
Production and Transportation Planning Software

User Evaluation Report

Deliverable D27, ALCOM-FT Project

Peter Lennartz

Institute of Information and Computing Sciences
Utrecht University

Padualaan 14, 3584 CH Utrecht
The Netherlands
peterl@cs.uu.nl

Abstract. In this report we evaluate the software presented in deliverable
D19 and present some improvements. The purpose of the software is to solve
instances of the no-wait job shop problem. Right now it can solve instances
of size up to 10 to 15 jobs that belong to a special class. With the current
improvements it can solve all instances of the no-wait job shop problem with
10 to 15 jobs, and we expect to improve this even further.

1 Introduction

The no-wait job shop scheduling problem (NWJSP) can be defined as follows. Given
a set of tasks (called the operations) each task is to be executed on a specific
machine, which takes a given amount of time (the processing time); each machine
can handle at most one operation at a time and is continuously available from time
zero onwards. Furthermore we are given a set of so called no-wait constraints, where
each constraint decrees that a given operation has to be started exactly ∆ time units
after another, given operation has finished; this number ∆ can be negative. By the
term job we denote a maximal set of operations connected by these so called no-wait
constraints. The objective is to find the shortest schedule; i.e., an assignment of
starting times to the operations such that all the constraints are fulfilled (i.e., the
schedule is valid) and such that the point in time at which the last operation finishes
processing (the so called makespan) is as small as possible. The NWJSP is used to
model the production problem in a pharmaceutical industry (see deliverable D9,
part A).

The program delivered in ALCOM-FT deliverable D19 has been designed to
solve such instances. The algorithm was built on top of a TSP solver using the
similarity between a special class of the NWJSP and the asymmetric traveling
salesman problem (see [1]). We refer the reader to the delivery report of project
D19 for a brief description of the algorithm.

2 User Evaluation and Improvements

2.1 Testing Results

When testing the algorithm, we found out that it was only well suited to solve the
instances that were close to the special case; in other cases the algorithm showed bad
behavior. To overcome this bad behavior we have changed the underlying model:
instead of modeling the problem as an asymmetric traveling salesman problem,
we now formulate it as a binary integer linear program of pseudo-polynomial size
using a time indexed formulation with variables xjt that indicate whether job j is



started at time t (see for example [2] for details). This time indexed formulation
allows us not only to ask for the shortest possible, valid schedule but also to ask
if there exists a schedule with length no more than a given upper bound. In this
way we can find quickly a schedule of length ten percent above optimum by only
applying pure branch and bound algorithm in which standard cuts are incorporated.
Furthermore we have implemented heuristics to speed up the process of finding valid
solutions, and we have implemented a new branching strategy. Instead of branching
on single variables in the time indexed formulation (which were set to zero or one
respectively) we now branch by splitting up the execution intervals; this is done
by assuming that the starting time will be before or after one point in time in one
branch respectively. This gave us a speedup of 30 to 50 percent on our test instances.
By assuming that the starting time of a job lies within a certain interval we are also
able to compute the consequences for the starting times of all the other jobs; i.e.,
do some propagation on the starting times. For example, by assuming that a job
does not start before a certain point in time we can ask (and answer) the question
of where other jobs cannot start because this job is being processed. This gave a
speedup of another 10 to 25 percent.

2.2 Further improvements

As described above, we combine constraint satisfaction with integer programming
by using it as a sort of preprocessing step to minimize the search space.

We are right now busy with implementing lower bounds on the makespan that
follow from the single-machine relaxation (see for example [3]); we expect that this
will make the constraint satisfaction part much more efficient. Besides this we are
working on a refinement of the branching strategy such that we can reuse as much
information as possible. For example, if a heuristic gives a negative result, it might
be worth to analyze why it failed and use this information to branch deeper into
the search tree.

3 Conclusion

The algorithm (as it is given in the software prototype in deliverable D19) could
handle instances of 10 to 15 jobs of the special type mentioned above. Right now it
can handle arbitrary instances of size up to 10 to 15 jobs. Both measurements were
made on a Pentium IV 1700. Furthermore, the underlying time indexed formula-
tion can be easily extended to the case that multiple machines of the same type
are present, which is the type of problem that we have real-life instances of (see
deliverable D28).

4 Software

We will publish the new, refined software on the Web when it has received enough
development and testing. Development snapshots are of course available. Write an
e-mail to Peter Lennartz (peterl@cs.uu.nl) and a copy of the sources will be sent to
you.

References

1. P. Lennartz, H. Hoogeveen (2004). The Correspondence Between the No-Wait Job
Shop Problem and the Traveling Salesman Problem, to appear.



2. J.M. van den Akker (1994). LP-based solution methods for single-machine scheduling
problems, PhD Thesis, Eindhoven University of Technology.

3. A.M.G. Vandevelde, J.A. Hoogeveen, C.A.J. Hurkens, J.K. Lenstra (2004). Lower
bounds for the head-body-tail problem on parallel machines: a computational study
of the multiprocessor flow shop, to appear in INFORMS Journal on Computing.


