

κ-1 ...

...

τ
h-1

τ0 τh τκ-1... ...

tails of L1... Lκ-1

Sum: O

(

n+ � logn

)

, � =

P

��1

i=0

jL

i

j.

To compute each jL

i

j. . .

. . . we need to increment a coun-

ter c

i

for each update of �

i

.

Wait a minute!

Did you say \� 2 !(1)"?

Where/how to store � counters?

Henrik Blunck Implicit Computation Geometry 19

Counting the Points on the Topmost κ Layers

Fix κ ∈ ω(1) and run essentially the same algorithm.

Increment a global counter per “tail”-update. O

(

logn

)

/point

A closer look:

Query: Is some point p not on topmost � layers? O

(

1

)

/point

p

L
h-1

L
h

L
κ-1

τ
hτ

κ-1 ...

...

τ
h-1

τ0 τh τκ-1 p... ...

tails of L1... Lκ-1

Sum: O

(

n+ � logn

)

, � =

P

��1

i=0

jL

i

j.

To compute each jL

i

j. . .

. . . we need to increment a coun-

ter c

i

for each update of �

i

.

Wait a minute!

Did you say \� 2 !(1)"?

Where/how to store � counters?

Henrik Blunck Implicit Computation Geometry 19

Counting the Points on the Topmost κ Layers

Fix κ ∈ ω(1) and run essentially the same algorithm.

Increment a global counter per “tail”-update. O

(

logn

)

/point

A closer look:

Query: Is some point p not on topmost � layers? O

(

1

)

/point

p

L
h-1

L
h

L
κ-1

τ
hτ

κ-1 ...

...

τ
h-1

τ0 τh τκ-1 p... ...

tails of L1... Lκ-1

Sum: O

(

n+ � logn

)

, � =

P

��1

i=0

jL

i

j.

To compute each jL

i

j. . .

. . . we need to increment a coun-

ter c

i

for each update of �

i

.

Wait a minute!

Did you say \� 2 !(1)"?

Where/how to store � counters?

Henrik Blunck Implicit Computation Geometry 19

Counting the Points on the Topmost κ Layers

Fix κ ∈ ω(1) and run essentially the same algorithm.

Increment a global counter per “tail”-update. O (logn)/point

A closer look:

Query: Is some point p not on topmost � layers? O

(

1

)

/point

L
h-1

L
h

L
κ-1

τ
h

τ
κ-1 ...

...

τ
h-1

τ0 τh τκ-1... ...

tails of L1... Lκ-1

Sum: O

(

n+ � logn

)

, � =

P

��1

i=0

jL

i

j.

To compute each jL

i

j. . .

. . . we need to increment a coun-

ter c

i

for each update of �

i

.

Wait a minute!

Did you say \� 2 !(1)"?

Where/how to store � counters?

Henrik Blunck Implicit Computation Geometry 19

Counting the Points on the Topmost κ Layers

Fix κ ∈ ω(1) and run essentially the same algorithm.

Increment a global counter per “tail”-update. O (logn)/point

A closer look:

Query: Is some point p not on topmost κ layers? O (1)/point

L
h-1

L
h

L
κ-1

τ
h

τ
κ-1 ...

...

τ
h-1

τ0 τh τκ-1... ...

tails of L1... Lκ-1

p

Sum: O

(

n+ � logn

)

, � =

P

��1

i=0

jL

i

j.

To compute each jL

i

j. . .

. . . we need to increment a coun-

ter c

i

for each update of �

i

.

Wait a minute!

Did you say \� 2 !(1)"?

Where/how to store � counters?

Henrik Blunck Implicit Computation Geometry 19

Counting the Points on the Topmost κ Layers

Fix κ ∈ ω(1) and run essentially the same algorithm.

Increment a global counter per “tail”-update. O (logn)/point

A closer look:

Query: Is some point p not on topmost κ layers? O (1)/point

L
h-1

L
h

L
κ-1

τ
h

τ
κ-1 ...

...

τ
h-1

τ0 τh τκ-1... ...

tails of L1... Lκ-1

p

Sum: O (n + ξ logn), ξ =
∑κ−1

i=0 |Li|.

To compute each jL

i

j. . .

. . . we need to increment a coun-

ter c

i

for each update of �

i

.

