
GSB

Algorithm Engineering (2014, Q3)

Project 2 – Choose Two Topics

In this project you should do a throughout experimentation and evaluation of two of the algorithmic

problems listed below. Through experimental evaluation of the performance of your solution, try to

optimize your structure. Your report should document the steps of improvements, comparing the steps

against each other.

The project should be done in groups of 2-3 persons. The work should be documented in a report. This

report will be part of the final grade. Part I of the report should be the content of the report from Project 1.

Parts II and III of the report should cover the topics of the second project.

Deadline: Tuesday March 18, 2014.

Project alternatives

For each of the possible project topics listed below is given a reference. It is not expected that the content

of these papers necessarily is implemented – the references are primarily provided as a starting point for

finding relevant literature.

1. QuickSort in Java

Try to improve Java’s build in QuickSort in Java7. Since the Java runtime system is influencing the

runtime, the outcome of experiments might be harder to explain. The following is a recent paper

on the problem:
Sebastian Wild, Markus Nebel, Raphael Reitzig, Ulrich Laube. Engineering Java 7’s Dual Pivot Quicksort Using

MaLiJAn. Annual Meeting on Algorithm Engineering and Experiments (ALENEX). Pages 55-69, 2013.

[http://knowledgecenter.siam.org/0238-000024/0238-000024/1]

See also: Multi-Pivot Quicksort: Theory and Experiments, ALENEX 2014 [doi.org/10.1137/1.9781611973198.6].

2. Matrix Multiplication

Develop an efficient matrix multiplication algorithm, e.g. using ideas from the below paper. The

project could also cover the role of efficient matrix transposition.
Matteo Frigo, Charles E. Leiserson, Harald Prokop, Sridhar Ramachandran. Cache-Oblivious Algorithms.

ACM Transactions on Algorithms, 8(1), Article No. 4, 2012.

[http://dx.doi.org/10.1145/2071379.2071383]

3. RadixSort

Consider sorting 32-bit integers using RadixSort. RadixSort is theoretically fast, but cache

performance is an important issue in practice. A new variant of RadixSort is presented in:
Jan Wassenberg, Peter Sanders. Engineering a Multi-core Radix Sort. Euro-Par.

Lecture Notes in Computer Science, volume 6853, 160-169, Springer, 2011.

[http://dx.doi.org/10.1007/978-3-642-23397-5_16]

4. Rank-Select Data Structures

A rank-select data structure supports the following two operations for a static vector of length n

containing 0-1 values: Rank(i) returns the number of 1s up to position i in the vector, and Select(r)

returns the position of the r’th 1 in the vector. Such data structures are fundamental to more

complex data structures. The goal is to develop space efficient data structures for this problem, i.e.

O(n) bits (not words), with constant query time. A previous experimental study is described in:
Rodrigo González, Szymon Grabowski, Veli Mäkinen, and Gonzalo Navarro. Practical Implementation of Rank and

Select Queries. Poster Proceedings Volume of WEA'05, pages 27-38 (poster).

[http://personales.dcc.uchile.cl/~gnavarro/ps/wea05.pdf]

5. Priority Queues (Insert & DeleteMin)

Binary heaps are known to have poor cache performance. The following paper describes an

alternative priority queue approach reducing the number of cache faults:
Peter Sanders. Fast Priority Queues for Cached Memory. ACM Journal of Experimental Algorithmics 5:7, 2000.

[http://doi.acm.org/10.1145/351827.384249]

6. Are Fenwick Trees Sensitive to Cache Associativity?

Make a throughout experimental evaluation of Fenwick Trees. Are some parts of the address space

more sensitive to cache faults due to cache associativity? Is the same true for binary heaps?

7. Something completely different?

If you have a good idea for a completely different project you can also do that – but you need to

get the project idea approved before starting.