Wait a minute!

Did you say \� 2 !(1)"?

Where/how to store � counters?

Henrik Blunck Implicit Computation Geometry 19

Counting the Points on the Topmost κ Layers

Fix κ ∈ ω(1) and run essentially the same algorithm.

Increment a global counter per “tail”-update. O (logn)/point

A closer look:

Query: Is some point p not on topmost κ layers? O (1)/point

L
h-1

L
h

L
κ-1

τ
h

τ
κ-1 ...

...

τ
h-1

τ0 τh τκ-1... ...

tails of L1... Lκ-1

p

Sum: O (n + ξ logn), ξ =
∑κ−1

i=0 |Li|.

To compute each |Li|. . .
. . . we need to increment a coun-

ter ci for each update of τi.

Wait a minute!

Did you say “κ ∈ ω(1)”?

Where/how to store κ counters?

Henrik Blunck Implicit Computation Geometry 19

Finding “extra” space

Space needed: κ ∈ ω(1) counters.

Bit-encoding technique

[

Munro, 1986

]

:

Use permutation of two adjacent elements to encode one bit.

p <

y

q: pq � 0, qp � 1. Counter: 2dlog

2

ne elements.

Set � = n= log

2

n) � counters need n representing points.

Partitioning the input array:

Start working on the �rst n entries.

Use last n entries for counters.

Henrik Blunck Implicit Computation Geometry 20

Finding “extra” space

Space needed: κ ∈ ω(1) counters, i.e., κ · dlog2 ne bits.

Bit-encoding technique

[

Munro, 1986

]

:

Use permutation of two adjacent elements to encode one bit.

p <

y

q: pq � 0, qp � 1. Counter: 2dlog

2

ne elements.

Set � = n= log

2

n) � counters need n representing points.

Partitioning the input array:

Start working on the �rst n entries.

Use last n entries for counters.

Henrik Blunck Implicit Computation Geometry 20

Finding “extra” space

Space needed: κ ∈ ω(1) counters, i.e., κ · dlog2 ne bits.

Bit-encoding technique [Munro, 1986]:

Use permutation of two adjacent elements to encode one bit.

p <y q: pq ≡ 0, qp ≡ 1. Counter: 2dlog2 ne elements.

Set � = n= log

2

n) � counters need n representing points.

Partitioning the input array:

Start working on the �rst n entries.

Use last n entries for counters.

Henrik Blunck Implicit Computation Geometry 20

Finding “extra” space

Space needed: κ ∈ ω(1) counters, i.e., κ · dlog2 ne bits.

Bit-encoding technique [Munro, 1986]:

Use permutation of two adjacent elements to encode one bit.

p <y q: pq ≡ 0, qp ≡ 1. Counter: 2dlog2 ne elements.

Set κ = 1
6n/ log2 n ⇒ κ counters need 1

3n representing points.

Partitioning the input array:

Start working on the �rst n entries.

Use last n entries for counters.

Henrik Blunck Implicit Computation Geometry 20

Finding “extra” space

Space needed: κ ∈ ω(1) counters, i.e., κ · dlog2 ne bits.

Bit-encoding technique [Munro, 1986]:

Use permutation of two adjacent elements to encode one bit.

p <y q: pq ≡ 0, qp ≡ 1. Counter: 2dlog2 ne elements.

Set κ = 1
6n/ log2 n ⇒ κ counters need 1

3n representing points.

Partitioning the input array:

Start working on the first 1
3n entries.

Use last n entries for counters.

work space

0 n/3 2n/3

scratch space counter space

n-1

Henrik Blunck Implicit Computation Geometry 20

Finding “extra” space

Space needed: κ ∈ ω(1) counters, i.e., κ · dlog2 ne bits.

Bit-encoding technique [Munro, 1986]:

Use permutation of two adjacent elements to encode one bit.

p <y q: pq ≡ 0, qp ≡ 1. Counter: 2dlog2 ne elements.

Set κ = 1
6n/ log2 n ⇒ κ counters need 1

3n representing points.

Partitioning the input array:

Start working on the first 1
3n entries.

Use last 1
3n entries for counters.

work space

0 n/3 2n/3

scratch space counter space

n-1

Henrik Blunck Implicit Computation Geometry 20

Extracting the Topmost κ Layers

Setup:

Compute size ci of i-th layer, 0 ≤ i < κ= 1
6n/ log2 n.

Compute maximal j s.t.

P

j

i=0

c

i

� n.

Extracting the topmost j layers:

Combine extraction with counting sort.

Maintain \tails" in \work space"; construct layers in sorted order

in \scratch space".

Move constructed layers to front.

work space

0 n/3 2n/3

scratch space counter space

n-1

Henrik Blunck Implicit Computation Geometry 21

Extracting the Topmost κ Layers

Setup:

Compute size ci of i-th layer, 0 ≤ i < κ= 1
6n/ log2 n.

Compute maximal j s.t.

P

j

i=0

c

i

� n.

Extracting the topmost j layers:

Combine extraction with counting sort.

Maintain \tails" in \work space"; construct layers in sorted order

in \scratch space".

Move constructed layers to front.

work space

0 n/3 2n/3

scratch space counter space

n-1

Henrik Blunck Implicit Computation Geometry 21

Extracting the Topmost κ Layers

Setup:

Compute size ci of i-th layer, 0 ≤ i < κ= 1
6n/ log2 n.

Compute maximal j s.t.
∑j

i=0 ci ≤ 1
3n.

Extracting the topmost j layers:

Combine extraction with counting sort.

Maintain \tails" in \work space"; construct layers in sorted order

in \scratch space".

Move constructed layers to front.

work space

0 n/3 2n/3

scratch space counter space

n-1

Henrik Blunck Implicit Computation Geometry 21

Extracting the Topmost κ Layers

Setup:

Compute size ci of i-th layer, 0 ≤ i < κ= 1
6n/ log2 n.

Compute maximal j s.t.
∑j

i=0 ci ≤ 1
3n.

Extracting the topmost j layers:

Combine extraction with counting sort.

Maintain \tails" in \work space"; construct layers in sorted order

in \scratch space".

Move constructed layers to front.

work space

0 n/3 2n/3

scratch space counter space

n-1

Henrik Blunck Implicit Computation Geometry 21

Extracting the Topmost κ Layers

Setup:

Compute size ci of i-th layer, 0 ≤ i < κ= 1
6n/ log2 n.

Compute maximal j s.t.
∑j

i=0 ci ≤ 1
3n.

Extracting the topmost j layers:

Combine extraction with counting sort.

Maintain “tails” in “work space”; construct layers in sorted order

in “scratch space”.

Move constructed layers to front.

work space

0 n/3 2n/3

scratch space counter space

n-1

Henrik Blunck Implicit Computation Geometry 21

Extracting the Topmost κ Layers

Setup:

Compute size ci of i-th layer, 0 ≤ i < κ= 1
6n/ log2 n.

Compute maximal j s.t.
∑j

i=0 ci ≤ 1
3n.

Extracting the topmost j layers:

Combine extraction with counting sort.

Maintain “tails” in “work space”; construct layers in sorted order

in “scratch space”.

Move constructed layers to front.

work space

0 n/3 2n/3

scratch space counter space

n-1

Henrik Blunck Implicit Computation Geometry 21

Extracting All Layers–I

First phase, i.e., for earlier iterations:

Construct (groups of 1
6 ·

n
logn) layers in first part of the array.

work space

0 n/3 2n/3

scratch space counter space

n-1

Analysis:

Cost per iteration that processes all � points on � layers:

O

(

n+ � logn

)

.

Invariant: Keep unprocessed(!) points in sorted <

y

-order.

No more than O

(

logn

)

such iterations, i.e., O

(

n logn

)

global cost.

Henrik Blunck Implicit Computation Geometry 22

Extracting All Layers–I

First phase, i.e., for earlier iterations:

Construct (groups of 1
6 ·

n
logn) layers in first part of the array.

work space

0 n/3 2n/3

scratch space counter space

n-1

Analysis:

Cost per iteration that processes all ξ points on 1
6 ·

n
logn layers:

O (n + ξ logn).

Invariant: Keep unprocessed(!) points in sorted <y-order.

No more than O

(

logn

)

such iterations, i.e., O

(

n logn

)

global cost.

Henrik Blunck Implicit Computation Geometry 22

Extracting All Layers–I

First phase, i.e., for earlier iterations:

Construct (groups of 1
6 ·

n
logn) layers in first part of the array.

work space

0 n/3 2n/3

scratch space counter space

n-1

Analysis:

Cost per iteration that processes all ξ points on 1
6 ·

n
logn layers:

O (n + ξ logn).

Invariant: Keep unprocessed(!) points in sorted <y-order.

No more than O (logn) such iterations, i.e., O (n logn) global cost.

Henrik Blunck Implicit Computation Geometry 22

Extracting All Layers–II

Second phase (with a grain of salt):

Construct (in O (n logn) time) one layer crossing the boundary

between work and scratch space using the skyline algorithm.

work space

0 n/3 2n/3

scratch space counter space

n-1

Third phase i.e., for later iterations:

Construct (groups of �) layers in second part of the array.

O

(

n+ � logn

)

time to process � layers with � points.

Whenever scratch space is too small, perform skyline computa-

tions on subarrays of geometrically decreasing size) O

(

n logn

)

.

Henrik Blunck Implicit Computation Geometry 23

Extracting All Layers–II

Second phase (with a grain of salt):

Construct (in O (n logn) time) one layer crossing the boundary

between work and scratch space using the skyline algorithm.

counter space

0 n/3

work & scratch space

n-1

Third phase i.e., for later iterations:

Construct (groups of 1
6 ·

n
logn) layers in second part of the array.

O

(

n+ � logn

)

time to process � layers with � points.

Whenever scratch space is too small, perform skyline computa-

tions on subarrays of geometrically decreasing size) O

(

n logn

)

.

Henrik Blunck Implicit Computation Geometry 23

Extracting All Layers–II

Second phase (with a grain of salt):

Construct (in O (n logn) time) one layer crossing the boundary

between work and scratch space using the skyline algorithm.

counter space

0 n/3

work & scratch space

n-1

Third phase i.e., for later iterations:

Construct (groups of 1
6 ·

n
logn) layers in second part of the array.

O (n + ξ logn) time to process 1
6 ·

n
logn layers with ξ points.

Whenever scratch space is too small, perform skyline computa-

tions on subarrays of geometrically decreasing size) O

(

n logn

)

.

Henrik Blunck Implicit Computation Geometry 23

Extracting All Layers–II

Second phase (with a grain of salt):

Construct (in O (n logn) time) one layer crossing the boundary

between work and scratch space using the skyline algorithm.

counter space

0 n/3

work & scratch space

n-1

Third phase i.e., for later iterations:

Construct (groups of 1
6 ·

n
logn) layers in second part of the array.

O (n + ξ logn) time to process 1
6 ·

n
logn layers with ξ points.

Whenever scratch space is too small, perform skyline computa-

tions on subarrays of geometrically decreasing size ⇒ O (n logn).

Henrik Blunck Implicit Computation Geometry 23

Repairing the Layer Order

Finishing up:

Bit-encoding corrupts layer order (locally).

Repairing after last iteration by linear time sweep:

Each bit-neighbour pair (q, r) can be correctly ordered by only

looking at q, r and predecessor p:

r|q

q|r

q

rr

r r

(see figure to the right)

(see figure to the right,
 with q and r exchanged)

q|r rqor

r|q qror

pq|r
prq

p|rqq

r p

p

p

p

p(2)

(1)

⇒ Layer order repairable by linear scan.

⇒ O (n · log2 n) in-place computation of layers of maxima.

Henrik Blunck Implicit Computation Geometry 24

Convex layers computation

Henrik Blunck Implicit Computation Geometry 25

Ideas applicable also to convex layers problem?

Applicable:

{ Sweep-framework.

{ Maintainance of tails for each layer.

Problem:

A point changes its convex layer O

(

n

)

times during

sweep.

Solutions (for 2D layers and 3D hull)?

for 2D convex layers?

for 3D convex hull?

Convex layers computation

Ideas applicable also to convex layers problem?

Applicable:

– Sweep-framework.
{ Maintainance of tails for each layer.

Problem:

A point changes its convex layer O

(

n

)

times during

sweep.

Solutions (for 2D layers and 3D hull)?

for 2D convex layers?

for 3D convex hull?

Henrik Blunck Implicit Computation Geometry 25

Convex layers computation

Ideas applicable also to convex layers problem?

Applicable:

– Sweep-framework.
– Maintainance of tails for each layer.

Problem:

A point changes its convex layer O

(

n

)

times during

sweep.

Solutions (for 2D layers and 3D hull)?

for 2D convex layers?

for 3D convex hull?

Henrik Blunck Implicit Computation Geometry 25

Convex layers computation

Ideas applicable also to convex layers problem?

Applicable:

– Sweep-framework.
– Maintainance of tails for each layer.

Problem:

A point changes its convex layer O (n) times during
sweep.

Solutions (for 2D layers and 3D hull)?

for 2D convex layers?

for 3D convex hull?

Henrik Blunck Implicit Computation Geometry 25

Convex layers computation

Ideas applicable also to convex layers problem?

Applicable:

– Sweep-framework.
– Maintainance of tails for each layer.

Problem:

A point changes its convex layer O (n) times during
sweep.

Solutions (for 2D layers and 3D hull)?

for 2D convex layers?

for 3D convex hull?

Henrik Blunck Implicit Computation Geometry 25

Computing the skyline in 3D

Time-Optimal algorithm [Kung et al., 1975]:

Do divide-and-conquer along z.

For each conquer-step:

– Problem broken down to 2D . . .
– Divide in upper and lower part.
– Simultanious y−sweep over upper and lower maxima and exploit:
– For each maximum of P|z>ζ: on skyline (of whole input).
– For each maximum of P|z≤ζ: on skyline ⇒ x-larger than actual tail.

Making it in-place:

Use in-place recursion framework

[

Bose et al., 2006

]

.

For each conquering: Explicit reconstruction of skyline bounds.

. . . Maxima of P|z≤ζ Maxima of P|z>ζ . . .

`b `′b b(`b + `e)/2c `′e `e

⇓

. . . Maxima of P|z≤ζ ∪ P|z>ζ . . .

`b `′ `e

Henrik Blunck Implicit Computation Geometry 26

Computing the skyline in 3D

Time-Optimal algorithm [Kung et al., 1975]:

Do divide-and-conquer along z.

For each conquer-step:

– Problem broken down to 2D . . .
– Divide in upper and lower part.
– Simultanious y−sweep over upper and lower maxima and exploit:
– For each maximum of P|z>ζ: on skyline (of whole input).
– For each maximum of P|z≤ζ: on skyline ⇒ x-larger than actual tail.

Making it in-place:

Use in-place recursion framework [Bose et al., 2006].

For each conquering: Explicit reconstruction of skyline bounds.

. . . Maxima of P|z≤ζ Maxima of P|z>ζ . . .

`b `′b b(`b + `e)/2c `′e `e

⇓

. . . Maxima of P|z≤ζ ∪ P|z>ζ . . .

`b `′ `e

Henrik Blunck Implicit Computation Geometry 26

Computing the skyline in 3D

Time-Optimal algorithm [Kung et al., 1975]:

Do divide-and-conquer along z.

For each conquer-step:

– Problem broken down to 2D . . .
– Divide in upper and lower part.
– Simultanious y−sweep over upper and lower maxima and exploit:
– For each maximum of P|z>ζ: on skyline (of whole input).
– For each maximum of P|z≤ζ: on skyline ⇒ x-larger than actual tail.

Making it in-place:

Use in-place recursion framework [Bose et al., 2006].

For each conquering: Explicit reconstruction of skyline bounds.

. . . Maxima of P|z≤ζ Maxima of P|z>ζ . . .

`b `′b b(`b + `e)/2c `′e `e

⇓

. . . Maxima of P|z≤ζ ∪ P|z>ζ . . .

`b `′ `e

Henrik Blunck Implicit Computation Geometry 26

Convex hull and layers computation

Solutions (for 2D layers and 3D hull):

Build recursively defined hull data structure . . .

. . . then remove points iteratively.

) 2D Convex layers in O

(

n log

2

n

)

time

[

Chazelle, 1985

]

. In-place variant?

) 3D Convex hull in O

�

n log

3

2

n

�

time and O

(

1

)

space

[

Br�onnimann et al.,

2004a

]

. Running time improvable?

11 4 3 9 1 7 102 5 8 6 12

{11,4,1,5,12}, 3

{ }, 1 { }, 1 {8}, 1 {6}, 1

{2}, 1

{ }, 1{3,9}, 2

{7}, 2

{ }, 1 {10}, 1

Henrik Blunck Implicit Computation Geometry 27

Convex hull and layers computation

Solutions (for 2D layers and 3D hull):

Build recursively defined hull data structure . . .

. . . then remove points iteratively.

) 2D Convex layers in O

(

n log

2

n

)

time

[

Chazelle, 1985

]

. In-place variant?

) 3D Convex hull in O

�

n log

3

2

n

�

time and O

(

1

)

space

[

Br�onnimann et al.,

2004a

]

. Running time improvable?

11 4 3 9 1 7 102 5 8 6 12

{11,4,1,5,12}, 3

{ }, 1 { }, 1 {8}, 1 {6}, 1

{2}, 1

{ }, 1{3,9}, 2

{7}, 2

{ }, 1 {10}, 1

Henrik Blunck Implicit Computation Geometry 27

Convex hull and layers computation

Solutions (for 2D layers and 3D hull):

Build recursively defined hull data structure . . .

. . . then remove points iteratively.

⇒ 2D Convex layers in O (n log2 n) time [Chazelle, 1985]. In-place variant?

) 3D Convex hull in O

�

n log

3

2

n

�

time and O

(

1

)

space

[

Br�onnimann et al.,

2004a

]

. Running time improvable?

11 4 3 9 1 7 102 5 8 6 12

{11,4,1,5,12}, 3

{ }, 1 { }, 1 {8}, 1 {6}, 1

{2}, 1

{ }, 1{3,9}, 2

{7}, 2

{ }, 1 {10}, 1

Henrik Blunck Implicit Computation Geometry 27

Convex hull and layers computation

Solutions (for 2D layers and 3D hull):

Build recursively defined hull data structure . . .

. . . then remove points iteratively.

⇒ 2D Convex layers in O (n log2 n) time [Chazelle, 1985]. In-place variant?

⇒ 3D Convex hull in O
(
n log3

2 n
)

time and O (1) space [Brönnimann et al.,
2004a]. Running time improvable?

11 4 3 9 1 7 102 5 8 6 12

{11,4,1,5,12}, 3

{ }, 1 { }, 1 {8}, 1 {6}, 1

{2}, 1

{ }, 1{3,9}, 2

{7}, 2

{ }, 1 {10}, 1

Henrik Blunck Implicit Computation Geometry 27

Overview

1. Introduction: Motivation for implicit computation

2. Skylines and convex hulls

Henrik Blunck Implicit Computation Geometry 28

Bibliography

[Blunck & Vahrenhold, 2006] H. Blunck and J. Vahrenhold. In-place algorithms
for computing (layers of) maxima. In: Proceedings of the 10th Scandinavian
Workshop on Algorithm Theory (SWAT ’06), volume 4059 of Lecture Notes
of Computer Science, pages 363–374. Springer, Berlin, 2006.

[Bose et al., 2006] P. Bose, A. Maheshwari, P. Morin, J. Morrison, M. Smid,
and J. Vahrenhold. Space-efficient geometric divide-and-conquer algorithms.
Computational Geometry: Theory & Applications, 2006.

[Brönnimann & M.Chan, 2004] H. Brönnimann and T. M.Chan. Space-effcient
algorithms for computing the convex hull of a simple polygonal line in linear
time. In: Proceedings of the 6th Latin American Symposium on Theoretical
Informatics (LATIN ’04), volume 2976 of Lecture Notes in Computer Science,
pages 162–171, Berlin, 2004. Springer.

[Brönnimann et al., 2004a] H. Brönnimann, T. M. Chan, and E. Y. Chen. To-
wards in-place geometric algorithms and data structures. In: Proceedings of
the 20th Annual ACM Symposium on Computational Geometry (SoCG ’04),
pages 239–246, New York, NY, USA, 2004. ACM Press.

[Brönnimann et al., 2004b] H. Brönnimann, J. Iacono, J. Katajainen, P. Morin,
J. Morrison, and G. T. Toussaint. Space-efficient planar convex hull algorithms.
Theoretical Computer Science, 321(1):25–40, June 2004.

[Brönnimann et al., 2004c] H. Brönnimann, T. M.Chan, and E. Y. Chen. To-
wards in-place geometric algorithms. In: Proceedings of the 20th Annual ACM
Symposium on Computational Geometry (SoCG ’04), pages 239–246. ACM
Press, 2004.

[Carlsson & Sundström, 1995] S. Carlsson and M. Sundström. Linear-time in-
place selection in less than 3n comparisons. In: Proceedings of the 6th Annual
International Symposium on Algorithms and Computation (ISAAC’02), volume
3827 of Lecture Notes in Computer Science, pages 244–253, Berlin, 1995.
Springer.

[Chan, 1996] T. M. Chan. Optimal output-sensitive convex hull algorithms in
two and three dimensions. Discrete & Computational Geometry, 16:361–368,
1996.

[Chazelle, 1985] B. Chazelle. On the convex layers of a planar set. IEEE Trans-
actions on Information Theory, 31:509–517, 1985.

[Chen & M.Chan, 2005] E. Y. Chen and T. M.Chan. Space-efficient algorithms
for klee’s measure problem. In: Proceedings of the 17th Canadian Conference
on Computational Geometry (CCCG ’05), 2005.

[Floyd, 1964] R. W. Floyd. Algorithm 245: Treesort. Communications of the
ACM, 7(12):701, December 1964.

[Franceschini & Grossi, 2003] G. Franceschini and R. Grossi. Optimal worst-
case operations for implicit cache-oblivious search trees. In: Proceedings of

the 8th International Workshop on Algorithms and Data Structures (WADS
’03), pages 114–126, 2003.

[Geffert & Kollar, 2001] V. Geffert and J. Kollar. Linear-time in-place selection
in ε · n element moves. Technical report, P. J. Safarik University, 2001.

[Geffert et al., 2000] V. Geffert, J. Katajainen, and T. Pasanen. Asymptotically
efficient in-place merging. Theoretical Computer Science, 237(1–2):159–181,
April 2000.

[Graham, 1972] R. L. Graham. An effcient algorithm for determining the convex
hull of a finite planar set. Information Processing Letters, 1:132–133, 1972.

[Katajainen & Pasanen, 1999] J. Katajainen and T. A. Pasanen. In-place sort-
ing with fewer moves. Information Processing Letters, 70(1):31–37, 1999.

[Kung et al., 1975] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the
maxima of a set of vectors. Journal of the ACM, 22(4):469–476, 1975.

[Mannila & Ukkonen, 1984] H. Mannila and E. Ukkonen. A simple linear-time
algorithm for in situ merging. Information Processing Letters, 18(4):203–208,
1984.

[Munro, 1986] J. I. Munro. An implicit data structure supporting insertion, dele-
tion, and search in o(log n) time. Journal of Computer and System Sciences,
33(1):66–74, 1986.

[Vahrenhold, 2005] J. Vahrenhold. Line-segment intersection made in-place. In:
Proceedings of the 9th International Workshop on Algorithms and Data Struc-
tures (WADS ’05), volume 3608 of Lecture Notes in Computer Science, pages
146–157, Berlin, 2005. Springer.

	Introduction: Motivation for implicit computation
	Motivation
	In-Place Algorithms
	Motivation: Dealing with Large Datasets
	Previous Results
	Sapce-efficient Computational Geometry Results
	In this lecture …

	Skylines and convex hulls
	Computing the Skyline
	Computing all skylines in-place
	Computing the Skyline: Selecting Maximal Points in 2D
	Computing the Convex Hull in 2D output-sensitive chan96optimal
	How to run Chan's algorithm in-place?
	Output-sensitive skyline computation
	Computing Layers of Maxima
	Computing Layers of Maxima in-place: Overview
	For starters: Counting the Number of Layers
	Counting the Points on the Topmost k Layers
	Finding ``extra'' space
	Extracting the Topmost k Layers
	Extracting All Layers--I
	Extracting All Layers--II
	Repairing the Layer Order
	Convex layers computation
	Computing the skyline in 3D
	Convex hull and layers computation

